
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

P.R.J. ASVELD

TIME AND SPACE COMPLEXITY OF
INSIDE-OUT MACRO LANGUAGES

Preprint

~
MC

IW 141/80 JULI

kruislaan 413 1098 SJ amsterdam

Punted a:t t:he Ma.thematic.al. Centll.e, 413 KJrJ.Ll6laa.n, AmtdeJul.a.m.

The Ma:thema-tlc.al. Centlte , 6ou.nded t:he 11-t:h 06 FeblW.tVl.y 1946, ..l6 a. non
pll.O 6.lt hu,i:.i;tu;t.io n <Umlng a:t t:he pll.Omo:tlo n o 6 pwz.e ma.thema.tiC-6 a.nd m
a.ppUc.ati.on6. It: ..l6 .6pon601Led by t:he Ne;theJri.a.nd6 Govell.nment t:hll.ough t:he
Ne;theJti.a.nd6 0.1tga.nizati.on 6olL t:he Advancement 06 PUILe Rueall.c.h (Z.W.O.).

1980 Mathematics subject classifications: 68C25, 68F05, 68F10
ACM-Computing Reviews - categories: 5.23, 5.25

* Time and Space Complexity of Inside-out Macro Languages

by

Peter R.J. Asveld

ABSTRACT

Starting from Fischer's IO Standard Form Theorem we show that for each

inside-out (or IO-) macro language L there exists a A-free IO-macro grammar

with the following property: for each x in L there is a derivation of x of

length at most linear in the length of x. Then we construct a nondeterminis

tic log-space bounded auxiliary pushdown automaton which accepts Lin

polynomial time. Therefore the IO-macro languages are (many-one) log-

space reducible to the context-free languages. Consequently, the membership

problem for IO-macro languages can be solved deterministically in poly

nomial time and in space (log n) 2 •

KEY WORDS & PHRASES: inside-out macro grammar, complexity of membership

problem, (many-one) log-space reducibility, non

deterministic log-space bounded auxiliary pushdown

automaton

*
This report will be submitted for publication elsewhere.

1

1. INTRODUCTION

Among the many generalizations of context-free grammars the classes

of indexed grammars [1], the outside-in (or OI-) macro grammars, and the

inside-out (or IO-) macro grammars [12,13] belong to the most interesting

ones. For motivation, additional results and applications of these classes

of grammars and some important subclasses and generalizations the reader is

also referred to [2,4,5,8,9,19,24].

In [20] Rounds proved that the membership problem for indexed languages

is complete for nondeterministic polynomial time. Since the family OI of

languages generated by QI-macro grammars coincides with the family of

indexed languages [12,13] the same conclusion holds with respect to the

membership problem for OI.

Although OI and the family IO of languages generated by IO-macro

grammars are incomparable [12], i.e. neither includes the other one, both

families are properly included in NSPACE(n), the family of context

sensitive languages [12].

Contrary to the OI-case the membership problem for the family IO is

feasible, as Hunt [17] showed that IO is included in the family P of

languages accepted deterministically in polynomial time.

The main object of the present paper is to improve the inclusion
2

IO c NSPACE(n) [12] to IO~ DSPACE((log n)) •

After briefly recalling in Section 2 the definitions of IO-macro

grammar and of space-bounded auxiliary pushdown automaton we consider in

Section 3 Fischer's IO Standard Form Theorem [12] in somewhat more detail.

Using this theorem we effectively construct for each IO-macro language L0

a \-free IO-macro grammar G such that (i) L(G) = L0-{\}, and (ii) for each

x in L(G) there exists a derivation of x of length at most linear in the

length !xi of x.

Using this result we construct in Section 4 for each IO-macro language

L, a nondeterministic auxiliary pushdown automaton which accepts each word

x in L within polynomial time using at most log !xi space on its work tapes.

