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*) Relativized obliviousness 
(Extended abstract) 

by 

P.M.B. Vitanyi 

ABSTRACT 

Relativized oblivousness is introduced to capture the intuitive idea, 

that some problems allow fastest computations which are more oblivious 

than do other problems,without any of such computations being oblivious 

in the standard sense. It is shown that each increase in the obliviousness 

of an algorithm (in several different well-defined meanings), for the 

solution of some problems, may necessarily require an increase in comput

tion time from T(n) steps to T(n) log T(n) steps. There is, however, no 

problems for which a total oblivious algorit~ requires more than order 

T(n) log T(n) steps, if the best algorithm for it runs in T(n) steps. We 

use on-line Turing machines as model of computation. 

KEY WORDS & PHRASES: Algorithms, (partial) obliviousness, on-line simula

tions, greatest lower bounds on complexity 
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1. INTRODUCTION 

An oblivious on-line Turing machine is one whose head movements are fixed func

tions of time, independent of the actual inputs to the machine. In this paper we in

troduce the notion of relativized obliviousness, to capture the nature of algorithms 

(and problems) which seem partly oblivious and partly not. The results show that a 

small differ,~nce in obliviousness between algorithms used for the solution of a given 

problem may incur an increase in running time which is as great as the penalty for 

using a completely oblivious algorithm. 

The concept of an oblivious algorithm is interesting for several reasons. Just 
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as a machine model provides a certain formalization of the idea of an algorithm, so 

does the notion of an oblivious machine provide a certain formalization for the notion 

of an oblivious algorithm. Apparently, the concept was first introduced by PATERSON, 

M. FISCHER and MEYER [1974] to capture the notion of an algorithm being independent 

of the actual data. For instance, a table look-up be sequential search can be prog

rammed obliviously (reading to the end-of-table after having found the looked-for 

item), while a binary search cannot be, since the number of items examined is small 

compared to the entire table and which items are examined depend on the item sought. 

Oblivious algorithms have been considered in a growing number of papers, since they 

allow us easier to derive lower bounds on time complexity of such computations, or 

time-space trade-offs, for concrete problems like sorting, searching, multiplication 
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of binary numbers, matrix inversion and so on. (See the recent conferen~e proceedings 

of e.g. FOCS and STOC meetings.) However, there are, for non-oblivious algorithms, 

very often but a few places in the computation where nonoblivious behaviour is re

quired; but inbetween these places the computation proceeds obliviously. Hence the 

machine performing the computation (and the nature of the problem it solves) is obliv

ious to certain parts or aspects of the problem presented. In the sequel we select 

from the pos:siblities which suggest themselves, to make the idea of relativized (or 

partial) obliviousness concrete, the following: obliviousness relative to a subset 

* of I , where I is the input alphabet; obliviousness relative to a subset of I (through-

out the input-string, in a sense to be defined); the degree k of nonobliviousness, 

where k is the least number of disjoint subsets in which I can be partitioned so that 

the computation proceeds oblivious relative to each such subalphabet; and finally a 

finite bound on the total number of nonoblivious moves the machine can make during 

the processing of the input. We indicate how these different notions of relativized 

obliviousness and degrees of nonobliviousness are related and derive the following 

main results. 

For each k > 1 there is language Ok which can be recognized in real-time by a 

k-nonoblivious on-line Turing machine, but for any k' < k the fastest on-line k'

nonoblivious Turing machine recognizes Ok in time 0 (n log n) . 

For each~> 0 there is a language Nk which can be recognized in real-time by an 

on-line Turing machine which makes at most k nonoblivious moves during the processing 

of an input, but for any k' < k the fastest on-line Turing machine making at most k' 

nonoblivious moves during the processing of an input recognizing N uses time 0(n logn). 

This p~per is an extended abstract of a preliminary investigation; complete 

proofs, additional results as well as justification of the naturalness of the chosen 

concepts by :illustrating them in relation to some storage-retrieval problems will be 

given in a f:inal version to appear elsewhere. 

