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Semantics of unbounded nondeterminism*) 

by 

R.J. Back 

ABSTRACT 

A program construct is proposed, for which the assumption of bounded 

nondeterminism is not natural. It is shown that the simple approach of 

taking the powerdomain of the flat cpo does not produce a correct semantics 

for programs in which nondeterminism is unbounded. The powerdomain approach 

is then extended to computation paths, resulting in an essentially opera

tional semantics for programs of unbounded nondeterminism. 

KEY WORDS & PHRASES: unbounded nondeterminism, powerdomains, denotational 

semantics, nondeterministic assignment statements, 

termination 
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1. INTRODUCTION 

Nondeterminism is usually introduced into a programming language in the form of 

a new control structure. One possibility is to define a binary construct, s 1 or s2 , 

which has the effect of selecting either s 1 or s 2 (but not both) for execution. 

The choice between the two alternatives is made nondeterministically. Another 

possibility, introduced by DIJKSTRA [76], is to generalise the conditional statement. 

The effect of the guarded command if B1 ➔ s1 D ... D Bn ➔ Sn fi is to execute some 

statement Si for which the corresponding guard Bi is true. Nondeterminism is possible 

in this case, because the guards are not required to be mutually exclusive. 

There is, however, another way in which nondeterminism can be introduced into a 

sequential programming language. This is by allowing the basic statements to be 

nondeterministic. This can be achieved by generalising the ordinary assignment 

statement to a nondeterministic assignment statement. Such a construct has been used 

in HAREL [77] and in BACK [78], and in a somewhat different form, in BAUER [77]. 

A nondeterministic assignment statement has the form 

x: = x' .Q 

and has the effect of assigning to x some value x' that satisfies the condition~, 

in which both x and x' (and also other variables) may occur free. Nondeterminism can 

occur, because there may be more than one x' that satisfies the condition~ for a 

given value of x. In this case some x' satisfying Q is choosen nondeterministically, 

and assigned to x. If no x' satisfies Q, then the effect of the statement is 

undefined. 

This latter form of nondeterminism is actually very common, although in a 

somewhat disguised form. Consider a program S which calls a procedure p, and assume 

that pis specified by giving the entry and exit conditions for the procedure. 

Usually we will try to understand the way in which S works by only considering the 

information about p given in the specification of this procedure. The exit condition, 

however, may not define a unique final result of calling p. In understanding S, we 

then have to consider all possible final states which can result from the call, i.e. 
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we will in effect be looking upon Sas a program with an nondeterministic basic 

statement p. The nondeterminism here results from lack of information as to the effect 

of calling p, rather than from the fact that Sis executed by a nondeterministic 

machine. Somebody observing only the working of Sand knowing only the specification 

of p, cannot, however, tell the difference between these two views. (One could argue 

that in the first case, because the procedure p actually is executed by a determinis

tic mechanism, the same result will always be choosen for the same initial state. on 

the other hand, it is possible that a nondeterministic mechanism executing p would 

choose to give the same result for the same initial state in all observed calls, but 

still could give some other result for some future call on p.) 

We will here consider a simple iterative language embodying this kind of non

determinism. For this purpose, let Var be a nonempty set of variables. Assume 

that certain function, predicate and constant symbols are given, and let Form be the 

set of all first-order formulas built out of variables and these symbols. 

We will let x,y and z range over variables and B,P,Q,R range over first-order 

formulas in Form. 

Let Stat be the set of program statements, recursively defined by 

S· ·= x:=x'.Q I s1;s2 I if B then s1 else s2 fi I while B do s1 od. 

Here S, s 1 and s2 range over program statements. The effect of the first construct 

was already explained above. The other constructs have their usual meaning of 

composition, selection and iteration. 

Our purpose here is to discuss how the semantics of programming languages such 

as Stat, containing nondeterministic basic statements, is to be defined. The seman

tics of nondeterministic control structures have been successfully defined in 

PLOTKIN [76]. This definition, however, makes essential use of the assumption that 

the nondeterminism is bounded. This means that execution of a program component for 

a given initial state either can only produce a finite number of different results, 

or then it must be possible that execution never terminates. The possibility that 

execution for some initial state will be guaranteed to terminate and at the same 

time may produce infinitely many different results is thus excluded. 

