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1. INTRODUCTION 

When a contemporary software designer, used to high level languages 
and structured programming, decides to exploit the microprogrammability 
of her new machine, she will soon imagine herself back. in the mid 
fifties. At best, support provided by the manufacturer consists of a good 
manual, an assembler and a loader. In the worst case she has to manage 
with the hardware diagrams of the machine, and the listings of the 
microprograms for the basic (macro)instruction set (*). Moreover, 
programming in microassembly language turns out to be even more difficult 
than programming in conventional assembly language, especially when the 
machine happens to have a horizontal microarchitecture. There have been 
various attempts to design and implement higher level languages for 
microprogramming, but none of these has resulted in the production of a 
generally available compiler. This paper surveys high level 
microprogramming languages, emphasizing the problems which have yet to be 
overcome in order to change the situation just sketched. 

It may seem surprising that the development of microprogramming 
languages is lagging so far behind that of macroprogramming languages, 
and that compiler construction, which for the macrolevel has become a 
mere routine, is still causing so many problems when code for the 
microlevel has to be generated. There are at least three factors which 
complicate compilation to microcode. 

First of all, the structure of (horizontal) microcode is much more 
complicated than that of conventional machine code. Microprograms 
exercise almost direct control over the hardware. The parallelism 
inherent in the latter, which is largely invisible at the conventional 
machine level, is still visible at the microlevel. A horizontal 
microinstruction is composed of several microoperations. In principle, 
these are executed in parallel while consecutive microinstructions are 
executed sequentially. In general, timing is far from straightforward. 
The microoperations which together make up one microinstruction are not 
necessarily all initiated simultaneously, nor do they always take exactly 
one microcycle to complete. This may lead to possible overlap between the 
execution of consecutive microinstructions. (Most of the parallelism is 
hidden from the microprogrammer when a vertical encoding scheme is 
employed, but this usually implies a loss of flexibility and speed [SJ). 

Secondly, microcode has to meet much higher efficiency requirements 
than macrocode. Traditionally, microprogramming has been used for the 
realization of macroarchitectures. Since the efficiency of each computer 
system ultimately depends on the efficiency of the microprograms 
implementing the instruction set of that computer, virtually each effort 

(*) The term "macro" in words like "macroprogram", "macroassembler", "ma­
crolanguages" etc. will refer to the conventional machine level as 
opposed to the microlevel. 
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spent on speeding them up will pay off in the end. Though less extreme, 
efficiency requirements for user microprograms are still strict. The only 
reason to write microprograms is to gain speed; if a compiler is unable 
to produce sufficiently efficient microcode it is of no use at all. 

There is yet a third factor which complicates microcode generation: 
Host machines sold as microprogrammable are so only to a limited extent. 
The microarchitecture is usually tailored towards the efficient 
implementation of the standard (macro)instruction set of the machine. 
But efficiency and generality seldom go together. Microprogramming such 
machines is therefore often like writing a text editor in a language 
designed especially for matrix manipulation: the beautiful features that 
are available are of no use, and the ones needed are not provided. Only 
a few machines, of which the different models of the Burroughs Bl700/1800 
series are the best known examples, provide real hardware support for 
user microprogramming, but the architecture of these machines is 
vertical. 

The next section contains an overview of existing microprogramming 
languages, preceded by a list of important design issues. This paper is 
concerned with user microprogramming, which implies that 
microarchiteeture and control word format are fixed. The overview is 
therefore restricted to languages which can be implemented on existing 
hardware, as opposed to specification languages to assist in the design 
of microprogrammed hardware. Furthermore, it only considers the most 
general class of languages: those which can be implemented on machines 
with a horizontal architecture. 

A final section contains some concluding remarks. 

2. HIGH LEVEL MICROPROGRAMMING LANGUAGES 

2.-1. Design issues for microprogramming languages. 

From a language design point of view it is not at all obvious why 
the design goals for high level microprogramming languages should be much 
different from the usual design goals for macroprogramming languages. 
They should be well structured, they should have sufficient expressive 
power to be useful within their specific area of application, and they 
should be as machine independent as possible. It is not even obvious that 
a special microprogramming language is needed at all - most algorithms 
executed on the microlevel can be expressed in existing languages. A 
subset of PASCAL or ALGOL 68, with all construe ts requiring elaborate 
runtime support removed, would probably do very well. 

For the reasons mentioned in the introduction, construction of a 
satisfactory compiler for such a language is not yet within reach. 
Evaluating existing languages only in terms of expressive power and 
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therefore unrealistic; the implications of 
the optimization and code generation phases of 
into account as well. 

A list of important design issues will now be formulated. It will be 
used as a guideline for the evaluation of existing languages. The first 
issue provides some overall perspective. The next four issues are of 
particular importance for microprogramming languages and should be 
considered with the pragmatical background just sketched in mind. The 
last three issues are more general and are applicable to any programming 
language. 

2.1.1. What~ the design goals for the language? 

The use of a high level microprogramming language may serve two 
different purposes: 

(1) To relieve the programmer from dealing with irrelevant, low-level 
details of a specific microarchitecture. 

(2) To reduce the chance of errors in the microprogram. 

Though design goals of most microprogramming languages state some 
combination of these two, the emphasis varies. (Extreme examples are on 
the one hand YALLL [16], which is almost exclusively concerned with the 
first purpose, and on the other hand S* [4], which is almost exclusively 
concerned with the second.) 

