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Two-tape real-time computation* 
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ABSTRACT 

Two heads on a single tape are more powerful than two single head tape 

units, as a storage device for real-time Turing machine computations, sub

ject to the validity of a weak conjecture. 
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1. INTRODUCTION 

Amongst all classes of time-limited (deterministic) computations, the 

real-time computations distinguish themselves by being intrinsically feasi

ble. While other time complexity classes, even the lowly linear time class, 

suffer the defect that there are unspecified parameters which might prohibit 

the actual execution of an algorithm for a problem therein, real-time com

putations are (up to manageable size of the machine parameters like state 

set and work tape alphabet) of practical impact. Real-time computations arise 

in computer applications like parsing problems, real-time control and so on. 

In the following we shall attack a well-known problem in this area: are two 

heads on a single tape a more powerful storage device than two single head 

tapes for real-time Turing machines? Our strategy is to show that there is 

a simple storage-retrieval problem which is doable by the former device, but 

if it were also doable by the latter one then such a machine must be able 

to shift 0(n) bits over 0(n) squares on its tapes in 0(n) time, under the 

condition that the 0(n)-bit word is real-time retrievable at all times dur

ing this process: this we conjecture cannot be done by a 2-tape real-time 

Turing machine. 

The afore-mentioned storage-retrieval problem is to recognize 

L = {xy2x I x,y E {o,1}*, 2 ¢ {0,1}} in real-time. A Turing machine, with a 

read-only input tape and a storage tape on which two heads operate, can 

easily do so. It will appear that a Turing machine with a read-only input 

tape and two single-head work tapes claimed to recognize Lin real-time 

would need the mentioned very unlikely capabilities. 

Time-limited computations of Turing machines with more than one wqrk 

tape, or more than one head on a work tape, have been considered extensively 

before. One of the standard, and reasonably well understood, machine models 

in use for defining the time- and storage-complexity of computational tasks 

is the multitape Turing machine. A k-tape Turing machine consists of an in

put tape with a single read-only head and k storage (or work) tapes, each 

with a single read-write head. The k+l heads are attached to a finite state 

control, which governs their action. In using the machine as a language rec

ognizer, we assume that at the start of the computation a candidate word is 

written on the input tape, from left to right and with the input tape head 
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scanning the leftmost symbol. Initially, the k storage tapes contain only 

blank symbols. The candidate word is accepted, if the machine reaches an 

accepting state at the end of its computation on this word. Such a device 

loosely corresponds to a computer which reads its input from a serial access 

read-only storage medium, and uses k read-write serial access storage media 

as its long--term memory. A Turing machine, with a k-head tape unit as 

storage, consists of a read-only input tape with a single head and a single 

work tape on which k read-write heads operate. This would correspond to a 

computer, which uses as its long-term memory a magnetic tape on which 

several heads compute. Physical constraints may prevent such a device from 

being realized. Nevertheless, most algorithms are more naturally stated in 

terms of computing models which allow faster memory access than the multi

tape Turing machines. Hence it is of interest that we can, by clever program

ming, simulate models with extended memory access capabilities by the basic 

multitape Turing machines without time loss. (And that therefore the time 

complexity classes are invariant under changes amongst such models.) Below 

we indicate only the storage device used in the computation. We assume that 

all machines mentioned have a separate read-only input tape. Thus, e.g., a 

1-tape Turing machine has a read-only input tape and a single work tape on 

which a sing·le head computes. 

Pioneer papers in the study of multitape and multihead Turing machines 

and complexity aspects of their computations are, e.g., YAMADA [1962], RABIN 

[ 1963], HART'MANIS and STEARNS [ 1965], and HENNIE [ 1966]. STOSS [ 1970] indic

ated how to simulate a 2-head Turing machine by a 2-tape machine in linear 

time. P. FISCHER, MEYER and ROSENBERG [1972] showed, that we can simulate a 

k-head tape unit (k-head Turing machine) in real-time by a (11k-9)-tape 

Turing machine. LEONG and SEIFERAS [1977] improved on this result, by reduc

ing the number of tapes to achieve this feat to 4k-4. M. FISCHER and ROSENBERG 

[1968] introduced the single tape Turing machine with a fast rewind square, 

and constructed a real-time simulation thereof by an 18-tape Turing machine. 

(A Turing machine with a fast rewind square can mark once a square on its 

work tape, and can later, at each moment of the computation, shift its work 

tape head back to the marked square in a single machine step, regardless of 

the distance: in between.) Such extended models might seem to be more power

ful (i.e. in real-time) than the ordinary multi tape models. The above results 
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show that, at an incurred expense of extra tapes, this is not so. As an 

example of a problem, which at first glance seems undoable by multitape 

Turing machines, we mention the real-time recognition of unmarked palin

dromes. The FISCHER, MEYER and ROSENBERG result was used by SLISENKO [1973], 

to give a 200 page proof that this problem is doable. GALIL [1978] gave a 

shorter and improved proof for the same fact. Extending both the multihead 

and the fast rewind facilities, SAVITCH and VITANYI [1977] defined the jump 

Turing machine, equipped with a multihead tape unit where the heads are 

allowed to jump to each others position in one machine step, regardless of 

the distances in between. They showed, that a k-head jump Turing machine 

can be simulated by an (Bk-8)-tape Turing machine in linear time. Recently, 

KOSARAJU [1979] has claimed a proof that jump Turing machines can be simul

ated in real-time by multitape Turing machines. His simulation would require 

something like 128k-128 tapes for a k-head jump unit. How optimal the above 

simulations are in the number of tapes used has been hitherto unknown. 
V ~V 

BECVAR [1965] and many of the cited references raised the question of how 

many tapes are actually required to simulate a multihead tape unit, a Turing 

machine with a fast rewind square, and so on. RABIN [1963] indicated that 2 

tapes (and hence a 2-head tape unit) are more powerful in real-time than 1 

tape. Later, AANDERAA [1974] demonstrated, that k+l tapes are more powerful 

in real-time thank tapes, k ~ 0. A more comprehensible exposition of 

AANDERAA's proof was provided by PERRY [1979]. VITANYI [1979, 1980a] showed 

that AANDERAA's result implies that k+l heads are more powerful in real

time thank heads, k ~ 0. These results indicate that a (k+l)-head tape unit 

cannot be simulated by k tapes in real-time, k ~ 0. More in particular, we 

know that at least 2 tapes, but not more than 4 tapes are required to simul

ate a 2-head tape unit in real-time. (Note that the converse problem, of 

whether a k-head tape unit can simulate k tapes in real-time, is answered 

easily in the affirmative, since the k heads can maintain k separate tracks 

on the work tape to simulate the k tapes.) 

In the sequel we show that, under the condition that a certain weak 

conjecture is true, 

a 2-head tape unit is more powerful than 2 single head tapes; 

for the one-way and two-way storage-retrieval units, as defined in FISCHER, 

MEYER and ROSENBERG [1972], precisely 3 tapes are necessary and sufficient 
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for real-t:ime simulation by a multitape Turing machine; 

- 3 tapes ar1e necessary and 4 sufficient for the real-time simulation of 

queues, deques, 2-head tape units; 

etc. 

