
AFDELING INFORMATICA

stichting

mathematisch

centrum

IW 136/80
(DEPARTMENT OF COMPUTER SCIENCE)

J.A. BERGSTRA & J.V. TUCKER

THE FIELD OF ALGEBRAIC NUMBERS FAILS TO POSSESS EVEN A NICE
SOUND, IF RELATIVELY INCOMPLETE, HOARE-LIKE LOGIC FOR ITS
WHILE-PROGRAMS

Preprint

~
MC

APRIL

2e boerhaavestraat 49 amsterdam

PILlnte.d a.t :the. Ma:the.ma.:Uc.ai. Ce.ntlr.e., 49, 2 e. BoeJr.haavu.:tJr.a.a:t, Am6.teJLdam.

The. Ma.the.ma.:Uc.ai. Ce.ntlte., 6ou.nde.d .the. 11-.th 06 Fe.b1tu.aJr.y 1946, -U a non­
p1to6U: .in6.tltt.Lti.on a,im,lng a.t .the. pJtomo:Uon 06 pUll.e. ma.the.ma.ti.C-6 and .lt6
appUc.a.:tlon6. I.t -U .6pon601te.d by .the. Ne..thell1.a.nd6 GoveJr.nme.nt .thJtou.gh :the.
Ne..thell1.a.nd6 OJtganiza.:Uon 601t :the. Advanc.e.me.nt 06 PUite. Re1ie.a1tc.h (Z.W.O).

ACM-Computing Review-category: 5.24

The field of algebraic numbers fails to possess even a nice sound, if rela­

tively incomplete, Hoare-like logic for its while-programs*)

by

**) J.A. Bergstra · & J.V. Tucker

ABSTRACT

Under a weak definition of a Hoare logic for while-programs, inter­

preted in a structure A, we show that many familiar structures fail to admit

even a nice sound, if relatively incomplete, Hoare logic for the partial

correctness of their while-program computations. Among our examples are

Presburger Arithmetic, the field of real algebraic numbers, and the field

of algebraic numbers.

KEY WORDS & PHRASES: program correctness; Hoare-like logics; decidable

theories; halting problem; Presburger Arithmetic;

real and algebraically closed fields

This report will be submitted for publication elsewhere.

Department of Computer Science, University of Leiden, Wassenaarseweg 80,
Postbus 9512, 2300 RA LEIDEN, The Netherlands.

1

INTRODUCTION

With the term Hoare-like logic we have in mind some proof system de­

signed for the formal manipulation of assertions about the (partial) cor­

rectness of program texts with respect to a fixed interpretation A for the

programming language. Stated simply, and informally, our aim in this paper

is to exhibit some familiar algebraic structures A over which any sound

Hoare-like logic for the partial correctness of while-program computations

in A will possess some unfamiliar structural properties. From this exercise

follows somewhat stronger incompleteness results than those first reported

in WAND [19] for Hoare's original system about while-programs. And, as we

shall make clear in a moment, these results in turn address some sharply

defined issues in the theoretical literature to do with the complexity of

the programming language in the design of a Hoare logic.

our point of departure is Hoare's proof system as it is formally con­

stituted for while-programs in COOK [7]. We take it for granted that the

reader is familiar with the papers HOARE [10], COOK [7] and WAND [19]: with

these prerequisites or the invaluable survey paper APT [1], we can discuss

our examples in more technical terms.

Let A be any algebraic system and let WP be the class of all while­

programs destined to compute functions on A. On choosing the first-order

logical language Las assertion language, and applying a definition of the

semantics S of WP to interpretation A, one may identify the study of partial

correctness for WP computations over A as the study of a set PC(A), the

partial correctness theory for QJP on A. PC(A) is defined to be the set

{ {p}S{q}: p,q e: L, S e: WP & A I= {p}S{q}}

wherein A I= {p}S{q} means whenever p is true of an initial state for S then

either S terminates in a state for which q is true or S diverges.