To achieve the first purpose, the language may include features like 
sequential program specification, the use of symbolic variables instead 
of register names, and the specification of computations in terms of a 
fixed set of primitives instead of the set of microoperations available 
on a specific machine. Machine independence means that the programmer is 
relieved from all details of a specific architecture, with the 
consequence that one and the same program can be compiled and executed on 
different machines. In practice, machine independence in this sense is 
only seldom a design objective. Some authors [1,18,23] use the term in a 
quite different sense: they call their microprogramming language machine 
independent because it allows specification of programs for different 
machines, but programs written in these languages can only be executed on 
the machine for which they were designed and are therefore machine 
dependent. In the context of high level languages, this is a somewhat 
unusual meaning of the term "machine independent". 

Language features included to achieve the second purpose, i.e. to 
facilitate writing correct microprograms, include a good control 
structure and good data-structuring facilities. A language may be 
designed in such a way that there is a strong correlation between 
"syntactically correct" and "meaningful" programs, which is rarely the 
case with (micro)assembly languages. A language may even enforce some 
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form of program correctness proof. 

Verification of microprograms has received more attention than 
verification of macroprograms (see for example, the remarks made in [6]). 
There are several reasons for this. Microprograms are · traditionally 
placed in read-only-memory, which means that bugs are hard to correct. 
Microprograms are at the lowest level in the system hierarchy; they form 
the basis for the remainder of the system and hence their reliability is 
crucial. Finally, microprograms are small and simple in comparison with 
macroprograms. The first two facts make verification attractive; the last 
one makes it feasible as well. 

2.1.2. What_ kind of primitive operations~ provided? 

A compiler for a particular machine has to map the primitives 
provided in the language to the set of microoperations available on that 
machine. Because the generated object code should be highly efficient, 
it is in general not acceptable if a .compiler overlooks possibilities to 
apply certain microoperations. For example, a macroprogram must 
preferably be kept in a hardware register with auto-increment capability. 
Only if such a special register is not available in the 
microarchitecture, it is acceptable to use the main ALU to increment it. 

Utilization of machine primitives is most easily guaranteed, when 
the language primitives are of at least the same complexity as the 
microoperations to which they must be compiled. For a machine 
independent language, this implies that the set of primitives should be 
chosen such, that it covers most microoperations on most machines. There 
is, however, such a variety of hardware features available on different 
machines that this approach will render the language bulky, to say the 
least. Moreover, such a large set of primitives is bound to be redundant 
(in the sense that different, but closely related primitives will be 
included), which in itself will make code-generation difficult. This is 
best illustrated by an example: 

On the Interdata 3200 the programmer can switch to a different block 
of 32 registers, by setting 3 bits in the program status word (there are 
eight such blocks). This is very useful for the implementation of a 
macro procedure call instruction; such a block can be made to contain the 
current activation record or at least part of it. This feature could be 
incorporated in a high level language by means of a "new-block" 
operation, with one (integer) operand specifying the selected block. 
There is a definite overlap between such a "new block" facility and a 
"push stack" operation, which is also hardware supported on several 
machines. Even if both primitives are included, a program may contain 
uses of the "push"-operation which, on an Interdata, should be translated 
using its "new-block" facility. As this is very hard to detect, there is 
still no guarantee that both primitives will be efficiently translated. 

From a language design point of view it is much more attractive to 
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include only a small set of primitives along with the possibility to 
declare new operations in terms of already existing ones. If this 
approach is taken, there will exist microoperations on some machines 
which are more complex than the language primitives. In order to utilize 
these operations, the compiler must be able to recognize that ~ sequence 
of source statements can be translated into ~ microoperation. This 
problem is still too difficult to attack. Its solution would involve 
extensive semantic analysis of the source program, but no suitable 
techniques for such an analysis are available. 

Both approaches therefore cause the implementer problems. The 
easiest way out is to allow in a program exactly the primitive operations 
available on the target machine, but this implies that machine 
independence is sacrificed. 

2. 1. 3. To ~,hat extent are variables viewed as machine registers? 

When the language allows the use of symbolic variables in the same 
manner as conventional high level languages, the compiler must allocate 
registers for them. There are two factors which complicate this task: 

The number of registers exclusively accessible to the microprogram 
is limited. It may vary from l 6 (e.g. on the DEC VAX-1 l) to 256 (e.g 
on the Control Data 480). Temporarily storing variables in a 
reserVE?d area of main memory will sometimes be unavoidable, but 
should be done in such a way that the number of fetches and stores 
is minimized. 

The microregister set is generally not homogeneous. Allocating a 
variable to a certain register at a certain program point, also 
determines which subset of microoperations. can be applied to that 
variable at that point. Constraints imposed can be bizarre, for 
example, the fact that a certain microregister is occupied may 
disable a part of the microinstruction set. In order to allocate 
registE?rs without hampering efficient code generation, the compiler 
needs some insight in the use (for example, access frequency) of 
variables. 
Especially this factor renders register allocation much more complex 
at the microlevel than at the macrolevel. 

In many microprogramming languages the allocation problem is 
completely avoided by requiring the programmer to bind all variables used 
to the physical registers of the target machine. The association between 
variable and register may range from very simple (each variable denotes 
one specific register) to fairly complicated (a variable can denote a 
field within a register, or the concatenation of several registers). 
Such a restriction again introduces machine dependencies, and decreases 
programming convenience as the programmer has to keep track of which 
value resides in which register, and has to be aware of datapaths between 
registers. 
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2 .1 • 4. ~ parallelism implicit or explicit? 

