
AFDELING INFORMATICA

stichting

mathematisch

centrum·

(DEPARTMENT OF COMPUTER SCIENCE)

PAUL M.B. VITANYI

REAL-TIME TURING MACHINES UNDER
VARYING SPECIFICATIONS

Preprint

IW 140/80 JULI

Kruislaan 413, 1098 SJ Amsterdam,

~
MC

PILlnted at :the Mathema:t-lc.al. Centlte., 413 Klu.L-l6la.a.n, Am6:teJLdam.

The Mathema:tlc.al Centlt.e , 6ou.nded :the 11-:th 06 FebllJ.UVty 1946, ,i.J, a. non
p,r.06-lt i.n,6t,ltu;t,ion tU.mlng at :the. pJLOmo.tlon 06 pWl.e. mathema:tle1, a.nd U1J
a.ppUcatlon6. 1:t ,i.J, .6pon6oJc.ed by :the. Ne:th~ GoveJc.nment :thJc.ough :the
Ne:th~ 0Jc.ganiza:tlon 6oJc. :the Advanc.eme.nt 06 PuJc.e Rue.aJtc.h (Z.W.O.).

1980 MatheJBq.tics subject classification: 68C40, 68C25, 68F10

ACM-Computing Reviews - categories: 5.23, 5.25, 5.26

Real-time Turing machines under varying specifications*)

by

Paul M.B. Vitanyi

ABSTRACT

We investigate the relative computing power of Turing machines with

differences in the number of tapes, heads pro tape, instruction repertoire

etc. We concentrate on the k-tape, k-head and k-head jump models as well as

the 2-way multihead (writing) finite automata with and without jumps. Dif

ferences in computing power between machines of unlike specifications emerge

under the real-time restriction. In particular it is shown that a (k+l)-head

tape unit is more powerful than a k-head tape unit as a storage device for

real-time Turing machines, and that jumps add power to multihead 2-way real

time finite automata.

KEY WORDS & PHRASES: complexity, real-time computations, multitape Turing

machines, mul tihead Turing machines, jump Turing ma

chines, multihead finite automata, multihead writing

automata

An extended abstract of this paper was presented at the seventh Inter
national Colloquium on Automata, Languages and Programming,
Noordwijkerhout, The Netherlands, July 1980. The material in sections
2 and 3 appea;t'ed earlier in VITANYI [1979]. I

0 This report will be submitted for publication elsewhere.

1

1. INTRODUCTION

Since the first Turing machine appeared in 1936, there have been many

advances in the field. In the late 1950's the multitape Turing machine was

introduced, often equiped with a separate read-only input tape. Since then

we saw the arrival of the multihead Turing machine, Turing machines with a

fast rewind square (also called limited random-access machines), Turing

machines with head-to-head jumps, and many others. One common feature in

this abundance of models is that they all have a finite control and an un

restricted read-write storage facility. This allows each model, whatever

its specification, to compute all recursive functions. Differences in capa

bilities become apparent if we impose time limitations, and in particular

when we demand the machines to operate in real-time. As a standard in this

area we may take the class of real-time definable languages R, which is the

class of all languages accepted by multitape Turing machines in real-time,

ROSENBERG [1967]. It has been shown that all of the above mentioned varia

tions of Turing machines accept in real-time precisely R. Hence we observe

that, within the world of real-time Turing machine-like devices, R plays

somewhat the same role as the class of recursively enumerable languages in

the world of computability at large. Like in this wider setting, we shall

impose restrictions on the machines and observe what happens. In the province

of real-time computations, differences in computing power amongst unlike

Turing machines may come out under variations in instruction repertoire,

amount or type of storage devices, in short, under different specifications.

The class of real-time definable languages is remarkably extensive

(e.g. the set of unmarked palindromes is in R, GALIL [1978]). To prove that

a given language is not in R is often hard. Proofs usually rely on an in

formation-capacity argument, see HARTMANIS & STEARNS [1965] and ROSENBERG

[1967]. To prove that a language is not accepted by a class of machines A,

whereas it is accepted by a class of machines B with very similar capabili

ties, e.g., A is the class of k-tape real-time Turing machines and Bis the

class of (k+l)-tape real-time Turing machines, is harder still, and not

many techniques have been developed for addressing such problems. In this

paper we shall be concerned with this type of question.

Amongst all classes of time-limited (deterministic} computations, the

2

real-time computations distinguish themselves by being intrinsically fea

sible. While other time complexity classes, even the lowly linear time class,

suffer the defect that there are unspecified parameters which might pro

hibit the actuai execution of an algorithm for a problem therein, real-

time computations are Cup to man~geable size. of the· machine parameters·llke

state set and work tape alphabet) of practical impact. Real-time computa

tions arise in computer applications like parsing problems, real-time con

trol and so on.

Originally real-time computations were defined relative to the multi

tape Turing machines. Most algorithms, however, are more naturally stated

in terms of computing models which ·allow faster memory access. In a multi

head machine several read-write heads niay compute on a single storage tape.

A k-head tape unit consists of a Turing machine with a single storage tape

on which k read-write heads operate. P. FISCHER, MEYER & ROSENBERG [1972]

proved that one can simulate a k-head tape unit in real-time by a multitape

Turing machine with 11k-9 tapes. Later, LEONG & SEIFERAS [1977] improved

this to 4k-4 tapes. RABIN [1963] has observed that 2-tape Turing machines

are more powerful in real-time than 1-tape Turing machines. (Recall that a

1-tape Turing machine has one input tape and one storage tape with a single

head.) AANDERAA [1974] demonstrated that k+1 tapes are more powerful than

k tapes in real-time. Together with the LEONG & SEIFERAS' result this shows

that more heads will yield additional power in real-time. Specifically, it

follows that a (4k-3)-head tape unit is more powerful in real-time than a

k-head tape unit. We shall show that AANDERAA's result implies that a (k+1)

head tape unit is more powerful than a k-head tape unit in real-time, sec

tion 2.

In ROSENBERG [1967] several closure properties of Rare investigated.

We investigate such questions for the classes R(k) (languages recognized by

k-tape real-time Turing machines), RH(k) (languages recognized by k-head

real-time Turing machines] and RJ(k) (languages recognized by k-head real

time Turing machines with head-to-head jumps). Furthermore, we shall con

sider the relations between R(kl, RH(k) and RJ(k), sections 3 and 5.

In SAVITCH & VITANYI [1977] it was shown that a k-head jump Turing
...

machine can be simulated in linear time by an (Bk-8]-tape Turing machine.

KOSARAJU [1979] has claimed a proof that jump Turing machines can be

3

simulated in real-time by multitape Turing machines at the cost of many

tapes in the latter pro head in the former machine. In section 4 we show

that the analog of this result does not hold if we restrict ourselves to

2-way multihead finite automata. The sample languages we use to prove this

result are interesting in their own right, since they give once more an in

dication how wrong our intuition can be with respect to which languages be

long to Rand which languages do not. In general we prove that for real

time multihead finite automata the jump option cannot be compensated for

by adding heads, nondeterminism and bidirectionality; an extra head cannot

be compensated for by adding jumps, nondeterminism and bidirectionality;

nondeterminism cannot be compensated for by adding jumps, extra heads and

bidirectionality; and, more obvious, bidirectionality cannot be compensated

for by adding extra heads, jumps and nondeterminism. With respect to real

time 2-way multihead writing finite automata it is shown that k+l heads are

better thank, and that the k-head version of the machine is less powerful

than the k-head real-time Turing machine.

