
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

H.J. SINT

IW 138/80

A SURVEY OF HIGH LEVEL MICROPROGRAMMING LANGUAGES

Preprint

~
MC

JUN I

kruislaan 413 1098 SJ amsterdam

P,unte,d a:t :the, Ma;the.mo.:tic.ai. Ce,ntl'Le., 413 Kfl.U..,{,6faa.n, Arrv.,:teJulam.

The, Ma:the.ma..Uc.ai. Ce,ntl'Le, , f;ounded :the, 11-:th of; FeblLUafl.y 1946, ,l6 a. n.on.­
pnof;U ,i,,n1,;t,U,u;t,£on almlng a;t :the, pMmo.:Uon on pMe ma:the.miliC-6 a.nd .lt6
appUc.ailon6. 1:t ,l6 J.ipon6one,d by :the, Ne,;the,Jt,landJ., Gove,Jt,nme,nt :thMugh :the
Ne,;thelli,and6 Ongan,i,,zo.:tion 0on :the, Advanc.e,me,n,;t o0 PUJl.e, Re,1.,e,a.Jt,c.h (Z.W.O.).

1980 Mathematics subject classification: 68B99

ACM-Computing Reviews-categories: 1.3, 4.22

A survey of high level microprogramming languages*)

by

Marleen Sint

ABSTRACT

This paper surveys the current state
high level microprogramming languages.
design issues is formulated. Next, four
considered in detail, to see how each
issues. Brief remarks are made about six
concluding remarks are made.

of design and implementation of
First, a number of important
microprogramming languages are
of them has approached these
other languages. Finally, some

KEY WORDS & PHRASES: microprogramming languages, microcode compilers

*) This paper is not for review; it has been submitted for publication
elsewhen~.

1

1. INTRODUCTION

When a contemporary software designer, used to high level languages
and structured programming, decides to exploit the microprogrammability
of her new machine, she will soon imagine herself back. in the mid
fifties. At best, support provided by the manufacturer consists of a good
manual, an assembler and a loader. In the worst case she has to manage
with the hardware diagrams of the machine, and the listings of the
microprograms for the basic (macro)instruction set (*). Moreover,
programming in microassembly language turns out to be even more difficult
than programming in conventional assembly language, especially when the
machine happens to have a horizontal microarchitecture. There have been
various attempts to design and implement higher level languages for
microprogramming, but none of these has resulted in the production of a
generally available compiler. This paper surveys high level
microprogramming languages, emphasizing the problems which have yet to be
overcome in order to change the situation just sketched.

It may seem surprising that the development of microprogramming
languages is lagging so far behind that of macroprogramming languages,
and that compiler construction, which for the macrolevel has become a
mere routine, is still causing so many problems when code for the
microlevel has to be generated. There are at least three factors which
complicate compilation to microcode.

First of all, the structure of (horizontal) microcode is much more
complicated than that of conventional machine code. Microprograms
exercise almost direct control over the hardware. The parallelism
inherent in the latter, which is largely invisible at the conventional
machine level, is still visible at the microlevel. A horizontal
microinstruction is composed of several microoperations. In principle,
these are executed in parallel while consecutive microinstructions are
executed sequentially. In general, timing is far from straightforward.
The microoperations which together make up one microinstruction are not
necessarily all initiated simultaneously, nor do they always take exactly
one microcycle to complete. This may lead to possible overlap between the
execution of consecutive microinstructions. (Most of the parallelism is
hidden from the microprogrammer when a vertical encoding scheme is
employed, but this usually implies a loss of flexibility and speed [SJ).

Secondly, microcode has to meet much higher efficiency requirements
than macrocode. Traditionally, microprogramming has been used for the
realization of macroarchitectures. Since the efficiency of each computer
system ultimately depends on the efficiency of the microprograms
implementing the instruction set of that computer, virtually each effort

(*) The term "macro" in words like "macroprogram", "macroassembler", "ma­
crolanguages" etc. will refer to the conventional machine level as
opposed to the microlevel.

2

spent on speeding them up will pay off in the end. Though less extreme,
efficiency requirements for user microprograms are still strict. The only
reason to write microprograms is to gain speed; if a compiler is unable
to produce sufficiently efficient microcode it is of no use at all.

There is yet a third factor which complicates microcode generation:
Host machines sold as microprogrammable are so only to a limited extent.
The microarchitecture is usually tailored towards the efficient
implementation of the standard (macro)instruction set of the machine.
But efficiency and generality seldom go together. Microprogramming such
machines is therefore often like writing a text editor in a language
designed especially for matrix manipulation: the beautiful features that
are available are of no use, and the ones needed are not provided. Only
a few machines, of which the different models of the Burroughs Bl700/1800
series are the best known examples, provide real hardware support for
user microprogramming, but the architecture of these machines is
vertical.

The next section contains an overview of existing microprogramming
languages, preceded by a list of important design issues. This paper is
concerned with user microprogramming, which implies that
microarchiteeture and control word format are fixed. The overview is
therefore restricted to languages which can be implemented on existing
hardware, as opposed to specification languages to assist in the design
of microprogrammed hardware. Furthermore, it only considers the most
general class of languages: those which can be implemented on machines
with a horizontal architecture.

A final section contains some concluding remarks.

2. HIGH LEVEL MICROPROGRAMMING LANGUAGES

2.-1. Design issues for microprogramming languages.

From a language design point of view it is not at all obvious why
the design goals for high level microprogramming languages should be much
different from the usual design goals for macroprogramming languages.
They should be well structured, they should have sufficient expressive
power to be useful within their specific area of application, and they
should be as machine independent as possible. It is not even obvious that
a special microprogramming language is needed at all - most algorithms
executed on the microlevel can be expressed in existing languages. A
subset of PASCAL or ALGOL 68, with all construe ts requiring elaborate
runtime support removed, would probably do very well.