When the language allows sequential specification of the source 
program, the compiler should decide which source statements can be 
executed in parallel in order to be able to compose the horizontal 
microinstructions. Two forms of dependence must be taken into account: 

Data dependence. 
When a statement Sl creates a value used by a statement S2, or, 
alternatively, when S2 destroys a value needed by Sl, Sl must be 
executed before S2. 

Resource dependence. 
Statements Sl and S2 cannot be executed in parallel if their 
resource usage may lead to conflicts, for example, if they both use 
the (same) ALU or both write into the same register. 

Several algorithms have been developed to compose a minimal or, 
using heuristic methods, a near minimal sequence of microinstructions 
from a sequence of microoperations (without branches), see for 
example [18,22,3,21]. The algorithm presented in [21] deserves special 
attention; it employs a very general model of microinstructions. Such 
algorithms can be used not only for microinstruction composition during 
compilation of a sequential source program, but also for the optimization 
of hand-written microprograms. 

Register allocation and microinstruction composition are 
interdependent. In order not to block possibilities to execute 
operations in parallel, a register allocation phase should introduce as 
little resource dependencies as possible between statements which are not 
data dependent. This is an additional complication in the implementation 
of languages which allow both sequential program specification and the 
use of symbolic variables. 

A language can incorporate explicit parallelism in two different 
ways: 

The programmer must denote which statements are not data dependent, 
i.e. could be executed in parallel if an unlimited number of 
resources were available. 

The programmer should take both data dependence and resource 
dependence into account. 

The first alternative is a compromise 
implementation convenience. It does not, like 
use of symbolic variables, while it relieves 
trivial analysis. 

between programming and 
the other one, exclude the 
the compiler from a non-
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2.1.5. What is done about interrupts and microtraps? 

Microprograms control the machine to a much greater extent than 
macroprograms. On microprogrammable machines, this is a potential source 
of trouble. User microprograms will often have to be developed and 
executed in a multi-programming environment, and will often coexist with 
a set of unalterable, manufacturer supplied microprograms which interpret 
the basic instruction set. The possibly disastrous effect of user 
microprogramming on system reliability is well known - in general nothing 
will keep a microprogram from blowing up the operating system. The 
necessity to service interrupts once in a while, and the possible 
existence of microtraps which are not completely transparent to the 
microprogrammer (see below for an example), are complications which stem 
from this same source. 

If the execution of a microprogram' may take long compared to the 
cycle time of the machine (think for example of a fast fourier transform) 
it must periodically check whether any interrupts are pending, and if so, 
transfer control to an interrupt handler in order to allow them to be 
serviced. There may exist a fixed, standard macroinstruction to return 
from an interrupt, in which case special provisions may be required in 
the user microprogram to ensure that it will indeed get back control. It 
should moreover be able to resume its execution at the exact point where 
it left off. 

Microtraps (like, on some machines, the occurrence of a pagefault) 
cause even more trouble. Consider the following trivial microprogram 
specification: 

program incread(n) 
begin reg[n] := reg[n]+l; mbr := readmem(reg[n]) end 

It increments the contents of reg[n] which are subsequently used as 
an address in main memory. The memory fetch may lead to a pagefault. 
The microprogram will be restarted from the beginning after the pagefault 
has been taken care of. If reg[n] corresponds to a register which is 
also part of the macroarchitecture and is therefore saved and restored, 
it will be erroneously incremented a second time. 

These problems are too complicated and require a too detailed 
analysis to justify a full treatment in this survey paper. It should be 
clear however that a language designer will have to decide whether their 
solution is left to the compiler or to the programmer. If the programmer 
is allowed to disregard them completely, the compiler must be able to 
determine suitable program points at which to test for interrupts. In 
addition, it must insert special code at these points to ensure that the 
program is correctly restarted upon return. If the machine has 
microtraps, the compiler must locate all program points where they can 
occur and determine whether a trap at such a point will lead to 
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undesirable side-effects. 

Handling of interrupts and traps was one of the first problems 
suggested to me in the context of compilation of high level 
microprogramming languages, but no attention whatever is paid to it in 
the papers I surveyed. Therefore, although it deserves being on the list 
of design issues, it will not be further mentioned in the next section. 

2.1.6. What kind of control structures are provided? 

Subroutines and expressions deserve special attention. Allowing 
formal param,eters and local variables introduces a certain amount of 
space and time overhead for each procedure call, which may not always be 
acceptable. Allowing arbitrarily complex expressions leads to the 
introduction of temporary variables during compilation, which complicates 
register allocation. 

2.1.7. What kind of data types and data structures are provided? 

As a consequence of the fact that microprograms are primarily 
concerned with (fixed length) bitstrings, most microprogramming languages 
have only one datatype. Datastructuring facilities greatly enhance 
program readability. Inclusion in a language of e.g. arrays and PASCAL­
like records does not necessarily cause much trouble to a compiler 
writer. If fields in a record structure can designate bit-fields in 
registers, the compiler will have to introduce temporary variables in 
order to deal with field selection. 

2.1.8. Has the language been implemented and if 
been obtainecrr-

what results have 

This is not a design issue, but for the evaluation of a language, 
obtained results are as important as incorporated ideas. 