The assumption of bounded nondeterminacy, also made and discussed in DIJKSTRA 

[76], is intuitively justified for nondeterministic control structures such as those 

given above. In these cases the choice of how to proceed is made between a finite 

number of alternatives. The set of all possible executions of a program from a given 

initial state will therefore form a finitely branching tree. If this tree contains 

infinitely many terminal nodes then the tree itself must be infinite. By Konigs lemma, 

this means that there must be an infinite branch in the tree, i.e. an infinite 

execution starting from the given initial state is possible. 

There does not, however, seem to be any intuitive reason for not considering 

basic statements of unbounded nondeterminacy. In his book Dijkstra e.g. rejects 



the basic statement "set x to any positive integer", because it cannot be implemented 

using guarded commands. While this is true, there is on the other hand nothing wrong 

intuitively in calling a procedure p, with the specification 

proc p; entry true; exit x > 0; 

This corresponds to using the nondeterministic assignment statement 

x:=x. (x > 0) 

in the program. The fact that this statement cannot be implemented is of no concern 

here, the purpose of the statement is only to express the information available about 

the effect of calling the procedure. Moreover, from the point of understanding a 

program, there is no difference between basic statements of bounded and unbounded 

nondeterminacy, both seem to be equally well defined and easy to understand. (This 

same point has also been made by BOOM [78]). 

The nondeterministic assignment statement is more powerful that the nondeter

ministic control statements given above, because nondeterministic control structures 

can be simulated using nondeterministic assignment statements, while the converse 

does not necessarily hold. Thus e.g. the binary choice construct s 1 or s2 can be 

expressed in our language by the statement 

c:=c. (c=l or c=2); if c=l then s 1 else s2 fi. 

The assignment statement can also be expressed using the nondeterministic assignment 

statement. The assignment statement x:=t is expressed by the nondeterministic 

assignment 

x :=x'. (x' = t). 

E.g. x := x+l corresponds to the statement x := x'.(x' = x+l). 

An obvious generalisation of this nondeterministic assignment statement is to 

allow simultaneous assignment to several variables, i.e. we would allow nondetermin

istic assignment statements of the form 

we will only treat the single variable form below, for reasons of simplicity. 

2. FUNCTIONAL SEMANTICS BASED ON P(EL) 

we will start by defining the semantics of Stat using the powerdomain P(EL) 

introduced in PLOTKIN [76]. 

Let D be a nonempty set, serving as the domain of interpretation for the formulas 

in Form. The set of proper program states is defined to be E =Var ➔ D, while 

EL= Eu {L} is the set of all program states, including the undefined state L. An 

ordering of approximation is defined in E as usually, by the condition 
L 

s Cs' iff s =Lor s = s', 

for any s, s' E EL It is easily shown that EL is a complete partial order (cpo) with 
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respect to this ordering. The undefined state is used to indicate nontermination, as 

usual. 

The meaning of a nondeterministic program will be a function from the initial 

states to the set of possible final states for the given initial state. We therefore 

need the powE!rset of l: J_. Let us define the set of possible results 

P(l:J_) ={AC i::J_ I A~¢}. 

A subset A of l: is bounded, if I A I < 00 or J. E A ( I A I is the cardinality of A) . The J_ 

set of possible bounded results is 

P (l:) ={Ac l: IA~¢ and A is bounded}. El J_ J_ 

An ordering of approximation is defined between elements of P(l:J_) as follows: 

AL A' iff VsEA.3s'EA'.s Ls' and Vs'eA'.3seA.s ~ s', 

for any A, A' E P(l:J_). An equivalent formulation for P(l:J_) is 

AC A' iff either J_ EA and A - {j_} c A' 

or J_ i A and A A'. 

We then have that both P(l:J_) and PB(l:J_) are cpo's with respect to this ordering. 

We define the set of state transformations by M(l:) = i:: ➔ P(l:) and the 
J. J_ 

set of bounded state transformations by MB(l:J_) = l: ➔ PB(l:J_). 

An ordering of approximation between state transformations is defined by 

m C m' iff m(s) C m' (s) for all s E i::, 

for any m, m' E M(l:J_). We then have that M(l:J_) and MB(l:J_) are both cpo's with respect 

to this ordering. 

