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Real-time Turing machines under varying specifications*) 

by 

Paul M.B. Vitanyi 

ABSTRACT 

We investigate the relative computing power of Turing machines with 

differences in the number of tapes, heads pro tape, instruction repertoire 

etc. We concentrate on the k-tape, k-head and k-head jump models as well as 

the 2-way multihead (writing) finite automata with and without jumps. Dif

ferences in computing power between machines of unlike specifications emerge 

under the real-time restriction. In particular it is shown that a (k+l)-head 

tape unit is more powerful than a k-head tape unit as a storage device for 

real-time Turing machines, and that jumps add power to multihead 2-way real

time finite automata. 

KEY WORDS & PHRASES: complexity, real-time computations, multitape Turing 

machines, mul tihead Turing machines, jump Turing ma

chines, multihead finite automata, multihead writing 

automata 

An extended abstract of this paper was presented at the seventh Inter
national Colloquium on Automata, Languages and Programming, 
Noordwijkerhout, The Netherlands, July 1980. The material in sections 
2 and 3 appea;t'ed earlier in VITANYI [1979]. I 

0 This report will be submitted for publication elsewhere. 
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1. INTRODUCTION 

Since the first Turing machine appeared in 1936, there have been many 

advances in the field. In the late 1950's the multitape Turing machine was 

introduced, often equiped with a separate read-only input tape. Since then 

we saw the arrival of the multihead Turing machine, Turing machines with a 

fast rewind square (also called limited random-access machines), Turing 

machines with head-to-head jumps, and many others. One common feature in 

this abundance of models is that they all have a finite control and an un

restricted read-write storage facility. This allows each model, whatever 

its specification, to compute all recursive functions. Differences in capa

bilities become apparent if we impose time limitations, and in particular 

when we demand the machines to operate in real-time. As a standard in this 

area we may take the class of real-time definable languages R, which is the 

class of all languages accepted by multitape Turing machines in real-time, 

ROSENBERG [1967]. It has been shown that all of the above mentioned varia

tions of Turing machines accept in real-time precisely R. Hence we observe 

that, within the world of real-time Turing machine-like devices, R plays 

somewhat the same role as the class of recursively enumerable languages in 

the world of computability at large. Like in this wider setting, we shall 

impose restrictions on the machines and observe what happens. In the province 

of real-time computations, differences in computing power amongst unlike 

Turing machines may come out under variations in instruction repertoire, 

amount or type of storage devices, in short, under different specifications. 

The class of real-time definable languages is remarkably extensive 

(e.g. the set of unmarked palindromes is in R, GALIL [1978]). To prove that 

a given language is not in R is often hard. Proofs usually rely on an in

formation-capacity argument, see HARTMANIS & STEARNS [1965] and ROSENBERG 

[1967]. To prove that a language is not accepted by a class of machines A, 

whereas it is accepted by a class of machines B with very similar capabili

ties, e.g., A is the class of k-tape real-time Turing machines and Bis the 

class of (k+l)-tape real-time Turing machines, is harder still, and not 

many techniques have been developed for addressing such problems. In this 

paper we shall be concerned with this type of question. 

Amongst all classes of time-limited (deterministic} computations, the 
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real-time computations distinguish themselves by being intrinsically fea

sible. While other time complexity classes, even the lowly linear time class, 

suffer the defect that there are unspecified parameters which might pro

hibit the actuai execution of an algorithm for a problem therein, real-

time computations are Cup to man~geable size. of the· machine parameters·llke 

state set and work tape alphabet) of practical impact. Real-time computa

tions arise in computer applications like parsing problems, real-time con

trol and so on. 

Originally real-time computations were defined relative to the multi

tape Turing machines. Most algorithms, however, are more naturally stated 

in terms of computing models which ·allow faster memory access. In a multi

head machine several read-write heads niay compute on a single storage tape. 

A k-head tape unit consists of a Turing machine with a single storage tape 

on which k read-write heads operate. P. FISCHER, MEYER & ROSENBERG [1972] 

proved that one can simulate a k-head tape unit in real-time by a multitape 

Turing machine with 11k-9 tapes. Later, LEONG & SEIFERAS [1977] improved 

this to 4k-4 tapes. RABIN [1963] has observed that 2-tape Turing machines 

are more powerful in real-time than 1-tape Turing machines. (Recall that a 

1-tape Turing machine has one input tape and one storage tape with a single 

head.) AANDERAA [1974] demonstrated that k+1 tapes are more powerful than 

k tapes in real-time. Together with the LEONG & SEIFERAS' result this shows 

that more heads will yield additional power in real-time. Specifically, it 

follows that a (4k-3)-head tape unit is more powerful in real-time than a 

k-head tape unit. We shall show that AANDERAA's result implies that a (k+1)

head tape unit is more powerful than a k-head tape unit in real-time, sec

tion 2. 

In ROSENBERG [1967] several closure properties of Rare investigated. 

We investigate such questions for the classes R(k) (languages recognized by 

k-tape real-time Turing machines), RH(k) (languages recognized by k-head 

real-time Turing machines] and RJ(k) (languages recognized by k-head real

time Turing machines with head-to-head jumps). Furthermore, we shall con

sider the relations between R(kl, RH(k) and RJ(k), sections 3 and 5. 

In SAVITCH & VITANYI [1977] it was shown that a k-head jump Turing 
... 

machine can be simulated in linear time by an (Bk-8]-tape Turing machine. 

KOSARAJU [1979] has claimed a proof that jump Turing machines can be 
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simulated in real-time by multitape Turing machines at the cost of many 

tapes in the latter pro head in the former machine. In section 4 we show 

that the analog of this result does not hold if we restrict ourselves to 

2-way multihead finite automata. The sample languages we use to prove this 

result are interesting in their own right, since they give once more an in

dication how wrong our intuition can be with respect to which languages be

long to Rand which languages do not. In general we prove that for real

time multihead finite automata the jump option cannot be compensated for 

by adding heads, nondeterminism and bidirectionality; an extra head cannot 

be compensated for by adding jumps, nondeterminism and bidirectionality; 

nondeterminism cannot be compensated for by adding jumps, extra heads and 

bidirectionality; and, more obvious, bidirectionality cannot be compensated 

for by adding extra heads, jumps and nondeterminism. With respect to real

time 2-way multihead writing finite automata it is shown that k+l heads are 

better thank, and that the k-head version of the machine is less powerful 

than the k-head real-time Turing machine. 

But for RABIN's and AANDERAA's results, all results in the area of 

models of real-time Turing machines are about feasibility of simulating one 

type of machine by another one. Virtually nothing is known about the non

feasibility of certain computations, which are possible on a machine of 

specification A, by a machine of specification B. Obvious open problems in 

this area of specified Turing machines are, for instance: 
H H H J J H J 

R(2) c R (2); R (k) c R (k+l); R (k) c R (k+l); R(k) c R (k); R(k) c R (k); 

R8 (k) c RJ(k) ? Some of these questions we shall decide, or alternatively, 

show some interdependence among seemingly unrelated questions. 

For formal definitions and so on concerning multitape- and multihead 

Turing machines, real-time computations, etc. we refer to ROSENBERG [1967], 

FISCHER, MEYER & ROSENBERG [1972] and LEONG & SEIFERAS [1977]. 