With the same level of generality, one can define the standard Hoare

logic HL0 (A} for WP on A as the set of all triples {p}S{q} generated by

Hoare's proof rules for WP and including the first-order theory Th(A) of A

as axioms. For any sensible program semantics S, HL0 (Al is sound in the

sense that HL0 (A) c PC(A). In [19], Wand constructed a simple, but artificial

2

structure A for which Hoare's logic may not be complete in the sense that

HL0 (A) = PC(A). After settling on a weak criterion for a set of asserted

programs to qualify as a Hoare logic we will build up a little general

theory from which one can read off this fact.

THEOREM. Let A be Presburger arithmetic, the field of real algebraic numbers,

or the field of algebraic numbers. Then A is a computable algebraic struc­

ture with decidable first-order theory Th(A) such that

(1) each sound Hoare logic HL(A) ~ HL0 (A) is r.e. but not recursive.
0

(2) PC(A) is co.r.e. but not recursive; in fact, PC(A) is a complete rr1 set.

In particular, A has no sound and complete Hoare logic for its while-programs.

Indeed, A fails to possess even a sound, if incomplete, Hoare logic which

is recursive.

First let us compare the theorem with the well understood intermediate

situation of the standard model of arithmetic N. HL0 (N) is sound and complete,

of course. The three components Th(N), HL0 (N) and PC(N) are highly non-con­

structive for they are not arithmetical sets, but they are of the same com­

plexity, each having Turing degree 0 00 • For the A of the theorem the situa­

tion is quite the reverse: no completeness possible and, whatever Hoare

logic HL(A) is chosen, Th(A), HL(A) and PC(A) are effective but in three

disparate ways (up to Turing equivalence).

In view of the fact that for any finite structure A, HL0 (A) = PC(A), it is

presumably the case that Presburger Arithmetic is the canonical example of

a structure for which no useful Hoare-like logic is available to reason

about partial correctness for such a simple program language as WP. This is

certainly supported by the theorem that there is indeed a nice Hoare logic,

which is sound and complete, for certain loop-programs over Presburger

Arithmetic: see CHERNIAVSKY & KAMIN [SJ.

rn this way one is· lead to reflect on the role of the complexity of

program languages in seeking sound and complete Hoare logics. Althougr our

examples are familiar (and simpler, at least in the case of Presburger

Arithmetic), Wand's structure is by no means redundant as it makes the point

that the computational power of a program language is not necessarily a

factor in its possession of a complete Hoare logic: on Wand's structure,

3

the while-programs compute rather trivial functions. On the other hand,

there is a particularly striking incompleteness theorem in CLARKE [6] which

says that 'for very complicated program languages there can be no Hoare-like

logic for thei partial correctness of their computations on finite algebras.

Of course, for while-programs, augmented by many programming constructs,

explicit Hoare logics which are complete for finite structures are known,

see CLARKE [6] and the survey paper APT [1].

After a brief resume of background material, we give precise defini­

tions for the concepts we use and develop their basic properties. In section

3 we establish a general sufficient condition for the phenomena just de­

scribed while section 4 works out some of its applications.

Finally we would like to cite an ancillary motive for considering

Hoare logics and their incompleteness properties. This paper is a companion

to our [3], written with J. Tiuryn, which deals with technical issues in

a theoretical analysis of the thesis that a program language semantics can

be uniquely defined by a system of proof rules for its constructs. Since

knowledge of [3] is not required here we leave it to 1the interested reader

to consult that paper for further information on this related subject.

1. PRELIMINARIES ON ALGEBRAS AND PROGRAMS

In this preparatory section we shall map out the technical prerequisites

for the paper. In addition to the three important sources HOARE [10], COOK

[7] and WAND [19], the reader would do well to consult the survey article

APT [1].