For the reasons mentioned in the introduction, construction of a
satisfactory compiler for such a language is not yet within reach.
Evaluating existing languages only in terms of expressive power and

machine independence is
certain design choices for
a compiler should be taken

3

therefore unrealistic; the implications of
the optimization and code generation phases of
into account as well.

A list of important design issues will now be formulated. It will be
used as a guideline for the evaluation of existing languages. The first
issue provides some overall perspective. The next four issues are of
particular importance for microprogramming languages and should be
considered with the pragmatical background just sketched in mind. The
last three issues are more general and are applicable to any programming
language.

2.1.1. What~ the design goals for the language?

The use of a high level microprogramming language may serve two
different purposes:

(1) To relieve the programmer from dealing with irrelevant, low-level
details of a specific microarchitecture.

(2) To reduce the chance of errors in the microprogram.

Though design goals of most microprogramming languages state some
combination of these two, the emphasis varies. (Extreme examples are on
the one hand YALLL [16], which is almost exclusively concerned with the
first purpose, and on the other hand S* [4], which is almost exclusively
concerned with the second.)

To achieve the first purpose, the language may include features like
sequential program specification, the use of symbolic variables instead
of register names, and the specification of computations in terms of a
fixed set of primitives instead of the set of microoperations available
on a specific machine. Machine independence means that the programmer is
relieved from all details of a specific architecture, with the
consequence that one and the same program can be compiled and executed on
different machines. In practice, machine independence in this sense is
only seldom a design objective. Some authors [1,18,23] use the term in a
quite different sense: they call their microprogramming language machine
independent because it allows specification of programs for different
machines, but programs written in these languages can only be executed on
the machine for which they were designed and are therefore machine
dependent. In the context of high level languages, this is a somewhat
unusual meaning of the term "machine independent".

Language features included to achieve the second purpose, i.e. to
facilitate writing correct microprograms, include a good control
structure and good data-structuring facilities. A language may be
designed in such a way that there is a strong correlation between
"syntactically correct" and "meaningful" programs, which is rarely the
case with (micro)assembly languages. A language may even enforce some

4

form of program correctness proof.

Verification of microprograms has received more attention than
verification of macroprograms (see for example, the remarks made in [6]).
There are several reasons for this. Microprograms are · traditionally
placed in read-only-memory, which means that bugs are hard to correct.
Microprograms are at the lowest level in the system hierarchy; they form
the basis for the remainder of the system and hence their reliability is
crucial. Finally, microprograms are small and simple in comparison with
macroprograms. The first two facts make verification attractive; the last
one makes it feasible as well.

2.1.2. What_ kind of primitive operations~ provided?

A compiler for a particular machine has to map the primitives
provided in the language to the set of microoperations available on that
machine. Because the generated object code should be highly efficient,
it is in general not acceptable if a .compiler overlooks possibilities to
apply certain microoperations. For example, a macroprogram must
preferably be kept in a hardware register with auto-increment capability.
Only if such a special register is not available in the
microarchitecture, it is acceptable to use the main ALU to increment it.

Utilization of machine primitives is most easily guaranteed, when
the language primitives are of at least the same complexity as the
microoperations to which they must be compiled. For a machine
independent language, this implies that the set of primitives should be
chosen such, that it covers most microoperations on most machines. There
is, however, such a variety of hardware features available on different
machines that this approach will render the language bulky, to say the
least. Moreover, such a large set of primitives is bound to be redundant
(in the sense that different, but closely related primitives will be
included), which in itself will make code-generation difficult. This is
best illustrated by an example:

On the Interdata 3200 the programmer can switch to a different block
of 32 registers, by setting 3 bits in the program status word (there are
eight such blocks). This is very useful for the implementation of a
macro procedure call instruction; such a block can be made to contain the
current activation record or at least part of it. This feature could be
incorporated in a high level language by means of a "new-block"
operation, with one (integer) operand specifying the selected block.
There is a definite overlap between such a "new block" facility and a
"push stack" operation, which is also hardware supported on several
machines. Even if both primitives are included, a program may contain
uses of the "push"-operation which, on an Interdata, should be translated
using its "new-block" facility. As this is very hard to detect, there is
still no guarantee that both primitives will be efficiently translated.

From a language design point of view it is much more attractive to

5

include only a small set of primitives along with the possibility to
declare new operations in terms of already existing ones. If this
approach is taken, there will exist microoperations on some machines
which are more complex than the language primitives. In order to utilize
these operations, the compiler must be able to recognize that ~ sequence
of source statements can be translated into ~ microoperation. This
problem is still too difficult to attack. Its solution would involve
extensive semantic analysis of the source program, but no suitable
techniques for such an analysis are available.

Both approaches therefore cause the implementer problems. The
easiest way out is to allow in a program exactly the primitive operations
available on the target machine, but this implies that machine
independence is sacrificed.

2. 1. 3. To ~,hat extent are variables viewed as machine registers?

When the language allows the use of symbolic variables in the same
manner as conventional high level languages, the compiler must allocate
registers for them. There are two factors which complicate this task:

The number of registers exclusively accessible to the microprogram
is limited. It may vary from l 6 (e.g. on the DEC VAX-1 l) to 256 (e.g
on the Control Data 480). Temporarily storing variables in a
reserVE?d area of main memory will sometimes be unavoidable, but
should be done in such a way that the number of fetches and stores
is minimized.

The microregister set is generally not homogeneous. Allocating a
variable to a certain register at a certain program point, also
determines which subset of microoperations. can be applied to that
variable at that point. Constraints imposed can be bizarre, for
example, the fact that a certain microregister is occupied may
disable a part of the microinstruction set. In order to allocate
registE?rs without hampering efficient code generation, the compiler
needs some insight in the use (for example, access frequency) of
variables.
Especially this factor renders register allocation much more complex
at the microlevel than at the macrolevel.