2. k+l HEADS ARE BETTER THAN k HEADS IN REAL-TIME 

AANDERAA [1974] proved by a very complicated argument that there is, 

for each k ~ 1, a language ¾+l which can be recognized by a (k+l)-RTTM but 

not by a k-RTTM. For completeness we define ¾+l below by a real-time al

gorithm which accepts it using k+l pushdown stores. The input alphabet is 
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"ACCEPTENABLED := TRUE; 

Initiali~~e k+l stacks to empty; 

REPEAT FOREOVER 

CASE NEXTINPUTLETTER OF 

0 . : Push O in stack i 
1. 

1.: Push 1 on stack i 
1. 

P.: IF stack i empty 
1. 

THEN ACCEPTENABLED := FALSE and reject input 

ELSE BEGIN 

ENDCASE" 

pop stack i; 

IF element popped was 1 

AND ACCEPTENABLED 

THEN accept input 

ELSE reject input 

END 

The strategy used to prove that k+l heads are more powerful in real

time than k heiads (on a single tape) is, by a judicious choice of input, to 

force the heads so far apart that for a given recognition problem the k-head 

unit must act like a k-tape Turing machine since the heads will never read 

each others writing. 

THEOREM 2.1. ~~here is a language which is recognized by a (k+1)-head real

time Turing machine but not by any k-head real-time Turing machine. 

PROOF. By induction on the number of heads. 

k=l. The language A2 cannot be recognized by a 1-tape (= 1-head) real-time 

Turing machinei, but can be recognized by a 2-tape (and hence by a 2-head) 

RTTM. Set H2 == A2 • 

k > 1. Suppose the theorem is true for all j < k. Hence, in particular there 

is a language Ilk such that Ilk is recognized by a k-head RTTM but not by a 

(k-1)-head RTl~M. Define ~+las follows: 



where* is a special symbol not in the alphabet of A., i ~ 2. 
l. 

Let M~ beak-head RTTM claimed to recognize Hk+t• Present~ with a 

st.ring of the form 

(2) (2) (2) (3) (3) (3) (k+l) {k+1) (k+1) 
w = a 1 a2 ••• a *a1 a 2 ••• a *•••*a1 a 2 ••• a 

n2 n3 nk+l 

5 

such that w. is over the alphabet of A., 2 ~ i ~ k+1. During the processing 
l. l. 

of w2 , ~ must recognize A2 • Since A2 cannot be recognized by a 1-head RTTM, 

the distance between the outermost heads on the storage tape of~ must grow 

larger than any'given constant c 2 for a suitable choice of w2 • 

Therefore, subsequent to the processing of this w2 , we can single out 

a nonscanned segment s 1 of the storage tape of~ in between the outermost 

heads, such that the length of s 1 is greater than or equal to c 2/k tape 

squares. Denote the middle square of s by M , see Figure 1. 
1 1 

c2 

ls 1 1 ~ c /k 
2 

i i i f 
I ) I I Mll I 

I s 1 I ;2 I s 1 I ;2 

Figure 1. ~•s storage tape at time t = lw2 1. 

k+1 
Now assume that we have chosen c 2 such that c 2/k > 2 Ei=3 (ai+l). Then, for 

the remainder of the computation on w, no head will cross square M1 , and 

therefore, from time t = lwi] onwards A\ will consist in effect of a 

k~l)_head tape unit and a k 2
1)-head tape unit, when k~t} is the number of 

heads left of M1 and k~l) is the number of heads right of M1 at time 

t = I I k(1) k(1) >_ 1 andk(1) k(1) k M · · h w2 , 1 , 2 1 + 2 = • Now .-k 1s presented wit w3 • 
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Since w3 E A3 cannot be decided by 2 single headed tapes in real-time, ~\ 

t 't . . k(1) d k(l) h d t ·t . t· 1 mus use is remaining 1 - an 2 - ea ape uni sin an essen ia way 

during the processing bf w3 • I.e., the distance between the outermost heads on 
(1) (1) 

at least one of the k 1 -head and k 2 -head tape uni ts must grow larger than 

any given constant c 3 for a suitable choice of w3 (and the multihead unit 

concerned must have at least 2 heads). Without loss of generality, we as

sume this is the case for the kil)_head tape unit. Similar to before, we 

can, subsequent to the processing of w3 , single out a nonscanned tape seg

ment s 2 of the kil)_head tape unit, in between the outermost heads on this 

unit, such that the length of s 2 is greater than or equal to c 3/kil) tape 

squares. Denote the middle square of s 2 by M2 , see figure 2. 

(1) 
Now assume that we have chosen c 3 such that c 3/k 1 > 

for the remainder of the computation on w no head will 

fore, from time t = lw2*w3 1 onwards~ will consist in 

k+1 2E. 4 (n.+1). Then, 
i= i 

cross M2 , and there
(2) 

effect of a k 1 -
(2) (2) . (2) 

head, a k 2 -head and a k 3 -head tape unit, where k 1 is the number of 

heads left of M2 , k~ 2 ) is the number of heads in between M2 and M1 and k~ 2 ) 

is the number 

k (2) k(2) = 
1 + 2 

(") (2) (2) 
of heads right of M1 at time t = lw2*w3 1, k 1~ ,k2 ,k3 ~ 1, 

(1) (2) (1) • 
k 1 and k 3 = k 2 • Repeating the argument we can choose 

w4 , ••• ,wk such that subsequent to the processing of wk we are left in effect 

with a k-tape RTTM which is required to determine whether wk+l E ~+l" Ac

cording to AANDERAA [1974], for each k-tape RTTM claimed to recognize A. 
k+l 

we can construct a word v which fools the machine. Let wk+l be such a word, 
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and choose ck, wk, ck-l' wk_ 1 , ••• ,c2 , w2 , in that order, so that the above 

inequalities and conditions are satisfied after each such choice. Hence w 

is accepted by Mk iff w i Hk+l which contradicts the assumption that~ re

cognizes Hk+l· (The above argument seemingly contains a circularity which 

might invalidate it. The word v which fools the machine trying to recognize 

J\+l does not only depend on the finite control but also on the initial tape 

contents. Thus the argument seems to become circular: wk+l depends on 

w2 *w3*···*Wk*' while w2 ,w3 , ••• ,wk depend on the length of wk+l· As it hap

pens, AANDERAA's argument does not need to make any assumptions about the 

initial tape contents of the k-RTTM assumed, by way of contradiction, to 

accept J\+l" Hence he proves in fact that for all k-RTTM M there exists a 

positive integer n such that for all initial tape contents of M there exists 

a word v of at most length n which fools M. The existence of such a bound 

n eliminates the apparent circularity from the above argument.) It is easy 

to see that k+1 pushdown stores can recognize Hk+l in real-time. D 

Surprisingly, an argument like "Hk is not accepted by a (k-1)-head 

RTTM and hence ~+l = Hk u Hk * 1\+l is not accepted by a k-head RTTM" does 

not work, since we cannot assume a priori that in a k-head RTTM recognizing 

Hk all heads get pairwise arbitrarily far apart for some input. We could 

only conclude that all k heads are necessary, but it might very well be 

that for each time t some heads are near to each other. Then we could be 

stuck with a set of tape units, one of which is a multihead one, for which 

AANDERAA's proof might not work. 