But for RABIN's and AANDERAA's results, all results in the area of

models of real-time Turing machines are about feasibility of simulating one

type of machine by another one. Virtually nothing is known about the non

feasibility of certain computations, which are possible on a machine of

specification A, by a machine of specification B. Obvious open problems in

this area of specified Turing machines are, for instance:
H H H J J H J

R(2) c R (2); R (k) c R (k+l); R (k) c R (k+l); R(k) c R (k); R(k) c R (k);

R8 (k) c RJ(k) ? Some of these questions we shall decide, or alternatively,

show some interdependence among seemingly unrelated questions.

For formal definitions and so on concerning multitape- and multihead

Turing machines, real-time computations, etc. we refer to ROSENBERG [1967],

FISCHER, MEYER & ROSENBERG [1972] and LEONG & SEIFERAS [1977].

2. k+l HEADS ARE BETTER THAN k HEADS IN REAL-TIME

AANDERAA [1974] proved by a very complicated argument that there is,

for each k ~ 1, a language ¾+l which can be recognized by a (k+l)-RTTM but

not by a k-RTTM. For completeness we define ¾+l below by a real-time al

gorithm which accepts it using k+l pushdown stores. The input alphabet is

4

"ACCEPTENABLED := TRUE;

Initiali~~e k+l stacks to empty;

REPEAT FOREOVER

CASE NEXTINPUTLETTER OF

0 . : Push O in stack i
1.

1.: Push 1 on stack i
1.

P.: IF stack i empty
1.

THEN ACCEPTENABLED := FALSE and reject input

ELSE BEGIN

ENDCASE"

pop stack i;

IF element popped was 1

AND ACCEPTENABLED

THEN accept input

ELSE reject input

END

The strategy used to prove that k+l heads are more powerful in real

time than k heiads (on a single tape) is, by a judicious choice of input, to

force the heads so far apart that for a given recognition problem the k-head

unit must act like a k-tape Turing machine since the heads will never read

each others writing.

THEOREM 2.1. ~~here is a language which is recognized by a (k+1)-head real

time Turing machine but not by any k-head real-time Turing machine.

PROOF. By induction on the number of heads.

k=l. The language A2 cannot be recognized by a 1-tape (= 1-head) real-time

Turing machinei, but can be recognized by a 2-tape (and hence by a 2-head)

RTTM. Set H2 == A2 •

k > 1. Suppose the theorem is true for all j < k. Hence, in particular there

is a language Ilk such that Ilk is recognized by a k-head RTTM but not by a

(k-1)-head RTl~M. Define ~+las follows:

where* is a special symbol not in the alphabet of A., i ~ 2.
l.

Let M~ beak-head RTTM claimed to recognize Hk+t• Present~ with a

st.ring of the form

(2) (2) (2) (3) (3) (3) (k+l) {k+1) (k+1)
w = a 1 a2 ••• a *a1 a 2 ••• a *•••*a1 a 2 ••• a

n2 n3 nk+l

5

such that w. is over the alphabet of A., 2 ~ i ~ k+1. During the processing
l. l.

of w2 , ~ must recognize A2 • Since A2 cannot be recognized by a 1-head RTTM,

the distance between the outermost heads on the storage tape of~ must grow

larger than any'given constant c 2 for a suitable choice of w2 •

Therefore, subsequent to the processing of this w2 , we can single out

a nonscanned segment s 1 of the storage tape of~ in between the outermost

heads, such that the length of s 1 is greater than or equal to c 2/k tape

squares. Denote the middle square of s by M , see Figure 1.
1 1

c2

ls 1 1 ~ c /k
2

i i i f
I) I I Mll I

I s 1 I ;2 I s 1 I ;2

Figure 1. ~•s storage tape at time t = lw2 1.

k+1
Now assume that we have chosen c 2 such that c 2/k > 2 Ei=3 (ai+l). Then, for

the remainder of the computation on w, no head will cross square M1 , and

therefore, from time t = lwi] onwards A\ will consist in effect of a

k~l)_head tape unit and a k 2
1)-head tape unit, when k~t} is the number of

heads left of M1 and k~l) is the number of heads right of M1 at time

t = I I k(1) k(1) >_ 1 andk(1) k(1) k M · · h w2 , 1 , 2 1 + 2 = • Now .-k 1s presented wit w3 •

6

Since w3 E A3 cannot be decided by 2 single headed tapes in real-time, ~\

t 't . . k(1) d k(l) h d t ·t . t· 1 mus use is remaining 1 - an 2 - ea ape uni sin an essen ia way

during the processing bf w3 • I.e., the distance between the outermost heads on
(1) (1)

at least one of the k 1 -head and k 2 -head tape uni ts must grow larger than

any given constant c 3 for a suitable choice of w3 (and the multihead unit

concerned must have at least 2 heads). Without loss of generality, we as

sume this is the case for the kil)_head tape unit. Similar to before, we

can, subsequent to the processing of w3 , single out a nonscanned tape seg

ment s 2 of the kil)_head tape unit, in between the outermost heads on this

unit, such that the length of s 2 is greater than or equal to c 3/kil) tape

squares. Denote the middle square of s 2 by M2 , see figure 2.

(1)
Now assume that we have chosen c 3 such that c 3/k 1 >

for the remainder of the computation on w no head will

fore, from time t = lw2*w3 1 onwards~ will consist in

k+1 2E. 4 (n.+1). Then,
i= i

cross M2 , and there
(2)

effect of a k 1 -
(2) (2) . (2)

head, a k 2 -head and a k 3 -head tape unit, where k 1 is the number of

heads left of M2 , k~ 2) is the number of heads in between M2 and M1 and k~ 2)

is the number

k (2) k(2) =
1 + 2

(") (2) (2)
of heads right of M1 at time t = lw2*w3 1, k 1~ ,k2 ,k3 ~ 1,

(1) (2) (1) •
k 1 and k 3 = k 2 • Repeating the argument we can choose

w4 , ••• ,wk such that subsequent to the processing of wk we are left in effect

with a k-tape RTTM which is required to determine whether wk+l E ~+l" Ac

cording to AANDERAA [1974], for each k-tape RTTM claimed to recognize A.
k+l

we can construct a word v which fools the machine. Let wk+l be such a word,

7

and choose ck, wk, ck-l' wk_ 1 , ••• ,c2 , w2 , in that order, so that the above

inequalities and conditions are satisfied after each such choice. Hence w

is accepted by Mk iff w i Hk+l which contradicts the assumption that~ re

cognizes Hk+l· (The above argument seemingly contains a circularity which

might invalidate it. The word v which fools the machine trying to recognize

J\+l does not only depend on the finite control but also on the initial tape

contents. Thus the argument seems to become circular: wk+l depends on

w2 *w3*···*Wk*' while w2 ,w3 , ••• ,wk depend on the length of wk+l· As it hap

pens, AANDERAA's argument does not need to make any assumptions about the

initial tape contents of the k-RTTM assumed, by way of contradiction, to

accept J\+l" Hence he proves in fact that for all k-RTTM M there exists a

positive integer n such that for all initial tape contents of M there exists

a word v of at most length n which fools M. The existence of such a bound

n eliminates the apparent circularity from the above argument.) It is easy

to see that k+1 pushdown stores can recognize Hk+l in real-time. D

Surprisingly, an argument like "Hk is not accepted by a (k-1)-head

RTTM and hence ~+l = Hk u Hk * 1\+l is not accepted by a k-head RTTM" does

not work, since we cannot assume a priori that in a k-head RTTM recognizing

Hk all heads get pairwise arbitrarily far apart for some input. We could

only conclude that all k heads are necessary, but it might very well be

that for each time t some heads are near to each other. Then we could be

stuck with a set of tape units, one of which is a multihead one, for which

AANDERAA's proof might not work.