Proofs of nonfeasibility of computations of one type of machine by 

another type with very similar capabilities are notoriously difficult, 

since the supposedly weaker type might encode the information in a very 

clever manner. If we want to prove that a machine of type A is more power

ful than a machine of type B, we have traditionally two strategies at our 

disposal. In the first strategy, we try to prove that the class A is rich 

enough to contain a machine which in some sense is universal with respect 

to the class B, and this machine is used to diagonalize over all machines 

of class B. In the second strategy, we show that machines of class B cannot 

store enough information to perform a certain task, which task can be ful

filled by some machines of class A, cf. RABIN [1963]. The problem we have 

set ourselves does not lend itself to either approach. 2-head real-time 

tape units are not strong enough to diagonalize over the set of 2-tape real

time Turing machines. Also, the information storage capacity of a 2-head 

tape unit is equal to that of 2 tapes. Thus, neither method applies and we 

have to resort to a fine analysis of the computational procedures available, 

and it is difficult to survey all the possibilities. New techniques 

are needed for handling this type of problem. It might be noted, that many 

of the most interesting questions about nonfeasibility of computations fall 

in this in-between region. To the author's knowledge, only RABIN [1963] and 

AANDERAA [1974] have provided techniques and results about such problems 

before. 

2. PRELIMINAR[ES, STORAGE-RETRrEVAL PROBLEMS AND THE RESULT 

A k-tape Turing machine consists of a finite-state control attached to 

a read-only input tape, k read-write storage tapes and a write-only output 

tape. A single head operates on each of the k+2 tapes. At any point in time, 

each head will be scanning one square on its tape, and the finite-state con

trol will be in one state. Depending on this state and the symbols scanned 

by the input- and storage-tape heads, the machine will, in one step, do all 



5 

of the following: 

(i) on ea.ch storage tape: overwrite the symbol in the scanned tape square 

by a (possibly the same) symbol; 

(ii) on the input tape and each storage tape: shift the head one square 

left, one square right or not at all; 

(iii) on the output tape: do or do not write a symbol on the output tape; 

if a symbol is written then the output tape head is advanced one 

square to the right so that it is ready to write the next output 

symbol; 

(iv) chang·e the state of the finite-state control. 

(The actions taken at (i) and (ii) may be different for different tapes.) 

Initially, the input tape contains the input word written from left to 

right, with the input tape head scanning the leftmost symbol; the finite

state control is in a distinguished start state; all storage tapes and the 

output tape contain only blank squares. In this paper, all machines consid

ered will be real-time (on-line) deterministic language recognizers, unless 

otherwise indicated. Therefore, if the input tape contains an input word 

a 1a 2 ..• a.a. 1 ... a, 1 ~ i < n, then the input tape head is scanning a. after 
J. i+ n J. 

i-1 steps, and it prints a O or 1 on the output tape and advances the input 

head one square right at the i-th step. a 1a 2 ... ai is accepted, if the symbol 

printed on the output tape was a 1, and otherwise rejected. The language 

accepted consists of the set of accepted words over the input alphabet. We 

call the ma.chine described a k-tape real-time Turing machine or k-RTIM. In 

a k-head Turing machine the k storage tapes are replaced by a single storage 

tape, on which k read-write heads operate. Similarly to the above, we define 

a k-head reial-time Turing machine or k-head RTTM. Addi tionaly, we observe 

that in a k-head RTTM the storage tape is initially blank, and all k storage 

tape heads scan initially the same square. If several heads are scanning 

the same square at some point in the computation, they must all write the 

sarue symbol at the current step to avoid conflicts. Without loss of general

ity, this can be obtained by allowing the heads on the storage tape to de

tect coincidence. For more formal definitions of the above and related 

concepts we direct the reader to ROSENBERG [1967] and to FISCHER, MEYER and 

ROSENBERG [ 1972]. Note that a 1-tape RTTM is the same as a 1-head RTTM. 

Beforei proceeding to the storage-retrieval problem which shall be the 
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main concern in this paper, we discuss a very similar-looking one below, 

so as to get some feeling about real-time language recognition with restric

tions on the number of storage tapes. Let L' be defined by 

L' = {x2x Ix e: {o,1}*, 2 ¢ {0,1}}. 

It was shown by VALIEV [1970], using RABIN's [1963] technique, that L' can

not be recognized by·a 1-RTI'M. (MEYER [1972] claims, independently, the 

same result.) 2-RTI'M's recognizing L' do exist. Below we state the construc

tion of one. Let each of the two storage tapes of the 2-RTTM M recognizing 

L' contain 8 tracks. Assume that we have already processed the prefix 
4k . 

ye: {0,1} of a candidate word was follows. (Let y = a 1a 2 ••• a 4k.) 

al a2 ¾ 

a2k a2k-1 ¾+1 

a2k+1 a2k+2 ... a3k 

a4k a4k-1. a3k+1 

Figure 1: configuration on both storage tapes at time t = 4k. 

According to Figure 1, we have recorded the prefix y of length 4k in 

4 tracks on each storage tape, and the respective heads have returned to 

the start position. During the next 4k steps we record the additional 4k 

* input symbols (a4k+la4k+2 ••• a8k e: {0,1}) as indicated by Figure 2. It will 

be apparent from Figure 2, how we transcribe earlier recorded input from 

storage tape 1 to storage tape 2, and vice versa. 

At the end of phase 3, i.e., 4k steps later we have regained the ori

ginal situation (with a change of the direction in which a 1a 2 ••• a8k is re

corded on tape 2). Hence it suffices to show, that if the marker 2 is read 

at any time during the process described in Fiqure ? . •••«? -:::::.:-• ..:.u.L.Lt::1ct:J.y check 
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the newly received input against the old input. That we can do this, depends 

on the fact that the length of the new input must be equal to the length of 

the old input, thus giving us enough leeway in time. We distinguish 4 cases. 

Case 1. Ix I = 4 * 2i, i ~ 0. (Ix I denotes the length of x.) Then both heads 

are scanning a 1 , and both tapes contain a continuously recorded copy of x. 

Hence, we can compare the newly received input with the recorded x without 

problems. 

tape 1: t 
➔ 

~ c ~~ 
k steps 

phase 1 

tape 2: t 

:: ~ c 

t = 4k t = Sk 

) 
< ) ( _____ '7"---

k steps 

phase 2 

t = 6k 
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2k steps 

phase 3 

t 

~ ~ ~ ) 

t = 8k. 

Case 2. We read the marker 2 during phase 1. The head on tape 1 marks its 

position, and, subsequently, moves at double speed to the origin and back 

to the marked position. In the same sweep it records (sparsely) the newly 

received input. Meanwhile, the head on tape 2 stays put from the time of 

reading the marker. When the head on tape 1 reaches the marked position 

anew, the head on tape 2 starts checking the remainder of the incoming in

put against the copy of x on its tape, from the position onwards at which 

it was stopped originally. If this position was i squares from the origin 

(start position), the head on tape 2 can check off the last lxl-i symbols 

of the new input, against the last lxl-i symbols of the recorded copy of x, 

by doing so. Meanwhile, now the head on tape 1 stays put, until the time 

the head on tape 2 reaches the origin for the first time. Then the head on 

tape 1 reads off the sparsely recorded first i symbols of the second copy 

of x at double speed, thus enabling the machine to check off also the first 

i symbols of the new input against the first i symbols of the old copy of 

x, which it will read in addition, while proceeding from the origin to the 

right. Since i < lxl/4, all this is finished before we receive the last 

symbol of the new copy of x. 