In many microprogramming languages the allocation problem is
completely avoided by requiring the programmer to bind all variables used
to the physical registers of the target machine. The association between
variable and register may range from very simple (each variable denotes
one specific register) to fairly complicated (a variable can denote a
field within a register, or the concatenation of several registers).
Such a restriction again introduces machine dependencies, and decreases
programming convenience as the programmer has to keep track of which
value resides in which register, and has to be aware of datapaths between
registers.

6

2 .1 • 4. ~ parallelism implicit or explicit?

When the language allows sequential specification of the source
program, the compiler should decide which source statements can be
executed in parallel in order to be able to compose the horizontal
microinstructions. Two forms of dependence must be taken into account:

Data dependence.
When a statement Sl creates a value used by a statement S2, or,
alternatively, when S2 destroys a value needed by Sl, Sl must be
executed before S2.

Resource dependence.
Statements Sl and S2 cannot be executed in parallel if their
resource usage may lead to conflicts, for example, if they both use
the (same) ALU or both write into the same register.

Several algorithms have been developed to compose a minimal or,
using heuristic methods, a near minimal sequence of microinstructions
from a sequence of microoperations (without branches), see for
example [18,22,3,21]. The algorithm presented in [21] deserves special
attention; it employs a very general model of microinstructions. Such
algorithms can be used not only for microinstruction composition during
compilation of a sequential source program, but also for the optimization
of hand-written microprograms.

Register allocation and microinstruction composition are
interdependent. In order not to block possibilities to execute
operations in parallel, a register allocation phase should introduce as
little resource dependencies as possible between statements which are not
data dependent. This is an additional complication in the implementation
of languages which allow both sequential program specification and the
use of symbolic variables.

A language can incorporate explicit parallelism in two different
ways:

The programmer must denote which statements are not data dependent,
i.e. could be executed in parallel if an unlimited number of
resources were available.

The programmer should take both data dependence and resource
dependence into account.

The first alternative is a compromise
implementation convenience. It does not, like
use of symbolic variables, while it relieves
trivial analysis.

between programming and
the other one, exclude the
the compiler from a non-

7

2.1.5. What is done about interrupts and microtraps?

Microprograms control the machine to a much greater extent than
macroprograms. On microprogrammable machines, this is a potential source
of trouble. User microprograms will often have to be developed and
executed in a multi-programming environment, and will often coexist with
a set of unalterable, manufacturer supplied microprograms which interpret
the basic instruction set. The possibly disastrous effect of user
microprogramming on system reliability is well known - in general nothing
will keep a microprogram from blowing up the operating system. The
necessity to service interrupts once in a while, and the possible
existence of microtraps which are not completely transparent to the
microprogrammer (see below for an example), are complications which stem
from this same source.

If the execution of a microprogram' may take long compared to the
cycle time of the machine (think for example of a fast fourier transform)
it must periodically check whether any interrupts are pending, and if so,
transfer control to an interrupt handler in order to allow them to be
serviced. There may exist a fixed, standard macroinstruction to return
from an interrupt, in which case special provisions may be required in
the user microprogram to ensure that it will indeed get back control. It
should moreover be able to resume its execution at the exact point where
it left off.

Microtraps (like, on some machines, the occurrence of a pagefault)
cause even more trouble. Consider the following trivial microprogram
specification:

program incread(n)
begin reg[n] := reg[n]+l; mbr := readmem(reg[n]) end

It increments the contents of reg[n] which are subsequently used as
an address in main memory. The memory fetch may lead to a pagefault.
The microprogram will be restarted from the beginning after the pagefault
has been taken care of. If reg[n] corresponds to a register which is
also part of the macroarchitecture and is therefore saved and restored,
it will be erroneously incremented a second time.

These problems are too complicated and require a too detailed
analysis to justify a full treatment in this survey paper. It should be
clear however that a language designer will have to decide whether their
solution is left to the compiler or to the programmer. If the programmer
is allowed to disregard them completely, the compiler must be able to
determine suitable program points at which to test for interrupts. In
addition, it must insert special code at these points to ensure that the
program is correctly restarted upon return. If the machine has
microtraps, the compiler must locate all program points where they can
occur and determine whether a trap at such a point will lead to

8

undesirable side-effects.

Handling of interrupts and traps was one of the first problems
suggested to me in the context of compilation of high level
microprogramming languages, but no attention whatever is paid to it in
the papers I surveyed. Therefore, although it deserves being on the list
of design issues, it will not be further mentioned in the next section.

2.1.6. What kind of control structures are provided?

Subroutines and expressions deserve special attention. Allowing
formal param,eters and local variables introduces a certain amount of
space and time overhead for each procedure call, which may not always be
acceptable. Allowing arbitrarily complex expressions leads to the
introduction of temporary variables during compilation, which complicates
register allocation.

2.1.7. What kind of data types and data structures are provided?

As a consequence of the fact that microprograms are primarily
concerned with (fixed length) bitstrings, most microprogramming languages
have only one datatype. Datastructuring facilities greatly enhance
program readability. Inclusion in a language of e.g. arrays and PASCAL­
like records does not necessarily cause much trouble to a compiler
writer. If fields in a record structure can designate bit-fields in
registers, the compiler will have to introduce temporary variables in
order to deal with field selection.

2.1.8. Has the language been implemented and if
been obtainecrr-

what results have

This is not a design issue, but for the evaluation of a language,
obtained results are as important as incorporated ideas.

2.2. Existing High Level Micro Languages

The boundary between high level and low level microprogramming
languages is not very well defined. There exist several languages [13,15]
which might be called high level as far as their control structure is
concerned (they include for example if-then-else, while-do and case
constructs, or allow sequential specification of the program), but which
are definitely low level as far as their primitives are concerned
(precisely the resources and microoperations of one specific machine).
In the following, I only consider languages which are not tailored toward
a single machine. This criterion is rather arbitrary; its main
justification lies in the fact that such languages can be expected to be
of interest to a larger group of readers. A detailed evaluation of four
languages is presented. Taken together, they yield a comprehensive view

9

on the different ways in which the problems mentioned in the previous
section are approached. The design goals of each language, along with
the examples, have been taken from the cited papers. Section 2.2.5.
contains some brief remarks about six other languages.