By an algebraic system, algebraic structure or, simply, an algebra we

shall mean a relational structure A = (A; c. , a . , R) of recursively enumerable
l. J k

signature I with constants c., operations a. and relations R •
l. J k

The first-order language L of some signature I is based upon sets of

variables x 1 ,x2 , .•. for algebraic values and 81 ,82 , ••• for boolean values.

The algebraic constant, function and relational symbols of Lare exactly

those of I; its boolean constant symbols are true, false and its boolean

operation symbols are A,~. In addition, we assume L has equality symbols

for its algebraic and boolean sorts as well as the usual logical connectives

and quantifiers. The set of all algebraic terms of L we denote T(I).

4

Using the syntax of L, the class WP of all while-programs (with boolean

variables) over I is defined in the customary way.

Now for any algebra A of signature I, the semantics of the first-order

language Lover I determined by A has its standard definition in model

theory and this we assume to be understood. The set of all sentences of L

which are true in A is called the first-order theory of A and is denoted

Th (A) ; see CHANG & KEISLER [4]. For the semantics S of WP over I determined

by A we leave the reader free to choose any sensible account of while­

program computations: COOK [7]; the graph-theoretic semantics in GREIBACH

[9]; the sophisticated denotational semantics described in DE BAKKER [2].

What constraints must be placed on this choice are the necessities of for­

mulating and proving certain lemmas, such as Lemmas 1.1 and 1.2 below, and

of verifying soundness for the standard Hoare Logic (Theorem 2.1). These

conditions will be evident from the text and, for such a simple programming

formula as WP, can hardly be problematical. For definiteness, we have in

mind a naive operational semantics based upon appropriate A-register ma­

chines which yield straightforward definitions of a ptete in a WP computa­

tion and of the length of a WP computation [18]; and a straightforward

proof of this first fact:

1.1. LEMMA. Let SE WP involve variables x = (x1 , ••• ,xn). Then for each

l E w there is a formula COMPS l(x,y) of L, wherein y = (y1 , ••• ,yn) are new
' . n I= variables, such that for any A and any a,b EA, A COMPs,l(a,b) if, and

only if, the computation S(a) terminates in l or less steps leaving the

variables with values b = (b1 , ••• ,bn).

The reader is also responsible for verifying for his or her semantics

the following Normal Form Theorem for WP taken from MIRKOWSKA [15].

1.2. LEMMA. There is an effective procedure which given any while-program S

over signature I constructs a new while-program SM over I of the form

where s 1 and s 2 are straight line programs over I containing the variables

of S, such that for any I-algebra A and any input state a E An either both

5

S(a) and S (a) terminate with the values of their common variables identi­
M

cal, or both S(a) and SM(a) diverge.

Putting together the semantics of Land WP determined by interpreta­

tion A we obtain the partial correctness theory PC(A) defined just as in

the Introduction.

Our definition of a computable algebraic system derives from RABIN [16]

and MAL'CEV [13], independent papers devoted to founding a general theory

of computable algebras and their computable morphisms:

Let A be an algebra of finite signature. Then A is computable if there

exists a recursive subset n of the set of natural numbers wand a surjection

a: n ➔ A such that (1) the relation - defined on n by n= m<==>an = am in A is a a
recursive; and (2) for each k-ary operation a and each k-ary relation R of A

there exist recursive functions cr and R which commute the following diagrams

a
----+A

a

wherein ak(x1 , ... ,~)

teristic function.

(ax1 , ... ,axk) and R is identified with its charac-

We shall use a number of concepts and results from the theory of the

recursive functions: Turing and many-one reducibilities; completeness; re­

cursively inseparable sets; the arithmetic hierarchy. With the exception of

relativised Turing computability, particularly clear accounts of these sub­

jects can be found in MAL'CEV [14] which we shall cite as we go along. The

basic reference for recursion theory remains ROGERS [17] however, and this

should be consulted for any idea or fact not explained or referenced here.