The situation we have in mind is exemplified by, e.g., the languages

E, k ~ 4, in section S (although AANDERAA's proof technique fails there
k

for another reason, as shall be pointed out). As an example of a language

which can be rec0gnized by a 4-head RTTM in which there are always 2 heads

together, and which probably cannot be recognized by a 4-RTTM, or a 3-head

RTTM, we give the language L below. Clearly, we cannot conclude from

Li RH(3) (if that is the case} that Lu L * AS i RH(4} just because

AS i R(4). We wuuld need to show at least that AS cannot be recognized by

a RTTM with one 2-head tape and two 1-head tapes as storage.

8

L = {x E {0,1,2}* I xis a prefix of a word in L'}.

For suppose we want to recognize L by a 4-head RTTM. During the ini

tial input over {0,1}, it seems that we can do nothing more than record the

incoming bit stream on the storage tape. Supposing this to be the case, if
2/3 2/3 .

we take lwl, lvl E 0(n), lu2 1 E 0(n), lu1 J, lu3 1 E 0(n) , where n is

the length of the input word, we need 2 heads to check wwR (since to check

wwR with 1 head takes time 8(n413)) and 2 heads to check vvR (for the same

reason). To cross u 2 with some head takes time 0(n), but upon meeting the

first letter 2 we have only time 0(n213) left. Hence all 4 heads seem neces

sary, although there always are 2 together. (We leave it to the reader toshow

how a 4-head RTTM, or even a 4-head 2-way real-time deterministic finite auto

maton, can recognize L such that at all times during this recognition process

2 heads scan the same square.)

If this conjecture is true, then LE RH(4) -RH(3). But in this case,

LE RH(4) -RH(3) together with AS i R(4) does not, without additional consi

derations, imply Lu L * AS i RH(4).

By the proof technique of Theorem 2.1 we precluded such a flaw in our

argument. Due to the form of ~+l' the above line of reasoning works also
H

for ~+l itself. Hence, ~+l E R~k+1) - R (k).

COROLLARY 2.2. There is a language which can be recognized by k+1 pushdown

stores in real-time (and hence by a (k+1}-RTTM) but not by any k-head RTTM.

The relation between tapes and pushdown stores is direct; clearly 2k

pushdown stores can simulate k tapes in real-time. Hence from AANDERAA's
p

result we have (if R (k) denotes the class of languages recognizable by k

pushdown stores in real-time}:

Rp(k+1) - R(k) ~ ~;

RP (k) c RP (k+1)

R(k) c R(k+1)

R (k) c RP (2k)

By the result above it follows that we can replace R by RH in the first

formula above. It also follows that

H
R(k+l) - R (k) ~ 0;

H
CR (k+l).

By using LEONG & SEIFERAS' [1977] result we obtain

H
LEMMA 2.3. R(k) ~ R (k) c R(4k-4).

In the diagram below we depict the present state of affairs with

regard to the inclusion relations between the families R(k) and RH(k).

R(4k~4l

I
I
I

t :RH(4)
R(4l,_ - -'r ---

H
R (1) =R (1)

Figure 3

.9

Connection by a solid arrow from X to Y means that Xis strictly included

in Y. Connection by a dotted arrow from X to Y means that Xis included in

Y but that it is not yet known whether inclusion is strict. The main open

problem here is whether R(k) is strictly included in RH(kJ, k ~ 2.

3. CLOSURE PROPERTIES

In ROSENBERG [1967] several closure properties of the class R of lan

guages accepted by real-time Turing machines were investigated. He showed

10

that R is closed under union, intersection, complementation, suffixing with

a regular set, inverse real-time transducer mapping and minimization. R is

not closed under concatenation (even with regular sets}, Kleene star, re

versal, (nonerasing) homomorphism, inverse nondeterministic sequential

machine mapping, quotient with a regular set, maximization and prefixing

with a regular set. R is incomparable with the (deterministic) context free

languages, contains ambiguous context free languages and is contained in

the deterministic context sensitive languages.

With respect to restrictions on the number of tapes, ROSENBERG noted

that R(k) is closed under complementation, union with regular sets, inter

section with regular sets, suffixing with regular sets, inverse gsm mapping

and minimi?ation. R(l) is not closed under union or intersection nor under

inverse real-time transducer mapping. He furthermore conjectured that the

union (intersection) of A,B with A E R(k 1) and BE R(k 2), can yield a language

in R(k1+k2) - R(k1+k2-1).

Here we shall show that this conjecture is true, and also investigate

some other closure properties of (number of) tapes restricted real-time lan

guages. It will, e.g., appear that R(k) is closed under several marked
H

operations; and that the closure of R (k) under these marked operations is

equivalent to the equality of R(k) and RH(k) (modulo a trivial restriction).

LEMMA 3.1. R(k) is closed under marked union, marked concatenation and

marked Kleene star.

PROOF. Marked union is obvious. We prove marked Kleene star. Let M beak-

* * RTI'M recognizing L. We construct a k-RTTM M recognizing (L{¢}) as follows.

* M works just like M with the following modifications. Upon reading a

marker¢, the machine remembers whether or not all previous input segments

in between 2 consecutive markers were words in L. It creates clean storage

by maintaining markers on each storage tape delineating the work space in

use of the current computation segment in between reading markers. Similar

ly we prove closure under marked concatenation. D

According to FISCHER, MEYER & ROSENBERG [1972], the family of multi

head RTI'M languages equals Rand hence the (non) closure properties

11

mentioned before apply. If we look at multihead RTTM languages in RH(k) the

situation :is different. Here not more is known than we can readily deduce

from the r12sults on R(k) and simulations like LEONG & SEIFERAS [1977]. With

the preceding results we can deduce something more. Clearly, RH(k) is closed

under complementation, union and intersection with regular sets, suffixing

with regular sets, inverse gsm mapping and minimization. If RH(k) = R(k),

which is a well known open problem, then all results hold even if we denote

by k only the total number of heads on the storage tapes, and don't take

into accownt the way in which the heads are distributed.

Clearly, RH(k) is closed under marked union.

LEMMA 3.2~)RH(k) is closed under marked concatenation iff RH(k) is closed
H

under mark,ed Kleene star iff R (k) = R (k) •

PROOF. (i) Suppose that RH(k) is closed under marked concatenation. Then,

for each language L (£ E: L) in RH(k) we have that ¾*L belongs to RH(k).

However, every k-head RTTM recognizing ¾*L gets reduced to essentially a

k-tape RTTIM, in the manner described in the proof of Theorem 2.1, by the
H

time it starts recognizing L. Hence the closure of R (k) under marked con-

catenation implies RH(k) = R(k). By Lemma 3.1, RH(k) = R(k) implies that

RH(k) is closed under marked concatenation.

(ii) Now 1,2t L be any language in RH (k). It is easy to see that

Lu L * ¾ E: RH(k). Consider the language L' = (LUL*¾)*, and apply a

similar ar9ument as in (i). D

Note that by the real-time multitape simulation result the closure of
H

R (k) under marked concatenation (marked Kleene star) is contained in
H

R(4k-4) and hence in R (4k-4). The following result settles a conjecture

by ROSENBERG [196 7] •

LEMMA 3.3. R(k) is not closed under union or intersection, fork> 0. If

kl + k 2 ~ 1 and we take A E: R(k 1) and B E: R(k2), then A u B, An B E: R(k 1+k2)

but not necessarily Au B, An BE R(k 1+k 2-1).