2.2. Existing High Level Micro Languages 

The boundary between high level and low level microprogramming 
languages is not very well defined. There exist several languages [13,15] 
which might be called high level as far as their control structure is 
concerned (they include for example if-then-else, while-do and case 
constructs, or allow sequential specification of the program), but which 
are definitely low level as far as their primitives are concerned 
(precisely the resources and microoperations of one specific machine). 
In the following, I only consider languages which are not tailored toward 
a single machine. This criterion is rather arbitrary; its main 
justification lies in the fact that such languages can be expected to be 
of interest to a larger group of readers. A detailed evaluation of four 
languages is presented. Taken together, they yield a comprehensive view 
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on the different ways in which the problems mentioned in the previous 
section are approached. The design goals of each language, along with 
the examples, have been taken from the cited papers. Section 2.2.5. 
contains some brief remarks about six other languages. 

2.2.1. SIMPL (Single Identity Micro Programming Language) 

SIMPL [18] dates from 1974, and was developed at the University of 
California at Berkeley by C. Ramamoorthy and M. Tsuchiya. 

The design goals of SIMPL follow from the following quotations: 
"The [envisaged] high level language should enable the user to write 
microprograms in a conventional, sequential and procedural fashion and 
permit these programs to be compiled into efficiently executable 
microcode." 
"The desirable properties of a high-level microprogramming language 
must be al compromise between machine dependence, ease of detecting and 
representing explicit and implicit parallelism, and the innate 
'naturalness' required of all programming languages to establish 
effective man-machine communications". 

Primitives. 

A fixed set of operators is included: addition, subtraction, 
logical and, or, exclusive or and negation, shift (both linear and 
circular), as well as relational operators. Explicit read and write 
statements are provided for references to main memory. When the 
target machine has microoperations of a higher level than those 
included in this set, it may be difficult to utilize them (see 2.1.2). 
This problem is not addressed. 

Variables. 

Variables are identified with machine registers. An equivalence 
statement is provided in order to enable the programmer to refer to a 
register by more than one name. 

Parallelism. 

A SIMPL program is specified sequentially. One of the underlying 
concepts of SIMPL is the single assignment rule, well known from 
dataflow languages [ 11]. This rule, which states that each variable 
may occur only once as the destination in an assignment, facilitates 
detection of potential parallelism, but it is incompatible with the 
register view of variables as it would imply that each register can 
contain only one value throughout the program. The single identity 
principle was invented to resolve this conflict. In single assignment 



10 

languages, the order in which the source statements are specified is 
completely irrelevant. The order in which they are executed is 
determined only by their data dependencies: A statement which uses the 
value of a certain variable x, will not be executed before the (only) 
statement which assigns a value to xis executed. In SIMPL, the order 
of the source statements is used to distinguish the different values 
assigned to a variable. Consider the following statement sequence: 

(Sl) x := vl; 
(S2) 

(S2 to Sn do not contain an assignment to x) 

(Sn) 
(S:n+l) x := v2; 

The single identity principle states that Sl should be executed 
before any Si (2(=i(=n) which uses x; and each such Si should be 
executed before Sn+l. Application of these rules for all variables 
yields a partial ordering of the source statements. Statements without 
a precedence relation can be executed in parallel. Loops cause 
trouble in this scheme; it is not completely clear from [ 18 J how this 
problem was solved. 

Control Structure. 

The control structure of SIMPL resembles that of ALGOL 60. 
Procedures and blocks are allowed. It is not mentioned in [18] 
whether or not they may contain declarations, but the examples suggest 
that they may not. Expressions may contain only one operator. If­
t hen-else, while-do and (probably) for-statements are included; but 
goto's are not, A case-construct has been added to permit multiway 
branches, which are available on many machines. 

Datatypes and datastructures. 

The only datatype in SIMPL is the integer. No data-structuring 
mechanism is provided (presumably, the language does not even permit 
array declarations, because arrays cause trouble in relation with the 
single assignment rule). 

Implementation. 

A compiler for SIMPL was written in SNOBOL4. It produces code for 
the Tucker-Flynn dynamic microprocessor. As this was the first effort 
to translate a sequential program to horizontal microcode, algorithms 
had to be developed to detect potential parallelism and possible 
resource conflicts between microoperations. Unfortunately, no 
comparison has been made between code generated by the SIMPL-compiler 
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and handwritten code. 

Example. 

Now follows a simplified version of the example given in [18]: 
the multiplication of two 64-bit floating point numbers. Both numbers 
are assumed to be positive. Mantissa and exponent overflow are not 
taken into account. The multiplicand resides in register Rl, the 
multiplier in R2, and the product in R3. Floating point numbers have 
the following format (from high to low order bits): sign (1 bit), 
exponent(l3 bits), mantissa (50 bits). M3 and M4 extract the exponent 
and the mantissa respectively. 

begin 

end 

comment extract and determine exponent for product; 
Rl & M3 -> ACC; comment logical and; 
R2 & M3 -> R4; 
R4 + ACC -> ACC; 
R3 I ACC -> R3; comment logical or; 

comment extract mantissas and clear ACC; 
Rl & M4 -> Rl; 
R2 & M4 -> R2; 
RO-> ACC; 

comment multiplication proper by shift and add; 
while R2 'f Odo 
begin ACC A -1-> ACC; comment shift 1 to the right; 

R2 A -1 -> R2; 
if UF = 1 then Rl + ACC -> ACC; 

commentlfF"equals lowest bit shifted out of shifter; 

comment pack exponent and mantissa into f.p. format; 
R3 I ACC -> R3; 

Conclusions. 