To define the meaning of the statements in Stat, we will also need the set of 

truth values T = {tt,ff} and the set of predicates on i::, W(l:) = l: ➔ T. 
t Let m E M(l:J_). The extension of m tom :P(l:J_) ➔ P(l:J_) is defined as follows. 

First, let m': i::J_ ➔ P(l:J_) be defined by 

m (s) , if s E i:: 
m'(s) = Jl {s}, if s J_ 

Then mt is de,fined by 

t m (A) =U{m'(s) Is EA}. 

The same construction extends m EM (l:) to mt:P (l:) ➔ P (l:). B J_ B J_ B J_ 
Composition and selection is now easy to define. Let m and m' be elements of 

M(l:J_), and le!t b be an element of W(l:). The composition m;m' of m and m', defined by 

... 
(m;m') (s) = m'' (m(s)), for s E i::, 

will then be an element of M(l:J_). Similarly, the selection of m or m' by b, 

(b ➔ m,m'), defined by 



(b ➔ m,m')(s) 
Jm(s), ifb(s) 

l m' (s), if b(s) 

will also be an element of M(El.). 

tt 

ff 

The same construction defines composition and selection in M (E ); M (E) will 
B 1. B 1. 

also be closed with respect to these operations. Composition and selection will be 

monotonic in both M(El.) and MB(El.). In MB(El.) these operations will also be 

continuous. However, composition in M(El.) is not continuous. This is the main 

technical reason for requiring bounded nondeterminacy, i.e. the requirement is 

needed to guarantee continuity of the control structures used. 

We will finally define the iteration operator. Let~ and n be two special 

elements of M(El.), defined for any s EE by ~(s) = {s} and n(s) = {1.}. Let b E W(E) 

and let m E M (El.) . The approximates. (b*m) n e M (El.) are then defined for 

n = 0,1,2, ... by 

Because 
1 

(b*m) 

(b*m)O 

(b*m)n+l 

n 

(b ➔ m; (b*m) n, ~) , n = 0, 1, ... 

0 composition and selection is monotonic, it is easily proved that (b*m) C 
2 !;_ (b*m) !;_ ••• , so the least upper bound of this sequence exists, as 

M(El.) is a cpo. Thus we may define the iteration of m while b by 

(b * m) = U (b * m)n. 
n=O 

Before giving the meanings of the statements in Stat, we give one last technical 

definition. Lets EE. Then srd/x] EE, defined by 

if X y 
s[d/x] (y) = 

s(y), otherwise. 

Let first W: Form ➔ W(E) be a function that assigns a predicate on E to each formula 

of Form. The function~ is defined using the interpretation function for the 

predicate, function and constant symbols of Form. The definition is omitted here. 

the 

The meaning of unbounded nondeterministic statements could now be given by 

function M:Stat ➔ M(E ), defined as follows: 
l. { {s[d/x] I d ED}, 

(i) M(x:=x'.Q)(s) = {1.}, ifD =¢.s 
s 

if D ,/ ¢ 
s 

where D = {d ED I W(Q) (s[d/x']) tt} 
s 

(ii) M(sl ;S2) = M(sl) ;M(S2) 

(iii) M(if B then s 1 else s 2 fi) = ((')(B) ➔ Mcs 1) ,H<s2) J 

(iv) M(while B do s 1 od) = ((/J(B) * M(s1)). 

If the nondeterministic assignment statements x:=x'.Q are restricted in a way 

which guarantees that only a finite number of values x' satisfying Q exist for any 

states EE (i.e. losl < 00), then H(x:=x'.Q)(s) E PB(El.). In this case the range 

of Mis actually MB(El.), and M gives the intuitively correct meaning to statements in 

Stat. If, however, no such restrictions are made, then the interpretation His 
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counterintuitive, as we will show in the next section. 

3. WEAK AND STRONG TERMINATION 

The problem with the meaning function M, defined above, is that it does not 

treat termination correctly. To see the problem, we will consider an example taken 

from DIJKSTRl', [76,p. 77]. Let S be the statement 

S: while x # 0 do if x 2 0 then x:= x-1 

else x:=x.(x 2 0) fi od. 