PROOF. Let¾ denote AANDERAA's language over k generators. Then Ak 1 E R(k 1)

and Ak2 E R(k2). Let Iki be the alphabet of Aki' i = 1,2, and let Lkl nik2= 0.

Then it is easy to see that L1 E R(k 1) and L2 E: R(k2), where L 1 and L2 are

1) The markers in an input, due to marked concatenation or marked Kleene star,
serve to indicate the beginning of a new task. Accordingly, it seems reason-
able to assume that recognizing RTTMs ignore, subsequent to reading such a
marker, the garbage left on the storage tapes by the preceding computation
segment. Under these conditions the proofs of Lemma's 3.2 and 3.9 hold.

12

defined as:

* (* {P. \
Ll -- shuffle (1\ , Ek) n \ (Ek u Ek) P. E Ek } /

1 2 ' 1 2
1. 1. 1 .

* (* {P. \
L2 ·- shuffle (1\ , Ek) n \ (Ek u Ek) P. EEk}/.

1. 1.
2 1 1 2 2 .'

Now L1 u L2 = 1'\.kl+k2 and hence belongs to R(k 1+k 2) - R(k 1+k2-1). It fol

lows, since our Turing ma~hines are dete~ministic, that Akj +k2 _ E

E R(k 1+k 2) - R(k 1+k2-1), L1 E R(k 1) and L2 E R(k 2). Hence L1 n L2 =

E R(k 1+k2) R(k1+k2-1). It remains to be proven that for A E: R(k 1) and

BE R(k2) it holds that Au B, An BE R(k 1+k2). But it is easy to construct

a (k 1+k2)-RTTM which checks for inclusion in A with k 1 tapes and for inclu

sion in B with the remaining k 2 tapes. D

Since R is closed under the Boolean operations (which also follows

from the above Lemma) we can generate infinite proper hierarchies of lan

guage families by taking closures of R(k 1) and R(k 2) with respect ton and

u, all of which are included in R.

Since 1\+:t i R8 (k) for all k ~ 0, we also obtain the analogue for

multihead tape units.

If k 1 + k2 ~ 1 and
H H

COROLLARY 3.4. we take A E: R (k 1)and B ER (k 2) then
H H

A U B, A n B E R (k 1+k2), but not necessarily AU B, An B E R (k 1+k2-1).

The only remaining operation, investigated by ROSENBERG, under which

R is closed, and with respect to which the status of R(k) is open, is the

inverse real-time transducer mapping.

LEMMA 3.5. R(k)i is not closed under inverse real-time transducer mapping.

The closure of R(k 1) under inverse k 2-RTTM mapping is contained in R(k 1+k 2)

but not in R(k 1+k2-1).

PROOF. That the~ closure of R(k 1) under inverse k 2-RTTM mapping is contained

in R(k 1+k 2) was demonstrated by ROSENBERG [1967]. If we transduce Aki+k2 by

a k 2-RTTM M which works as described below we obtain a language Ak 1 in R(k 1)

of which the inverse k 2-RTTM mapping is contained in R(k 1+k 2) - R(k 1+k2-1).

13

Let Ekl be the alphabet of Akl and let Lk2 be the alphabet of Ak2• If M

gets an input symbol E rk2 which drives it into an accepting state for Ak2 ,

M outputs 1.P. (1.,P. E rk 1). If M gets an input symbol E rk2 which drives
l. l. l. l.

it into a nonaccepting state it outputs 0.P. (0. ,P. E rk1). If M gets an
l. l. l. l.

input symbol E rk1 it outputs that symbol. Hence, clearly a string

* w E (tk1 u rk2) is mapped to a string in Ak 1 (if M is an Ak2 recognizer)

□

COROLLARY 3.6. The closure

contained in RH(k 1+k2) but

of RH(k 1) under inverse k 2-head R'I'TM mapping is

not in RH(k 1+k2-1).

An important operation, not treated in ROSENBERG [1967], is the shuffle

operation.

LEMMA 3.7. R is not closed under shuffle.

PROOF. In ROSENBERG [1967] it is proved that the language

I L * = {0,1}, XE L}

is not in R. The same proof applies to

* {0,1}, x EE, h{0) = a and h(l)

But,

= b}.

L' = shuffle ({x2h(xR) Ix E {o,1}*,h(O)=a and h(l)=b},r*> n r*2{a,b}*,

with

{x2h(xR) lxE{o,1}*, h(0)=a andh(l)=b}ER(l) and r*2{a,b}* E R(0).

* * Since L' i Rand r 2{a,b} is regular, the shuffle component of L' does not

belong to Reither. D

Hence the shuffle of a language in R(l) and a language in R(0) (even

r*> does not need to belong to R. If, however, the languages which are

shuffled are over disjoint alphabets, and the first one is in R(k 1) and the

14

second one in R(k2), then their shuffle is clearly in R(k 1+k2). Let L1 and

L2 be the languages defined in the proof of Lemma 3.3. Then L1 E R(k1) and

L2 E R(k2). Now take L1 and L2 over disjoint alphabets, say rk 1 u Lk 2 and

rk1 u Ik2 but interpret the primed and unprimed symbols as being the same.

Then, to recognize shuffle (L1,L2J is exactly the same problem as to recog

nize Ak 1+k2 • Hence we have

LEMMA 3.8. If A E R(k1) and BE R(k 2), and the alphabets of A and Bare dis

joint, then shuffle (A,B) E R(k 1+k2) but shuffle (A,B) does not need to be

long to R(k1+k2-1). Analogously, the Lemma holds for the corresponding mul

tihead RTTM's.

There is a deterministic context free language not in R, cf. ROSENBERG

[1967]. It is easy to see that {a°bncnln ~ 1} is in R(l) and that furthermore

R c DLBA. Hence Figure 4 gives the inclusion diagram.

CF

DCF

DLBA

R
; H f R (k) (or R (=))
: R(k-1) (or R (k-1))

R(l)

R(O)=REG

Figure 4. The position of R(k} (or RH(k)), k ~ 1, in the linguistic

hierarchy. (No connection by a directed sequence of arrows

means incomparable).

It is not difficult to show that all nonclosure results for R, derived by

ROSENBERG, hold by the same counterexamples for R(l), and therefore for each

R(k), k ~ 1. we also mention that already R(l) contains inherently ambiguous

context free languages, viz., {aibicj I i,j ~ 1} u {aibjcj I i,j ~ 1} is

inherently ambiguous context free and easily recognized by a 1-RTTM.

In SAVITCH and VITANYI [1977] the jump Turing machine was introduced.

A k-head jump Turing machine is a k-head Turing machine, where at each step

15

the k heads may be redistributed over the currently scanned tape squares,

i.e., instantaneous head-to-head jumps are allowed, irrespective of the

distances in between the heads concerned. It was shown that a k-head jump

Turing machine can be simulated in linear time by a (Bk-8)-tape Turing ma

chine. KOSARAJU [1979] has claimed that, by a complicated simulation, a

k-head jump Turing machine can be simulated in real-time by a multitape

Turing machine. It is at present unresolved whether k heads are more power

ful thank tapes in real-time. A possibly easier problem is to show that k

heads with jumps are more powerful thank tapes in real-time. The next

Lemma shows that these matters are related.

1)
LEMMA 3.9.