Case 3. We read the marker 2 in phase 2. We proceed similarly to case 2, 

and note that we finish in time, since here i < lxl/3. 
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Case 4. We read the marker 2 in phase 3. Again, we proceed in a fashion 

similar to that of case 2, with the following difference. Initially the 

head on tape 2 moves in concert with the head on tape 1 to the (new) origin 

on its tape; meanwhile completing phase 3. When the head on tape 2 reaches 

the origin, it moves back again, in concert with the head on tape 1, to the 

position it was in when the interrupt came. Again, everything works out 

since i (i.e., distance of the head to the origin on its tape at the time 

the marker is read) < lxl/3. 

The doubling of speed of the storage tape heads is achieved by using 

HARTMANIS and STEARNS' [1965] speed-up 

THEOREM 2. 1 • L' = { x2x I x E { 0 , 1 } * , 2 rt { 0 , 1 } } , can be xecogni zed by a 2-

RI'TM, but not by any 1-RTTM. 

In VITANYI [1980b] we defined the notion of relativized obliviousness. 

A Turing machine is oblivious, if the headmovements of the machine at step 

t depend on t only. We say that an on-line Turing machine Mis {0,1}-

* alphabet-oblivious, if for each two words w,w' EE (Ethe input alphabet 

of M, and w, w' such that h(w) = h(w'), where his a homomorphism such that 

h(O) = h(l) = 1 and h(a) = a for a EE - {0,1}) holds that M makes exactly 

the same sequence of head movements while processing was it makes while 

processing w' • 

COROLLARY 2.2. L' can be recognized by a {0,1}-alphabet-oblivious 2-RTTM. 

A storage-retrieval problem very similar to the previous one is the 

problem of recognizing 

L = {xy2x I x,y E {O, 1} *, 2 rt {O, 1}}. 

It is easy to see that L can be recognized by a {0,1}-alphabet

oblivious 2-head RTTM. Similarly, L can be recognized by a {0,1}-alphabet

oblivious 1-RTTM, which is allowed a single fast rewind square as in FISCHER 

and ROSENBERG [1968], and by a {0,1}-alphabet-oblivious one-way storage

retrieval unit as in FISCHER, MEYER and ROSENBERG [1972]. The latter, in 
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its turn, can be simulated by a {0,1}-alphabet-oblivious 3-RTTM. In fact, 

the method to recognize L by a {0,1}-alphabet-oblivious 3-RTTM provides 

the basic stl~p to obtain the main result in the above reference. The task 

we have set ourselves is, to prove that L cannot be recognized by a ({0,1}

alphabet-oblivious) 2-RTTM, thus demonstrating that 2 heads are more power

ful than 2 tapes as a storage device 1 for ({0,1}-alphabet-oblivious) real

time Turing machines. In this paper we succeed to reduce the problem as 

follows: 

THEOREM 2.3. If L is recognized by a 2-RTTM M, then for each integer s > 0 

we can find a constant f > 0 (£ = 1/s) such that the following holds: 
£ 

* * - For each word v E {0,1} , we can find a word w E {0,1} , such that, dur-

ing the processing of w by M, there is a time t, f lwl $ t $ lwl, at which 
£ 

time the heads on both tapes are simultaneously at least f lwl squares 
£ 

removed from the squares they scanned at time 0. 

- w is obtained from v by inserting a O or a 1 after each k(s-1)-th posi

tion in v, k = 1,2, .•• ,Llvl/(s-1)~. Therefore, lwl = sLlvl/(s-1)~ + re

mainder (lvl/(s-1)). 

- By construction there are 2 (1-E)n distinct such -words w of length n in 

* {0,1} . 

Clearly, Theorem 2.3 implies: 

COROLLARY 2.4. If Lis recognized by a 2-RTTM M, which behaves obliviously 

as long as it reads Os and ls (e.g., by being {0,1}-alphabet-oblivious), 

then we can find a constant f > 0 such that, during the processing of each 
n 

initial word in {0,1} by M, there is a time t, fn $ t $ n, at which time 

the heads on both tapes of M are simultaneously at least fn squares removed 

from the squares they scanned at time 0. 

These results imply, that a 2-RTTM M, claimed to recognize L, must have 

transported 0(n) bits of information over 0(n) distance on its tapes, mean

while being able to recover the i-th bit of information at the i-th step 

subsequent to receiving the marker 2, which can happen at all times during 

this process. We conjecture that M cannot do so, and the proof of this con

jecture is the subject of further research. 
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The problem with proving Theorem 2.3 in the next section is two-fold. 

The first aspect is to prove Corollary 2.4, while the second aspect is to 

* prove that, while storing a word in {0,1}, subject to the restriction that 

the 2-RTTM M must be able to retrieve the stored word at any time during 

this process in real-time, M cannot have any real gain from being nonobliv

ious, i.e., the strengthening of Corollary 2.4 to Theorem 2.3. This is not 

so with respect to the whole problem, i.e. both storing and retrieving, 

since it can be shown (VITANYI [1980b]), that to recognize Lor L' by a 

totally oblivious on-line Turing machine takes time order n log n. 

3. PROOF OF THEOREM 2.3. 

The line of reasoning we shall pursue to prove Theorem 2.3 is as 

follows: 

(i) Since L' cannot be recognized by a 1-RTTM, it follows that L cannot be 

recognized by a 1-RT'IM. We show that this fact implies, that a 2-RTTM 

M claimed to recognize L would have to use both of its tapes about 

equally intensive. 

(ii) By folding both tapes of M around the start positions, we can represent 

the simultaneous head positions at each step by a pair of nonnegative 

integers. Using (i), and by exploiting the fact that M must store all 

* information concerning the processed input in {0,1} in some way or 

other, we show that, during the processing of an input of length n in 

* {0,1} , the heads on both tapes of M must get simultaneously 0(n) 

squares away from the starting positions. 

The above would be the complete strategy followed if we could assume 

* that Mis oblivious with respect to the initial string in {0,1} , i.e., in 

the proving of Corollary 2.4. To overcome the problems attending the non

* obliviousness of M, we resort to the trick of dividing {0,1} in infinitely 

many subsets, on each of which the behaviour of M must be similar to M•s 

* behaviour on {0,1} • More in particular, for 

1 umb b . 2(l-E)n ub t f natura n er, we o tain s se so 

each E > 0, E = 1/s ands a 

{O,l}n, each of cardinality 

2En, and on each of which the behaviour of Mis similar to the behaviour of 

Mon {O,l}n. We now turn to the actual proof. 
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Assume by way of contradiction that Lis recognized by a 2-RTTM M. 
Let the number of states of M be n1 , and the number of letters in its work 

tape alphabet be n 2 • 

DEFINITION. If M has input w then, for i = 1,2, the work space t. (w) of M 
l. 

on w is the sequence of tape squares on tape i, covered by the motion of M, 
while having the input sequence w. 