Let s 1 denote the body of this loop. 

Intuitively, this program must terminate for any initial value of x, be it 

positive, zero or negative. However, for negative initial values of x, the meaning 

function M says that termination is not guaranteed. To see this, let us compute 

M(while x # 0 do s 1 od) (-1). 

For simplicity, we here identify the state with the value of x in the state (we may 

assume that Var= {x}). 

Let us denote b = OJ(x # 0) and m1 
, X 2 0 

, X < Q, 

i 
where N = {O, 1, 2, ... }. Let further m 

We have that for x 2 0, 

. { {O}, 
mJ_(x) = {.L}, 

Using this, we compute 

m0 (-1) 11 (-1) 

ml (-1) (b ➔ 
') 

m'· (-1) (b ➔ 

X < i 

X 2 i 

= { .L} 
0 

m1 ;m , 
1 

m1 ;m , 
2 

m3 (-1) (b ➔ m1 ;m I 

/:,) (-1) 

I:,) (-1) 

I:,) (-1) 

H(S 1). We have that b(x) tt iff x # 0 and 

0 I 1 I• • • • 

0 mOt (N) { .L} m1 ;m (-1) 
1 lt 

m1 ;m (-1) m (N) {0,.L} 
2 m2t (N) {O,.L}, ... m1 ;m (-1) 

i 
we get that m (-1) = {0,.L}, for i 2 2. Consequently, 

M(s) (-1) = 
00 i 
Um (-1) 

i=O 
{O,.L} 

Thus M(S) (-ll) contains .L, stating that the loop Sis not guaranteed to terminate for 

x = -1 initially. This contradicts our intuition about the behaviour of the loop S 

for this initial state. 

The meaning function M actually formalises strong termination of while loops, 

instead of the usual, intuitive notion of termination. A loop 

while B do s1 od 

is said to be strongly terminating if for each initial states there is an integer 

ns such that the loop is guaranteed to terminate in less than ns iterations 



(DIJKSTRA [78]). We will call termination that is not strong weak termination. 

We therefore have to reinterpret the meaning of the undefined state. \'le have 

that LE M(S) (s) iff either it is possible that S does not terminate for the initial 

states, or that Sis guaranteed to terminate for s, but that the termination is 

weak. Thus the meaning function M does not distinguish between possible nontermination 

and weak termination. 

Termination is always strong when the nondeterminism of a program is bounded. 

This is again a consequence of K6nigs lemma. The set of all executions of a program 

from some gi wm initial state will then form a finitely branching tree. If the 

program is guaranteed to terminate for the given initial state, then each branch 

will be finite. By K6nigs lemma, this means that the tree itself must be finite, 

and therefore there is only a finite number of different branches in the tree. Thus 

there is a maximum number of iteration that any branch needs before termination, 

i.e. the termination is strong. 

However, when we allow the branching of the execution tree to be infinite, 

K6nigs lemma is no longer applicable. I.e. it is possible that each branch of the 

tree is finite but that no longest branch exists in the tree, because there are 

infinitely many branches. An example is provided by the execution tree of the example 

treated above, for the initial state x = -1: 

-1 

~I~ 
0 1 2 3 4 

l I I I 
0 1 2 3 

I I I 
0 1 2 

I l 
0 1 

I 
0 

The failure of the powerdomain P(LL) to capture the correct notion of termination in 

the presence of unbounded nondeterminacy can thus be explained by noting that it is 

built on an erroneous inference: The fact that there after any number of iterations 

of a loop still could be unfinished computations going on, does not justify the 

conclusion that there could be a nonterminating computation of the loop. 

One might hope that the right notion of termination could be captured by chang

ing the approximation ordering, without changing P(LL). However, the following 

program will give the same sequence of approximations {0,L} for x=-1 as the previous 
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program, but will not be guaranteed to terminate: 

while x;ofb do x:=x. (x=O or x=l) od 

We therefore conclude that the set P(l:l) does not give enough information to decide 

between weak termination and nontermination. 

The condition that we try to capture is that no branch in the execution tree of 

a program, for a given initial state, is infinitely expanded. This again means that 

we have to distinguish between different unfinished execution paths in the 

approximates of the loop, i.e. we are essentially forced into an operational semantics. 