2.2.1. SIMPL (Single Identity Micro Programming Language)

SIMPL [18] dates from 1974, and was developed at the University of
California at Berkeley by C. Ramamoorthy and M. Tsuchiya.

The design goals of SIMPL follow from the following quotations:
"The [envisaged] high level language should enable the user to write
microprograms in a conventional, sequential and procedural fashion and
permit these programs to be compiled into efficiently executable
microcode."
"The desirable properties of a high-level microprogramming language
must be al compromise between machine dependence, ease of detecting and
representing explicit and implicit parallelism, and the innate
'naturalness' required of all programming languages to establish
effective man-machine communications".

Primitives.

A fixed set of operators is included: addition, subtraction,
logical and, or, exclusive or and negation, shift (both linear and
circular), as well as relational operators. Explicit read and write
statements are provided for references to main memory. When the
target machine has microoperations of a higher level than those
included in this set, it may be difficult to utilize them (see 2.1.2).
This problem is not addressed.

Variables.

Variables are identified with machine registers. An equivalence
statement is provided in order to enable the programmer to refer to a
register by more than one name.

Parallelism.

A SIMPL program is specified sequentially. One of the underlying
concepts of SIMPL is the single assignment rule, well known from
dataflow languages [11]. This rule, which states that each variable
may occur only once as the destination in an assignment, facilitates
detection of potential parallelism, but it is incompatible with the
register view of variables as it would imply that each register can
contain only one value throughout the program. The single identity
principle was invented to resolve this conflict. In single assignment

10

languages, the order in which the source statements are specified is
completely irrelevant. The order in which they are executed is
determined only by their data dependencies: A statement which uses the
value of a certain variable x, will not be executed before the (only)
statement which assigns a value to xis executed. In SIMPL, the order
of the source statements is used to distinguish the different values
assigned to a variable. Consider the following statement sequence:

(Sl) x := vl;
(S2)

(S2 to Sn do not contain an assignment to x)

(Sn)
(S:n+l) x := v2;

The single identity principle states that Sl should be executed
before any Si (2(=i(=n) which uses x; and each such Si should be
executed before Sn+l. Application of these rules for all variables
yields a partial ordering of the source statements. Statements without
a precedence relation can be executed in parallel. Loops cause
trouble in this scheme; it is not completely clear from [18 J how this
problem was solved.

Control Structure.

The control structure of SIMPL resembles that of ALGOL 60.
Procedures and blocks are allowed. It is not mentioned in [18]
whether or not they may contain declarations, but the examples suggest
that they may not. Expressions may contain only one operator. If­
t hen-else, while-do and (probably) for-statements are included; but
goto's are not, A case-construct has been added to permit multiway
branches, which are available on many machines.

Datatypes and datastructures.

The only datatype in SIMPL is the integer. No data-structuring
mechanism is provided (presumably, the language does not even permit
array declarations, because arrays cause trouble in relation with the
single assignment rule).

Implementation.

A compiler for SIMPL was written in SNOBOL4. It produces code for
the Tucker-Flynn dynamic microprocessor. As this was the first effort
to translate a sequential program to horizontal microcode, algorithms
had to be developed to detect potential parallelism and possible
resource conflicts between microoperations. Unfortunately, no
comparison has been made between code generated by the SIMPL-compiler

11

and handwritten code.

Example.

Now follows a simplified version of the example given in [18]:
the multiplication of two 64-bit floating point numbers. Both numbers
are assumed to be positive. Mantissa and exponent overflow are not
taken into account. The multiplicand resides in register Rl, the
multiplier in R2, and the product in R3. Floating point numbers have
the following format (from high to low order bits): sign (1 bit),
exponent(l3 bits), mantissa (50 bits). M3 and M4 extract the exponent
and the mantissa respectively.

begin

end

comment extract and determine exponent for product;
Rl & M3 -> ACC; comment logical and;
R2 & M3 -> R4;
R4 + ACC -> ACC;
R3 I ACC -> R3; comment logical or;

comment extract mantissas and clear ACC;
Rl & M4 -> Rl;
R2 & M4 -> R2;
RO-> ACC;

comment multiplication proper by shift and add;
while R2 'f Odo
begin ACC A -1-> ACC; comment shift 1 to the right;

R2 A -1 -> R2;
if UF = 1 then Rl + ACC -> ACC;

commentlfF"equals lowest bit shifted out of shifter;

comment pack exponent and mantissa into f.p. format;
R3 I ACC -> R3;

Conclusions.

SIMPL was the first language that allows sequential specification
of horizontal microprograms. Its design triggered many similar
efforts. The fact that the language was implemented and that the
compiler actually produced horizontal code was very important. SIMPL
is now mainly of historical interest. Especially its limited view of
variables and the absence of even the most basic data-structuring
mechanism make it awkward to use. It is also doubtful whether it can
be implemented with an acceptable result on a machine that supports
operations not included in the basic operator set.

12

2.2.2. EMPL (Extensible microprogramming language)

EMPL (8] dates from 1976, it was developed by David DeWitt at the
University of Michigan.

Design goals.

Four goals are stated: 1) "The language must facilitate writing
programs" ••• ; 2) It "should be readable, so as to facilitate the task
of redesigning a program" ••. ; 3) It "should be machine independent so
that programs written in it are portable"; 4) It "should be possible
to compile the language into very efficient microcode for a variety of
microprogrammable computers",

Primitives,

A small set of basic operators is included: addition, subtraction
(both one- and two-complement), unary minus, multiplication, division,
logical and, or, exclusive or and the logical negation of these three,
negation, shift, rotate, and the standard relational operators. There
are no primitives for reading from or writing to main memory. The
user can declare additional operators. Such a declaration should
always have a body expressing the operation in terms of built-in or
previously declared operations; but if the machine has a special
microoperation for it, this can be specified as well. (Machine
testable conditions could be handled by the same mechanism if an
operator :is allowed to yield a value of type "logical"; this is not
explicitly stated however.) This mechanism allows a user to tailor the
set of operators to the available hardware, while retaining a certain
degree of machine independence: if a certain microoperation is not
available,. the body of the operator will be compiled statement-by­
statement (but see the remarks on implementation below).