If xis a sequence of squares on the tape, or a sequence of symbols, 

then lxl will denote the length, i.e., the number of elements, of x. Let x 

be an input sequence. By the coding of x, we shall refer to the pair (code 

(t1 (x)), code(t2 (x))) ,.where, for i = 1,2, code(ti ~x)) is the sequence of 

symbols in the squares of the work space t. (x) at the end of processing x. 
l. 

By the instantaneous description of Mat x, we shall refer to code(t1 (x)), 

code(t2 (x)), the state of M, and the positions of the heads on M•s two tapes, 

at the end of the processing of x. 

LEMMA 3.1. There exists a numerical constant e > O, such that, for every 
n 

integer n > 0, there exists av E {0,1} and en~ lt1 (v) I + lt2 (v) I. 

n * PROOF. There are 2 sequences v in {0,1} such that lvl = n. Since we must 

be able to distinguish between v and v', for v f v', v and v' must lead to 

different instantaneous descriptions, Otherwise v2v E L(M) => v'2v E L(M) 

and therefore L(M) f L. Let lt1 (v) I + lt2 (v) I ~ k for all v E {O,l}n. Then 

there are at most n 1 •n2k•k2 different instantaneous descriptions of Mat 

inputs v. Hence 2n ~ n 1•n2k•k2 • If n is large, this forces k to be large, 

th t th t k 2 < k ( th t > 2) Th 2n < 2k so a we can assume a n1 - n 2 we assume a n2 - • us - n2 

and hence 

.log 2 n ~ k. 
2 log n 2 

Thus we may take e 1 = 1/2 ((log 2)/(log n2)). This e 1 will do for all n 

larger than some n0 ; for suitably smaller e the Lemma will hold for all n. D 

If M was {0,1}-alphabet-oblivious, Lemma 3.1 would read "for all 
n" v E {0,1} . Since such statements are more or less what we need in the 
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course of the proof, Lemma 3.1 is not sufficient. Intuitively, however, it 
n" is clear that Lemma 3.1 should read "for almost all v E {0,1} , since it 

seems reasonable to assume that M can make only a very small fraction of 

exceptions on a general strategy for storing words in {O,l}n. This intuition 

* we make formal by the following division of {0,1} in infinitely many sub-

sets, for each of which Lemma 3.1, and later Lemmas, will be shown to hold. 

DEFINITION. Let£> 0 be any constant such that£= 1/s, ands an integer. 

For every word v E {0,1}*, we define the set [v] as follows:*) 

[v] = {w E {O,l}*j by replacing each ks-th symbol, k = 1,2, ••• 

••• ,Llwl/s.J, in w by£ we obtain v1 and v = v 1v2 for some 

* v2 E {0,1} }. 

Define further the set [[v]] as follows: 

[ [ v] ] = { w E { 0 , 1} * I if v = v 1 a, a E { 0 , 1 } then w E [ v] - [ v 1 ] }. 

From the definition several properties of [v] and [[v]] are readily ascer

tained. 

PROPERTY 1. If w E [[v]] then lwl = sLlvl/(s-1)~ + remainder (lvl/(s-1)). 

Hence, for lvl large enough, lwl ~ (s/(s-1)) lvl. 

PROPERI'Y 2. There are 2n words v in {O,l}n and therefore 2n sets [[v]]. If 
n 

v1,v2 E {0,1} and v1 ~ v2 then [[v1JJ n [[v2]] =~-Each set [[v]], 

v E {O,l}n, has cardinality 2Ln/(s-l)~ 

PROPERI'Y 3.The~e are 2(l-£)n pairwise disjoint sets [[v]] in {O,l}n, all of 

which contain 2£n elements, if lvl is a multiple of s-1. 

n 
PROPERTY 4. Let v = al.a2 •.• an. Then [v] = i~ [[a1a 2 .•• ai]]. Hence v = v1v2 
iff [v1] s [v]. 

* ~~= =l~=~n~~~ ~~kP. we can elucidate the way {0,1} is divided into 

subsets as follows, cf. Figure 3. Let ji E {O,l}s-l, Os is 2$- 1 -1, such that 

j. is a s-1 bit word and, but for the leading nonsignificant zeros, j, is the 
1 1 

*)B; £ we denote both a small constant and the empty word; confusion is 
avoided by the context. 
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binary representation of i. 

level 0 

level 1 

[e: J 

[jojoJ [joj 1 J r joj 1 J [j . J [j j 
2s-1 2s- -1 2s-1_1Jo 2s-l_1 

I \ I \ I 
I \ I I 

I ' I \ 
\ I 

I ' I I \ I ' I 
I ' \ I I ' I 

level l 

level 

\ 

' \ 
\ 

\ 

' 
I 

I 

I ' ' I 
I 

I\ , \ 

I ' 

\ 
' ' 

, ' , ' , ' , ' 

I ' I ' I 
I 

' ,/ \ 

* Figure 3. Tree representing division of {0,1} into increasingly many sub-

sets of increasingly many words of increasing lengths. (In the Figure, e: 

stands for the empty word.) 

J 
-1 

\ 
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PROPERTY 5. Let jl+l = a 1a 2 ••• as-l' ai € {0,1}, 1 sis s-1. Then the path 

from [ji1ji2 ••• jil] to [jilji2 ••• jiljil+l] contains the sets [jilji2 ••• jila1J 

up to [jilji2 ••. jila1a 2 ..• as_2J in that order in between nodes [ji 1ji2 •.. jil] 

and [ji1ji2···jiljil+1J. 

Hence we see that [v1] contains [v2] iff v 2 is a prefix of v1• Further

more, [v1J n [v2] = [v3J where v3 is the greatest common prefix of v 1 and 

v2. 

If we substitute double brackets for the single brackets in Figure 3 

we see that at each next level the sets consist of words which ares bits 

longer than the words in the sets of the previous level; each set at level 

l has 2s-l sons at level l+l, and each set at level l+l has twice as many 

elements as its father at level l. 
Hence we see that for each of the 2(l-e)n disjoint subsets [[v]] in 

{O,l}n, #[[v]] = 2en, we obtain similarly to Lemma 3.1 that 

(1) E log 2 n s k 
2 log n2 

and therefore analogous to Lemma 3.1: 

LEMMA 3.2. For each£> 0 there exists a numerical constant e > 0 such that 
E 

for every integer n and [[v]]: {O,l}n there exists a word w € [[v]] and 

eEn s lt1 (w) I+ Jt2 (w) I. We may take e~ = 1/2 (£(log 2)/(log n2)). This 

e~ will do for all n larger than some nE; for suitably smaller eE the 

Lemma will hold for all n. 

N.B. We tacitly assume that n is a multiple of s. If n is not a multi

ple of s, the Lemma (and the following Lemma's) will hold under a trivial 

modification. In the sequel E > 0 equals 1/s, for some integers. 

over {0,1}, 
00 

Let u be an infinite word that is, u € {0,1} • Let u(n) 

be the prefix of u of length n - Ln/sJ, so the words in [[u(n)]] have 

length n. Define 

(2) m (u) (n) = max min {It. <w> IL 
wdu(n)] idl ,2} 1. 
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where we drop the superscript on m(.) when u is understood. Notice, that 

mis monotonic increasing. 