By Theorem 1 of [23] this immediately implies that the family of IO-macro

languages is (many-one) log-space reducible to the family of context-free

languages. As corollaries we obtain the known inclusion IO c P [17], as well

as the improvement of the space bound already mentioned above.

2

2. DEFINITIONS

We assume familiarity with standard terminology and basic results in

formal language and complexity theory. So for precise definitions of, for

instance, the complexity classes P, NSPACE(S(n)), and DSPACE(S(n)) for any

space bound S(n) we refer to standard texts like [15,16].

Macro grammars have originally been introduced in [12]. But here we

only assume that the reader is familiar with the contents of the extended

abstract [13J. We recall the main definitions in order to establish

notation.

A ranked alphabet~ is a finite set of symbols, each of which is

provided with a unique nonnegative integer called the rank. For each

i ~ 0, ~- denotes the subalphabet of~ consisting of all symbols of rank
l.

i (So~- n ~-=¢whenever i ¥ j). PC denotes the alphabet of punctuation
l. J

characters, viz. left parenthesis, right parenthesis, and comma symbol.

The set of terms T(~) over~ is the smallest set of strings over~ u PC

satisfying:

(i) Each element of ~O and the empty word.). are in T(~),

(ii) If t 1 and t 2 are in T(~), then t 1t 2 is in T(~),

(iii) If A is in ~m for some m ~ 1, and if t 1 , ••• ,tm are in T(~), then

A(t1 , ••• ,tm) is in T(~).

An inside-out (or IO-) macro grammar G = (~,E,X,P,S) consists of

- an initial symbol S (S has rank zero: S € ~0),

- a ranked alphabet~ of nonterminals,

- a terminal alphabet E,

- a finite set X of variables (The elements in both E and X have rank

zero. ~,E and X are assumed to be mutually disjoint. X contains at

least as many variables as the highest rank of any symbol present in~),

- a finite set P of productions each of the form A(x1 , ••• ,xm) ➔ t

with A€~, x 1 , ••• ,x are mutually distinct elements from X, and tis
m m

a term from T(~ u {x1 , ••• ,xm} u E).

The sentential forms obtainable by Gare elements in T(~ u E). More

precisely, for cr and T in T(~uE), cr => T holds if
IO

- cr contains a substring over~ u Eu PC of the form A(w1 , ••• ,wm) for

* some A in ~m (m~O) and w1 , ••• ,wm € E (i.e. this occurrence of A in cr is

3

innermost),

- A(x1 , ••• ,xn) ➔ tis a production in P,

- Tis the result of replacing that occurrence of A(w1 , ••• ,wm) in cr by t',

where t' is obtained by substituting the word w. for the variable
l.

x. (1~i~m) in t.
l.

As usual ;, + is the transitive closure of the relation ro• The

language L(G) generated by G is defined by L(G) = {w E r*ls ~+w}. The

family of languages generated by IO-macro grammars is denoted by IO.

An IO-macro grammar G is called A-free if the right-hand side of

each production does not contain any occurrence of A.

EXAMPLE 2.1. Consider G = (~,E,X,P,S) with~= ~o u ~1' ~o = {s},

~1 = {A,B}, E = {a,b} and X = {x}. P consists of the following productions:

S ➔ A(a)

A(x) ➔ B(A(xa))

A(x) ➔ B(x)

B(x) ➔ xbx

Then L (G) = {am(bam)nlm ~ 1; n = 2m-1} is in IO. In [12,13] it was shown

that L(G) is not an indexed (or, equivalently, an or-macro) language. D

Next we turn to nondeterministic auxiliary pushdown automata and

related concepts. Formal definitions are given in [6,10,11,23,24], but for

our purpose an intuitive description suffices.

* * Let f:E 1 ➔ r 2 be a mapping, where r 1 and r 2 are alphabets. Then f is

log-space computable if there exists a deterministic Turing machine with a

two-wny read-only input tape, a one-way write-only output tape, and a two-

* way read/write work tape, which when started with x E r1 on its input tape

halts with f(x) Er; on its output tape, and uses at most loglxl tape

squares on its work tape during the computation of f(x).