This will be the subject of the next section. 

4. OPERATIONAL SEMANTICS BASED ON H ( l: ) 
w 

We will here show how the approach to nondeterminacy based on P(l:l), explained 

above, can bE, adapted to provide a semantic definition for programs of unbounded non

determinacy. Basically the adaption consists in considering sets of sequences of states 

in stead of :just sets of states as is done in P(l:l). The fact that we use sequences 

of states in defining the semantics of our programming language, where the sequences 

roughly corrE,spond to the execution sequence of programs, is the reason for calling 

the semantic definition operational. 

Let i:: as before be the set of states. We will have three different kinds of 

execution paths: 

(i) Terminal paths, which are sequences of the form <s 1 , ... ,sn>, where n?: 1 and 

s. E l: for i = 1, ... ,n. 
1. 

(ii) Unfinished paths, which are sequences of the form <s 1 , ... ,sn,l>, where l is 

a special bottom element not in l:, n?: 0 and si El: for i = 1, ... ,n. 

(iii) Infinite paths, which are infinite sequences of the form <s 1 ,s2 , ... >, where 

s . € l: for i = 1 , 2 , ... 
1. 

The set of all execution paths will be denoted l:w. 

Intuitively, a terminal path corresponds to an execution which has terminated, 

an infinite path corresponds to a nonterminating execution and unfinished paths 

correspond to executions which have not been completed. The bottom element is used 

to indicate that the path in question can be extended, by continuing the execution. 

i:: , 
w 

An approximation relation is defined in l: as follows: For paths hand h' in 
w 

h Ch' iff either his terminal or infinite and h h', 

or his unfinished and h < h'. 

Here h denotes the path h with the possible trailing element l deleted. We use the 

notation h $ h' to express that his an initial segment of h'(h < h' when his a 

proper initial segment of h'). 

LEMMA 1. i:: is a cpo with respect to C.D (Proofs of theorems and lemmas are given !Hl 
w 

BACK [79].) 



The meaning of a nondeterministic program Swill be a function N(S), which 

assigns to each initial states E L the set of all possible execution paths, by 

which the execution can continue from s. As an example, consider the program 

S': while xi Odo x := x. (x = 0 or x = 1) ad. 

The execution tree of this program, for initial state x = -1, is 

Thus we have that 

N(S') (-1) = {<O>, <1,0>, <l,1,0> , ... , <1,1,1, ... >} 

This set contains, besides all finite paths of form <1,1, ... ,0> also the infinite 

path <1,1, .... >, reflecting the fact that execution of the program does not necessar

ily terminate. 

The set N(S') (-1) will actually be computed as the limit of an approximation 

sequence. The elements of this sequence are formed by performing only a certain 

number of iterations and then aborting the computation. Thus we get the set 

N(S) (-1) as the limit of the sequence 

HO {<l_>} 

H1 {<O>, <l,l_>} 

H2 {<O>, <1,0>, <l,l,l_>} 

This corresponds to the sequence of execution trees below: 

-1 -1 
·-1 '--- / '---I 

/ 
0 1 0 1 

J. / "-.. 1 

l I 
J. 

The next tree in the sequence is constructed by replacing the bottom element at 

the end of the unfinished path by the two possible successor states. The new 

unfinished path is then marked as such, by adding the bottom element to it. 

The idea of constructing a new execution tree from another tree by extending 

some unfinished branches of the tree underlies the notion of approximation between 

sets of execution paths. For two sets of execution paths, Hand H', approximation is 

defined in the same way as in P(L_]_), i.e. 
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H [: H' iff Vh E H.3h' EH'. h Ch' and 

Vh ' E H ' . 3h E H. h C h ' . 

It turns out, however, that the sets of execution paths do not form a complete 

partial order under this ordering relation. In fact, they are not even partially 

ordered by the approximation relation defined. In order to get a cpo, we will need 

to put some restrictions on the sets of execution paths allowed. 