SIMPL was the first language that allows sequential specification 
of horizontal microprograms. Its design triggered many similar 
efforts. The fact that the language was implemented and that the 
compiler actually produced horizontal code was very important. SIMPL 
is now mainly of historical interest. Especially its limited view of 
variables and the absence of even the most basic data-structuring 
mechanism make it awkward to use. It is also doubtful whether it can 
be implemented with an acceptable result on a machine that supports 
operations not included in the basic operator set. 
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2.2.2. EMPL (Extensible microprogramming language) 

EMPL (8] dates from 1976, it was developed by David DeWitt at the 
University of Michigan. 

Design goals. 

Four goals are stated: 1) "The language must facilitate writing 
programs" ••• ; 2) It "should be readable, so as to facilitate the task 
of redesigning a program" ••. ; 3) It "should be machine independent so 
that programs written in it are portable"; 4) It "should be possible 
to compile the language into very efficient microcode for a variety of 
microprogrammable computers", 

Primitives, 

A small set of basic operators is included: addition, subtraction 
(both one- and two-complement), unary minus, multiplication, division, 
logical and, or, exclusive or and the logical negation of these three, 
negation, shift, rotate, and the standard relational operators. There 
are no primitives for reading from or writing to main memory. The 
user can declare additional operators. Such a declaration should 
always have a body expressing the operation in terms of built-in or 
previously declared operations; but if the machine has a special 
microoperation for it, this can be specified as well. (Machine 
testable conditions could be handled by the same mechanism if an 
operator :is allowed to yield a value of type "logical"; this is not 
explicitly stated however.) This mechanism allows a user to tailor the 
set of operators to the available hardware, while retaining a certain 
degree of machine independence: if a certain microoperation is not 
available,. the body of the operator will be compiled statement-by­
statement (but see the remarks on implementation below). 

Variables. 

Variables in EMPL are not machine registers. All variables are 
global, in order to avoid procedure calling overhead. 

Parallelism. 

Programs are specified completely sequentially. There are no 
provisions in the language to facilitate detection of parallelism. 

Control Structure. 

The language provides both procedure declarations (without formal 
parameters) and operator declarations (with an arbitrary number of 
formal parameters). Only simple variables and constants are allowed 
as actual parameters. Statement forms provided are assignment, call 
and return, if-then-else, while-do and goto. Expressions are not 
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allowed to contain more than one operator. 

Datatypes and datastructures. 

The only basic datatype is the integer. A concept· akin to the 
SIMULA class [2], called an extension statement, is used for data­
structuring. It allows the user to define a new datatype with 
associated fields (of a previously declared type), an initialization 
statement, and associated operators. Fields can be referenced only 
from the operators declared within the extension statement; they 
cannot be selected from outside the class. This is consistent with the 
view that primarily those datatypes which are hardware supported, are 
declared in an extension statement. No difference is made in the 
language between variables residing in registers and variables 
residing in main memory. As there are neither explicit statements for 
memory references, it is not clear how an EMPL-program can for example 
read instruction operands from main memory. 

Implementation. 

EMPL has not been fully implemented. A sketch of a two-pass 
compiler is contained in [8]. The first pass translates the source 
text to a sequence of microoperations, without allocating resources. 
The second pass allocates resources and composes microinstructions; 
this pass has been completed and is described in [9]. It is hard to 
judge whether the results of a complete compiler would meet efficiency 
requirements. Some possible problems are: 

Example. 

In the proposed implementation, a call to an operator which is 
not hardware supported is textually replaced by the statements 
that form its body. This is undoubtedly done to avoid parameter 
passing. If the operator mechanism is heavily used, this will 
lead to an increase in the size of the produced code. 

I doubt whether the control statements are sophisticated enough 
to allow optimal microinstruction sequencing. There is neither a 
case-construct nor a cascaded conditional statement (if tl then 
sl elif t2 then s2 ••• etc). Multiway branches will therefore be 
hard to utilize. 

The example shows an EMPL extension statement to declare the type 
"stack", followed by the declaration of a stack object. The 
microoperation specifications are in a format based on a control word 
model developed earlier by the same author [7]. After the stack 
"address-stk" has been declared, the initialization statement of the 
type declaration is executed. It sets the associated stackpointer to 
zero. 
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TYPE STACK 
DECLARE STK(l6) FIXED; /* an array of 16 integers*/ 
DECLARE STKPTR FIXED; 
DECLARE VALUE FIXED; 

INITIALLY DO; STKPTR = O; END; 

PUSH: OPERATION ACCEPTS(VALUE) 

END, 

MICROOP: PUSH 3 O; /* indicates to the compiler that a */ 
/* PUSH microoperation is available*/ 

IF STKPTR = 16 
THEN ERR.OR; /*overflow*/ 
ELSE DO; STKPTR = STKPTR + l; STK(STKPTR) = VALUE; END 
END; 

POP: OPERATION RETURNS(VALUE) 
MICROOP: POP 3 O; 

END, 
ENDTYPE: 

IF STKPTR = 0 
THEN ERROR; /*underflow*/ 
ELSE DO; VALUE= STK(STKPTR); STKPTR = STKPTR - l; 
END; 

DECLARE ADDRESS STK STACK; 

Conclusions. 