A language L1 over r1 is (many-one) log-space reducible to a language

L2 over r2 , denoted by L1 ~lo L2 , if
* * g function f:E 1 ➔ r2 such that, for all

f(x) is in L2 •

there exists a log-space computable

* x E El, xis in L1 if and only if

The family of languages log-space reducible to context-free languages

is denoted by LOG(CF), i.e., LOG(CF) = {LIL ~l L' for some L' in CF}.
og

Many examples of language families which are included in LOG(CF) can be

4

found in [10,11,22,23].

Finally, a nondeterministic log(n)-space bounded auxiliary pushdown

automaton is a nondeterministic Turing acceptor with a two-way read-only

input tape, a finite number of log(n)-space bounded read/write work tapes

(where n is the length of the input), and an unbounded pushdown store.

Adding a polynomial time restriction on these devices yields a character

ization of the class LOG(CF), as it was established by Sudborough in

[23]:

THEOREM 2.2 [23].

(1) A language L is in LOG(CF) if and only if it is accepted by some non

deterministic log(n)-space bounded auxiliary pushdown automaton in

polynomial time.
2 (2) LOG(CF) c P n DSPACE((log n)). D

3. A LINEAR BOUND ON THE DERIVATION LENGTH

In this section we first recall Fischer's IO Standard Form Theorem [12].

Then we transform each A-free IO-macro grammar (in IO Standard Form) into

an equivalent A-free IO-macro grammar allowing a linear bound on the deriv

ation length for all words in the corresponding language. In general, however,

the new grammar need not be in IO standard form.

DEFINITION 3.1. A A-free IO-macro grammar G = (~,E,X,P,S) is in IO standard

form if

(1) each of its productions is argument preserving, i.e.

is in P, then x 1 , ••• ,xm do occur int,

(2) each of its productions is of one of the following two forms:

(2.1) A(x1 , ••• ,xm) + B(C(y1 , .•• ,yk),z2 , ••• ,zl) (m ~ 0, l ~ 1) where

A€ ~m' B € ~l' CE ~k and y 1 , ••• ,yk, z2 , .•• ,zl € {x1 , .•. ,xm}

(Note that by {1), for each x (l~p~m), there is either a p -
y. (l~i~k) with y. = x, or a z. (2~j~l) with z. = x).

1 1 p J + J p
(2.2) A(x1 , ••• ,xm) + w with win (Eu {x1 , .•• ,xm}) and m ~ 0. (By

(1) each x (l~p~m) occurs at least once in w). D
p

From this definition and a straightforward induction over the length of

5

derivation we obtain the following consequences Clwl denotes the length of

the word w).

COROLLARY 3.2. Let G = (~,L,X,P,S) be a A-free IO-macro grammar in IO

T .. * .. * standard form. Then for each <J in (~ u L) with S IO o IO x for some

x in L+ we have

o = AP (••• A2 (Al (wll, ••. ,wln1) ,w22' ••• ,w2n}, ••• wp2' ••• ,wpnp)

+ for some A. E ~n- (n.~O;l~i~p), and some w11 , w .. in L (l~i~p; 2~j~n.)
l. l. l. l.J l.

where w11 and wij are nonempty subwords of x satisfying

0 ~ I w11 I + l. . I w . . I ~ I x I •
l., J l.J

Moreover, the number of times we apply a rule of the form 3.1(2.2) in

a derivation S ro+ x (x in L+) equals one plus the number of times that

we apply a production of the form 3.1(2.1) in that derivation. D

THEOREM 3.3 (IO Standard Form Theorem [12, Theorem 3.3.4]). For each IO-

macro grammar G, we can effectively construct a A-free IO-macro grammar

G' in IO standard form such that L(G') = L(G) - {A}. D

EXAMPLE 3.4. Let G' = (~',L,X,P',S) with~•= ~OU ~i, ~O = {S,C},

~i = {A,B,D,E,F}, L = {a,b}, X = {x}, and P' contains the productions

S + A(C)