Variables.

Variables in EMPL are not machine registers. All variables are
global, in order to avoid procedure calling overhead.

Parallelism.

Programs are specified completely sequentially. There are no
provisions in the language to facilitate detection of parallelism.

Control Structure.

The language provides both procedure declarations (without formal
parameters) and operator declarations (with an arbitrary number of
formal parameters). Only simple variables and constants are allowed
as actual parameters. Statement forms provided are assignment, call
and return, if-then-else, while-do and goto. Expressions are not

13

allowed to contain more than one operator.

Datatypes and datastructures.

The only basic datatype is the integer. A concept· akin to the
SIMULA class [2], called an extension statement, is used for data­
structuring. It allows the user to define a new datatype with
associated fields (of a previously declared type), an initialization
statement, and associated operators. Fields can be referenced only
from the operators declared within the extension statement; they
cannot be selected from outside the class. This is consistent with the
view that primarily those datatypes which are hardware supported, are
declared in an extension statement. No difference is made in the
language between variables residing in registers and variables
residing in main memory. As there are neither explicit statements for
memory references, it is not clear how an EMPL-program can for example
read instruction operands from main memory.

Implementation.

EMPL has not been fully implemented. A sketch of a two-pass
compiler is contained in [8]. The first pass translates the source
text to a sequence of microoperations, without allocating resources.
The second pass allocates resources and composes microinstructions;
this pass has been completed and is described in [9]. It is hard to
judge whether the results of a complete compiler would meet efficiency
requirements. Some possible problems are:

Example.

In the proposed implementation, a call to an operator which is
not hardware supported is textually replaced by the statements
that form its body. This is undoubtedly done to avoid parameter
passing. If the operator mechanism is heavily used, this will
lead to an increase in the size of the produced code.

I doubt whether the control statements are sophisticated enough
to allow optimal microinstruction sequencing. There is neither a
case-construct nor a cascaded conditional statement (if tl then
sl elif t2 then s2 ••• etc). Multiway branches will therefore be
hard to utilize.

The example shows an EMPL extension statement to declare the type
"stack", followed by the declaration of a stack object. The
microoperation specifications are in a format based on a control word
model developed earlier by the same author [7]. After the stack
"address-stk" has been declared, the initialization statement of the
type declaration is executed. It sets the associated stackpointer to
zero.

14

TYPE STACK
DECLARE STK(l6) FIXED; /* an array of 16 integers*/
DECLARE STKPTR FIXED;
DECLARE VALUE FIXED;

INITIALLY DO; STKPTR = O; END;

PUSH: OPERATION ACCEPTS(VALUE)

END,

MICROOP: PUSH 3 O; /* indicates to the compiler that a */
/* PUSH microoperation is available*/

IF STKPTR = 16
THEN ERR.OR; /*overflow*/
ELSE DO; STKPTR = STKPTR + l; STK(STKPTR) = VALUE; END
END;

POP: OPERATION RETURNS(VALUE)
MICROOP: POP 3 O;

END,
ENDTYPE:

IF STKPTR = 0
THEN ERROR; /*underflow*/
ELSE DO; VALUE= STK(STKPTR); STKPTR = STKPTR - l;
END;

DECLARE ADDRESS STK STACK;

Conclusions.

From all microprogramming languages considered in this survey,
EMPL most closely resembles a conventional high level language. By
grouping all operations on objects of a single data type in a class,
program modularity and portability are improved. The way in which the
user may invoke specific microoperations is elegant. The
specification of a "machine dependent microoperation" in an operator
body guarantees a certain degree of machine independence while
retaining the chance to produce reasonably efficient code.

Viewing classes mainly as a way to extend the language with
data types and operations that are supported by specific
microoperations, is unnecessarily restrictive, It has caused useful
constructs like field selection to be excluded from the language -
compare the EMPL fields for example with the tuples of S*. It has also
lead to an inefficient implementation scheme for classes and
associated operators that are not hardware supported. The
desirability of a case-construct has been mentioned already. The
integer as basic datatype does not seem to be the best possible choice
(again, compare with S*).

15

2.2.3. S*

S* [4] dates from 1978, it was developed by Su bra ta Dasgupta at
Simon Fraser University.

Design goals.

Three design goals are mentioned: "(l) the ability to construct
control structures for designating clearly, and without ambiguity,
both sequential and parallel flow of control; (2) the ability to
describe and name arbitrarily, microprogrammable data objects or parts
of such data objects; (3) the ability to construct microprograms whose
structure and correctness can be determined and understood without
reference to any control store organization."

Primitives.

S* is described as a language schema, rather than a complete
language. It consists of a framework providing a declaration structure
and a set of compound statements with associated semantics in the form
of pre- and postconditions. For a given machine M, S* is instantiated
to a complete language S {M), the elementary statements of which are
determined by the microoperations of M. Registers, constants residing
in read only memory and testable machine conditions must be declared
explicitly by the user before they can be referenced. In order to
complete the semantics of S(M), it may be necessary to declare
additional pre- and postconditions. For instance, the increment
operation of S* is defined on arbitrarily large integers:

{X+l = v} INC X {X = v}

In a specific instantiation S{M) allowance will have to be made
for the possibility of overflow and the above rule will have to be
modified accordingly. For a 16-bit two-complement integer range it is
modified as follows:

{X+l = v & v (32768} INC X {X = v};
{X+l = v & v = 32768} INC X {X = -32768 & OVERFLOW= 1}

These pre- and postconditions should be used by the programmer,
to prove that her program is correct, i.e. that it conforms to a
specification in the form of additional sets of pre- and
postconditions.