The situation we have in mind is exemplified by, e.g., the languages 

E, k ~ 4, in section S (although AANDERAA's proof technique fails there 
k 

for another reason, as shall be pointed out). As an example of a language 

which can be rec0gnized by a 4-head RTTM in which there are always 2 heads 

together, and which probably cannot be recognized by a 4-RTTM, or a 3-head 

RTTM, we give the language L below. Clearly, we cannot conclude from 

Li RH(3) (if that is the case} that Lu L * AS i RH(4} just because 

AS i R(4). We wuuld need to show at least that AS cannot be recognized by 

a RTTM with one 2-head tape and two 1-head tapes as storage. 
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L = {x E {0,1,2}* I xis a prefix of a word in L'}. 

For suppose we want to recognize L by a 4-head RTTM. During the ini

tial input over {0,1}, it seems that we can do nothing more than record the 

incoming bit stream on the storage tape. Supposing this to be the case, if 
2/3 2/3 . 

we take lwl, lvl E 0(n ), lu2 1 E 0(n), lu1 J, lu3 1 E 0(n ) , where n is 

the length of the input word, we need 2 heads to check wwR (since to check 

wwR with 1 head takes time 8(n413 )) and 2 heads to check vvR (for the same 

reason). To cross u 2 with some head takes time 0(n), but upon meeting the 

first letter 2 we have only time 0(n213 ) left. Hence all 4 heads seem neces

sary, although there always are 2 together. (We leave it to the reader toshow 

how a 4-head RTTM, or even a 4-head 2-way real-time deterministic finite auto

maton, can recognize L such that at all times during this recognition process 

2 heads scan the same square.) 

If this conjecture is true, then LE RH(4) -RH(3). But in this case, 

LE RH(4) -RH(3) together with AS i R(4) does not, without additional consi

derations, imply Lu L * AS i RH(4). 

By the proof technique of Theorem 2.1 we precluded such a flaw in our 

argument. Due to the form of ~+l' the above line of reasoning works also 
H 

for ~+l itself. Hence, ~+l E R~k+1) - R (k). 

COROLLARY 2.2. There is a language which can be recognized by k+1 pushdown 

stores in real-time (and hence by a (k+1}-RTTM) but not by any k-head RTTM. 

The relation between tapes and pushdown stores is direct; clearly 2k 

pushdown stores can simulate k tapes in real-time. Hence from AANDERAA's 
p 

result we have (if R (k) denotes the class of languages recognizable by k 

pushdown stores in real-time}: 

Rp(k+1) - R(k) ~ ~; 

RP (k) c RP (k+1) 

R(k) c R(k+1) 

R (k) c RP (2k) 

By the result above it follows that we can replace R by RH in the first 

formula above. It also follows that 



H 
R(k+l) - R (k) ~ 0; 

H 
CR (k+l). 

By using LEONG & SEIFERAS' [1977] result we obtain 

H 
LEMMA 2.3. R(k) ~ R (k) c R(4k-4). 

In the diagram below we depict the present state of affairs with 

regard to the inclusion relations between the families R(k) and RH(k). 

R(4k~4l 

I 
I 
I 

t :RH(4) 
R(4l,_ - -'r ---

H 
R (1) =R ( 1) 

Figure 3 

.9 

Connection by a solid arrow from X to Y means that Xis strictly included 

in Y. Connection by a dotted arrow from X to Y means that Xis included in 

Y but that it is not yet known whether inclusion is strict. The main open 

problem here is whether R(k) is strictly included in RH(kJ, k ~ 2. 

3. CLOSURE PROPERTIES 

In ROSENBERG [1967] several closure properties of the class R of lan

guages accepted by real-time Turing machines were investigated. He showed 
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that R is closed under union, intersection, complementation, suffixing with 

a regular set, inverse real-time transducer mapping and minimization. R is 

not closed under concatenation (even with regular sets}, Kleene star, re

versal, (nonerasing) homomorphism, inverse nondeterministic sequential 

machine mapping, quotient with a regular set, maximization and prefixing 

with a regular set. R is incomparable with the (deterministic) context free 

languages, contains ambiguous context free languages and is contained in 

the deterministic context sensitive languages. 

With respect to restrictions on the number of tapes, ROSENBERG noted 

that R(k) is closed under complementation, union with regular sets, inter

section with regular sets, suffixing with regular sets, inverse gsm mapping 

and minimi?ation. R(l) is not closed under union or intersection nor under 

inverse real-time transducer mapping. He furthermore conjectured that the 

union (intersection) of A,B with A E R(k 1) and BE R(k 2), can yield a language 

in R(k1+k2) - R(k1+k2-1). 

Here we shall show that this conjecture is true, and also investigate 

some other closure properties of (number of) tapes restricted real-time lan

guages. It will, e.g., appear that R(k) is closed under several marked 
H 

operations; and that the closure of R (k) under these marked operations is 

equivalent to the equality of R(k) and RH(k) (modulo a trivial restriction). 

LEMMA 3.1. R(k) is closed under marked union, marked concatenation and 

marked Kleene star. 

PROOF. Marked union is obvious. We prove marked Kleene star. Let M beak-

* * RTI'M recognizing L. We construct a k-RTTM M recognizing (L{¢}) as follows. 

* M works just like M with the following modifications. Upon reading a 

marker¢, the machine remembers whether or not all previous input segments 

in between 2 consecutive markers were words in L. It creates clean storage 

by maintaining markers on each storage tape delineating the work space in 

use of the current computation segment in between reading markers. Similar

ly we prove closure under marked concatenation. D 

According to FISCHER, MEYER & ROSENBERG [1972], the family of multi

head RTI'M languages equals Rand hence the (non) closure properties 
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mentioned before apply. If we look at multihead RTTM languages in RH(k) the 

situation :is different. Here not more is known than we can readily deduce 

from the r12sults on R(k) and simulations like LEONG & SEIFERAS [1977]. With 

the preceding results we can deduce something more. Clearly, RH(k) is closed 

under complementation, union and intersection with regular sets, suffixing 

with regular sets, inverse gsm mapping and minimization. If RH(k) = R(k), 

which is a well known open problem, then all results hold even if we denote 

by k only the total number of heads on the storage tapes, and don't take 

into accownt the way in which the heads are distributed. 

Clearly, RH(k) is closed under marked union. 

LEMMA 3.2~)RH(k) is closed under marked concatenation iff RH(k) is closed 
H 

under mark,ed Kleene star iff R (k) = R (k) • 

PROOF. (i) Suppose that RH(k) is closed under marked concatenation. Then, 

for each language L (£ E: L) in RH(k) we have that ¾*L belongs to RH(k). 

However, every k-head RTTM recognizing ¾*L gets reduced to essentially a 

k-tape RTTIM, in the manner described in the proof of Theorem 2.1, by the 
H 

time it starts recognizing L. Hence the closure of R (k) under marked con-

catenation implies RH(k) = R(k). By Lemma 3.1, RH(k) = R(k) implies that 

RH(k) is closed under marked concatenation. 