From all microprogramming languages considered in this survey, 
EMPL most closely resembles a conventional high level language. By 
grouping all operations on objects of a single data type in a class, 
program modularity and portability are improved. The way in which the 
user may invoke specific microoperations is elegant. The 
specification of a "machine dependent microoperation" in an operator 
body guarantees a certain degree of machine independence while 
retaining the chance to produce reasonably efficient code. 

Viewing classes mainly as a way to extend the language with 
data types and operations that are supported by specific 
microoperations, is unnecessarily restrictive, It has caused useful 
constructs like field selection to be excluded from the language -
compare the EMPL fields for example with the tuples of S*. It has also 
lead to an inefficient implementation scheme for classes and 
associated operators that are not hardware supported. The 
desirability of a case-construct has been mentioned already. The 
integer as basic datatype does not seem to be the best possible choice 
(again, compare with S*). 
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2.2.3. S* 

S* [ 4] dates from 1978, it was developed by Su bra ta Dasgupta at 
Simon Fraser University. 

Design goals. 

Three design goals are mentioned: "(l) the ability to construct 
control structures for designating clearly, and without ambiguity, 
both sequential and parallel flow of control; (2) the ability to 
describe and name arbitrarily, microprogrammable data objects or parts 
of such data objects; (3) the ability to construct microprograms whose 
structure and correctness can be determined and understood without 
reference to any control store organization." 

Primitives. 

S* is described as a language schema, rather than a complete 
language. It consists of a framework providing a declaration structure 
and a set of compound statements with associated semantics in the form 
of pre- and postconditions. For a given machine M, S* is instantiated 
to a complete language S {M), the elementary statements of which are 
determined by the microoperations of M. Registers, constants residing 
in read only memory and testable machine conditions must be declared 
explicitly by the user before they can be referenced. In order to 
complete the semantics of S(M), it may be necessary to declare 
additional pre- and postconditions. For instance, the increment 
operation of S* is defined on arbitrarily large integers: 

{X+l = v} INC X {X = v} 

In a specific instantiation S{M) allowance will have to be made 
for the possibility of overflow and the above rule will have to be 
modified accordingly. For a 16-bit two-complement integer range it is 
modified as follows: 

{X+l = v & v ( 32768} INC X {X = v}; 
{X+l = v & v = 32768} INC X {X = -32768 & OVERFLOW= 1} 

These pre- and postconditions should be used by the programmer, 
to prove that her program is correct, i.e. that it conforms to a 
specification in the form of additional sets of pre- and 
postconditions. 

Variables. 

In S*, 
instantiation 

declaration 
S(M), each 

of a variable 
variable must, 

is 
in 

meaningless. In 
its declaration, 

an 
be 
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associated with one or more specific machine registers or main memory 
locations of.M. This association can be quite complex. It is possible 
for example to declare an array consisting of five elements 
corresponding to the low order 4 bits of register Rl through RS. 

Parallelism. 

Parallelism is explicit, the programmer has to compose the 
microinstructions herself. This is a logical choice in view of the 
design goals, which emphasize verifiability and well-structuredness of 
programs rather than simplification of microprogramming by raising the 
level of primitives. Three constructs to aid in microinstruction 
composition a~e provided in the language: 

cobegin Sl; S2; ••• ; Sn coend 

denotes that the (elementary) statements Sl; 
executed in the same microcycle. 

cocycle SI.; S2; ••• ; Sn coend 

... , Sn should all be 

is a construct which is meaningful in S(M) only if execution of a 
microinstruction on Mis split into n phases. It denotes that Sl to Sn 
should all be placed in the same microinstruction, and that Sl should 
be executed in the first phase, S2 should be executed in the second 
phase, etc. The execution of the microoperations Sl to Sn should not 
overlap. Si can be a cobegin-coend statement. 

dur SO do Sl; S2; ••• ; Sn end 

specifies that SO runs concurrently with the sequence Sl to Sn. SO 
takes a maximum of n microcycles to complete. 

Control Structure. 

The syntax of S* is basically that of PASCAL. Parameterless 
procedures are allowed. In the declaration, the procedure name must 
be followed by a parenthesized list of the variables used in the body. 
Procedures and blocks may contain local declarations, but of course 
the variables must be linked to machine registers. Expressions can be 
arbitrary complex. Statement forms provided are a cascaded if­
statement (if tl then Sl elif t2 then S2 • • • elif tn then Sn fi), 
while-do and repeat-until, call and return, sequential (begin-end) and 
parallel block structures (as specified above), and a region-end 
statement which delimits a hand-optimized section where the flow of 
control may not be changed by the compiler. Tests are elementary 
statements occurring only in an instantiation S(M); they must 
correspond to hardware testable conditions of M. 

Datatypes and datastructures. 
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Datatypes and datastructures. 

The only primitive datatype in S* is the bit. There are four ways 
to construct new datatypes: 

seq [ i. . j] bit 
denotes a bitstring with i and j as high and low order indices. 
Arithmetical, logical and shift operations have their standard meaning 
on bitstrings. 

array [.!_ •• j] of type 
denotes a sequence of elements of an arbitrary type. 

tuple fieldl: typel; ••• fieldn: typen; end 
corresponds to the PASCAL record. Field selection is done as in PASCAL 
with one addition: if Xis a tuple data-object and all fields in X are 
of type seq [] bit, then a reference to X without selection refers to 
the concatenation of all fields. This is very convenient; if IR is a 
variable of type "instr" with fields opcode, addr and index, then one 
can refer to the complete instruction (IR) as well as to separate 
fields (IR.opcode). 

stack [i] of type with ident {, ident} 
declares a stack °of depth i, with stackpointers denoted by the 
identifiers. 