2. HOARE LOGICS

Let A be an algebra. The standard Hoare logic for WP over A with as­

sertion language L has the following axioms and proof rules for manipulating

6

asserted programs: let s,s1 ,s2 E WP; p,q,p1~q1 , r EL; b EL, a quantifier­

free formula.

1. Assignment axiom: fort E T(E) and x a variable of L

{p[t/x]}x := t{p}

where p[t/x] stands for the result of substituting t for free occurren­

ces of x in p.

2. Composition rule:

{p}s1{r},{r}s2{q}

- {p}S1;S2{q}

3. Conditional rule:

4. Iteration rule:

{pAb}S{p}
l:p} -while b do S od {pA...,b}

5. Consequence rule:

p + P1,{p1}S{q1}, q1 + q

{p}S{q}

And, in connection with 5,

6. Oracle a>tiom: Each member of Th (A) is an axiom.

The set of all triples of the form {p}S{q}, or asserted programs,

derivable from these axioms by the proof rules we denote HL0 (A); we write

HL0 (A) I- {p}S{q} in place of {p}S{q} E HL0 (A) .

2.1. THEOREM. For any algebraic structure A, HLO(A) is sound in the sense

that HL0 (A) c PC(A) and is recursively enumerable in Th(A).

The first statement is contained in §5 of COOK [7]. The second

7

statement is implicit in §6 of COOK [7] and is obvious anyway; this latter

property we take as our definition of a Hoare logic:

A Hoare logic for WP over A with assertion language Lis any subset

HL (A) of L >: WP x L which is recursively enumerable relative to Th (A) •

A Hoarei logic HL (A) is sound if, and only if, HL (A) c PC (A) and it is

(relatively) complete if HL(A) = PC(A).

These definitions are implicit in LIPTON [11] and CLARKE [6].

2.2. PROPOSITION. Let A be any algebraic structure and HL(A) a Hoare logic

for WP on A .. Then (1) HL(A) is I:~ in Th(A) and (2) PC(A) is TT~ in Th(A).

PROOF. Of course statement (1) follows by definition. Consider (2). Let

p,q EL and SE WP. For each k E w, let Qk(p,S,q) be this sentence in L,

derived from Lemma 1.1:

Vx[p(x) + {3y(COMP8 k(x,y) A q(y)) v--,.3y.COMP8 k(x,y)}].
I I

Now observe that

(p,S,q) E PC(A) <==> A I= {p}S{q}

<==> for each k ,A I= Qk (p, S ,q)

<==> Vk.[Qk(p,S,q) E Th(A)].

Thus PC(A) is TT~ in Th(A). Q.E.D.

2.3. THEOREM. There exists a sound and relative complete Hoare HL(A) for

WP on A if, and only if, PC(A) is recursive in Th(A).

PROOF. Trivially, if PC(A) is recursive in Th(A) then it qualifies as a

Hoare logic which is sound and relatively complete. On the other hand, if

HL(A) is some sound and relatively complete Hoare logic then PC(A) = HL(A)

and, by Proposition 2.2, HL(A) is both r,e, and co-r.e. in Th(A). Q.E.D.

A basic reference point for the next section is this particular case

of Theorem 2.3.

2.4. COROLLl~RY. Let A be an algebra with decidable first-order theory. Then

8

A has a sound and relatively complete Hoare logic for WP over A if, and

only if, its partial correctness theory is decidable.

3. THE HALTING PROBLEM AND DECIDABLE THEORIES

Let {P: e E w} be a recursive enumeration of WP for the signature of
e

algebra A. In the case A= N, the standard model of arithmetic, the halting

problem for WP over N can be defined

K = {(e,n): P (n)+} cw x w.
e

And it is well known that K is an r.e., non-recursive set (because while

programs compute the recursive functions on N). Indeed, K is a complete

E~ set, meaning: every r.e. subset of w is many-one reducible to K. (Remem­

ber that X cw is many-one reducible to Y cw if there exists a recursive

function f:w ➔ w such that n EX..,. f(n) E Y; in symbols X ~ Y.) We want to
m

define a number-theoretic halting problem for WP on any A and we shall do

this by syntactically modelling the natural algebraic halting problem

{(e,a): Pe(a)+} E w x A restricted to the minimal E-subalgebra MIN~(A) of A.