(i) R(k) c RJ(k) iff RH(k) c RJ(k);
H H J

(ii) if R(k) c R (k) then R (k) c R (k).

J
PROOF. (i) The "if" part is obvious. Now suppose that R(k) c R (k) and

RH (k) = R~r (k) • Let L be a language in RH (k) - R(k). By first feeding ¾ we
H

can always reduce a k-head RTTM to a k-tape RTTM. Hence¾ u ¾ * L /. R (k).

But clearly¾ u ¾*LE RJ(k), since the heads may jump together when the

machine reads the marker. Therefore, the assumption leads to a contradic

tion and the "only if" part holds.

(ii) is proved similarly. 0

J
The above Lemma is clearly due to the fact that R (k) (the class of

languages accepted in real-time by k-head jump Turing machines) is closed

under marked concatenation and marked Kleene star, as is R(k), whereas the
H

closure of R (k) under these operations is equivalent to the equality of

RH(k) and R(k).l)

4. REAL-TIME 2-WAY MULTIHEAD FINITE AUTOMATA WITH AND WITHOUT JUMPS

Recall that we saw before that KOSARAJU [1979] has shown that the jump

Turing machine as defined in SAVITCH & VITANYI [1977] may be simulated in

real-time by multitape Turing machines. Hence RJ = R (where RJ = u;=l RJ(k)).

In this section we show that for 2-way multihead finite automata the head

to-head jump facility does extend the class of languages accepted in real-

16

time. Incidentally, this shows also that the class of languages accepted

by real-time 2-way multihead finite automata is strictly included in R.

To obtain the result, we give several example languages which are accept

able in real-time by 2-way 2-head finite automata with jumps, but not by

any real-time 2-way multihead finite automaton without jumps. Hence these

languages belong to R, and constitute nontrivial examples of the power of

- - * * the head-to-head jump option. Let in the following h: {0,1,0,1} ~ {0,1}

be a homomorphism which is defined by h(a) = h(a) = a for a E {0,1}.

L1 = {wvaavR I wv E {0,1,0,I}*, v E {0,1}*, a E {0,1}, h(v) = v};

L2 = {wbucva I WU E {0,1,0,I}*, VE {0,1}*, CE {o,I}, lul = !vi,

a E {0,1}, b E {0,1,0,1}, h(b) = a}.

The reader will easily figure out more complicated examples along

these lines. Note that L1, L2 are linear context free but not determinis

tic context free.

LEMMA 4.1. L1 , L2 are accepted by real-time 2-way 2-head finite automata

with jumps.

PROOF. Let M be a 2-way 2-head finite automaton with jumps as follows. The

front head reads from left to right one letter at a time. Whenever this

first head reads a barred letter it calls the second head to its present

position. This second head starts reading from right to left one letter at

a time. So Mis able to recognize L1• A minor variation of M can recognize

½· D

LEMMA 4.2. L1 ,L2 are not accepted by any real-time 2-way multihead finite

automation without jumps.

PROOF. We prov~ the Lemma for L1• Suppose L1 is recognized by a k-head

real-time 2-way finite automaton~\ but not by any (k-1)-head one. Since

L1 is not regular, such a k must be greater than 1. Since Mk is real-time,

there must be at least one head which moves right at each step. For each

17

constant c we can find an input word w such that, during the processing of

w by Mk, some head lags behind the vanguard head more than c squares.

If this were not so, then all heads are at all times within c squares of

the vanguard head, and we could replace~ by an ordinary finite automaton
* - - c k-1 with a finite-state control Q = Q x {0,1,0,1} x {0,1, ••• ,c-1} , where

Q is the finite-state control of~• which keeps track of the symbols under

the k-1 nonvanguard heads of the simulated machine. This would imply that

L1 is regular: contradiction. Since by assumption L1 is not recognizable by

a (k-1)-head real-time 2-way finite automaton, for each constant c we can

find an input word w such that, during the processing of w by~• all k-1

heads lag behind the vanguard head more than c squares. For suppose this

were not the case. Since the vanguard head moves right at each step, at

least one particular head must be at all times within c squares of the

vanguard head, and similarly to above, we would be able to replace Mk hy

* an (k-1)-head machine ~-l with a finite-state control

Q* = Q x {0,1,0,l}c x {0,1, ••• ,c-1} which keeps also track of the symbol

under the neighboring head of the vanguard head. Contrary to the assump

tion, this would imply the falsehood of the Lennna for k-1. So suppose that,

subsequent to processing an input prefix, all other heads of~ lag behind

the vanguard head more than c squares, and the vanguard head now starts to
- - * read suffix w E {O, 1,0, 1} , lw I ~ c+l. Hence, no other head of Mk will

ever scan a symbol from w. Let the input prefix, which forces the k-1 non

vanguard heads more than c squares behind the vanguard head, be v. At time

lvl + 1, all these k-1 heads scan a particular element of v. Now consider

a suffix ensemble W = {O,l}c/2{6}{0,l}c/2 • The number of distinct positions

on v of these k-1 heads, multiplied by the number of distinct states of

the finite control~ can attain when the vanguard head crosses O, is

bounded above by (c/2)k-l x #g. The number of prefixes in {O,l}c/2 is 2c/2 •

If 2c/2 ~ (c/2)k-l x #Q, which happens for c large enough, two distinct

such prefixes, say u 1 and u2 , lead to the same instantaneous description

of~ after processing vu1 and vu2• Therefore, Mk accepts either both
- R ·· R vu1ou1 and vu20u1 or rejects them both. Since u 1 ~ u2 it follows that i~

does not accept L1• The proof that L2 is not accepted by any real-time 2-

way multihead finite automaton proceeds similarly. D

18

Hence we have:

THEOREM 4.3. (i). There are languages recognized by real-time 2-way 2-head

finite automat:a with jumps which are not recognized by any real-time 2-way

multihead finj~te automaton without jumps.

(ii) The class of languages accepted by real-time 2-way k-head finite auto

mata with jumps properly includes the class of languages accepted by such

automata without jumps.

Computations of 1-way multihead finite automata have been considered

by YAO & RIVEST [1978]. They show that k+1 heads are better thank heads

for both the deterministic and the nondeterministic versions of the machine.

Furthermore, they show that the k-head nondeterministic variety is strict

ly more powerful than the k-head deterministic one. Recently, JANIGA [1979]

studied the analog questions for 2-way real-time multihead deterministic

(resp. nondeterministic) finite automata, from now on called 2DRTFA and

2NRTFA, respectively. He obtained, mutatis mutandis, the same results for

the 2-way real-time machines as did YAO and RIVEST for the 1-way (no time
k

limit) variety. Whereas the latter used "palindromes" of (2) strings to

obtain their result, for the 2-way real-time case the former employed

strings of k palindromes. E.g., let PALM be the set of palindromes in

* * k {0,1} {2} {0,1.} • Let Pk= (PALM{*}) • Then Pk is recognized by a (k+1)-head

* 2DRTFA but not by any k-head 2NRTFA. {0,1,2,*} -Pk is accepted by a 2-head
00

2NRTFA but not by any k-head 2DRTFA. Now consider the lanquage P = Uk=l Pk.

It is easy to see that Pis recognized by a 2-head 2DRTFA with jumps, but

that Pis not accepted by any multihead 2NRTFA without jumps because of

JANIGA's result. Therefore we have:

THEOREM 4. 4. ~~he class of languages accepted by k-head 2NRTFA with jumps

properly includes the class of languages accepted by k-head 2NRTFA with

out jumps, k 2~ 2. The same holds for 2DRTFA's {i.e. Theorem 4.3).