Implementation. 

No S{M) has been implemented so far, but the level of the 
elementary statements suggests that writing a compiler is certainly 
feasible. Although not mentioned in [ 4], an automatic verifier to 
check the validity of the program proof provided by the user, would 
fit very well in an S{M) implementation. 

Example. 

The following example shows a microprogram for the multiplication 
{performed by repeated addition) of two positive, 16-bit integer 
operands, "mpr" and "mpnd". The result of the multiplication is 
stored in a data-object called "product". In [ 4] the complete 
development the program is shown, including the necessary conditions 
to assure correctness. Here only the final result is presented. 

program MPY; 
var localstore: array [0 •• 31] of seq [15 •• 0] bit; 
canst minusl = dee (16) -1; ---

# a 16-bit constant with decimal value -1 # 
var left_alu_in, right_alu_in, aluout: seq [15 •• 0] of bit; 
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end 

syn mpr 
mpnd 
product 
II Three 

= localstore[O], 
= localstore[l], 
= localstore[2]; 
locations of localstore are renamed II 

begin 

end 

repeat 
cocycle 

cobegin left alu in:= product; 
right_alu_in := mpnd 

coend; 
alu out:= left alu in+ right_alu in; 
product := alu out 

end; 
cocycle 

end 

cobegin left alu in:= mpr; 
right_alu_in := minusl 

coend; 
aluout := left alu in+ right_alu_in; 
mpr := aluout 

until aluout = O; 

Conclusions. 

Instantiations of S* can be expected to be well structured 
languages with well defined semantics, which can be an important aid 
in the development of reliable microprograms. Although a program 
written in any specific instantiation S(M) is highly machine 
dependent, the good structure of the S* schema will facilitate the 
transformation of programs from one instantiation to another. Because 
parallelism and timing are explicit, the programmer must have intimate 
knowledge of the specific machine for which the program is written. 

2.2.4. YALLL (Yet Another Low Level Language) 

YALLL [16] dates from 1979. It was developed by a team from the 
University of California at Berkeley. 

Design goals • 

• • • "Rather than to try to bridge the gap between a [machine 
independent] HLL to microarchitecture in one step, we have designed a 
low level language that is capable of producing microcode for 
different machines ••• " 
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Primitives. 

The primitives of YALLL correspond to commonly available 
microinstructions: add, subtract, increment, decrement, and, or, 
exclusive or, negation, several types of shift, load from and store 
into main memory, register-to-register move, and put-constant-in­
register. It is hoped that these primitives will permit compilation to 
microcode for a large class of interesting machines. 

Variables. 

Variables are viewed as general purpose registers with the 
exception of "mar" (memory address register) and "mbr" (memory buffer 
register). The compiler should take care of the correct utilization of 
special purpose microregisters. A program is preceded by a 
declaration part in which YALLL register names are bound to physical 
machine registers. It is not clear from the description whether 
binding is required for all variables, or whether it is optional. 

Parallelism. 

The program is specified completely sequentially. 

Control Structure. 

In accordance with the above mentioned design goals, the 
structure of YALLL is that of a conventional assembly language. YALLL 
includes a conditional and an unconditional jump, a procedure call and 
return, an exit-with-value instruction, and a multiway branch. This 
branch facility is fairly sophisticated, it allows the comparison of 
the contents of a register with a constant mask that may contain 
'true', 'false' and 'dont-care' bits. 

Datatypes and datastructures. 

There are no datatypes and consequently no data-structuring 
facilities in YALLL. Five types of constants exist: binary, octal, 
decimal and hexadecimal numbers, and masks. 

Implementation. 

YALLL has been implemented on two different machines, the DEC 
VAX-11 and the Hewlett-Packard HP300. Several example programs were 
tried out on both machines and the results were compared with each 
other and with equivalent hand-written code. The HP implementation 
performed a lot better than the VAX implementation. The baroque 
structure of the VAX micro architecture, combined with the complete 
lack of documentation for this machine at the time [16) was written, 
discouraged the implementers from attempting any code optimization. 
Another interesting observation is that both compilers consisted of 
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about 5000 lines of high level language code. This suggests that a 
full optimizing compiler for a high level microprogramming language of 
the complexity of EMPL for example, will be huge. 

Example. 

The following example shows a program which transliterates a 
character string according to a table. The string is addressed by 
register "str", and ends with a null byte. The table is addressed by 
register "tbl". Each byte of the string is examined, and, if not 
zero, is replaced in memory by the byte in the table which it 
addresses .. The program shown is that for the HP300. It differs from 
the VAX-version only in the declaration part (which binds YALLL 
registers str, tbl and char to HP registers db, sb and mbr 
respectively) and in the lay-out conventions. 

loop: 

reg str = db 
reg tbl = sb 
reg char= mbr 

load char,str 
jump out if char= 0 
add mar,char,tbl 
load char,mar 
stor char,str 
add str,str,l 
jump loop 

out: exit 

Conclusions. 

;get addressed character 
;quit if zero 
;add to table base adress 
;fetch character from table 
;replace character in string 
;bump string address 

The value of YALLL lies in its moderate design goals which 
enabled the designers to produce implementations for two different 
machines. This has never been done for any other machine independent 
microprogramming language. The fixed set of primitives included in 
YALLL will at least for some machines render the generation of 
efficient code difficult. 