Variables.

In S*,
instantiation

declaration
S(M), each

of a variable
variable must,

is
in

meaningless. In
its declaration,

an
be

16

associated with one or more specific machine registers or main memory
locations of.M. This association can be quite complex. It is possible
for example to declare an array consisting of five elements
corresponding to the low order 4 bits of register Rl through RS.

Parallelism.

Parallelism is explicit, the programmer has to compose the
microinstructions herself. This is a logical choice in view of the
design goals, which emphasize verifiability and well-structuredness of
programs rather than simplification of microprogramming by raising the
level of primitives. Three constructs to aid in microinstruction
composition a~e provided in the language:

cobegin Sl; S2; ••• ; Sn coend

denotes that the (elementary) statements Sl;
executed in the same microcycle.

cocycle SI.; S2; ••• ; Sn coend

... , Sn should all be

is a construct which is meaningful in S(M) only if execution of a
microinstruction on Mis split into n phases. It denotes that Sl to Sn
should all be placed in the same microinstruction, and that Sl should
be executed in the first phase, S2 should be executed in the second
phase, etc. The execution of the microoperations Sl to Sn should not
overlap. Si can be a cobegin-coend statement.

dur SO do Sl; S2; ••• ; Sn end

specifies that SO runs concurrently with the sequence Sl to Sn. SO
takes a maximum of n microcycles to complete.

Control Structure.

The syntax of S* is basically that of PASCAL. Parameterless
procedures are allowed. In the declaration, the procedure name must
be followed by a parenthesized list of the variables used in the body.
Procedures and blocks may contain local declarations, but of course
the variables must be linked to machine registers. Expressions can be
arbitrary complex. Statement forms provided are a cascaded if­
statement (if tl then Sl elif t2 then S2 • • • elif tn then Sn fi),
while-do and repeat-until, call and return, sequential (begin-end) and
parallel block structures (as specified above), and a region-end
statement which delimits a hand-optimized section where the flow of
control may not be changed by the compiler. Tests are elementary
statements occurring only in an instantiation S(M); they must
correspond to hardware testable conditions of M.

Datatypes and datastructures.

17

Datatypes and datastructures.

The only primitive datatype in S* is the bit. There are four ways
to construct new datatypes:

seq [i. . j] bit
denotes a bitstring with i and j as high and low order indices.
Arithmetical, logical and shift operations have their standard meaning
on bitstrings.

array [.!_ •• j] of type
denotes a sequence of elements of an arbitrary type.

tuple fieldl: typel; ••• fieldn: typen; end
corresponds to the PASCAL record. Field selection is done as in PASCAL
with one addition: if Xis a tuple data-object and all fields in X are
of type seq [] bit, then a reference to X without selection refers to
the concatenation of all fields. This is very convenient; if IR is a
variable of type "instr" with fields opcode, addr and index, then one
can refer to the complete instruction (IR) as well as to separate
fields (IR.opcode).

stack [i] of type with ident {, ident}
declares a stack °of depth i, with stackpointers denoted by the
identifiers.

Implementation.

No S{M) has been implemented so far, but the level of the
elementary statements suggests that writing a compiler is certainly
feasible. Although not mentioned in [4], an automatic verifier to
check the validity of the program proof provided by the user, would
fit very well in an S{M) implementation.

Example.

The following example shows a microprogram for the multiplication
{performed by repeated addition) of two positive, 16-bit integer
operands, "mpr" and "mpnd". The result of the multiplication is
stored in a data-object called "product". In [4] the complete
development the program is shown, including the necessary conditions
to assure correctness. Here only the final result is presented.

program MPY;
var localstore: array [0 •• 31] of seq [15 •• 0] bit;
canst minusl = dee (16) -1; ---

a 16-bit constant with decimal value -1 #
var left_alu_in, right_alu_in, aluout: seq [15 •• 0] of bit;

18

end

syn mpr
mpnd
product
II Three

= localstore[O],
= localstore[l],
= localstore[2];
locations of localstore are renamed II

begin

end

repeat
cocycle

cobegin left alu in:= product;
right_alu_in := mpnd

coend;
alu out:= left alu in+ right_alu in;
product := alu out

end;
cocycle

end

cobegin left alu in:= mpr;
right_alu_in := minusl

coend;
aluout := left alu in+ right_alu_in;
mpr := aluout

until aluout = O;

Conclusions.

Instantiations of S* can be expected to be well structured
languages with well defined semantics, which can be an important aid
in the development of reliable microprograms. Although a program
written in any specific instantiation S(M) is highly machine
dependent, the good structure of the S* schema will facilitate the
transformation of programs from one instantiation to another. Because
parallelism and timing are explicit, the programmer must have intimate
knowledge of the specific machine for which the program is written.

2.2.4. YALLL (Yet Another Low Level Language)

YALLL [16] dates from 1979. It was developed by a team from the
University of California at Berkeley.

Design goals •

• • • "Rather than to try to bridge the gap between a [machine
independent] HLL to microarchitecture in one step, we have designed a
low level language that is capable of producing microcode for
different machines ••• "

19

Primitives.

The primitives of YALLL correspond to commonly available
microinstructions: add, subtract, increment, decrement, and, or,
exclusive or, negation, several types of shift, load from and store
into main memory, register-to-register move, and put-constant-in­
register. It is hoped that these primitives will permit compilation to
microcode for a large class of interesting machines.

Variables.

Variables are viewed as general purpose registers with the
exception of "mar" (memory address register) and "mbr" (memory buffer
register). The compiler should take care of the correct utilization of
special purpose microregisters. A program is preceded by a
declaration part in which YALLL register names are bound to physical
machine registers. It is not clear from the description whether
binding is required for all variables, or whether it is optional.

Parallelism.

The program is specified completely sequentially.

Control Structure.