Another ma":ter which we would like to decide is the power of jumps

versus nondeterminism for the machines.

THEOREM 4.5. ~~here is a language acceptable by a 2-head 2NRTFA which is

19

not acceptable by any IlRlltihead 2DRTFA with jumps.

PROOF. The language Lin the proof of Lemma 3.7 was not in R, and hence, by

KOSARAJU's [1979] result, is not acceptable by any multihead 2DRTFA with

jumps. It is easy to see how L can be accepted by a 2-head 2NRTFA. D

The only question remaining seems to be whether (k+l)-head 2DRTFA's

with jumps are more powerful thank-head 2DRTFA's with jumps, and the same

matter for the nondeterministic versions. For a proof we might use the lan

guage Jk over the alphabet

r = {0,1} x F x M x Q,

where

F = {f I f is a total function f: {O,l}k x Q + {0,1}},

M = {m Im is a total function m: {1,2, ••• ,k} x Q +

+ {left, right, no move} and m(l,q) = right

for all q E Q}.

The interpretation is as follows. Jk is recognized by a k-head 2DRTFA

M with state set Q. Suppose M has an input s 1s 2 ••• sisi+1 ••• sn on its tape,

s. = (a. ,f. ,m. ,q.) E r, 1 $ i $ n. At the i-th step the vanguard head 1 of
l. l. l. l. l.

M reads s. in state q. 1 E Q and outputs f. (a. 1,a. 2 , ••• ,a. ,q. 1) where aJ.h
i i- i J J Jk i-

is the first element of the symbol read by the head hat that moment,

1 $ h $ k. Subsequently, M repositions head h according to m. (h ,q.) ,
l. l.

1 $ h $ k, and enters state q .•
l.

THEOREM 4.6. Jk+l is accepted by a (k+l)-head 2DRTFA but not by any k-head

2NRTFA with jumps. Hence (k+l)-head 2DRTFA (2NRTFA) with jumps are strictly

more powerful thank-head 2DRTFA (2NRTFA) with jumps.

PROOF. k=l. 1-head 2NRTFA accept only regular sets, and J 2 is not regular.

20

(It is easy to find a regular restriction on J 2 which yields a language iso

morphic with {On1n In~ 1}.)

k > 1. By using them-element of the input symbols we can always necessitate

the comparison of k+1 pieces of input which are arbitrary far apart and,

say, of length x. Hence we would have to compare k+1 nonoverlapping words

over {0,1} of length x, using k heads, in x steps. However, in x steps the

k-head 2NRTFA with jumps can access at most kx + r1ogJQll bits of relevant

information which is smaller than (k+1}x if we choose x large enough. 0

If we take Jk equal to Jk but without "left" in the range of m EM we

can similarly prove:

COROLLARY 4. 7. Jk+l is accep'ted by a (}:+1)-head 1DRTFA bu't no't by any k-head

1NRTFA wi'th jumps. This implies 'tha't all inclusions according 'to 'the number

of heads in 'the 1XRTFA are proper, where X E {D,N,D wi'th jumps, N wi'th jumps}.

All results above hold whether or not we assume end markers, or that

the heads can detect coincidence.

We think that Theorem 4.3 also holds for the corresponding Turing ma

chine versions which are allowed to modify the contents of each square on

the storage tapes but a bounded number of times, for some fixed constant

bound.

Resuming, we obtain, for each k ~ 1, the inclusion graph of Figure 5.

All inclusions are proper. Classes which are not connected by a sequence of

directed arrows are incomparable. Hence we see that there are 3 distinct

parameters: determinism-nondeterminism, no jumps-jumps, and the number of

heads. We observe that jumps+ nondeterminism cannot make up for an addition

al head; additional heads+ nondeterminism cannot make up for jumps; and

jumps+ additional heads cannot make up for nondeterminism. The same picture

holds for the one-directional variant. If we consider one-direction versus

two-direction as an additional parameter, we observe that, similar to before,

a gain in power according to one of the four of these parameters, cannot be

compensated for by gain in power according to the remaining three.

21

(k+1)-2NRTFA +· JUMPS

/~
(k+1)-2NRTFA k-2NRTFA + JUMPS

(k+ 1) - 2D RTFA k-2DRTFA + JUMPS

k-2DRTFA

Figure 5. Inclusion diagram for the computing power of real-time 2-way mul

tihead finite automata according to number of heads, determinism

and jump option.

Below we shall briefly consider the writing deterministic variants of

the discussed automata. We denote these devices by putting a "W" before "FA"

in the used acronym. rt is clear that such devices are very near in com

puting power to multihead RTTM's, and in fact (where<(~) means "less (or

equally) powerful"):

(k-1)-head RTTM ~ k-head 2DRTWFA ~ k-head RTTM,

and at least one of the inclusions in(*) is proper by Theorem 2.1. Since a

k-head RTTM is, but for the initial inscription of the input on the storage

tape, the same as a (k+l)-head 2DRTWFA with a read-only vanguard head, it

is to be assumed that both inclusions above are proper.

22

LEMMA 4.8. k-head 2DRTWFA < k-head RTTM, for all k ~ 1. (For k = 0 the Lemma

has no meaning.)

PROOF. The base case k = 1 is obvious, since 1-head 2DRTWFA's accept only

regular sets and there is a 1-RTTM which accepts the nonregular language A1•

We prove the Lemma by induction on the number of heads, viz., by showing

J\ € k-head RTI'M - k-head 2DRTWFA. Suppose the Lemma holds for 1,2, ••• ,k-1

but not fork. Then¾ is accepted by a J~-head 2DRTWFA ~ but, according to

Theorem 2.1 and (*) not by any (k-1)-head 2DRTWFA. Therefore, like in the

proof of Lennna 4.2, we can find, for each constant c, an input word Ve such

that at the v -th step all k-1 nonvanguard heads lag behind the vanguard
C

head at least c squares in the computation of Mk. Hence, for the input en-

semble {v} W, with
C

w = { w € L~ I I w I ::;; C and for all i, 1::;; i::;; k, lwl. ~ O},
l.

where lwl. denotes the number of 0. 'sand 1. 's subtracted by the number
l. l. l.

of Pi's in w, the following holds. A\ becomes in effect a (k-1)-head RTTM

with a particular initial instantaneous description, viz, the state of the

finite control, the contents of the first v squares and the distribution
C

of the k-1 nonvanguard heads, subsequent to the processing of v, since on
C

the input ensemble {v} W the nonvanguard heads shall never read the
C

vanguard heads writing on the W segment of the input. For the input en-

semble {vc} W the task for Mk is to recognize {vc} W n ¾' which set is

equal to {vc} (W n ¾'· Hence this task for A\ entails the recognition of

W n ¾ by a (k-1)-head RTTM M with the described initial instantaneous

description. Observing that AANDERAA [1974] shows in fact that no (k-1)-

* RTTM M can distinguish between¾ n Wand W-¾ (instead of, more weakly,
C C * between¾ n Ek and Ek - ¾> for some large enough c depending only on M,

* while M may be assumed to have initially inscribed storage tapes, we can,

similarly to the proof of Theorem 2.1, show that there is a word v in W which

* fools M and therefore Mk. Hence our assumption that Mk recognizes¾ leads

to a contradiction and the Lennna is proven. D

From(*) together with Theorem 2.1 it follows that k-head 2DRTWFA <

(k+2)-head 2DRTWFA. Lennna 4.8 and(*) yield:

23

COROLLARY 4.9. k-head 2DR'IWFA < (k+l)-head 2DR'IWFA for all k ~ 1, the case

for k=l being obvious.