The appropriate restrictions can be found by considering the way in which the 

execution trees are constructed. We start from an initial tree which only contains 

the path<~>. This tree is then extended step by step, by extending each unfinished 

branch of the tree by all its immediate successor nodes (of which there might be a 

finite or an infinite number). In this way we construct the finite approximations of 

the executions tree. Finally the execution tree itself is constructed by taking the 

limits of all paths in the finite approximations. In other words, if there is a 

growing path :sequence h 0 ~ h 1 S h 2 ~ ... in the finite approximations, then the 

limit must contain the least upper bound of this path sequence. Conversely, any 

path in the limit must be the least upper bound of some growing path sequence in the 

finite approximations. 

Any set of execution paths corresponding to an execution tree constructed in 

this manner must satisfy the following three requirements. First, the set cannot be 

empty. This is because the initial execution tree has the execution path<~>, and 

all other execution trees are constructed by extending this unfinished path. 

A second property shared by all sets of execution paths generated in this way 

is flatness. 'rhis is defined as follows: A set H of execution paths is flat if 

h $ h' ~ h = h' holds for any two paths hand h' in H. Thus, if H .is flat and h 

<s 1 ,s2 , ... > and h' = <s 1,s2, ... > are two execution paths in H, then sic/ si for some 

i ~ 1, where both si and si are elements of Z. This is a consequence of the way in 

which unfinished paths are extended. The new paths created by extending an unfinished 

path are all different, because they have different last states. 

The third property shared by all sets of execution paths generated by nondeter

ministic programs is closedness. A set Hof execution paths is said to be closed, 

if the following holds: Let h 0 S h 1 S h 2 ~ ... be a sequence of unfinished paths 

of unbounded length (i.e. there is no upper bound of the lengths of the paths in 

the sequence). Assume that for each hi is this sequence, there is some path hi in 

H such that hi S h 1. Then the infinite path LJ hi= h belongs to the set H. This 

property is a consequence of the way in which the limit of the sequence of finite 

approximations is constructed: In the sequence of finite approximations of H there 

must be a sequence of unfinished paths of unbounded lengths growing alonq the path h. 

otherwise the paths h' in H could not be constructed. But this means that the least 
i 

upper bound of this sequence of unfinished paths, which also .is h, must belong to 

the set H. 

Let us now define the set H(Z) by 
w 



H(l:) = {H c: l: JH is nonempty, flat and closed}. 
w w 

We then have the following result: 

THEOREM 1. H(l: ) is a cpo with respect to the ordering S- The least upper bound of 
w 

a sequence H0 S H1 S H2 S ... of elements in H(l:w) is 

LJ 
i=0 

H. = { LJ 
]_ 

i=0 
h. 

]_ 
j h. EH., i = 0,1,2, 

]_ ]_ 

H(l:w) will now be taken as the set corresponding to P(l:1.). Analogous with the 

treatment of P(l:1.), we introduce the set N(l:w) l: ➔ H(l:w), in which approximation 

is defined in the same way as in M(l:1.), i.e. 

for 

t 
n : 

n C n' iff n(s) Sn' (s) for every s E l:, 

n, n' E N(l:w). As before, N(l:w) will be a cpo with respect to this ordering. 

Continuing as before, we define the extension of n: l: ➔ H(l:w) to 

H(l: ) ➔ 
w 

H ( l: ) . 
w 

n" (h) 

Let n': l: 
w 

{ 
{h•h' 

{h} 

➔ H(l:w) be defined for h E l:w by 

h' E n(last(h)) }, if his terminal 

otherwise 

Here h·h' denotes the sequence h concatenated with the sequence h'. We then define 

t 
n (H) = u {n' (h) I h E H}, 

.L 

for HE H(l:). The fact that n' is well-defined is established by the lemma: 
w 

t 
LEMMA 2. For any n E N(l:w), if HE H(l:w), then n (H) E H(l:w). □ 

Composition and seleGtion in N(l:w) is then defined as before, i.e. 

(n1 ;n2 ) (s) 
t 

n 2 (n 1 (s)), for s E l:, and 

Jnl (s), if b(s) tt 
(b ➔ n 1 ,n2 ) (s) = for s E L 

1_n2 (s), if b(s) ff 

LEMMA 3. Composition and selection is monotonic in N (l: ) . □ w 

Let /::,' and rl' be two elements in N(l: w), defined by 

/::, I (S) {<s>} for each s E l:, and 

rl I ( S) {<1.>} for each s E L 

Here <s> denotes the sequence withs as the only element. 