The algebra MINE(A) is, by definition, the E-subalgebra of A generated from

the constants of A by its operations. Its connection with syntax is that it

is the image of the valuation map v: T(E) ➔ A which is defined by assigning

to each operation symbol and constant symbol int the function and element

they name in A and then evaluating. Thus T(E) is a recursive set of names

for the elements of MINE(A).
n

By a state formula we mean a formula in L of the form Ai=l xi= ti

where x. is a variable of Landt. E T(E) is a term of L, 1 ~ i ~ n.
i i

Let{$.: i E w} be a recursive enumeration of all state formulae. Then
i

by the halting problem for WP on A we shall here mean the set K(A) cw x w

defined by

K(A) = {(e,i): P and~- have the same variables, say
e i

x = (x1 , ••• ,x) , and A ~ $. (x) ➔ P (x)+},
n i e

clearly, K(N) is (recursively isomorphic to) K.

9

3.1. LEMMA. The set~K(A) is many-one reducible to PC(A). In particular, if

K(N) ~ K(A) then PC(A) is not recursive.
m

PROOF. This is immediate because (e,i) i K(A) if, and only if, either the

variables of P and <I>. fail to match or {cj>.}P {false} E PC(A). Q.E.D.
e i i e

We generate our examples from this technical fact.

3.2. THEOREM. Suppose Th(A) to be decidable and that K(N) is many-one re­

ducible to K(A). Let HL(A) be any sound Hoare Logic for WP on A extending

the standard Hoare logic HL0 (A); that is HL0 (A) c HL(A) c PC(A). Then

(1) HL(A) is r.e. but not recursive.
0

(2) PC(A) is co-r.e. but not recursive; indeed, PC(A) is a complete n1 set.

In particular, A has no sound and complete Hoare logic for its while-programs.

PROOF. The absence of completeness for Hoare logics is an application of

Corollary 2.4 to statement (2). Statement (2) is an immediate consequence

of Proposition 2.2 and Lemma 3.1. Thus the usual concern for completeness

can be settled quite easily. More difficult is the proof that A has no sound,

but incomplete, recursive Hoare logic. Consider statement (1).

Let U and V be two disjoint r.e. subsets of w which are recursively

inseparable. This means there does not exist a recursive set R such that

Uc Rand V c~R (to see why such sets exist consult MAL'CEV [14,p.210]).

Since K(N) ~m K(A), and K(N) is many-one complete for all r.e. sets,

we can choose recursive functions u,v.,f ,g: w + w such that

n E u ~ A I= <l>u (nl (x}

n E V ~ A I= <l>v (n) (y)

+ P f(n} (xH

+ P C l (yH g n

wherein x = (x1 , ••• ,xr}, y = (y1 , ••• ,ys} and these depend en n.

Without loss of generality we can assume these expressions between

formulae and programs to have the following normal forms:

(i) both Pf(n) and Pg(n) have the form

P = S; ~hile b do-S' od

10

where Sand S' are loop free programs;

(ii) Both Pf(n) and Pg(n) have disjoint sets of variables.

(iii) The formulae <j,u(n) and <j,v(n} are A"'.'equivalent: A I= <j,u(n) ~ <j,v(n).

Each condition can be met by applying recursive transformations of programs

and formulae. Step (i) is provided for by Lemm.a 1.2 and steps (ii) and

(iii) are trivial to arrange effectively. Thus we assume these transforma­

tions have been effected and, retaining the notation u,v,f,g for the

normalised reduction maps, take

Pf(n) - sf(n); while bf(n) do sf(n) od

Pg(n) - sg(n); while bg(n) do s~(n) od.