C + a

A(x) ➔ B(D(x))

D(x) ➔ A(E(x))

E(x) ➔ xa

B(x) ➔ xbx

A(x) ➔ B(F(x))

F(x) ➔ X

Then G' is in IO standard form and L (G') = L(G) where G is the

A-free IO-macro grammar of Example 2.1. D

With each term tin T(~ u L) we associate a natural number f(t) which

6

* equals the length of the string in L obtained by erasing all symbols from

~ u PC int ET(~ u L) c (~ u PC u r)*. Thus O ~ f(t) ~ ltl for each

t ET(~ u L). Moreover f(t) 0 iff tis in T(~), and f(t) = !ti iff tis

* in r • And if t equals the sentential form a mentioned in Corollary 3.2,

then

f(a) = I w11 I + l- . I w .. I
l.,J l.J

We now turn to the main result of this section.

THEOREM 3.5. For each IO-macro grammar G we can effectively construct a

A-free IO-macro grammar G' such that

(i) L(G') = L(G) - {A}.

(ii) for each x in L(G') there exists a derivation of x according to G' of

length at most c•lxl where c is a constant depending on G only.

PROOF. By Theorem 3.3 there exists a A-free IO-macro grammar GO= (~,r,x,P,S)

in IO standard form such that L(G0) = L(G) - {A}.

We call a derivation step a :W a' length preserving [length-increasing]

if f(a) = f(a') [f(a) < f(a') respectively]; since G0 is A-free the case

f(a) > f(a') never occurs.
~+

In a derivation S IO x the number of length-increasing steps is at

most Ix!. But in general there is no bound on the number of length-preserv

ing steps: certain subderivations may leave a sentential form unchanged
~+ (viz. a IO a) and so these subderivations can be repeated any number of

times (cf. Lemma 2.3 in [3] for an analogous situation).

A production is called length-preserving [length-increasing] if, when

applied to a sEmtential form, it gives rise to a length-preserving [length

increasing] derivation step. Since G0 is argument-preserving, a production

of the form

3.1(2.1) A(x1 , •.. ,xm)-+ B(C(y1 , ••• ,yk),z2 , ••• ,z.e_) (m:?:0, l:?:1)

is length-preserving if and only if k + l = m + 1. Similarly, a production

of the form

3.1(2.2) A(x1 , ••• ,x) -+ w
. m

(m:?:0)

is length-preserving if and only if m:?: 1 and w = xrr(l) ••• xrr(m) for some

permutation rr of {l, ••• ,m}.

7

The grammar G' is obtained by removing from G0 all length-preserving

productions of the form 3.1(2.2) with m = 1, i.e., of the form Z(x1) + x 1 ,

and by adding new rules in the following way. For each production in G0 of

the form 3.1(2.1) in which z occurs innermost, viz.

(1)

we add a rule

(1') A(x1 , ••. ,xm) +B(y1 ,z2 , ••• ,z,e> 1 ::,m::,.l

and similarly, for each rule of the form 3.1(2.1) in which Z occurs outer

most, viz.

(2)

we add a production

(2') A(x1 , ... ,xm) + C(y1 , ... ,yk) 0::, m::, k.

Note that if Z(x1) + x 1 is the only production of the form 3.1(2.2) for

Z, then we can replace (1) and (2) by (1') and (2') respectively, and

.remove Z from G.

In general we ought to iterate this construction in order to get rid

of rules of the form A(x1) + Z(Z'(x1)). Clearly, a finite number of iteration

steps always suffices.

For the grammar G' obtained in this way it is straightforward to show

that L(G') = L(G0).