For the lefthand inclusion of (*) it holds that for k=l both classes

are equal in recognition power. For k=2, however, the inclusion is proper.

LEMMA 4.10. (i) 0-RTTM = 1-head 2DR'IWFA

(ii} 1-RTTM < 2-head 2DR'IWFA.

PROOF. (i) is obvious.

(ii) VALIEV [1970] has shown, using RABIN's [1963] techniques, that

L = {x2x I x E {0,1}* and 2 t {0,1}} cannot be recognized by 1-RTTMs. It is

easy to see how L can be recognized by a 2-head 2DR'IWFA (or by a 2-head

lDRTFA for that matter). D

The improvement of Lemma 4.10 to the general case does not seem easy.

In fact, it seems about as hard as proving that k-head RT'l'Ms are more power

ful than k-RT'l'Ms. A possible candidate to distinguish (k-1)-head RT'l'Ms

from k-head 2DR'IWFA's is the following language:

I * * vk-l = ~-l u {w*v w = a 1a 2 ••• am E rk-l' v E {0,1} ,

lvl S lwl and for v = b 1b 2 ••• bl it holds that for

1 sis l, bi= 1 if a 1 ••• ai E ~-land bi= 0 if

a 1 ••• ai t ~-l; furthermore, for some i, 1 sis k-1,

the number of P 'sin w exceeds the number of Oi's and
i

1. 'sin w}
i

Vk-l can be recognized by a k-head DR'IWFA as follows. At each step the

vanguard head notes on an extra track whether the processed prefix belongs

to ~-l' while the remaining k-1 heads simulate the required k-1 pushdown

stores. When the vanguard head reaches the marker* one of the stores must

be empty, i.e., one head must be at the start square. This head now starts

to compare the ~cceptance record against v, which is read by the vanguard

head. Likely candidates for showing a difference between machine classes

which are very close in recognition power will be the subject matter for

the entire next section.

24

5. ON THE RELl'.\.TIVE POWER OF TAPES·, HEADS AND JUMP HEADS IN REAL-TIME

TURING MACHINES

One of the major drawbacks in the game of showing a difference in power

between two very similar machine types A and B such as considered in this

paper, apart :from the difficulties involved in giving a proof, is to find

some likely candidates for showing a difference between type A and type B.

RABIN's [1963] language in R(2)-R(1) did not generalize in an obvious way

to show a difference between R(k+1) and R(k), k > 1. AANDERAA [1974] provid

ed a uniform construction for a language in R(k+1)-R(k), k ~ 1. No likely
H

candidates for showing the difference between, e.g., R(k) and R (k) or

RH(k) and RJ(k) have been proposed, except possibly {xy2x I xy E {o,1}*}

for showing a difference between RH(2) and R(2). In the present section we

propose to fill this gap, besides proving some facts about the candidates.

The only languages known to be in R-R (k) are the languages Ak . , i ~ 1,
+1.

but unfortunately these languages are not in RH(k) either. PAUL, SEIFERAS

and SIMON [19B0] have, independently, by a method similar to the one in

troduced in VITANYI [1979] (cf. Theorem 2.1), shown that ¾+l is not re

cognized by a k-head RTTM with head-to-head jumps either, and therefore
J J J

R (k) c R (k+l) , for all k, and ¾+l q: R (k). (This, by the way, implies

the analogs of Lemma 4.8 and Corollary 4.9 for the jump versions of the

machines occurring there). Hence the only candidates of which we have nega

tive results are not acceptable either by placing all heads on the same

tape nor by adding the jump option. From the existing simulation results it

is also clear that there cannot be a single language L which is acceptable

by some k-head (jump) RTTM but not by any multitape (multihead) RTTM, thus

proving the required results by a single example as in section 4. Now con

sider a language which is like¾ but with the extra requirement that at

all times during the processing of the input w by a k stack machine at

least 2 of the stacks are of equal length for w to be accepted. More for

mally, if lvl:i. denotes the number of 0i's and 1i's subtracted by the number

of P 'sin v, tl,en:
i

w E ¾ & Vv E prefix (w) 3i,j E {1,2, ••• ,k}

[i -I j & llvl--lvl-1 s; 1]}
1. J

25

H J
LEMMA 5.1. ¾ / R(k-2),R (k-2),R (k-2).

PROOF. Suppose, by way of contradiction, that the (k-2)-RTTM H accepts Ek.

* Now change M to a (k-2)-RTTM M which accepts ¾-l by having the finite con-

trol of M, for every letter Ok-l'lk-l'Pk-l read Ok-l0k,lk-llk,Pk-lpk' re

spectively, and speed up the storage handling as much as required. Then

* ¾-l is acc_epted by the (k-2)-RTTM M contradicting known results.
H J

Ek t R (k-2) then follows by Theorem 2.1 and for Ek t R (k-2) see the in-

troduction of this section. D

(The case k = 2 above is obvious since E2 is not regular.) Note that

* AANDERAA's proof does not show that Ek t R(k-1) since the subset SEk used

in AANDERAA's proof (which in fact shows that no (k-1)-RTI'M can distinguish

* * * between SEk n ¾ and SEk n (Ek-1\)) is disjoint from¾·

H
LEMMA 5.2. E2 E R(l), E3 ER (2).

PROOF. E2 E R(l) is obvious. E3 E RH(2): keep the 3 stacks on different

tracks of the recognizing 2-head RTTM M. Whenever there is a change in pairs

of equal size stacks, all 3 stacks must be of equal length, otherwise we

reject the input. Both heads of M therefore come together with everything

to the right of th.em blank, and therefore the role of the "fat" head, main

taining 2 tracks, can change. D

We conjecture that E3 t R(2). To prove this conjecture also would prove
H that R(2) c R (2), a well-known open problem. In general we conjecture that

Ek t R(k), k ~ 2, which for the case k = 3 would show that the LEONG

SEIFERAS simulation is optimal for 2 heads. By Lemma 5.1 and the fact that

a multihead machine can detect coincidence we have that

LEMMA 5.3. Ek E RH(k) - RH(k-2).

J
LEMMA 5.4. Ek ER (k-1} for all k > 1.

PROOF. Keep the k stacks concerned on k different tracks of the (k-1)-head

jump RTTM M recognizing Ek. Since at all times, during the processing of a

* candidate word w E Ek, 2 of the tracks must contain stacks of equal height,

26

at any time the pair of tracks concerned changes somewhere a pair of equal

height tracks must be formed, thus freeing a head which can jump to the

place where it is needed. If at any time all stack heights diverge M rejects

the prefix processed and also every addition to it. 0

J J
COROLLARY 5.5. Ek ER (k-1) - R (k-2).

We conjecture that Ek cannot be recognized by a (k-1)-head RTTM for

k ~ 4. A proof of this fact would show that RH(k) c RJ(k) fork~ 3, leaving

open the case k = 2. Although we have an upper bound on the recognition of

Ek by multihead RTTM's (with respect to the number of heads needed) we have

not yet a good upper bound for recognition by multitape RTTM's except by the

crude Ek E R(4k-4) offered by Lemma 5.3 and the LEONG-SEIFERAS' result.

LEMMA 5.6. E2 E R(l); E3 E R(4); Ek E R(2k-2), k ~ 3.