2. RELATIVIZED OBLIVIOU.SNESS 

We assurne the reader to be familiar with the concepts of k-tape on-line deter

ministic Turing machines, real-time computations on such machines etc., as used by 

e.g. P. FISHER, MEYER and ROSENBERG [1972]. Recall, that such machines have a separate 

one-way read--only input tape, and a one-way write-only output tape, apart from the k 

storage tapes. This :is the model of computation we shall use throughout the paper, 

and is intended by the unqualified use of the term "Turing machine", although the 

definitions and results below hold also for more sophisticated models such as multi

head Turing machines with jumps. We say that a Turing machine is oblivious if the 

movement of head i at step t, i = 1,2, ... ,k when we talk about a k-tape machine, de

pends only on i and t, for each storage tape head i. Likewise, the movements of the 

input tape head and output tape head at step t depend on t only. One may think of 

the head moveiments as being controlled by a second autonomous machine which has 



storage tapes but no input or output tapes. In the introduction we mentioned some 

grounds to refine the notion of nonobliviousness by identifying large oblivious parts 

of a computation which is not oblivious altogether. Below we define several concepts 

of relativized obliviousness, and of measures of degrees of nonobliviousness, all of 

which definitions hold for each model of computation for which obliviousness is de

fined. 

Let M bE~ a Turing machine with input alphabet I. By grouping together equal 

length input words, which cause M to execute identical sequences of head movements 

(taking into consideration the movements of the input tape head, the storage tape 

* heads, and the output tape head), M induces an equivalence relation =Mon I . 

DEFINITION 1 • 

(i) E =M E. 

* (ii) xa =M ]'b, x,y E I and a,b E I, if x =My and M makes exactly the same sequence 

of head movements from shifting its input tape head to a till just before it 

shifts its input tape head to the right of a, on an input word starting with 
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xa, as it does from shifting its input tape head to b till just before it shifts 

its input tape head to the right of b, on an input word starting with yb. 

* (iii) For no x,y EI it holds that x =My if not by (i)-(ii). 

* It is easy to see that =Mis an equivalence relation on I , and that it can only 

hold between equal length words. In this paper we consider on-line computations only. 

In defining a similar notion for off-line computations, or to capture some more as

pects of relativized obliviousness of on-line computations, we may need to add the 

following requirement to (ii): 

* x =My iff for all z EI holds xz =l1 yz. 

This has the effect of turning :=:11 into a right congruence relation, and means that if 

x =My then the future head movements of M do not depend on whether M first processes 

x or y. Our main results, however, do not depend on whether or not restriction(*) 

is included in (ii), since they deal with the notion introduced in definition 3 below, 

which essentially is concerned with infinite words, and therefore is invariant under 

this restriction. 

DEFINITION 2. A Turing machine M with input alphabet I is oblivious relative tow, 

* W ~ I , if for all words x,y E W, lxl = lyl, holds x =My. For short we call such an 

M: W-oblivious. 

DEFINITION 3. A Turing machine M with input alphabet I is oblivious relative to the 

alphabet 6, 6 ~ I, if 

(i) his a homomorphism h: i:* ➔ ({¢} u (l:-6))* defined by h(a) 

and h(a) = a for all a E l:-6; 

¢ for all a E 6 
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(ii) for all w EE*, Mis h- 1h(w)-oblivious. 

For short we call such an H: !:,-alphabet-oblivious. 

Note that alphabet-obliviousness is a weaker notion than the CJ)rresponding monoid 

* obliviousness. Thus, if Mis /::,-alphabet-oblivious, then Mis also/::, -oblivious. But 

* M may very well bet:, -oblivious without being also !:,-alphabet-oblivious for/::, c E. 

We now relate the above defined relativized obliviousness to the earlier concepts. 

* - Mis oblivious iff Mis E-alphabet-oblivious iff Mis E -oblivious, for Ethe input 

alphabet of M. 

If {a} is a singleton subset of the input alphabet of M, then Mis both {a}-
. * 
alphabet-oblivious and {a} -oblivious. 