(ii) Now 1,2t L be any language in RH (k). It is easy to see that 

Lu L * ¾ E: RH(k). Consider the language L' = (LUL*¾)*, and apply a 

similar ar9ument as in (i). D 

Note that by the real-time multitape simulation result the closure of 
H 

R (k) under marked concatenation (marked Kleene star) is contained in 
H 

R(4k-4) and hence in R (4k-4). The following result settles a conjecture 

by ROSENBERG [ 196 7] • 

LEMMA 3.3. R(k) is not closed under union or intersection, fork> 0. If 

kl + k 2 ~ 1 and we take A E: R(k 1 ) and B E: R(k2), then A u B, An B E: R(k 1+k2 ) 

but not necessarily Au B, An BE R(k 1+k 2-1). 

PROOF. Let¾ denote AANDERAA's language over k generators. Then Ak 1 E R(k 1) 

and Ak2 E R(k2 ). Let Iki be the alphabet of Aki' i = 1,2, and let Lkl nik2= 0. 

Then it is easy to see that L1 E R(k 1) and L2 E: R(k2), where L 1 and L2 are 

1) The markers in an input, due to marked concatenation or marked Kleene star, 
serve to indicate the beginning of a new task. Accordingly, it seems reason-
able to assume that recognizing RTTMs ignore, subsequent to reading such a 
marker, the garbage left on the storage tapes by the preceding computation 
segment. Under these conditions the proofs of Lemma's 3.2 and 3.9 hold. 
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defined as: 

* ( * {P. \ 
Ll -- shuffle (1\ , Ek ) n \ (Ek u Ek) P. E Ek } / 

1 2 ' 1 2 
1. 1. 1 . 

* ( * {P. \ 
L2 ·- shuffle (1\ , Ek ) n \ ( Ek u Ek ) P. EEk}/. 

1. 1. 
2 1 1 2 2 .' 

Now L1 u L2 = 1'\.kl+k2 and hence belongs to R(k 1+k 2 ) - R(k 1+k2-1). It fol

lows, since our Turing ma~hines are dete~ministic, that Akj +k2 _ E 

E R(k 1+k 2 ) - R(k 1+k2-1), L1 E R(k 1) and L2 E R(k 2). Hence L1 n L2 = 

E R(k 1+k2 ) R(k1+k2-1). It remains to be proven that for A E: R(k 1) and 

BE R(k2 ) it holds that Au B, An BE R(k 1+k2). But it is easy to construct 

a (k 1+k2 )-RTTM which checks for inclusion in A with k 1 tapes and for inclu

sion in B with the remaining k 2 tapes. D 

Since R is closed under the Boolean operations (which also follows 

from the above Lemma) we can generate infinite proper hierarchies of lan

guage families by taking closures of R(k 1) and R(k 2 ) with respect ton and 

u, all of which are included in R. 

Since 1\+:t i R8 (k) for all k ~ 0, we also obtain the analogue for 

multihead tape units. 

If k 1 + k2 ~ 1 and 
H H 

COROLLARY 3.4. we take A E: R (k 1 )and B ER (k 2 ) then 
H H 

A U B, A n B E R (k 1+k2), but not necessarily AU B, An B E R (k 1+k2-1). 

The only remaining operation, investigated by ROSENBERG, under which 

R is closed, and with respect to which the status of R(k) is open, is the 

inverse real-time transducer mapping. 

LEMMA 3.5. R(k)i is not closed under inverse real-time transducer mapping. 

The closure of R(k 1) under inverse k 2-RTTM mapping is contained in R(k 1+k 2 ) 

but not in R(k 1+k2-1). 

PROOF. That the~ closure of R(k 1) under inverse k 2-RTTM mapping is contained 

in R(k 1+k 2 ) was demonstrated by ROSENBERG [1967]. If we transduce Aki+k2 by 

a k 2-RTTM M which works as described below we obtain a language Ak 1 in R(k 1) 

of which the inverse k 2-RTTM mapping is contained in R(k 1+k 2 ) - R(k 1+k2-1). 
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Let Ekl be the alphabet of Akl and let Lk2 be the alphabet of Ak2• If M 

gets an input symbol E rk2 which drives it into an accepting state for Ak2 , 

M outputs 1.P. (1.,P. E rk 1). If M gets an input symbol E rk2 which drives 
l. l. l. l. 

it into a nonaccepting state it outputs 0.P. (0. ,P. E rk1). If M gets an 
l. l. l. l. 

input symbol E rk1 it outputs that symbol. Hence, clearly a string 

* w E (tk1 u rk2) is mapped to a string in Ak 1 (if M is an Ak2 recognizer) 

□ 

COROLLARY 3.6. The closure 

contained in RH(k 1+k2) but 

of RH(k 1) under inverse k 2-head R'I'TM mapping is 

not in RH(k 1+k2-1). 

An important operation, not treated in ROSENBERG [1967], is the shuffle 

operation. 

LEMMA 3.7. R is not closed under shuffle. 

PROOF. In ROSENBERG [1967] it is proved that the language 

I L * = {0,1}, XE L} 

is not in R. The same proof applies to 

* {0,1}, x EE, h{0) = a and h(l) 

But, 

= b}. 

L' = shuffle ({x2h(xR) Ix E {o,1}*,h(O)=a and h(l)=b},r*> n r*2{a,b}*, 

with 

{x2h(xR) lxE{o,1}*, h(0)=a andh(l)=b}ER(l) and r*2{a,b}* E R(0). 

* * Since L' i Rand r 2{a,b} is regular, the shuffle component of L' does not 

belong to Reither. D 

Hence the shuffle of a language in R(l) and a language in R(0) (even 

r*> does not need to belong to R. If, however, the languages which are 

shuffled are over disjoint alphabets, and the first one is in R(k 1) and the 
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second one in R(k2), then their shuffle is clearly in R(k 1+k2). Let L1 and 

L2 be the languages defined in the proof of Lemma 3.3. Then L1 E R(k1) and 

L2 E R(k2). Now take L1 and L2 over disjoint alphabets, say rk 1 u Lk 2 and 

rk1 u Ik2 but interpret the primed and unprimed symbols as being the same. 

Then, to recognize shuffle (L1,L2J is exactly the same problem as to recog

nize Ak 1+k2 • Hence we have 

LEMMA 3.8. If A E R(k1) and BE R(k 2), and the alphabets of A and Bare dis

joint, then shuffle (A,B) E R(k 1+k2) but shuffle (A,B) does not need to be

long to R(k1+k2-1). Analogously, the Lemma holds for the corresponding mul

tihead RTTM's. 

There is a deterministic context free language not in R, cf. ROSENBERG 

[1967]. It is easy to see that {a°bncnln ~ 1} is in R(l) and that furthermore 

R c DLBA. Hence Figure 4 gives the inclusion diagram. 

CF 

DCF 

DLBA 

R 
; H f R (k) (or R (=) ) 
: R(k-1) (or R (k-1)) 

R(l) 

R(O)=REG 

Figure 4. The position of R(k} (or RH(k)), k ~ 1, in the linguistic 

hierarchy. (No connection by a directed sequence of arrows 

means incomparable). 

It is not difficult to show that all nonclosure results for R, derived by 

ROSENBERG, hold by the same counterexamples for R(l), and therefore for each 

R(k), k ~ 1. we also mention that already R(l) contains inherently ambiguous 

context free languages, viz., {aibicj I i,j ~ 1} u {aibjcj I i,j ~ 1} is 

inherently ambiguous context free and easily recognized by a 1-RTTM. 