In accordance with the above mentioned design goals, the
structure of YALLL is that of a conventional assembly language. YALLL
includes a conditional and an unconditional jump, a procedure call and
return, an exit-with-value instruction, and a multiway branch. This
branch facility is fairly sophisticated, it allows the comparison of
the contents of a register with a constant mask that may contain
'true', 'false' and 'dont-care' bits.

Datatypes and datastructures.

There are no datatypes and consequently no data-structuring
facilities in YALLL. Five types of constants exist: binary, octal,
decimal and hexadecimal numbers, and masks.

Implementation.

YALLL has been implemented on two different machines, the DEC
VAX-11 and the Hewlett-Packard HP300. Several example programs were
tried out on both machines and the results were compared with each
other and with equivalent hand-written code. The HP implementation
performed a lot better than the VAX implementation. The baroque
structure of the VAX micro architecture, combined with the complete
lack of documentation for this machine at the time [16) was written,
discouraged the implementers from attempting any code optimization.
Another interesting observation is that both compilers consisted of

20

about 5000 lines of high level language code. This suggests that a
full optimizing compiler for a high level microprogramming language of
the complexity of EMPL for example, will be huge.

Example.

The following example shows a program which transliterates a
character string according to a table. The string is addressed by
register "str", and ends with a null byte. The table is addressed by
register "tbl". Each byte of the string is examined, and, if not
zero, is replaced in memory by the byte in the table which it
addresses .. The program shown is that for the HP300. It differs from
the VAX-version only in the declaration part (which binds YALLL
registers str, tbl and char to HP registers db, sb and mbr
respectively) and in the lay-out conventions.

loop:

reg str = db
reg tbl = sb
reg char= mbr

load char,str
jump out if char= 0
add mar,char,tbl
load char,mar
stor char,str
add str,str,l
jump loop

out: exit

Conclusions.

;get addressed character
;quit if zero
;add to table base adress
;fetch character from table
;replace character in string
;bump string address

The value of YALLL lies in its moderate design goals which
enabled the designers to produce implementations for two different
machines. This has never been done for any other machine independent
microprogramming language. The fixed set of primitives included in
YALLL will at least for some machines render the generation of
efficient code difficult.

2.2.5. Other languages

This survey will be concluded with some brief remarks about an
additional six languages. Their approach to any of the issues considered
above is not fundamentally different from that of the previous four
languages.

MPL [10] represents the earliest effort to design and implement a
high level microprogramming language, with the objective to generate code

21

for a vertical machine. Its structure is comparable to that of SIMPL, but
it offers somewhat better data-structuring facilities. It permits the
declaration of one-dimensional arrays and virtual registers consisting of
the concatenation of physical ones. When [10] was written only part of
the compiler had been completed.

Strum [17] can be considered a somewhat less general forerunner of
S* as far as its design goals are concerned. Its primitives are based on
the Burroughs D-machine [19]. Programs are developed together with their
proofs; they should contain assertions which can be used to generate
verification formulas, the validity of which can be checked by an
automatic verifier. A non-optimizing compiler was completed.

MPGL [1] is comparable to SIMPL or MPL. Programs are specified
sequentially and entirely in terms of machine primitives. Its structuring
facilities are rather poor; the programmer has to specify details like
which registers the compiler should use to store intermediate results
during expression evaluation, and at what address in control memory a
procedure should be placed. One feature of MPGL is unique, however. A
complete machine specification is part of the program and the compiler
uses this specification to generate code. Thus, the MPGL compiler can be
fed with a program for any machine having a microarchitecture that can be
described in the specification formalism of MPGL. Note, that this does
not imply that MPGL programs are machine independent. An MPGL-compiler
has been written in assembly language. It produces efficient code. For
the examples presented in [1], code size did not increase by more than
15% in comparison with equivalent hand written microprograms.

A machine independent (nameless) language, tailored towards emulator
and interpreter construction is described in [14]. It allows declaration
of all kinds of primitives (registers, stacks) in the emulated machine.
The authors have emphasized design rather than implementation problems
and this will make efficient implementation of the language rather
difficult.

CHAMIL [23] is a PASCAL-based language. Its control structure and
its data structuring mechanism are adequate. Like most other languages,
CHAMIL identifies variables and physical machine registers. The
programmer is allowed to abstract from physical datapaths: the statement
"reg a:= reg b" is legal as long as there exists a (possibly indirect)
path- from reg a to reg b that can be traversed within one microcycle.
The microprogrammer must group statements into microinstructions. A
compiler for CHAMIL was written in PASCAL.

Finally, the development at IBM of a microcode compiler for a subset
of PL/I (called PL/MP) should be mentioned. Unfortunately, too little
information is available on this project to allow a more elaborate
treatment. Reports [20] and [12] which both treat implementation issues,
suggest that the language is not register oriented.

22

3. CONCLUSIONS

The greatest problem in high level language microprogramming is not
the design, but the implementation of high level languages. The attention
paid to various implementation problems is rather unbalanced_.

From the ten languages reviewed in the previous paragraphs, eight
allow compleite sequential specification while only two (S* and CHAMIL)
leave composition of microinstructions to the programmer. On the other
hand, only two or three (EMPL, PL/MP and in a certain sense YALLL) allow
the programmer to work with symbolic variables instead of physical
registers a feature which also simplifies programming and is a
prerequisite to achieve at least some machine independence. No language
allows the passing of parameters to subroutines. The problem of
microinstruction composition is far from trivial. Complicated algorithms
have been developed to make this language feature possible. There is no
reason to assume that the register allocation problem is intrinsically
more difficult, or that its solution would be less useful, but for some
reason or other it received far less attention. Another substantial
problem, the incorporation of interrupt and trap handling, has even been
completely m~glected.