* - The input monoid E can contain infinitely many distinct subsets Wi, i E JN, such 

that a given machine is W. -oblivious for each i E JN, but not W-oblivious for any 
1. 

*· W c E such that W. c W for some i E JN. 
1. 

- The input alphabet E can contain at most #E subalphabets 6. such that a 
1. 

machine is /::,,-oblivious for each i, 1 sis #E. This fact will form the 
1. 

measuring degree of nonobliviousness below. 

given 

basis for 

DEFINITION 4. A Turing machine M with input alphabet E has degree of nonobliviousness 

k, or is k-nonoblivious, if 

(i) E can be partitioned into k disjoint nonempty subsets 1:, 1 ,1:,2 , ••• ,t:,k, such that 

Mis /::,,-alphabet-oblivious for each i, 1 sis k; 
1. 

(ii) E cannot be partitioned into k' < k disjoint nonempty subsets !:,i,t:,2, ... ,!:,k'' 

such that Mis 1:,1-alphabet-oblivious for all i, 1 sis k'. 

Hence every Turing machine M with input alphabet E has a degree of nonoblivious

ness between 1 (Mis oblivious) and #E (that is, His totally nonoblivious). PIPPENGER 

and M. FISCHER [1979] showed that any multitape Turing machine can be simulated on

line by an oblivious 2-tape Turing machine in time O(n log n) for n steps. They showed 

that this result cannot be improved in general, since there is a language L which is 

recognized by a 1-tape real-time Turing machine M, and any oblivious Turing machine 

M1 recognizing L must use at least order n log n steps. Below we refine this result 

by showing that it holds for arbitrary small differences in degree of nonobliviousness. 

(The time complexity expressed is the worst-case complexity.) 

THEOREM 1. For each k > 1 there is a language Ok which can be recognized in real-time 

by a Turing machine Mk which is k-nonoblivious; any k'-nonoblivious Turing machine 

recognizing Ok has to use at least order n log n steps to do so in case k' < k. More

over, for each k' < k there are k'-nonoblivious Turing machine which recognize Ok in 

time O (n log n) • 

PROOF SKETCH. First we define Ok. Ok is over the alphabet Ek 

{a.,;_} for all i, 1 s is k. 
1. 1. 

k 
u 

i=1 
6. where 6. 

1. 1. 

Ok is defined in terms of a k-nonoblivious machine Mk which recognizes it in real-



time using k stacks in which each cell may contain a O or a 1. Initiali~e all k 

stacks to empty and the finite control to the start state. Start reading, one symbol 

at a step, the input word s 1s 2 ... si ••. sn. At each step Mk processes the read input 

symbol as follows: (at the ith step Mk reads si) 

(i) Say that the input symbol si ~ reads at the i th step is in Lj (1 sis n, 

1 s j s k), then this symbol si is pushed on all stacks h, 1 sh< j and 

j < h s k, as a O or a 1 subject to the following interpretation. The first 

symbol s 1 of the current input words s ... s is in this computation henceforth 
1 2 n 

interpreted as a 1, and its counterpart in the subalphabet is hails from, say 
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Li, is henceforth interpreted as O. The first symbol Mk meets, subsequent to 

processing s 1 in the process of recognizing s 1s 2 ... sn' which is unequal to s 1 , 

says E Li,, is henceforth interpreted as a O while its counterpart in Li, is 

interpreted as a 1. For the remaining symbols in Ek-(LiuLi,) the unbarred symbols 

are interpreted as a 1 and the barred symbols as a 0. 

(ii) Mk pops stack j. If the popped symbol was a 0 then Mk outputs a O; if the popped 

symbol was a 1 then Mk outputs a 1; if the stack is empty then Mk outputs a 0. 

* The language Ok consists of those words w E Ek, for which Hk outputs a 1 when 

it processes the last symbol of w. 

CLAIM 1. Mk is k-nonoblivious, i.e., by the partition of Ek into L1 ,L2 , ... ,6k. 

CLAIM 2. Ok is not recognized by any k'-nonoblivious Turing machine with k' <kin 

time less than order n log n. 