In G' each production has one of the forms 3.1(2.1), 3.1(2.2), or

(*) A(x1,·••1Xm) + B(Z11•••1Z..e.) 0:,; m:,; ..e..
Clearly, a rule of the form(*) is length-preserving if and only if m = .l

or, equivalently, if either m = 0 or (z 1 , ••• ,z.l) is a permutation of

(xl, ... ,xm).
=>+ Consider a derivation S IO x according to G'. For type 3.1(2.2)

productions we have either m::; 1 or m ~ 2. In case m::; 1 the rules are

length-increasing, as G' is A-free and length-preserving productions with

m = 1 have been removed. It is now easy to see that during the derivation

of x there are at most lxl applications of type 3.1(2.2) rules, since

these productions are either length-increasing, or length-preserving with

m ~ 2. In the latter case the statement follows from the fact that G' is

A-free and argument-preserving.

In this derivation these lxl applications remove lxl occurrences of

nonterminals in total. These lxl occurrences can only be introduced by

8

jxj - 1 applications of type 3.1(2.1) rules, because productions of the

form (*) preserve the number of nonterminals. So in S ~+ x there are at

most 2jxJ -1 applications of productions of either type 3.1(2.1) or type

3.1(2.2). But in between there may occur any number of applications of

type (*) rules.

The number of consecutively applied length-preserving productions

of type (*) ca.n be bounded by

where #cp
m

is the cardinality of iP and pis the largest natural number
m

such that iP
p

f ¢. This follows from the fact that in a subderivation purely

obtained by length-preserving type (*) rules the same sentential form must

occur twice within M + 1 steps.

Since G' .is argument-preserving, we can use at most p length-increasing

type (*) productions before applying again rules of the form 3.1(2.1) or

3.1(2.2).

Therefore, for each x in L(G'), G' allows a derivation of x of length

at most 2p.M. jxJ. □

EXAMPLE 3.6. Mhen we perform this construction to the grammar of Example

3. 4, we replac1e the last two productions of that grammar by the single

rule A(x) ➔ B(x) while we remove F from the grammar. D

It is even possible to reduce the constant c in Theorem 3.5 to 2. But

then we must introduce productions of a form different from 3.1(2.1),

3.1(2.2) and (*). Consequently, the algorithm to be presented in the next

section becomes more complicated.

4. THE COMPLEXITY OF RECOGNIZING IO-MACRO LANGUAGES

The construction in the proof of Theorem 3.5 enables us to design a

straightforward top-down recognition algorithm for IO-macro languages.

This algorithm can easily be implemented on an auxiliary pushdown auto

maton. Finally, an analysis of the amount of time and space consumed by

this auxiliary pushdown automaton together with Theorems 2.2(1) and

3.5(ii) yields the main result of this paper, viz.,

9

THEOREM 4.1. IO .=_ LOG(CF).

PROOF. Consider an IO-macro language generated by a A-free IO-macro grammar

G' = (~',I,X,P',S) obtained in the way described in proving Theorem 3.5.

Thus each production in P' has one of the forms 3.1(2.1), 3.1(2.2) or (*).

We present a nondeterministic algorithm which decides whether a given

string x Er+ is in L(G'). This algorithm uses an array of length p, denoted

by x 1 , ••. ,xp (pis the largest rank of any symbol in~•.), a pushdown

store PDS, and two variables nt and 'IT of type "nonterminal" and "production"

respectively. The structure of the algorithm looks as follows.

nt: =.S;

for i:=l step 1 to p do xi:= A od;

while lx11 ~ !xi do

guess 'IT E P';

case •

od;

reject

For each 'IT in P'there is a "case" in the case-statement. We give

examples of typical entries in this case-statement according to the form of

'IT. First, if 'IT is of the form 3.1(2.1), i.e., A(x1 , ••• ,xm) ➔ B(C(y1 , ••• ,yk),

z 2 , ••• ,z,e_) with l. ~ 1, the corresponding "case" reads

if nt = A then

for i:= l. step - 1 to 2 do PUSH(zi) od;

PUSH(B);

(We use< ••• > to denote parallel assignment).