I think it is justified to state that the instruction composition
problem, though important in its own right, has been overemphasized. Two
circumstances may have encouraged this course of events: first, the fact
that algorithms for microinstruction composition can be applied to both
hand-written and compiler generated microcode, and second, the fact that
the designers of the first language for horizontal machines (SIMPL)
almost exclusively concentrated on the composition problem. Since
composition depends on used resources, it will be clear that the
alternative in which the programmer has to specify microinstruction
composition while the compiler allocates resources, is not possible. It
may be worthwhile though to investigate further the compromise suggested
in section 2.1.4 in which the programmer has to specify data dependencies
between statements but can leave resource allocation and therefore also
the treatment of resource dependencies to the compiler.

A final remark concerns the emphasis on efficiency. Experience with
conventional high level languages has shown that high level language
programs, even when compiled by a highly optimizing compiler, are
generally le:ss efficient than assembly language programs written by an
expert. The same is likely to be true in the area of microprogramming.

Whether or not the loss of efficiency is compensated by the
advantages of high level language programming, will depend on the
circumstances. A user may find it more attractive to speed up a heavily
used procedure by a factor of five with comparatively little effort and
without needing expert knowledge, than to gain a factor of ten only after
mastering a complicated microassembly language which requires an intimate
knowledge of machine details. Ideally, high level microprogramming

23

languages and conventional high level languages should coincide, so that
a user only has to denote which procedure(s) should be compiled to
microcode and which to macrocode. Such an ideal is still far from
realization however. It is likely that microprogramming will remain the
business of only a few experts, until languages of at least the level of
EMPL will have been satisfactorily implemented.

References

1.

2.

3.

4.

5.

Baba, T.,
Processing
(1977) ..

"A Microprogram Generating System - MPG," Information
!!_, pp. 739-744 North Holland Publishing Company,

Dahl, O. B. and Nygaard, K., The Simula 67 Common Base Language,
Norwegian Computing Centre (1970).

Dasgupta, S. and Tartar, J., "The Identification of Maximal
Parallelism in Straight-Line Microprograms," IEEE Transactions on
ComputE!rs, Vol. C-25, (10) pp. 986-991 (Oct 197~

Dasgupta, S., "Towards a Microprogramming Language Schema,"
Proceedings of the 11-th Annual Workshop on Microprogramming, pp.
144-153 (1978). -- -- --

Dasgupta, S., "The Organization of Microprogram Stores," Computing
Surveys, Vol. 11, (1) pp. 39-65 (March 1979).

6. Davidson, s. and Shriver, B. D., "An Overview of Firmware
Engineering," Computer, Vol. 11, (5) pp. 21-33 (May 1978).

7. DeWitt,, D. J., "A Control Word Model for Detecting Conflicts Between
Microprograms," Proceedings of the 8-th Annual Workshop on
Microprogramming, pp. 6-12 (1975).

8. DeWitt,, D. J., "Extensibility - A New Approach for Designing Machine
Independent Microprogramming Languages," Proceedings of the 2_-th
Annual Workshop on Microprogramming, pp. 33-41 (1976).

9. DeWitt,, D. J., "A Machine Independent Approach to the Production of
Optimized Horizontal Microcode," Ph.D. Thesis, University of
Michigan (June 1976).

10. Eckhouse, R. H., "A High Level Microprogramming Language (MPL),"
AFIPS Conference Proceedings, Vol. 38, pp. 169-177 (1971).

24

11. Gelly, 0. and others, , "Lau System Software:
Driven Language for Parallel Programming,"
International Conference~ Parallel Processing,

A High Level Data
Proceedings 1976

p. 255 (Aug 1976).

12. Kim, J. and Tan, C. J., "Register Assignment Al·gorithms for
Optimizing Micro-code Compilers--Part ·I," Report RC7639, IBM T .J.
Watson Research Center, Yorktown Heights (March 1979).

13.

14.

Lloyd, G. R. , "PUMPKIN -
SIGMICRO Newsletter, Vol. 5,

Malik, K. and Lewis, T.,
Microprogramming Languages, "
Workshop~ Microprogramming,

(Another) Microprogramming
pp. 15-44 (April 1974).

Language,"

hDesign Objectives for High Level
Proceedings of the 11-th Annual

pp. 154-160 (1978).- --

15. Marti, J.B. and Kessler, R.R., "A Medium Level Compiler Generating
Microcode, " Proceedings of the 12-th Annual Workshop on
Microprogramming, pp. 36-39(1979). --

16. Patterson, D., Lew, K., and Tuck, R., "Towards an Efficient,
Machine-Independent Language for Microprogramming," Proceedings of
the _!2-th Annual Workshop~ Microprogramming, pp. 22-35 (1979).

17. Patterson, D. A., "Strum: Structured Microprogram Development System
for Correct Firmware," IEEE Transactions on Computers, Vol. C-25,
(10) pp. 974-985 (Oct 1976).

18. Ramamoorthy, C. V. and Tsuchiya, M., "A High-Level Language for
Horizontal Microprogramming," IEEE Transactions on Computers, Vol.
C-23, (8) pp. 791-801 (Aug 197~

19. Reigel, W. , Farber, V., and Fisher, D. A., "The Interpreter - A
Microprogrammable Building Block System," AFIPS Conference
Proceedings, Vol. 40, pp. 705-723 (1972).

20. Tan, c. J., "Code Optimization Techniques for Micro-code Compilers,"
AFIPS Conference Proceedings, Vol. 47, pp. 649-655 (1978).

21. Tokoro, M., Tamura, E., Takase, K., and Tamaru, K., "An Approach To
Microprogram Optimization Considering Resource Occupancy and
Instruction Formats," Proceedings of the 10-th Annual Workshop on
Microprogramming, pp. 92-108 (1977f:"° --

22. Tsuchiya, M. and Gonzalez, M. J., "Toward Optimization of Horizontal
Microprograms," IEEE Transactions on Computers, Vol. C-25, (10) pp.
992-999 (Oct 197~

23. Weidner, T. G., "CHAMIL - A Case Study In Microprogramming Language
Design," SIGPLAN Notices, Vol. 15, (1) PP• 156-166 (Jan 1980).