LEMMA 3.3. Let M be a 2-RTTM claimed to recognize L. For each E > 0 

(E = 1/s ands an integer) there exists a numerical constant c > 0 such 
E 

00 

that, for each u € {0,1} and each n, there exists a word w € [u(n)] for 

which lt1 (w) I, lt2 (w) I ~ cEn. 

PROOF. Let M, E, [[.]]and[.] be as in the statement of the Lemma. Suppose, 

by way of contradiction, the Lemma is false. Then, for each numerical 
00 

constant c > 0 there exists a word u € {0,1} and an integer n such that, 

for all words w € [ u (n)· J holds: 

(3) 

From definition (2) and (3) it follows 

(4) 
(u) 

m (n) < en, 

and therefore we can deduce the following: 

for each integer p > 0 there exists an integer nl/p and a u € {0,1} 

such that, for n = p. nl/p' 

(5) (u) (') f 11 · < m i < nl/p or a i - n. 

Assume, without loss of generality, that in the processing of each 

word w € [u(n)] we have 

(6) 

(N.B. Displayed formula (7) is deleted). For ease of notation we denote, 

henceforth, u(n) by v. 

00 



By folding both tapes of M around the start position, the infinite ends 

pointing right, we can, without loss of generality, assume that no head 
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on a tape of M ever moves left of the start position. If the head would go 

left of its start position in the original 2-RTI'M, then it now moves right 

on the upper track of its tape in the new 2-RTTM. We assume that the 2-RI'TM 

M, claimed to recognize L, is in this normal form. Now construct from M 

* a 1-RTTM M as follows. Let Q be the state set of Mand let r be the work 

tape alphabet of M. Then Q* = Q x r2 n1/p x {0,1, .•• ,n1;p-1} 2 is the state 
* * * * set of M, and r = r is the work tape alphabet of M. That is, M is 

constructed from M by including the instantaneous description, of the 

initial tapesegments of length n1/p on both tape 1 and tape 2 of M, in the 

finite state control of M*, see Figure 4. 

INPUT 

-------
1 
I 

[T]AIP 
---------------, 

I 

E I !•••! 
J\ I 

,,/ 

-- -, 
/ , 

Q 

I 
\ 

( T I A p E I 2 

V 

I· . · l ________ _,,: 
I nl/p squares 
I 

I I 
1-------------------------- --- ------' 

* Figure 4. Construction of M from M. 

Because of (6), we can process all words win [v], w E [v] => 

* t 

* Q 

* lwl ~ p•nl/p' correctly by M. The idea is that if we*meet the marker 2, 

we replace the current instantaneous description of M by the corresponding 

instantaneous description of M, to do the retrieval phase. In the sequel of 

* proof, we show that M cannot process all input in [v] so as to enable M to 
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recognize L. Therefore (6) is false, which implies that (5) is false. In 

its turn the falsehood of (5) implies that (3) is false, and that therefore 

* the Lemma is true. To show that M cannot process all input win [v], 

lwl ~ p.nl/p' we use the idea of bottlenecks in 1-RTTM computations due 

to RABIN [1963]. 
* * * * * Let M be as described with n 1 = #Q and n2 = #r = n2• We proceed by 

a sequence of Claims. In the following n = p•nl/p and [[v]] s {O,l}n. 

CLAIM 1. There exists a numerical constant y > 0 such· that for all u € [v], 
e: 

lul ~ n/2, there exists a word w, lwl = n/2 and uw € [v], and y n ~ lt*(uw) I. 
e: 

PROOF OF CLAIM. There are 2e:n/2 words win {O,l}n/2 such that uw e: [v]. If 

w1 # w then uw1 and uw must be coded differently. Otherwise, uw2uw and 

uw12uw will both be accepted by M, since uw and uw1 both lead to the same 

* * instantaneous description of M. Let It (uw) I ~ k for all such w. Then there 
* *k are at most n 1 • ,n2 • k different codings of inputs w. Hence, 

(8) 

* * Substituting n 1 and n2 we obtain: 

(9) 

By Lennna 3.2 we have 2nl/p + k > ee:n, so that k > (ee:-2/p)n. Hence for p 

large enough, by n = p. n11 , n is large enough so that we can assume 
k p 

that k.n1• 2nl/p < n2 • Thus, 

(10) 2e:n / 2 2(k+nl/p) 
~ n2 , 

and hence, 

(11) 

Since n = p•nl/p we obtain by setting p ~ (8 log n2) / (e: log 2): 
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( 12) e: log 2 n p ::,;; k. 
Slog n 2 1/p 

Thus we may take y~ = (e: log 2) /(Slog n2). This y~ will do for all n greater 

than some n0 (equivalently, all p greater than some p0). For suitably small

er ye:, the claim will hold for all n (equivalently, for all p). 

END OF PROOF OF CLAIM. 

* CLAIM 2. There exists an integer d > 0 (depending only on M and hence on 
e: 

Mand e:) such that for u € [v] and n/2 ~ lul, there e~ists a word w, 

uw € [v] and lwl = n/2, such that: 

a) y n < lt*(uw) I; 
e: * * b) no more than 1/3-ra· of the squares oft (uw) are covered by M more than 

d times. 
e: 

PROOF OF CLAIM. Let us choose a word w € {O,l}n/2 , uw € [v], for which a) 

holds. Let a 1 be a number, such that more than 1/3-rd of the squares of 

* * t (uw) are covered by M more than a 1 times. Then the total number of moves 
* * * of M exceeds 1/3lt (uw) !a1 ~ 1/3(d1ye:n). But since M operates in real-time 

the number of moves of M* by the input uw is exactly luwl ::;:;; n. Thus, 

1/3 (d1 y e:n) ::,;; n and a 1 ::,;; 3/y e:. (The number de: = r (3/y e:) + 17 satisfies b).) 

END OF PROOF OF CLAIM. 

* To derive a contradiction from the fact that M can correctly process 

all inputs in [v], we develop the idea that, in working on certain input se-

* quences, the machine M develops bottleneck squares on its work tape, 

through which information cannot flow in sufficient quantity. The idea of 

a bottleneck is made precise in the following. 

* DEFINITION. Let u, uw € [v]. A square Bon t (uw) is called a lottleneck 

* square oft (uw) if: 

1) under input uw the machine passes through B no more than de: times (where 

d is as in the previous Claim 2); 
e: * 

2) B lies outside the workspace t (u); 

* 3) the length of the section oft (uw) determined by B, which does not con-

* taint (u), exceeds lul + 1. 
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* t (u) 

* Figure 5. Bottleneck square on t . 