In SAVITCH and VITANYI [1977] the jump Turing machine was introduced. 

A k-head jump Turing machine is a k-head Turing machine, where at each step 
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the k heads may be redistributed over the currently scanned tape squares, 

i.e., instantaneous head-to-head jumps are allowed, irrespective of the 

distances in between the heads concerned. It was shown that a k-head jump 

Turing machine can be simulated in linear time by a (Bk-8)-tape Turing ma

chine. KOSARAJU [1979] has claimed that, by a complicated simulation, a 

k-head jump Turing machine can be simulated in real-time by a multitape 

Turing machine. It is at present unresolved whether k heads are more power

ful thank tapes in real-time. A possibly easier problem is to show that k 

heads with jumps are more powerful thank tapes in real-time. The next 

Lemma shows that these matters are related. 

1) 
LEMMA 3.9. 

(i) R(k) c RJ(k) iff RH(k) c RJ(k); 
H H J 

(ii) if R(k) c R (k) then R (k) c R (k). 

J 
PROOF. (i) The "if" part is obvious. Now suppose that R(k) c R (k) and 

RH (k) = R~r (k) • Let L be a language in RH (k) - R(k). By first feeding ¾ we 
H 

can always reduce a k-head RTTM to a k-tape RTTM. Hence¾ u ¾ * L /. R (k). 

But clearly¾ u ¾*LE RJ(k), since the heads may jump together when the 

machine reads the marker. Therefore, the assumption leads to a contradic

tion and the "only if" part holds. 

(ii) is proved similarly. 0 

J 
The above Lemma is clearly due to the fact that R (k) (the class of 

languages accepted in real-time by k-head jump Turing machines) is closed 

under marked concatenation and marked Kleene star, as is R(k), whereas the 
H 

closure of R (k) under these operations is equivalent to the equality of 

RH(k) and R(k).l) 

4. REAL-TIME 2-WAY MULTIHEAD FINITE AUTOMATA WITH AND WITHOUT JUMPS 

Recall that we saw before that KOSARAJU [1979] has shown that the jump 

Turing machine as defined in SAVITCH & VITANYI [1977] may be simulated in 

real-time by multitape Turing machines. Hence RJ = R (where RJ = u;=l RJ(k)). 

In this section we show that for 2-way multihead finite automata the head

to-head jump facility does extend the class of languages accepted in real-
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time. Incidentally, this shows also that the class of languages accepted 

by real-time 2-way multihead finite automata is strictly included in R. 

To obtain the result, we give several example languages which are accept

able in real-time by 2-way 2-head finite automata with jumps, but not by 

any real-time 2-way multihead finite automaton without jumps. Hence these 

languages belong to R, and constitute nontrivial examples of the power of 

- - * * the head-to-head jump option. Let in the following h: {0,1,0,1} ~ {0,1} 

be a homomorphism which is defined by h(a) = h(a) = a for a E {0,1}. 

L1 = {wvaavR I wv E {0,1,0,I}*, v E {0,1}*, a E {0,1}, h(v) = v}; 

L2 = {wbucva I WU E {0,1,0,I}*, VE {0,1}*, CE {o,I}, lul = !vi, 

a E {0,1}, b E {0,1,0,1}, h(b) = a}. 

The reader will easily figure out more complicated examples along 

these lines. Note that L1, L2 are linear context free but not determinis

tic context free. 

LEMMA 4.1. L1 , L2 are accepted by real-time 2-way 2-head finite automata 

with jumps. 

PROOF. Let M be a 2-way 2-head finite automaton with jumps as follows. The 

front head reads from left to right one letter at a time. Whenever this 

first head reads a barred letter it calls the second head to its present 

position. This second head starts reading from right to left one letter at 

a time. So Mis able to recognize L1• A minor variation of M can recognize 

½· D 

LEMMA 4.2. L1 ,L2 are not accepted by any real-time 2-way multihead finite 

automation without jumps. 

PROOF. We prov~ the Lemma for L1• Suppose L1 is recognized by a k-head 

real-time 2-way finite automaton~\ but not by any (k-1)-head one. Since 

L1 is not regular, such a k must be greater than 1. Since Mk is real-time, 

there must be at least one head which moves right at each step. For each 
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constant c we can find an input word w such that, during the processing of 

w by Mk, some head lags behind the vanguard head more than c squares. 

If this were not so, then all heads are at all times within c squares of 

the vanguard head, and we could replace~ by an ordinary finite automaton 
* - - c k-1 with a finite-state control Q = Q x {0,1,0,1} x {0,1, ••• ,c-1} , where 

Q is the finite-state control of~• which keeps track of the symbols under 

the k-1 nonvanguard heads of the simulated machine. This would imply that 

L1 is regular: contradiction. Since by assumption L1 is not recognizable by 

a (k-1)-head real-time 2-way finite automaton, for each constant c we can 

find an input word w such that, during the processing of w by~• all k-1 

heads lag behind the vanguard head more than c squares. For suppose this 

were not the case. Since the vanguard head moves right at each step, at 

least one particular head must be at all times within c squares of the 

vanguard head, and similarly to above, we would be able to replace Mk hy 

* an (k-1)-head machine ~-l with a finite-state control 

Q* = Q x {0,1,0,l}c x {0,1, ••• ,c-1} which keeps also track of the symbol 

under the neighboring head of the vanguard head. Contrary to the assump

tion, this would imply the falsehood of the Lennna for k-1. So suppose that, 

subsequent to processing an input prefix, all other heads of~ lag behind 

the vanguard head more than c squares, and the vanguard head now starts to 
- - * read suffix w E {O, 1,0, 1} , lw I ~ c+l. Hence, no other head of Mk will 

ever scan a symbol from w. Let the input prefix, which forces the k-1 non

vanguard heads more than c squares behind the vanguard head, be v. At time 

lvl + 1, all these k-1 heads scan a particular element of v. Now consider 

a suffix ensemble W = {O,l}c/2{6}{0,l}c/2 • The number of distinct positions 

on v of these k-1 heads, multiplied by the number of distinct states of 

the finite control~ can attain when the vanguard head crosses O, is 

bounded above by (c/2)k-l x #g. The number of prefixes in {O,l}c/2 is 2c/2 • 

If 2c/2 ~ (c/2)k-l x #Q, which happens for c large enough, two distinct 

such prefixes, say u 1 and u2 , lead to the same instantaneous description 

of~ after processing vu1 and vu2• Therefore, Mk accepts either both 
- R ·· R vu1ou1 and vu20u1 or rejects them both. Since u 1 ~ u2 it follows that i~ 

does not accept L1• The proof that L2 is not accepted by any real-time 2-

way multihead finite automaton proceeds similarly. D 
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Hence we have: 

THEOREM 4.3. (i). There are languages recognized by real-time 2-way 2-head 

finite automat:a with jumps which are not recognized by any real-time 2-way 

multihead finj~te automaton without jumps. 

(ii) The class of languages accepted by real-time 2-way k-head finite auto

mata with jumps properly includes the class of languages accepted by such 

automata without jumps. 

Computations of 1-way multihead finite automata have been considered 

by YAO & RIVEST [1978]. They show that k+1 heads are better thank heads 

for both the deterministic and the nondeterministic versions of the machine. 