Second, when 'IT is a type 3.1(2.2) production, viz. A(x1 , ••• ,xm) ➔ w

with m ~ 0, then its "case" looks like

10

if nt = A then

x 1 := w;

if PDS == empty and x 1 = x

then accept

fi;

fi;

else nt:= POP;

for i:=2 step 1 to p (nt) do xi:= POP od;

Here p(nt) denotes the rank of the nonterminal in nt.

Finally, for a rule TT of the form (*), e.g. A(x 1 , ••. ,xm) ➔ B(z 1 , ••. ,zl)

with O ~ m ~ l, the corresponding entry in the case-statement is

if nt = A then

<xl, •.• ,xl>:= <z1,···,zt>;

nt:=B;

We now show how this algorithm can be implemented on a nondeterministic

auxiliary pushdown automaton. Firstly, the values of nt and TT do not

depend on !xi but on G' only, and therefore they can be stored in the

finite control. In a derivation of G' leading to x, the value of each

argument is a substring of x, and it is determined completely by its

beginning and its ending position in x, i.e., by two natural numbers in

between 1 and lxl = n. So we can store each variable x. using O(log n)
l

bits only (cf. [18,11,14,21,3]). The pushdown alphabet equals~ u {O,1,$}

where~ is now considered to be a non-ranked alphabet, and$ is a marker

to separate the bit strings.

Starting from the algorithm, the construction of a nondeterministic

log-space bounded auxiliary pushdown automaton which accepts L(G') is now

straightforward except for the following point. The assignment x 1 :=w

(cf. type 3.1(2.2) rules) may result in a value of x 1 which is not a sub

string of x. Th1=refore we guess a substring of x and put it in x 1 . Then

we test whether this guess is unequal to the value of the expression w. In

case it is, we reject x; otherwise we continue.

By Theorem 2.2(1) it now suffices to show that this log-space bounded

11

auxiliary pushdown automaton recognizes L(G') in polynomial time. From the

linear bound on the derivation length (Theorem 3.5) it follows that the

while-loop is executed O(n) times. Thus the total time consumed in recogniz

ing L(G') nondeterministically is O(n2), since the test and each "case" in

the while-loop requires at most O(n) time. □

From Theorems 2.2(2) and 4.1 we obtain the following consequences, the

former of which was already established in [17] using a different argument.

COROLLARY 4.2. (1) IO.::_ P,
2

(2) IO .::_ DSPACE ((log n)) ,

(3) IO c NTIME(n2). □

2
It is an interesting open question whether then bound in 4.2(3) can

be improved ton log nor even ton (Remember that the context-free

languages are in NTIME (n)) .

Obviously, Theorem 4.1 and Corollary 4.2 also hold for subclasses of

the family IO. In particular we mention the family of basic languages

[12,13] and the several families generated by bounded nested IO-macro

grammars [9]. With respect to the linear basic [12,13] or, equivalently,

the EDTOL languages [7] it was shown in [18] that their membership problem

can be solved in NSPACE(log n); cf. [11,14,21,3].

ACKNOWLEDGMENT.

The author is indebted to Joost Engelfriet and Jan van Leeuwen for

their comments on a preliminary version of this paper.

REFERENCES

[1] AHO, A.V., "Indexed grammars - an extension of context-free grammars",

er. Assoc. Comp. Mach. 15 (1968) 647-671.

[2] ASVELD, P.R.J., "Iterated Context-Independent Rewriting - An Algebraic

Approach to Families of Languages" (Doctoral dissertation),

'I'wente University of Technology, Enschede, The Netherlands (1978).

12

[3] ASVELD, P .. R.J., "Space-bounded complexity classes and iterated deter

ministic substitution", Inform. Contr. 44 (1980) 282-299.

[4] ASVELD, P.R.J., "Generalizations of context-free grammars and the non

self-embedding property", Report(1980), Mathematical Centre,

Amsterdam, The Netherlands.