B 

* t (uw) 

R E 

> lul+l 

Let j be an integer such that 3lul + 3 < y j and also lul < j, u E [v]. 
£ 

By claim 2 there exists a word w, uw E [v] and luwl ~ n, such that 

Y j ~ lt*(uw) I, and fewer than 1/3-rd of the squares of t*(uw) are 
£ 

covered more than d times. Now lt*(u) I ~ lul + 1 < (y j)/3 ~ lt*(uw) l/3. 
* £ £ 

Dividing t (uw) into 3 equal parts (there is a trivial modification of the 

argument if lt*(uw) I is not divisible by 3), we see that there is an 

interval of length (2/3) lt*(uw) I on the right end of t*(uw), which does not 

contain squares of t*(u). In this interval consider the 1/3-rd of t*(uw) 

which does not run to the end. Since fewer than 1/3-rd of the squares of 

* * t (uw) are covered more than d times by M, there is a square Bin this 
£ -~ 

1/3-rd of t' (uw) which is covered at most d times. There are at last 

* £ * It (uw) l/3 ~~ (y j/3) > lul+l squares between Band the end oft (uw). Thus 
£ 

Bis a bottleneck square, which gives us: 

* CLAIM 3. For each u E [v] such that 3 lu I + 3 ~ y n/2 there exists a w E {0, 1} , 
£ 

* * uw E [v] and luwl ~ n, and the tape t (uw) of M has a bottleneck square. 

Now let u and w be as in Claim 3. As the input uw is coming in, there 

M* * is a first time when enters the rightmost square E oft (uw), Figure 5. 

* Let z E {0,1} be the initial section of w, such that uw is the sequence 

* * * leading up to the first visit of M at E. Thus t (uw) and t (uz) have the 

* same righthand end square E, and Bis also a bottleneck square oft (uz). 

* Denote the square immediately to the right of B by R. By a passage of M 

* through B, we mean either a move of M from B to Rora move from R to B. 
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The state of M* during a passage is the state M* has when it reaches R in 

the first case, and the state M* has when it reaches Bin the second case. 

a,,* M* Note, that the passages of 111 through B do not include atomic moves of 

* in which it starts on B and stays on B. Under the input uz the machine M 
* will first cover the tape t (u) and then, under the z portion of the input, 

move to square E. Let p 1,p2 , ••. ,pr be the consecutive passages through B 

(r = 1 is not excluded). The passage p 1 is a move from B to R, p 2 a move 

* from R to B, etc. Let the state of M during the passage p. bes., 1 sis r. 
. l. l. 

The scheme of the bottleneck square Bis the r-tuple (s 1 ,s2 , ••• ,sr); Now 

the number r of passages through Bis at most d. Thus, there are at mostN, 
e: 

d 
* e: + ••• + nl 

* different schemes of bottleneck squares, where n1 is the number of states 

in M*. Let g be a number such that N < 2e:g_ For each u E [v], lul = g, let 

* WE {0,1} be such that uw E [v] and uw has a bottleneck square B, and let 
* u 

z denote the section of w leading to the first visit of M to the end E of 
u 

* t (uw). There must be two different words u 1,u2 E [v], lu1 1 = lu2 1 = g, such 

that the bottleneck squares Bu1 and Bu2 have the same scheme, say (s 1 ,s2 , ••• 

• • • , s ) • Let 
r 

* where T,cr E {0,1}, Tn1 is the input when M visits Bu1 during the first 

* passage, Tn2 is the input when M visits Bu1 during the second passage, and 

so on up to Tnr; similarly for am1 ,am2 , ••• ,crmr in the second sequence u2z2 • 

* After receiving the input Tnr+l (amr+l), M visits for the first time the 

right hand end square Eu1 (Eu2>. 
we now come to the main point in the argument. In the sequence u 1z 1 re

place, for every odd i, 1 s i S r-2, the segment Tn·+l•·•Tn. 1-1 by the word 
i 1.+ 

crmi+l ••• crmi+l-1· Furthermore, replace Tnr+l ••• Tnr+l by crmr+l 

Call the resulting sequence u 1zi· (The fact that possibly u 1zi i [v] is of 

no concern to the argument that follows.) Note, that all the changes were 



22 

made in the z 1 portion of u 1z 1 • Now, u 1z 1 and u2z 2 have the same scheme of 

states in the passages of M* through Bu1 and Bu2 , respectively, and our 

changes in u 1z 1 were made only in the inputs between visits to Bu1 , while 

* M was on the right of Bu1 , or after the last visit to Bu1 • One can see by 

finite induction over i, 1 ~ i ~ r+1, that u 1z1 again has the same scheme 

(s 1 ,s2 , ••• ,sr) and that at each input Tnj' j odd and 2 ~ j ~ r+1, the por

tion of the tape right of Bu1 is identical with the portion of the tape 

* * t (u2z 2) right of Bu2 at input 0mj' and that the state~ of M at the corres-

ponding inputs are the same. 

* * The work spaces t (u1z1) and t (u2z 2) have squares Bu1 and Bu2 , respec-

* tively, with the following properties. The workspace t (u.) is completely 
i 

* * to the left of Bui' i = 1,2. The portions oft (u1z1) and t (u2z 2), beyond 

Bu1 and Bu2 , are strictly longer than lu1 1 = lu2 1 = g. By the previous para

graph, at the end of the inputs u 1z1 and u2z 2 , M* is at the end squares Eu1 
and Eu2 of the respective workspaces, and the portions of the tape from Bu1 
to Eu1 and from Bu2 to Eu2 , as well as the states of M~ at Eu1 and Eu2 , are 

identical. Assume now that both u 1z1 and u2z 2 are followed by the input 2u1 . 

We have, since u 1 # u2 , 

and 

Now replace M* by the corresponding instantaneous description of M, in both 

cases of the processing of u 1z12u1 , and u2z 22u1 , at the instant we receive 

the input letter 2. We now want, in both cases, to check whether u 1 is a pre

fix of the previously processed input. But l2u1 1 = g + 1 is less than the 

distance from Eu, to Bu,, i = 1,2. Since M operates in real-time and makes 
i i 

one move per input symbol, it will stay, throughout the input portion 2u1 , 

to the right of Bu.• Thus, M will start in both cases in the same state and 
i 

will move through identically printed portions of its tapes. It will there-

fore be in the same states at the ends of u1z12u1 and u2z 22u1 , scanning the 

same symbols, and hence cannot accept one and reject the other. Therefore, 

* the assumption that M correctly process all inputs in [v] of length~ n, 

leads to the fact that M either accepts both u 1zi2u1 and u2z 22u1 , u 1 # u2 , 

or rejects them both. Hence the assumption of (6) leads, by way of the con-

* struction of M, to the conclusion that M does not recognize L. Hence (6), 
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leads to a contradiction. Since (6) is false, (3) must be false and there

fore the Lemma true. 

An analysis of the previous proof shows that we can derive from it 

explicitly, how large c e: 
in the statement of the Lemma can be chosen for 

given Mand e:. 