Let b E W(l:) and n E N(l:). We then define (b * n) as before. First, let 
w 

(b * n)O 

(b * n)i+l 

rl', and 
i 

(b ➔ n;(b * n) , /::i'), for i = 0,1,2, ... 

As before, (b * n) O !; (b * n) 1 !; . . . follows from the monotonicity of composition 

and selection. Iteration is then defined as 

(b * n) = □ (b * n)i. 
i=0 

11 

we are now ready to define the semantics of unbounded nondeterministic statements. 
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We assume that the function (•} is given as before. The meaning of statements in Stat 

is then given by the function N:Stat ➔ N(L), defined as follows: 
w 

(i) 
J { < s [ d/ x] > [ d E Ds } 

N(x:=x' .Q) (s) = 1 
l { <_1_>} 

, if D s ,/ ¢ 

, if Ds = ¢ 

where D = {d ED I ~(Q) (s[d/x']) = tt}. 
s 

(ii) N(s 1 ;s2 ) = N(s 1) ;N(s2 ) 

(iii) N(if B then s 1 else s 2 fi) = (Ol(B) ➔ N(s 1 ) ,N(s 2 )) 

(iv) N(while B do s 1 od) = (l'l(B) * N(s 1 )) 

It is easy to check that this definition does give the correct semantics for the 

example program in the previous section, i.e. the definition agrees with our 

intuition, treating both strong and weak termination as proper termination. 

The domain N(Lw) can also be used for defining the semantics of recursive prog

rams. In order to do this, we require the following theorem. 

THEOREM 2. Composition and selection is continuous in N(L). D 
w 

Recursion can be introduced into our language by defining a new set Svar of 

statement variables, and adding two new productions to the recursive definition of 

statements: 

s .. - ... X I µX.S . 

Here µX.S has the effect of executing S, with X recursively bound to S, i.e. any call 

on Xis replaced with the execution of the statement S (Xis a statement variable). 

To defined the semantics of the recursive statements, we need environments E = 

Svar ➔ N(L). The meaning function will now be of the type N•: Stat ➔ (E ➔ N(l: )) . 
w w 

The semantic equations are then the following: 

(i) N· (x:=x' .Q) (n) (s) = /J(x:=x' .Q) (s) 

(ii) N• (s 1 ;s2 J (nl N• (s 1) (n) ;N' (s 2 ) {n) 

(iii) N• (if B then s 1 else s2 fi) (n) = (('J{B) ➔ /J• (s 1 ) (n), N• (S 2 ) (n)) 

(iv) N• (while B do s 1 od) (n) = ((•J (B) * N• (s 1 ) (n)) 

(v) N• (X) (n) = n (X) 

(vi) N• (µX.S) {n) = µn.N• (S 1 ) (n[n/X]). 

Here n ranges over elements of E. The notation n[n/X] means the environment n with 

the value at X changed ton E N(l:). The existence of the least fixed point in (vi) 
w 

is guaranteed by theorem 2. 

A domain similar to H(l:), using trees and the powerset ordering by PLOTKIN [76] 
w 

has also been discussed in FRANCEZ [79], with the aim of providing a denotational 

semantics for nondeterministic, communicating sequential processes. Another, somewhat 

similar approach, has also been made by KOSINSKI [78], who is concerned with defining 

the denotational semantics of data flow languages. 

6. SUMMARY 

The mathematical semantics of nondeterministic programs has been defined in 
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PLOTKIN [76] using powerdomains. This definition, however, only works when the non

determinism of the program is bounded. We have above argued that unbounded nondeter

minism, introduced by a nondeterministic assignment statement, is a meaningful const

ruct in a programming language. We have shown how to define the semantics of programs 

with unbounded nondeterminism using an extension of Plotkins construction P([ ) . This 
w 

extension considers sets of sequences of states (execution sequences) instead of 

just sets of states. This provides a richer structure, in which it is possible to 

give the correct semantics of unbounded nondeterminism. It was shown that the sets 

of execution sequences form a complete partially ordered set, provided that we 

restrict ourselves to sets which are nonempty, flat and closed. The reasonableness 

of these assumptions was also shown. 
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