2.2.5. Other languages 

This survey will be concluded with some brief remarks about an 
additional six languages. Their approach to any of the issues considered 
above is not fundamentally different from that of the previous four 
languages. 

MPL [10] represents the earliest effort to design and implement a 
high level microprogramming language, with the objective to generate code 
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for a vertical machine. Its structure is comparable to that of SIMPL, but 
it offers somewhat better data-structuring facilities. It permits the 
declaration of one-dimensional arrays and virtual registers consisting of 
the concatenation of physical ones. When [10] was written only part of 
the compiler had been completed. 

Strum [17] can be considered a somewhat less general forerunner of 
S* as far as its design goals are concerned. Its primitives are based on 
the Burroughs D-machine [19]. Programs are developed together with their 
proofs; they should contain assertions which can be used to generate 
verification formulas, the validity of which can be checked by an 
automatic verifier. A non-optimizing compiler was completed. 

MPGL [ 1] is comparable to SIMPL or MPL. Programs are specified 
sequentially and entirely in terms of machine primitives. Its structuring 
facilities are rather poor; the programmer has to specify details like 
which registers the compiler should use to store intermediate results 
during expression evaluation, and at what address in control memory a 
procedure should be placed. One feature of MPGL is unique, however. A 
complete machine specification is part of the program and the compiler 
uses this specification to generate code. Thus, the MPGL compiler can be 
fed with a program for any machine having a microarchitecture that can be 
described in the specification formalism of MPGL. Note, that this does 
not imply that MPGL programs are machine independent. An MPGL-compiler 
has been written in assembly language. It produces efficient code. For 
the examples presented in [1], code size did not increase by more than 
15% in comparison with equivalent hand written microprograms. 

A machine independent (nameless) language, tailored towards emulator 
and interpreter construction is described in [14]. It allows declaration 
of all kinds of primitives (registers, stacks) in the emulated machine. 
The authors have emphasized design rather than implementation problems 
and this will make efficient implementation of the language rather 
difficult. 

CHAMIL [23] is a PASCAL-based language. Its control structure and 
its data structuring mechanism are adequate. Like most other languages, 
CHAMIL identifies variables and physical machine registers. The 
programmer is allowed to abstract from physical datapaths: the statement 
"reg a:= reg b" is legal as long as there exists a (possibly indirect) 
path- from reg a to reg b that can be traversed within one microcycle. 
The microprogrammer must group statements into microinstructions. A 
compiler for CHAMIL was written in PASCAL. 

Finally, the development at IBM of a microcode compiler for a subset 
of PL/I (called PL/MP) should be mentioned. Unfortunately, too little 
information is available on this project to allow a more elaborate 
treatment. Reports [20] and [12] which both treat implementation issues, 
suggest that the language is not register oriented. 
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3. CONCLUSIONS 

The greatest problem in high level language microprogramming is not 
the design, but the implementation of high level languages. The attention 
paid to various implementation problems is rather unbalanced_. 

From the ten languages reviewed in the previous paragraphs, eight 
allow compleite sequential specification while only two (S* and CHAMIL) 
leave composition of microinstructions to the programmer. On the other 
hand, only two or three (EMPL, PL/MP and in a certain sense YALLL) allow 
the programmer to work with symbolic variables instead of physical 
registers a feature which also simplifies programming and is a 
prerequisite to achieve at least some machine independence. No language 
allows the passing of parameters to subroutines. The problem of 
microinstruction composition is far from trivial. Complicated algorithms 
have been developed to make this language feature possible. There is no 
reason to assume that the register allocation problem is intrinsically 
more difficult, or that its solution would be less useful, but for some 
reason or other it received far less attention. Another substantial 
problem, the incorporation of interrupt and trap handling, has even been 
completely m~glected. 

I think it is justified to state that the instruction composition 
problem, though important in its own right, has been overemphasized. Two 
circumstances may have encouraged this course of events: first, the fact 
that algorithms for microinstruction composition can be applied to both 
hand-written and compiler generated microcode, and second, the fact that 
the designers of the first language for horizontal machines (SIMPL) 
almost exclusively concentrated on the composition problem. Since 
composition depends on used resources, it will be clear that the 
alternative in which the programmer has to specify microinstruction 
composition while the compiler allocates resources, is not possible. It 
may be worthwhile though to investigate further the compromise suggested 
in section 2.1.4 in which the programmer has to specify data dependencies 
between statements but can leave resource allocation and therefore also 
the treatment of resource dependencies to the compiler. 

A final remark concerns the emphasis on efficiency. Experience with 
conventional high level languages has shown that high level language 
programs, even when compiled by a highly optimizing compiler, are 
generally le:ss efficient than assembly language programs written by an 
expert. The same is likely to be true in the area of microprogramming. 

Whether or not the loss of efficiency is compensated by the 
advantages of high level language programming, will depend on the 
circumstances. A user may find it more attractive to speed up a heavily 
used procedure by a factor of five with comparatively little effort and 
without needing expert knowledge, than to gain a factor of ten only after 
mastering a complicated microassembly language which requires an intimate 
knowledge of machine details. Ideally, high level microprogramming 
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languages and conventional high level languages should coincide, so that 
a user only has to denote which procedure(s) should be compiled to 
microcode and which to macrocode. Such an ideal is still far from 
realization however. It is likely that microprogramming will remain the 
business of only a few experts, until languages of at least the level of 
EMPL will have been satisfactorily implemented. 
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