Setting y = (e: log 2) / (8 log n2); d = r (3/y ) +17; N 
e: e: .e: 

(assuming n; ~ 2); g such that N < 2e:g and 3g+3 ~ ye:n/2; n = p•nl/p; we 
n1; . 3n1; 

choose p so large that n1 • 2nl/p < n2 P and therefore n~ < n 2 p. Then after 

some computation we see that, if we take logarithms in base 2: 

8 3 · 3 -3 p ~ 2 .3 .log n2.e: 

suffices, under the condition that pis 

ting c to 1/p satisfies the Lemma, and e: 

(13) 

D 

n1/p 
so large that ni2nl/p < n2 • 

therefore, all c satisfying e: 

Set-

D 

It would seem that the above technique can be used in general to show 

that if a given language is not accepted by a k-RTI'M, then the assumption 

that it is accepted by a (k+1)-RTTM necessitates that the (k+1)-RTTM must use 

all of its tapes equally intensive (in the same order of magnitude 0(n)) 

if it can be shown that a k-RTTM claimed to recognize the given language 

would be fooled by some word of length p log(#Q), where Q is the state set 

of the k-RTTM, pis arbitrarily large and the dependencies are as described 

in the proof of the previous Lennna. 

An argument similar to the one above would show that if there is a 

2-RTI'M M recognizing L, then, for some inputs of length n, the difference 

between the head positions on tape 1 and tape 2 (head position= distance 

from head on tape to its start position) must grow larger than en, for some 

constant c > 0, during the processing of that input. The approach is sketch-

* ed in Figure 6, where we reduce M to a 1-RTI'M M which keeps the contents 

of the two tapes, on the segments of tape 1 and 2 in between the two head

positions, in its finite control. I.e., on a tape of length nl/p which is 

glued together at the ends so that square 1 follows square nl/p" 
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TRACK FOR TAPE 1 OF M { 
TRACK FOR TAPE 2 OF M } 

* * t TAPE OF M 

A 

LEFTMOST HEAD - RIGHTMOST HEAD 

I 

------------------------7 

LEFTMOST 
HEAD 

I I 

Q 

RIGHTMOST 
HEAD 

I 

I 
I 

I 
I 
I 

I * 
l~Q 

I nl/p squares 1 

L------------------------' 

X 

Figure 6. From both tapes of Ma segment of nl/p squares has been cut out 

M*. and put in the finite control of 

The next step will be to prove that if Lis recognized by a 2-RTTM M 

then the heads will get simultaneously far away from their starting posi

tions. In a 1-RTTM, which has to store incoming input of length n, it is 

obvious that the work tape head has to move 0(n) squares away from its 

starting position during this process. The analog for a 2-RTTM would be 

that both of its heads move 0(n) squares away from their respective start

ing positions simultaneously during the processing of an input of length n. 

This, however, is not at all obvious. If we consider for a moment 3-RTTMs 

recognizing L, we see that the 3-RTTM recognizing L, reported by FISCHER, 

MEYER and ROSENBERG [1972], has at all times, up to reading the marker 2, 

at least one of its tape heads at the starting position. We shall show, that 

a 2-RTTM M recognizing L can, as a consequence of Lemma 3.3, not do this. 
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An analysis of the proof of Lemma 3.3 shows that it also supports: 

LEMMA 3.4. Let M be a 2-RTTM claimed to recognize L. For each e: > 0 there 

exists a numerical constant c such that for all u E [v], lul < ye:n/6, there 
* e: 

exists a word w E {0,1} , uw E [v] and lwl = n/2, such that ce:n s lti(uw) I, 
i = 1,2. (Here the constant ce: can be chosen as the one in Lemma 3.3.) 

Recall that Mis a 2-RTI'M with one-way infinite tapes claimed to rec

ognize L. Number the squares on the two tapes of Mas 0,1,2, ••• from left 

to right. Let p. (w,t) be the number of the square under scan on tape i, 
1 

i = 1,2, at step t during the processing of a word w. I.e., if w = a 1a 2 ••• 

••• at··· and the input head is scanning at' then the head on storage tape i, 

i = 1,2, is scanning square p. (w,t). As argued before, we can assume, with-
1 

out loss of generality, that M has one-way infinite tapes, by imagining the 

two-way infinite tapes of a given 2-RTTM Mas being folded around their 

starting positions. 

LEMMA 3.5. Let M be a 2-RTTM claimed to recognize Land M has one-way in

finite storage tapes. For each e: > 0 there is a numerical constant f > 0, 
* e: 

such that, for each v E {0,1} , there is a word w E [v] and f lvl s p. (w,t), e: 1 

i = 1,2, for some ts lwl. 

PROOF. Since in the proof we will us~ two different e:'s to obtain our re

sult, we index the square brackets by thee: they correspond to. Let e: 1 = 

1/(2s) > 0 ands an integer. Let m, rand n be integers such that 
2r -j * ~j=O ce:1 m = n. Let v = v0v1 •.• v2r be a word in {0,1} and lvjl = ((2s-1)/ 

(2s) )cEi m for 0 s j s 2r. Now form the set [vJe: 1• Assume without loss of 

generality that ce:1 < Ye: 1/4. Then we have, by Lemma 3.4, that we can find 

an-bit word w0w1 ••• w2r with w0w1 ••• wj E [[v0v 1 ••• vj]Je: 1 for all j, 

0 s j s 2r, such that 

(14) i = 1,2, 

where t. (z) is, as usual, the workspace used on tape i of the 2-RTIM M dur-
1 * 

ing processing of a word z E {0,1} • The lower rounds in (14) are argued as 



26 

follows. lwjl = c;Im since lwjl = ((2s)/(2s-1)) lvjl. lw0w1 ••• wj_1 1 = ri:~ 
cgfm = ((ce1-1)/(c;!-1))m. Now, if ce:1 < Ye: 1/(3+ye:1), which is certainly 

the case if ce: 1 < Ye: 1/4, then lw0w1 ••• wj_1 1 < Ye: 1 1wjj/3 and the lower bound 

follows by setting lw.l = n/2 in Lemma 3.4. The upper bounds in (14) follow 

from the fact that It~ (w0w1 ••• w.) I ~ lw w ••• w.l = E~ ce:-¾n < c-(j+l)m 
1 J O 1 J i=O 1 e:1 ° 

Now let e: = 1/s and suppose the Lemma does not hold for any f ~ 
e: 

(ce: 1/z) (m/n), where z is some integer greater than 1. Let Si be the starting 

position, Bi be the ce:1m/z-th square, and Ei be the ce: 1m-th square on tape 

i, i = 1,2, of M, Figure 7. 

~, Bl El i TAPE 1 

\ 
s2 B2 E2 r TAPE 2 

Figure 7 

By assumption the heads on the storage tapes cannot be simultaneously 

to the right of the respective squares B112 during the ~recessing of a 

word w E [v]e:i· By (14) we have that, during the processing of w0 of the 

chosen word w0w1 ••• w2r E [v]e: 1 , the workspace used on both tapes is at least 

ce:1m and therefore the head on tape 1 must cross E1 and the head on tape 2 

must cross E2 • Since by assumption not both heads can be simultaneously to 

the right of the B squares, this can only happen when the head on, say tape 

1, proceeds from B1 to E1 (meanwhile the head on tape 2 is on the segment 
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s2 - B2), returns later from E1 to B1 and stays on the segment s1 - B1 while 

the head on tape 2 moves across B2 to E2 • All this during the processing 

of w0 • 

Since by (14) we have 

(15) 

for i = 1,2 and all j, 0 s j < r, by the same reasoning we have that during 

the processing of w2j+lw2j+2 , the head on one tape must cover the segment 

B - E on its tape at least once, while the head on the other tape stays on 

the segment S - B, and vice versa. Hence, during the processing of w = 
w0w1 ••• w2r, the segment B1 - E1 must be covered at least r times and also 

the segment B2 - E2 must be covered at least r times, in at least 2r disjoint 

time intervals. Therefore, we can divide the word win subwords as follows: 

such that: (i) during the processing of u. the head on both tapes is on E or 
J 

to the left of E; (ii) during the processing of v. the head on one tape 
J 

is to the right of the square Eon that tape; (iii) at all times the head 

on at least one tape is on the B square or to the left of the B square on 

that tape; (iv) luj I ;::: ( (z-1)/z)c81m; for all j, 1 s j s r. 