PROOF SKETCH OF CLAIM 2. Assume that Ok is recognized by a k'-nonoblivious Turing 

machine M with k' < k. Then there is a partition of Ek into disjoint nonempty sub

sets r 1 ,r2 , ... ,rk, such that Mis ri-alphabet-oblivious for i = 1,2, ... ,k'. Since Ek 

contains 2k elements, there must be a subset, say r. {lsjsk'), which contains at 
. . J * 

least 3 distinct .letters, say s 1 , s 2 and s 3 . Now change M .into a machine M recognizing 

* * Ok n {s 1s 2s 3s 3 Hs 1 ,s2 ,s3 } by checking for inclusion in S.= {s1 s 2s 3s 3 Hs 1 ,s2 ,s3 } with 

the finite control. Since k 2: 2, either two out of s 1 ,s2 ,s3 hail from the same sub

alphabet 6 E {Lil 1 sis k} while the third comes from E-6, or all 3 of s 1 ,s2 ,s3 

come from distinct subalphabets 6,6' ,6" E {6. I 1 sis k}. Hence we can select two 
l 

elements, say s 1 ,s2 , which represent a push 1 and push O respectively on some stack 

in Mk, while the remaining s 3 represents a pop from that stack. Since Mis by assump-

* tion {s 1 ,s 2 ,s3 }-alphabet-oblivious, on the input ensemble {s 1 ,s2,s3 } its head move-

ments are independent of the received input symbols, but according to the pushing 

and popping regime of s 1 ,s2 and s 3 it receives, it must store and retrieve informa

tion in an arbitrary and continuous manner. Using an elegant counting argument intro

duced by COOK and AANDERAA [1969], called an overlap argument, applicable to computa

tions where heavy use is made continuously of previously read-in information, we can 



* prove that M, and hence M, must spend at least order n log n steps on inputs of 

length n ins. 

END of Proof sketch of Claim 2. 

Since PIPPENGER and FISCHER [1979] showed that each on-line Turing machine can 

be simulated on-line by a 2-tape oblivious Turing machine in time O{n log n), their 

result proves the last sentence of Theorem 1; and Claims 1 and 2 prove the first 

sentence. 0 

The reader will notice that we actually showed that no k'-nonoblivious Turing 

machine can on-line simulate certain aspects of k pushdown stores in less than order 

n log n time fork' < k. The whole result is perhaps more elegantly worded in terms 

of transducers or abstract storage units instead of on-line language recognizers .. 

It would ·then read something like: 

6 

11 There is an abstract storage unit consisting of k pushdown stores with a restricted 

set of possible commands, viz., pop stack j and push all other stacks (1 $ j $ k), 

which is k-nonoblivious. Each k'-nonoblivious abstract storage unit (Turing machine

like) which simulates it on-line must use at least order n log n time to do so in 

case k' < k 11 

COROLLARY 2. for each k > 1 and each i (1 $ i < k) there is a k-nonoblivious Turing 

machine such that any (k-i)-nonoblivious Turing machine simulating it on-line must 

use at least order n log n steps for n steps of the former. 

COROLLARY 3. Let T{n) be any time bound n $ T(n) = o(n log n) (f = o{g). means 

lim f((n)) =0). The class of languages recognized in DTIME(T(n)),by multitape on-line 
n..- g n 

Turing machines, contains an infinite proper hierarchy of language families, according 

to increasing degree of nonobliviousness of the fastest Turing machines accepting them. 

Another measure of degree of nonobliviousness is formed by bounds on the number 

of nonoblivious moves a machine is allowed to make during a computation. We may think 

of a machine which keeps count of the number of nonoblivious moves it makes, and, 

when that count exceeds a certain threshold, becomes oblivious. This measure of degree 

of nonobliviousness, although totally different from the preceding one, yields an_alog 

results, as. shown below. One might therefore conjecture that such results hold for 

each (or many) meaningful measures of degree of nonobliviousness. 