[5] ASVELD, P.R.J. and J. ENGELFRIET, "Extended linear macro grammars,

iteration grammars, and register programs", Acta Informatica

11 (1979) 259-285.

[6] COOK, S.A., "Characterizations of pushdown machines in terms of time

bounded computers", J. Assoc. Comp. Mach.~ (1971) 4-18.

[7] DOWNEY, P.J., "Formal Languages and Recursion Schemes", (Doctoral

dissertation) Harvard University, Cambridge, Mass. (1974). See

also: Proceedings IEEE Conf. on Biologically Motivated Automata

Theory (1974) 54-58.

[8] ENGELFRIE'I', J. and E. MEINECHE SCHMIDT, "IO and OI", Part I J. Comput.

System Sci. ~ (1977) 328-353, Part II J. Comput. System Sci.

16 (1978) 67-99.

[9] ENGELFRIET', J. and G. SLUTZKI, "Bounded nesting in macro grammars",

Inform. Contr. 42 (1979) 157-193.

[10] ERNI, W.J., "Some further languages log-tape reducible to context

free languages", Report 45 (1976), Institut fur Angewandte

Informatik und Formale Beschreibungsverfahren, Universitat

Karlsruhe, FGR.

[11] ERNI, W.J., "Auxiliary pushdown acceptors and regulated rewriting

systems", Report 59 (1977), Institut fur Angewandte Informatik

und Formale Beschreibungsverfahren, Universitat Karlsruhe, FGR.

[12] FISCHER, M.J., "Grammars with Macro-like Productions", (Doctoral

dissertation), Harvard University, Cambridge, Mass. Reprinted in:

"Mathematical Linguistics and Automatic Translation", Harvard

Univ,ersity Computation Laboratory Report NSF-22 (1968).

[13] FISCHER, M.J., "Grammars with macro-like productions", Proceedings

9th Ann. IEEE Symp. on Switching and Automata Theory (1968) 131-142.

13

[14] HARJU, T., "A polynomial recognition algorithm for the EDTOL

languages", Elektron. Informationsverarbeit. Kybernetik 13 (1977)

169-177.

[15] HARRISON, M.A., "Introduction to Formal Language Theory", Addison

Wesley, Reading, Mass. (1978).

[16] HOPCROPT, J.E. and J.D. ULLMAN, "Introduction to Automata Theory,

Languages and Computation" , Addison-Wesley, Reading, Mass. (1979) .

[17] HUNT III, H.B., "On the complexity of finite, pushdown, and stack

automata", Math. Systems Theory .!.Q_ (1976) 33-52.

[18] JONES, N.D. and S. SKYUM, "Recognition of deterministic ETOL languages

in logarithmic space", Inform. Contr. 35 (1977) 177-181.

[19] MASLOV, A.N., "The hierarchy of indexed languages of an arbitrary level",

Soviet Math. 15 (1974) 1170-1174.

[20] ROUNDS, W.C., "Complexity of recognition in intermediate-level

languages", Proceedings 14th Ann. IEEE Symp. on Switching and

liutomata Theory (1973) 145-158.

[21] SUDBOROUGH, I.H., "The time and tape complexity of developmental

languages", in A. Salomaa and M. Steinby (Eds.), "Automata,

Languages and Programming, 4th colloquium", Lecture Notes in

Computer Science 52 (1977) 509-523, Springer-Verlag, Berlin/

Heidelberg/New York.

[22] SUDBOROUGH, I.H., "The complexity of the membership problem for some

extensions of context-free languages", Internat. J. Computer

Math. 6 (1977) 191-215.

[23] SUDBOROUGH, I.H., "On the tape complexity of deterministic context

free languages", J. Assoc. Comp. Mach. e_ (1978) 405-414.

[24] WAND, M., "Mathematical Foundations of Formal Language Theory",

(Doctoral dissertation), Massachusetts Institute of Technology,

Project MAC, TR-108, Cambridge, Mass. (1973).