By piecing these programs together we define a recursive function

d: w ➔ w. Let Pd(n) be the following program wherein TURN is a boolean

variable:

sf(n); sg(n); TURN= true

while bf(n) A bg(n) do if TURN then Sf(n) else s~(n) fi;

TURN := -rTURN;

od;

It is easy to check that

for all n i U, A I= {<j,u(n)}Pd(n) {TURN= true}

for all n i V, A I= {<j,v(n) }Pd(n) {TURN= false}.

And, moreover, since <j,u(n) and <j,v(n) are A-equivalent, that

A I= <l>u(n) ➔ Pd(n) -1- if, and only if, n E u u v.

3.3. LEMMA. n E U implies HL0 (A) ~ {<j,u(n) }pd(n) {TURN= false}

n E V implies HL0 (A) I- {<j,v(n) }P d(n) {TURN = ~}.

11

On proving the lemma we can involve any HL0 (A) c HL(A) c PC(A) in a separa­

tion of u,v. Thus, for any such Hoare Logic HL(A) define A:W + w by

{ 01

if HL (A) I- { <j> u (n) }Pd (n) { TURN = false}

A(n) =
otherwise.

Clearly A is recursive in HL(A) and, by the above constructions and Lemma

3.3, A separates U,V since n EU 4=> A(n) = 0 and n EV~ A(n) = 1. If

HL(A) were recursive then this would contradict the inseparability of U and

v. Thus HL(A) is r.e. but not recursive.

Lemma 3.3 is obtained from this general fact.

3.4. Completeness for terminating closed programs lemma

Let A be any algebra and let HL0 (A) be the standard Hoare logic for

WP over A with assertion language L. Let <j>,1/J be state formulae and let S

be a while-program having the same variables x = (x1 , ••• ,xn). If

A f= <j> (x) + S (xH and A F {<j>}S{l/J}

then HL0 (A) I- {<j>}S{l/J}.

PROOF. This is done by induction on the complexity of s. The basis and most

cases of the induction step are easy and are omitted. We consider only the

case

S - while b do s0 od.

So suppose for such S that A f= <j>(x) + S(xH and A f= {<j>}S{l/J}; and assume

Lemma 3.4 is true of s0 •

Let the computation which <j> determines from Son MINE(A) involve l
o l

executions of s0 • And let <j> , ••• ,<j> be state formulae defining the initial

states at each of these executions together with the final state. Thus,

these formulae are defined inductively by <j>O = <j> and <j>i = that formula,

12

unique up to

Setting

A-equivalence, such that A I= {<f>i}s0 {<f>i+l}.

e l i
= Vi=O <I> we see clearly from its construction that

A I= <I> (x) -+ 0 (x) and A I= 0 (x) A 7 b (x) -+ 1/J (x)

and that we have now to prove HL0 (A) I- {0Ab}s0{e}.

I= l-1 i I= l i But A e(x) A b(x) +-+ Vi=O <I> (x) and A vi=l <I> (x)-+ 0(x). There-

fore, it is sufficient to show

The induction hypothesis says that for each O ~ i < l

() I {"-i}S {,,_i+1} HLO A r o/ 0 o/

and to string these proofs together it is enough to apply the following

derived proof rule of HL0 (A): for any p 1 ,p2 ,q1 ,q2 EL and any SE WP

{p1}S{q1},{p2}S{q2}

{p1Vp2}S{q1Vq2}

To verify this is indeed a derived rule of HL0 (A) is an easy induction on

proof lengths. Q.E.D.

4. EXAMPLES

The basic reference for information about decidable first-order theories

is ERSHOV et al [8]. Here we choose to mention a few structures with de­

cidable theories which lead to easily appreciate~ examples for incomplete­

ness:

1. Presburger's Arithmetic having domain w, constant OE wand operation

the successor function on w.