PROOF. E2 E R(l) is obvious. E3 E R(4): we can check for inclusion in A3
using 3 stacks and determine whether the difference between the lowest and

the highest stack is less than 2 by a 4-th stack. The identity of the cur

rent pair of equal-size stacks can be maintained in the finite control.

Similarly, we can keep track of the k-2 consecutive differences in height

concerned in the acceptance of Ek by k-2 stacks, thus assuring Ek E R(2k-2),

k ~ 3. 0

To use k-2 stacks for keeping track of k-2 counters seems somewhat

extravagant. It is known, P. FISCHER, MEYER and ROSENBERG [1968], that an

arbitrary number of counters can be linear time simulated by a 1-tape Turing

machine, but the real-time simulation is still an open problem. (Note, that

the related origin crossing problem is solvable in real-time by a 1-tape

Turing machine, M. FISCHER and ROSENBERG [1968b]). Hence, for the time be

ing, Lemma 5.6 appears to be the best we can do.

we can generalize the above approach in several directions. For in

stance, by requiring that i of the k stacks have the same height at all

times during the processing of the input. Formally,

E
(~)

1.

= {w Er: I w E 1\: & Vv E prefix(w) ~j 1 ,j 2 , ••• ,ji E {1, ••• ,k}

jl<j2< ••• <ji

27

[j !vi. -!vi. I ;o; 1 for all j£,jm E {j 1 ,j 2 , ... ,ji}J}.
J £ Jm

These languages are especially suited to jump Turing machines since it

is easily seen that:

LEMMA 5.8. Ek E RJ(k-i+l).

(i)

Furthermore,

LEMMA 5.9.

(i) E
(~)

E RJ (k-i+l) - RJ (k-i)

1.

(ii) E
(~)

E RH (k-i+l) - RH (k-i)

1.

and

H
- RH (k-i) E E R (k)

(~)
1.

(iii) E
(~)

E R (2k-i) - R(k-i).

1.

for i > k/2

for i ;o; k/2.

The latter two Lemmas are proven similar to the previous Lemmas con

cerning Ek (=Ek). Some border cases with i ~ k/2 yield: E 5 E RH(3),
H (2) (3)

E 5 ER (2) c R(4), and, because of the real-time simulation of heads by

(4)
tapes in LEONG and SEIFERAS [1977], it follows from Lemma 5 . 9 (ii) that E k E

R(4 (k-i)) for i > k/2 and therefore, e.g., E k

(3k/ 4)
than what we obtain from Lemma 5.9(iii).

(.)
E R(k) which is better1

Lucking at the above we see there is a relation between the optimality

of the real-time simulations of jump heads by heads, and heads by tapes, and

how many tapes or heads are needed to recognize Ek. Let f(k) be the
(i)

minimum number of tapes (heads) needed for simulating k jump heads in real-

time. Then, if we need at least k tapes (heads) for accepting E k , i < k/2,
(i)

28

then

f(k-i+l) :::c: k.

Hence the conjecture that we need k or more tapes (heads) to recognize E
(~)

for i < k/2 can be dissolved if we can improve KOSARAJU's result to "less1

than 2 k tapes (heads) are necessary for the real-time simulation of k jump

heads"

Yet another language sequence we might cons:der is~ - Ek, k :::c: 1.

Since~ - Ek contains AANDERAA's subset~ n Sik, it follows that

~ - Ek i R(k-1) ,RH (k-1) ,RJ (k-1). We also see that ~ - Ek E RH (k) ,RJ (k).

With respect to acceptance by k-RTTM's the same upper bounds apply as argued

for Ek. This is not so for the languages~ - Ek, where Ek is like Ek but

the condition of two stack heights being equal only holds at the end of the

processing of the input word, i.e.,

= {w Er: I w E ~ & 3i,j E {1, ••• ,kHllwl.-lwl.l :s; 1]}.
i~j 1 J

Here we have that A2 - E2 E R(3) but, presumably, that A2 - E2 i R(2). By

the now familiar reasoning, if the latter case is affirmative then

A2*(A2-E2) E RJ(2) - RH(2), settling the question whether or not

RH(2) c RJ (2).

Some of the candidates to try for solving the various questions met

are given in the table below.

k=2: L = {xy2x I xy E {o,1}*} A2* (A2-E2)

E3, A2 - E'
2

'
arbitrary k :::0: 3: Ek, ~-~ Ek+1

--

Acknowledgements. J. SEIFERAS pointed out to me that the earlier version of

the proof of Theorem 2.1 in VITANYI [1979] may have been prone to (but wasn't)

29

circularity of the argument. Discussions with W. SAVITCH were valuable for

section 4.

REFERENCES

AANDERAA, s:.o. (1974), On k-tape versus (k-1)-tape real time computation,

SIAM AMS Proceedings, Vol. 7 (Complexity of Computation), 75-96.

FISCHER, M.J. & A.L. ROSENBERG (1968a), Limited random acces Turing machines,

Proceedings 9-th Annual IEEE-SWAT Conference on Switching and

Automata Theory, 356-367.

FISCHER, M.J. & A.L. ROSENBERG (1968b), Real-time solutions to the origin

crossing problem, Mathematical Systems Theory, I, 257-263.

FISCHER, P.C., A.R. MEYER & A.L. ROSENBERG (1968), Counter machines and

counter languages, Mathematical Systems Theory I, 265-283.

FISCHER, P.C., A.R. MEYER & A.L. ROSENBERG (1972), Real-time simulation

of multihead tape units, JACM ~, 590-607.

GALIL, z. (1978), Palindrome recognition in real time on a multitape Turing

machine, J. Comp. Syst. Sci • .!.§., 140-157.

HARTMANIS, J. & R.E. STEARNS (1965), On the computational complexity of

algorithms, Trans. AMS 117, 285-306.

JANIGA, L. (1979), Real-time computations of two-way multihead finite

automata, in: Fundamentals of Computation Theory (FCT '79)

(L. Budach ed.), Akademie Verlag, Berlin, 214-218.

KOSARAJU, R. (1979), Real-time simulation of concatenable double-ended

queues by double-ended queues, Proceedings of the 11-th Annual

ACM Symposium on Theory of Computing, 346-351.

LEONG, B.L. & J.I. SEIFERAS (1977), New real-time simulations of multihead

tape units, Proceedings of the 9-th Annual ACM Symposium on

Theory of Computing, 239-248.

30

PAUL, W.J., J .. I. SEIFERAS & J. SIMON (1980), An information-theoretic ap

proach to time bounds for on-line computation. Techn. Rept.

TR 64, Department of Computer Science, University of Rochester,

Rochester, New York, February 1980.

RABIN, M.O. (ll963), Real-time computation, Israel Journal of Mathematics _!_,

203-211.

ROSENBERG, A.L. (1967), Real-time definable languages, JACM _!!, 645-662.

SAVITCH, W.J. & P.M.B. VITANYI (1977), Linear time simulation of multihead

Turing machines with head-to-head jumps, Lecture Notes in Com

puter Science (ICALP 4) 53..!._ 453-464.

VALIEV, M.K. 1[1970), Certain estimates of the time of computations on

Turing machines with an input, Cybernetics .§_ (1972), 737-741.

Translated from Kibernetica .§_ (1970}, 26-32.

VITANYI, P.M.B. (1979), Multihead and multitape real-time Turing machines.

Tec:hn. Rept. IW 111, Mathematisch Centrum, Amsterdam, The

Netherlands, June 1979.

YAO, A. & R. RIVEST (1978), k+1 heads are better than k, J ACM ~, 337-340.