THEOREM 4. For each integer k ~ 1 there is a language Nk which can be recognized by 

a k-tape real-time Turing machine Nk which makes k or less nonoblivious moves during 

each computation; any Turing machine which expends at most k-1 nonoblivious moves 

during each computation and recognizes Nk has to use at least order n log n time. 

Moreover, there is an oblivious Turing machine recognizing Nk in time O(n log n). 

PROOF SKETCH. We first define Nk over the alphabet {0,1,2}. 



* * Nk consists of all strings xay2za such that a E {0,1}, xy E {0,1,2} , z E {0,1} and 

the following 2 conditions hold: 

(i) The letter 2 appears in xay2 at most k times. 

(ii) The length of z is equal to the length of y minus the number of occurrences of 

the letter 2 in y. 

Nk is defined as follows: 
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Nk records the incoming bit-stream on all of its k stacks until the first 2 

arrives. The,n on the first stack Nk starts to pop and compare the popped symbol 

against the incoming symbol. If they are equal Nk outputs 1 otherwise 0. If the stack 

is empty Nk outputs 0. Meanwhile, on all remaining stacks Nk continues to push the 

incoming bits. When the second 2 arrives Nk starts similarly popping the second stack 

and comparing the popped symbol against the incoming symbol; meanwhile ignoring stack 

1 and continueing the head movement there, and pushing all incoming bits on stacks 3 
rd kth . . N to k. And so on, for the 3 to arriving letter 2. Therefore, kneed make at 

most k nonoblivious moves in its computation, since it always rejects when it has 

seen k+l letters 2. 

The fact that the recognition of Nk by a Turing machine spending at most k-1 

nonoblivious moves during its computation takes at least n log n steps is proven by 

induction on k. Fork= 1 the theorem can be proved ·by applying an overlap argument 

similar to the one hinted at in the proof sketch of the previous theorem. For 

k = j > 1 we can show that we can reduce the problem either to the truth of the theo

rem fork= 1 or the truth of the theorem for the case k = j-1, both of which are 

true by induction assumption. The last sentence of the theorem follows as before. D 

Because of the above Theorem 4, Corollaries 2 and 3 also hold with the concept 

of "k-nonobliviousness" replaced by "number of nonoblivious steps k" for each k. By 

the nature of the concept of k-nonobliviousness, a language over a finite alphabet 

cannot be inherently ~-non.oblivious. However, no such natural restriction holds for 

the measure of the number of nonoblivious steps in a computation. 

THEOREM 5. 1~ere is a language N which is recognizable by a real-time Turing machine 

but which, [or each T(n) = o(n log n), n:,: T(n), cannot be recognized by a T(n)-time 

bounded Turing machine with a finite bound on the number of nonoblivious steps it may 

make during a computation. However, N can be recognized by an oblivious Turing ma

chine in time O(n log n). 

PROOF SKETCH. Define N as Nk without restriction (i), i.e., there is no restriction 

on the number of times 2 may appear in the xay-part of a word. It is easy to see 

that N can be recognized by a multihead real-time Turing machine with head-to-head 

jumps; SAVI'I'CH and VITANYI [ 1977]. KOSARAJU [ 1979] has shown that these devices can 

be simulated on-line in real-time by multitape Turing machines. Hence N is recogniz

able by a real-time Turing machine. By PIPPENGER and FISCHER'S [1979] result it is 
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00 

recognizable by an O(n log n) time bounded oblivious Turing machine. Since U N = N, 
k=l k 

it follows from Theorem 4 that any Turing machine which is allowed but a finitely 

bounded number of nonoblivious steps, need use at least order n log n time to recog

nize N. D 

Since Nk is 2-nonoblivious for each k, and also N is 2-nonoblivious, we have 

that already each class of languages recognized by 2-nonoblivious Turing machines in 

time T(n) = o(n log n), T(n) ~ n, contains a whole infinite hierarchy as discussed, 

with respect the number of allowed nonoblivious steps, of T(n)-time-bounded Turing 

machine accepted language classes. 

Yet another measure of bounded nonobliviousness to bound the number of non

oblivious steps as a function f(n) of the input length n. 
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