Furthermore, they show that the k-head nondeterministic variety is strict

ly more powerful than the k-head deterministic one. Recently, JANIGA [1979] 

studied the analog questions for 2-way real-time multihead deterministic 

(resp. nondeterministic) finite automata, from now on called 2DRTFA and 

2NRTFA, respectively. He obtained, mutatis mutandis, the same results for 

the 2-way real-time machines as did YAO and RIVEST for the 1-way (no time 
k 

limit) variety. Whereas the latter used "palindromes" of (2 ) strings to 

obtain their result, for the 2-way real-time case the former employed 

strings of k palindromes. E.g., let PALM be the set of palindromes in 

* * k {0,1} {2} {0,1.} • Let Pk= (PALM{*}) • Then Pk is recognized by a (k+1)-head 

* 2DRTFA but not by any k-head 2NRTFA. {0,1,2,*} -Pk is accepted by a 2-head 
00 

2NRTFA but not by any k-head 2DRTFA. Now consider the lanquage P = Uk=l Pk. 

It is easy to see that Pis recognized by a 2-head 2DRTFA with jumps, but 

that Pis not accepted by any multihead 2NRTFA without jumps because of 

JANIGA's result. Therefore we have: 

THEOREM 4. 4. ~~he class of languages accepted by k-head 2NRTFA with jumps 

properly includes the class of languages accepted by k-head 2NRTFA with

out jumps, k 2~ 2. The same holds for 2DRTFA's {i.e. Theorem 4.3). 

Another ma":ter which we would like to decide is the power of jumps 

versus nondeterminism for the machines. 

THEOREM 4.5. ~~here is a language acceptable by a 2-head 2NRTFA which is 
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not acceptable by any IlRlltihead 2DRTFA with jumps. 

PROOF. The language Lin the proof of Lemma 3.7 was not in R, and hence, by 

KOSARAJU's [1979] result, is not acceptable by any multihead 2DRTFA with 

jumps. It is easy to see how L can be accepted by a 2-head 2NRTFA. D 

The only question remaining seems to be whether (k+l)-head 2DRTFA's 

with jumps are more powerful thank-head 2DRTFA's with jumps, and the same 

matter for the nondeterministic versions. For a proof we might use the lan

guage Jk over the alphabet 

r = {0,1} x F x M x Q, 

where 

F = {f I f is a total function f: {O,l}k x Q + {0,1}}, 

M = {m Im is a total function m: {1,2, ••• ,k} x Q + 

+ {left, right, no move} and m(l,q) = right 

for all q E Q}. 

The interpretation is as follows. Jk is recognized by a k-head 2DRTFA 

M with state set Q. Suppose M has an input s 1s 2 ••• sisi+1 ••• sn on its tape, 

s. = (a. ,f. ,m. ,q.) E r, 1 $ i $ n. At the i-th step the vanguard head 1 of 
l. l. l. l. l. 

M reads s. in state q. 1 E Q and outputs f. (a. 1,a. 2 , ••• ,a. ,q. 1) where aJ.h 
i i- i J J Jk i-

is the first element of the symbol read by the head hat that moment, 

1 $ h $ k. Subsequently, M repositions head h according to m. (h ,q. ) , 
l. l. 

1 $ h $ k, and enters state q .• 
l. 

THEOREM 4.6. Jk+l is accepted by a (k+l)-head 2DRTFA but not by any k-head 

2NRTFA with jumps. Hence (k+l)-head 2DRTFA (2NRTFA) with jumps are strictly 

more powerful thank-head 2DRTFA (2NRTFA) with jumps. 

PROOF. k=l. 1-head 2NRTFA accept only regular sets, and J 2 is not regular. 
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(It is easy to find a regular restriction on J 2 which yields a language iso

morphic with {On1n In~ 1}.) 

k > 1. By using them-element of the input symbols we can always necessitate 

the comparison of k+1 pieces of input which are arbitrary far apart and, 

say, of length x. Hence we would have to compare k+1 nonoverlapping words 

over {0,1} of length x, using k heads, in x steps. However, in x steps the 

k-head 2NRTFA with jumps can access at most kx + r1ogJQll bits of relevant 

information which is smaller than (k+1}x if we choose x large enough. 0 

If we take Jk equal to Jk but without "left" in the range of m EM we 

can similarly prove: 

COROLLARY 4. 7. Jk+l is accep'ted by a (}:+1)-head 1DRTFA bu't no't by any k-head 

1NRTFA wi'th jumps. This implies 'tha't all inclusions according 'to 'the number 

of heads in 'the 1XRTFA are proper, where X E {D,N,D wi'th jumps, N wi'th jumps}. 

All results above hold whether or not we assume end markers, or that 

the heads can detect coincidence. 

We think that Theorem 4.3 also holds for the corresponding Turing ma

chine versions which are allowed to modify the contents of each square on 

the storage tapes but a bounded number of times, for some fixed constant 

bound. 

Resuming, we obtain, for each k ~ 1, the inclusion graph of Figure 5. 

All inclusions are proper. Classes which are not connected by a sequence of 

directed arrows are incomparable. Hence we see that there are 3 distinct 

parameters: determinism-nondeterminism, no jumps-jumps, and the number of 

heads. We observe that jumps+ nondeterminism cannot make up for an addition

al head; additional heads+ nondeterminism cannot make up for jumps; and 

jumps+ additional heads cannot make up for nondeterminism. The same picture 

holds for the one-directional variant. If we consider one-direction versus 

two-direction as an additional parameter, we observe that, similar to before, 

a gain in power according to one of the four of these parameters, cannot be 

compensated for by gain in power according to the remaining three. 
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(k+1)-2NRTFA +· JUMPS 

/~ 
(k+1)-2NRTFA k-2NRTFA + JUMPS 

(k+ 1 ) - 2D RTFA k-2DRTFA + JUMPS 

k-2DRTFA 

Figure 5. Inclusion diagram for the computing power of real-time 2-way mul

tihead finite automata according to number of heads, determinism 

and jump option. 

Below we shall briefly consider the writing deterministic variants of 

the discussed automata. We denote these devices by putting a "W" before "FA" 

in the used acronym. rt is clear that such devices are very near in com

puting power to multihead RTTM's, and in fact (where<(~) means "less (or 

equally) powerful"): 

(k-1)-head RTTM ~ k-head 2DRTWFA ~ k-head RTTM, 

and at least one of the inclusions in(*) is proper by Theorem 2.1. Since a 

k-head RTTM is, but for the initial inscription of the input on the storage 

tape, the same as a (k+l)-head 2DRTWFA with a read-only vanguard head, it 

is to be assumed that both inclusions above are proper. 
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LEMMA 4.8. k-head 2DRTWFA < k-head RTTM, for all k ~ 1. (For k = 0 the Lemma 

has no meaning.) 