2. Any algebraically closed field such as the complex numbers or algebraic

numbers.

3. Any real closed field such as the real numbers or real algebraic numbers.

13

In each case it is easy to verify the halting problem hypothesis in Theorem

3.2 providing, of course, one chooses fields of characteristic zero. For a

finer comparison with the standard situation A= N we prefer to choose com­

putable structures (and also we have in mind the role of computable inter­

pretations in LIPTON [11]). Presburger Arithmetic is clearly computable.

To obtain computable fields of kinds (2) and (3) one applies the following

theorems from RABIN [16] and MADISON [12] respectively: Let F be a computable

field. Then the algebraic closure of Fis computable. If, in addition, F

has a computable ordering then the real closure of Fis computable.

REFERENCES

[1] APT, K.R., Ten years of Hoare's logic, a survey in F.V. JENSEN,

B.H. MAYOH & K.K. M¢LLER (eds.) Proceedings from 5th Scandinavian

Logic Symposium, Aalborg University Press, Aalborg, 1979, 1-44.

[2] DE BAKKER, J.W., Mathematical theory of program correctness, Prentice­

Ha.11 International, London, 1980.

[3] BERGSrRA, J.A., J. TIURYN & J.V. TUCKER, Correctness theories and pro­

gram equivalence, Mathematical Centre, Department of Computer

Science Research Report IW 119, Amsterdam, 1979. (To appear in

Theoretical Computer Science.)

[4] CHANG, C.C. & H.J. KEISLER, Model theory, North-Holland, Amsterdam, 1973.

[5] CHERNIAVSKY, J. & s. KAMIN, A complete and consistent Hoare axiomatics

for a simple programming language, J. Association Computing

Machinery 26 (1979) 119-128.

[6] CLARKE, E.M., Programming language constructs for which it is impossible

to obtain good Hoare-like axioms, J. Association Computing Ma­

chinery 26 (1979) 129-147.

[7] COOK, S.A., Soundness and completeness of an axiom system for program

verification, SIAM J. Computing 7 (1978) 70-90.

[8] ERSHOV, Y.L., I.A. LAVROV, A.D. TAIMANOV & M.A. TAITSLIN, Elementary

theories, Russian Mathematical Surveys, 20 (4) (1965) 35-105.

14

[9] GREIBACH, S.A., Theory of program structures: schemes, semantics, veri­

fication, Springer-Verlag, Berlin, 1975.

[10] HOARE, c .• A.R., An axiomatic basis for computer programming, Communc­

tions Association Computing Machinery ..!3_ (1969) 576-580.

[11] LIPTON, R.J. A necessary and sufficient condition for the existence of

Hoare logics, 18th IEEE Symposium on Foundations of Computer

Science, Providence, R.I., 1977, 1-6.

[12] MADISON, E.W., A note on computable real fields, J. Symbolic Logic 35

(1970) 239-241.

[13] MAL'CEV, A.I., Constructive algebras, I., Russian Mathematical Surveys,

16 (1961) 77-129.

[14] , Algorithms and recursive functions, Wolters-Noordhoff, ----
Groningen, 1970.

[15] MIRKOWSKA, G., Algorithmic logic and its applications in the theory of

programs II, Fundamenta Informaticae .!_ (1977) 147-165.

[16] RABIN, M.O., Computable algebra, general theory and the theory of com­

pmtable fields, Transactions American Mathematical Society, 95

(1960) 341-360.

[17] ROGERS, H., Theory of recursive functions and effective computability,

McGraw-Hill, New York, 1967.

[18] TUCKER, ,J. V., Computing in algebraic systems, Mathematical Centre,

Department of Computer Science Research Report IW 130, Amsterdam,

1980.

[19] WAND, M., A new incompleteness result for Hoare's system, J. Association

Computing Machinery, 25 (1978) 168-175.