By the assumption that the heads on the storage tapes of M cannot be 

simultaneously to the right of the respective B squares, we can, similarly 

* to the proof of Lemma 3.3, construct a 1-RTI'M M which during the process-

ing of any word in [v]El' maintains the appropriate instantaneous descrip

tions M would have during the processing of that word, as follows. W' stores 

the initial segments 

* Q = Q X r 

S. - B., 
J. J. 

2c m/z 
£1 

* i = 1,2, in its finite control Q. Hence, 

2 
x {0,1, ••. ,(c m/z)-1}. 

El 

* * The tape t of M will maintain on two tracks the tape contents of the one-

way infinite tape segments B. - 00 ,, i = 1,2, of the tapes of M. Since at all 
J. J. 

times only the head on a single tape of M can be to the right of a B square, 

we can maintain the contents of the B1 - 001 and B2 - 002 segments, on the two 
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* * tracks of t , by the single storage head of M on t 

head on, say, tape 1 is to the right of Bl we can, 

move the head on tape 2 to the right of B2 only 

1 returns to the segment S1 - Bl. Hence we have, 

r* = r 2 , 

* and we depict M in Figure 8. 

Bl . . . El TAPE 

B2 . . . E2 TAPE 

I :: I I:: I 
I 

I C m/z I 
I £1 I 

L ___ ------------------ I 

* Figure 8. Construction of M. 

1 OF 

2 OF 

if 

M 

M 

* . Note, 

under our 

first the 

* Q 

that if the 

assumptions, 

head on tape 

~ 
1 

* t 

* We will :iow argue that M spends so much time on the B - E segment of 

* t, and receives so much input symbols during that time, that it cannot 

store all words so that it can distinguish later between all different ones. 

However, up until now we are only sure that a single word, viz. w E [vJe 1 , 
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* * causes M to spend r((z-1)/z)ce; 1m time on the segment B- E of t , according 

to (iv). Now recall that. e: 1 = 1/2s, s an integer, and therefore if 

(17) 

then the words w E [vJe: 1 have the following form 

(18) 1 ::;; n' ::;; n/2s, 

and each 

0::;; i < n/2s, 

where the a's and b's are in {0,1}, the a.'s are as in (17), 1::;; j::;; 
J 

((2s-1)/(2s))n. By our previous reasoning, for every v as in (17) we can 

find a sequence of values b 1 ,b2 , •.• ,bn/2s giving us a word was in (18) for 

which (14) holds. By varying the s-th letter of each vi+l' 0::;; i < n/2s, 

over O and 1 we obtain 2n/2s distinct v's. Hence for each such v there 

exists aw E [v]e: 1 for which (14) holds. Let V be the set of these words w. 

Now form the word v as follows: 

such that each 

• · .a(i+l) (2s-1)' 0::;; i < n/2s, 

where the a's are as in (17). I.e., by deleting in v all letters at posi

tions j = s mod (2s-1). 

We now have lvl = ((s-1)/s)n, and fore:= 1/s it holds that Vs [v] . If we 
e: 

now restrict our attention to the set of input words in V, we see that all 

* words in V cause M to follow the behaviour of Mas described in (16) and 

points (i) - (iv) after that. Moreover, at each j-th input symbol of a word 

w E V, j = s mod (2s) we can choose each one of O and 1 as input and still 
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stay in V. 

Hence, since in (16) lu1u2 ... url;;:: r((z-1)/z)ce;1m, there'are 

(20) 2 
(r((z-1)/z)ce;1m)/2s 

pairwise different words win V which differ only in u1u 2 ••• ur' cf. (16), 

* * i.e., which differ only when the head of M on t is on E or to the left 

of E. Call the crossing scheme of a word w EV the sequence of 2r states 

* * in which M enters (leaves) the segment B - E of t at the first letter (last 

letter) of the su.bwords u 1 ,u2 , ••• ,ur of w, together with the contents of 

* * B - E of t , when M crosses E on its way to the right at the end of u . (Note· 
r 

that the first state of each crossing scheme here must be the start state 

* of M .) Hence there are at most 

(21) 

different crossing schemes. Now let W be the set of pairwise different words 

* win V which differ only in the intervals while the head on t is on seg-

ment B - E. Now suppose that two words w ,w' E W, w c/: w', 

have the same crossing scheme. Then clearly, subsequent to the processing 

of u 
r 

* of wand u' of w', M cannot distinguish between wand w' since in 
r 

both cases it has the same instantaneous description. Hence in this case M 

can also not distinguish between wand w', after the processing of these 

words, and M must accept both w2w and w'2w or reject them both. Hence M can

not accept L: contradiction. Since the size of Wis given by (20) and the 

number of different crossing schemes by (21), we must have that 

( 22) 
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* 2ce 1m/z 2 * 2 
Since n 1 = n 1 •n2 •(ce1m/z) and n 2 = n 2 , we obtain by substitution 

2 cqm/z 
(and by noting that n 1 •(ce1m/z) < n 2 form large enough) that 

( 23 ) n~r+2(z-1) ~ 2 (r(z-1))/(2s) 

Setting µ = (log 2) / (2s log n 2 ) we obtain 

(24) 6r + 2(z-1} ~ µr(z-1) 

Now the inequality (24) is not satisfied if we set r = 3/µ and z = (18/µ)+2. 

That is, if we choose 

r = (Gs log n 2 ) / (log 2} 

and 

z = (36s log n 2)/ (log 2}, 

* M must have the same crossing scheme for 2 different words in W, and there-

fore M cannot accept L. 

Analysing the previous proof we_can compute f > 0. The lengths of the 
2 -j £ 

words in Wis given by n = rj!O ce 1m and therefore (for ce 1 < 1/2) 

-2r -(2r+1} me < n < me 
£1 £1 

Setting fe = (ce 1m)/(zn), we obtained for the given values of rand z a con
- (2r+1) 

tradiction, which therefore certainly will hold for n = mce 1 . Hence we 

have 

f ~ 2r+2/ 
C z. 

£ £1 

Since e 1 = e/2 we obtain my substitution of rand z as above and ce 1 as in 

(13), while recalling that e = 1/s and logarithms are in base 2, that 
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(23) 

-1 
3 11 3 3 -1 12E log n 2+2 

( E ( 2 • 3 • log n2) l 
fE ~ --------~1----------

36E log n2 

N.B. under assumption that n is large enough. D 

PROOF OF THEOREM 2.3. By Lennna 3.5 and the properties of[] and[[]]. □ 
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