PROOF. The base case k = 1 is obvious, since 1-head 2DRTWFA's accept only 

regular sets and there is a 1-RTTM which accepts the nonregular language A1• 

We prove the Lemma by induction on the number of heads, viz., by showing 

J\ € k-head RTI'M - k-head 2DRTWFA. Suppose the Lemma holds for 1,2, ••• ,k-1 

but not fork. Then¾ is accepted by a J~-head 2DRTWFA ~ but, according to 

Theorem 2.1 and (*) not by any (k-1)-head 2DRTWFA. Therefore, like in the 

proof of Lennna 4.2, we can find, for each constant c, an input word Ve such 

that at the v -th step all k-1 nonvanguard heads lag behind the vanguard 
C 

head at least c squares in the computation of Mk. Hence, for the input en-

semble {v} W, with 
C 

w = { w € L~ I I w I ::;; C and for all i, 1::;; i::;; k, lwl. ~ O}, 
l. 

where lwl. denotes the number of 0. 'sand 1. 's subtracted by the number 
l. l. l. 

of Pi's in w, the following holds. A\ becomes in effect a (k-1)-head RTTM 

with a particular initial instantaneous description, viz, the state of the 

finite control, the contents of the first v squares and the distribution 
C 

of the k-1 nonvanguard heads, subsequent to the processing of v, since on 
C 

the input ensemble {v} W the nonvanguard heads shall never read the 
C 

vanguard heads writing on the W segment of the input. For the input en-

semble {vc} W the task for Mk is to recognize {vc} W n ¾' which set is 

equal to {vc} (W n ¾'· Hence this task for A\ entails the recognition of 

W n ¾ by a (k-1)-head RTTM M with the described initial instantaneous 

description. Observing that AANDERAA [1974] shows in fact that no (k-1)-

* RTTM M can distinguish between¾ n Wand W-¾ (instead of, more weakly, 
C C * between¾ n Ek and Ek - ¾> for some large enough c depending only on M, 

* while M may be assumed to have initially inscribed storage tapes, we can, 

similarly to the proof of Theorem 2.1, show that there is a word v in W which 

* fools M and therefore Mk. Hence our assumption that Mk recognizes¾ leads 

to a contradiction and the Lennna is proven. D 

From(*) together with Theorem 2.1 it follows that k-head 2DRTWFA < 

(k+2)-head 2DRTWFA. Lennna 4.8 and(*) yield: 
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COROLLARY 4.9. k-head 2DR'IWFA < (k+l)-head 2DR'IWFA for all k ~ 1, the case 

for k=l being obvious. 

For the lefthand inclusion of (*) it holds that for k=l both classes 

are equal in recognition power. For k=2, however, the inclusion is proper. 

LEMMA 4.10. (i) 0-RTTM = 1-head 2DR'IWFA 

(ii} 1-RTTM < 2-head 2DR'IWFA. 

PROOF. (i) is obvious. 

(ii) VALIEV [1970] has shown, using RABIN's [1963] techniques, that 

L = {x2x I x E {0,1}* and 2 t {0,1}} cannot be recognized by 1-RTTMs. It is 

easy to see how L can be recognized by a 2-head 2DR'IWFA (or by a 2-head 

lDRTFA for that matter). D 

The improvement of Lemma 4.10 to the general case does not seem easy. 

In fact, it seems about as hard as proving that k-head RT'l'Ms are more power

ful than k-RT'l'Ms. A possible candidate to distinguish (k-1)-head RT'l'Ms 

from k-head 2DR'IWFA's is the following language: 

I * * vk-l = ~-l u {w*v w = a 1a 2 ••• am E rk-l' v E {0,1} , 

lvl S lwl and for v = b 1b 2 ••• bl it holds that for 

1 sis l, bi= 1 if a 1 ••• ai E ~-land bi= 0 if 

a 1 ••• ai t ~-l; furthermore, for some i, 1 sis k-1, 

the number of P 'sin w exceeds the number of Oi's and 
i 

1. 'sin w} 
i 

Vk-l can be recognized by a k-head DR'IWFA as follows. At each step the 

vanguard head notes on an extra track whether the processed prefix belongs 

to ~-l' while the remaining k-1 heads simulate the required k-1 pushdown 

stores. When the vanguard head reaches the marker* one of the stores must 

be empty, i.e., one head must be at the start square. This head now starts 

to compare the ~cceptance record against v, which is read by the vanguard 

head. Likely candidates for showing a difference between machine classes 

which are very close in recognition power will be the subject matter for 

the entire next section. 
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5. ON THE RELl'.\.TIVE POWER OF TAPES·, HEADS AND JUMP HEADS IN REAL-TIME 

TURING MACHINES 

One of the major drawbacks in the game of showing a difference in power 

between two very similar machine types A and B such as considered in this 

paper, apart :from the difficulties involved in giving a proof, is to find 

some likely candidates for showing a difference between type A and type B. 

RABIN's [1963] language in R(2)-R(1) did not generalize in an obvious way 

to show a difference between R(k+1) and R(k), k > 1. AANDERAA [1974] provid

ed a uniform construction for a language in R(k+1)-R(k), k ~ 1. No likely 
H 

candidates for showing the difference between, e.g., R(k) and R (k) or 

RH(k) and RJ(k) have been proposed, except possibly {xy2x I xy E {o,1}*} 

for showing a difference between RH(2) and R(2). In the present section we 

propose to fill this gap, besides proving some facts about the candidates. 

The only languages known to be in R-R (k) are the languages Ak . , i ~ 1, 
+1. 

but unfortunately these languages are not in RH(k) either. PAUL, SEIFERAS 

and SIMON [19B0] have, independently, by a method similar to the one in

troduced in VITANYI [1979] (cf. Theorem 2.1), shown that ¾+l is not re

cognized by a k-head RTTM with head-to-head jumps either, and therefore 
J J J 

R (k) c R (k+l) , for all k, and ¾+l q: R (k). (This, by the way, implies 

the analogs of Lemma 4.8 and Corollary 4.9 for the jump versions of the 

machines occurring there). Hence the only candidates of which we have nega

tive results are not acceptable either by placing all heads on the same 

tape nor by adding the jump option. From the existing simulation results it 

is also clear that there cannot be a single language L which is acceptable 

by some k-head (jump) RTTM but not by any multitape (multihead) RTTM, thus 

proving the required results by a single example as in section 4. Now con

sider a language which is like¾ but with the extra requirement that at 

all times during the processing of the input w by a k stack machine at 

least 2 of the stacks are of equal length for w to be accepted. More for

mally, if lvl:i. denotes the number of 0i's and 1i's subtracted by the number 

of P 'sin v, tl,en: 
i 

w E ¾ & Vv E prefix (w) 3i,j E {1,2, ••• ,k} 

[i -I j & llvl--lvl-1 s; 1]} 
1. J 



25 

H J 
LEMMA 5.1. ¾ / R(k-2),R (k-2),R (k-2). 

PROOF. Suppose, by way of contradiction, that the (k-2)-RTTM H accepts Ek. 

* Now change M to a (k-2)-RTTM M which accepts ¾-l by having the finite con-

trol of M, for every letter Ok-l'lk-l'Pk-l read Ok-l0k,lk-llk,Pk-lpk' re

spectively, and speed up the storage handling as much as required. Then 

* ¾-l is acc_epted by the (k-2)-RTTM M contradicting known results. 
H J 

Ek t R (k-2) then follows by Theorem 2.1 and for Ek t R (k-2) see the in-

troduction of this section. D 

(The case k = 2 above is obvious since E2 is not regular.) Note that 

* AANDERAA's proof does not show that Ek t R(k-1) since the subset SEk used 

in AANDERAA's proof (which in fact shows that no (k-1)-RTI'M can distinguish 

* * * between SEk n ¾ and SEk n (Ek-1\)) is disjoint from¾· 

H 
LEMMA 5.2. E2 E R(l), E3 ER (2). 

PROOF. E2 E R(l) is obvious. E3 E RH(2): keep the 3 stacks on different 

tracks of the recognizing 2-head RTTM M. Whenever there is a change in pairs 

of equal size stacks, all 3 stacks must be of equal length, otherwise we 

reject the input. Both heads of M therefore come together with everything 

to the right of th.em blank, and therefore the role of the "fat" head, main

taining 2 tracks, can change. D 

We conjecture that E3 t R(2). To prove this conjecture also would prove 
H that R(2) c R (2), a well-known open problem. In general we conjecture that 

Ek t R(k), k ~ 2, which for the case k = 3 would show that the LEONG

SEIFERAS simulation is optimal for 2 heads. By Lemma 5.1 and the fact that 

a multihead machine can detect coincidence we have that 

LEMMA 5.3. Ek E RH(k) - RH(k-2). 

J 
LEMMA 5.4. Ek ER (k-1} for all k > 1. 

PROOF. Keep the k stacks concerned on k different tracks of the (k-1)-head 

jump RTTM M recognizing Ek. Since at all times, during the processing of a 

* candidate word w E Ek, 2 of the tracks must contain stacks of equal height, 
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at any time the pair of tracks concerned changes somewhere a pair of equal 

height tracks must be formed, thus freeing a head which can jump to the 

place where it is needed. If at any time all stack heights diverge M rejects 

the prefix processed and also every addition to it. 0 

J J 
COROLLARY 5.5. Ek ER (k-1) - R (k-2). 

We conjecture that Ek cannot be recognized by a (k-1)-head RTTM for 

k ~ 4. A proof of this fact would show that RH(k) c RJ(k) fork~ 3, leaving 

open the case k = 2. Although we have an upper bound on the recognition of 

Ek by multihead RTTM's (with respect to the number of heads needed) we have 

not yet a good upper bound for recognition by multitape RTTM's except by the 

crude Ek E R(4k-4) offered by Lemma 5.3 and the LEONG-SEIFERAS' result. 

LEMMA 5.6. E2 E R(l); E3 E R(4); Ek E R(2k-2), k ~ 3. 

PROOF. E2 E R(l) is obvious. E3 E R(4): we can check for inclusion in A3 
using 3 stacks and determine whether the difference between the lowest and 

the highest stack is less than 2 by a 4-th stack. The identity of the cur

rent pair of equal-size stacks can be maintained in the finite control. 

Similarly, we can keep track of the k-2 consecutive differences in height 

concerned in the acceptance of Ek by k-2 stacks, thus assuring Ek E R(2k-2), 

k ~ 3. 0 

To use k-2 stacks for keeping track of k-2 counters seems somewhat 

extravagant. It is known, P. FISCHER, MEYER and ROSENBERG [1968], that an 

arbitrary number of counters can be linear time simulated by a 1-tape Turing 

machine, but the real-time simulation is still an open problem. (Note, that 

the related origin crossing problem is solvable in real-time by a 1-tape 

Turing machine, M. FISCHER and ROSENBERG [1968b]). Hence, for the time be

ing, Lemma 5.6 appears to be the best we can do. 

we can generalize the above approach in several directions. For in

stance, by requiring that i of the k stacks have the same height at all 

times during the processing of the input. Formally, 



E 
(~) 

1. 

= {w Er: I w E 1\: & Vv E prefix(w) ~j 1 ,j 2 , ••• ,ji E {1, ••• ,k} 

jl<j2< ••• <ji 

27 

[j !vi. -!vi. I ;o; 1 for all j£,jm E {j 1 ,j 2 , ... ,ji}J}. 
J £ Jm 

These languages are especially suited to jump Turing machines since it 

is easily seen that: 

LEMMA 5.8. Ek E RJ(k-i+l). 

(i) 

Furthermore, 

LEMMA 5.9. 

(i) E 
(~) 

E RJ (k-i+l) - RJ (k-i) 

1. 

(ii) E 
(~) 

E RH (k-i+l) - RH (k-i) 

1. 

and 

H 
- RH (k-i) E E R (k) 

(~) 
1. 

(iii) E 
(~) 

E R (2k-i) - R(k-i). 

1. 

for i > k/2 

for i ;o; k/2. 

The latter two Lemmas are proven similar to the previous Lemmas con

cerning Ek (=Ek). Some border cases with i ~ k/2 yield: E 5 E RH(3), 
H (2) (3) 

E 5 ER (2) c R(4), and, because of the real-time simulation of heads by 

( 4) 
tapes in LEONG and SEIFERAS [1977], it follows from Lemma 5 . 9 (ii) that E k E 

R(4 (k-i)) for i > k/2 and therefore, e.g., E k 

( 3k/ 4) 
than what we obtain from Lemma 5.9(iii). 

( . ) 
E R(k) which is better1 

Lucking at the above we see there is a relation between the optimality 

of the real-time simulations of jump heads by heads, and heads by tapes, and 

how many tapes or heads are needed to recognize Ek. Let f(k) be the 
( i) 

minimum number of tapes (heads) needed for simulating k jump heads in real-

time. Then, if we need at least k tapes (heads) for accepting E k , i < k/2, 
(i) 
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then 

f(k-i+l) :::c: k. 

Hence the conjecture that we need k or more tapes (heads) to recognize E 
(~) 

for i < k/2 can be dissolved if we can improve KOSARAJU's result to "less1 

than 2 k tapes (heads) are necessary for the real-time simulation of k jump 

heads" 

Yet another language sequence we might cons:der is~ - Ek, k :::c: 1. 

Since~ - Ek contains AANDERAA's subset~ n Sik, it follows that 

~ - Ek i R(k-1) ,RH (k-1) ,RJ (k-1). We also see that ~ - Ek E RH (k) ,RJ (k). 

With respect to acceptance by k-RTTM's the same upper bounds apply as argued 

for Ek. This is not so for the languages~ - Ek, where Ek is like Ek but 

the condition of two stack heights being equal only holds at the end of the 

processing of the input word, i.e., 

= {w Er: I w E ~ & 3i,j E {1, ••• ,kHllwl.-lwl.l :s; 1]}. 
i~j 1 J 

Here we have that A2 - E2 E R(3) but, presumably, that A2 - E2 i R(2). By 

the now familiar reasoning, if the latter case is affirmative then 

A2*(A2-E2 ) E RJ(2) - RH(2), settling the question whether or not 

RH(2) c RJ (2). 

Some of the candidates to try for solving the various questions met 

are given in the table below. 

k=2: L = {xy2x I xy E {o,1}*} A2* (A2-E2) 

E3, A2 - E' 
2 

' 
arbitrary k :::0: 3: Ek, ~-~ Ek+1 

--

Acknowledgements. J. SEIFERAS pointed out to me that the earlier version of 

the proof of Theorem 2.1 in VITANYI [1979] may have been prone to (but wasn't) 
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circularity of the argument. Discussions with W. SAVITCH were valuable for 

section 4. 
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