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* Time and Space Complexity of Inside-out Macro Languages 

by 

Peter R.J. Asveld 

ABSTRACT 

Starting from Fischer's IO Standard Form Theorem we show that for each 

inside-out (or IO-) macro language L there exists a A-free IO-macro grammar 

with the following property: for each x in L there is a derivation of x of 

length at most linear in the length of x. Then we construct a nondeterminis

tic log-space bounded auxiliary pushdown automaton which accepts Lin 

polynomial time. Therefore the IO-macro languages are (many-one) log-

space reducible to the context-free languages. Consequently, the membership 

problem for IO-macro languages can be solved deterministically in poly

nomial time and in space (log n) 2 • 

KEY WORDS & PHRASES: inside-out macro grammar, complexity of membership 

problem, (many-one) log-space reducibility, non

deterministic log-space bounded auxiliary pushdown 

automaton 

* 
This report will be submitted for publication elsewhere. 
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1. INTRODUCTION 

Among the many generalizations of context-free grammars the classes 

of indexed grammars [1], the outside-in (or OI-) macro grammars, and the 

inside-out (or IO-) macro grammars [12,13] belong to the most interesting 

ones. For motivation, additional results and applications of these classes 

of grammars and some important subclasses and generalizations the reader is 

also referred to [2,4,5,8,9,19,24]. 

In [20] Rounds proved that the membership problem for indexed languages 

is complete for nondeterministic polynomial time. Since the family OI of 

languages generated by QI-macro grammars coincides with the family of 

indexed languages [12,13] the same conclusion holds with respect to the 

membership problem for OI. 

Although OI and the family IO of languages generated by IO-macro 

grammars are incomparable [12], i.e. neither includes the other one, both 

families are properly included in NSPACE(n), the family of context

sensitive languages [12]. 

Contrary to the OI-case the membership problem for the family IO is 

feasible, as Hunt [17] showed that IO is included in the family P of 

languages accepted deterministically in polynomial time. 

The main object of the present paper is to improve the inclusion 
2 

IO c NSPACE(n) [12] to IO~ DSPACE((log n) ) • 

After briefly recalling in Section 2 the definitions of IO-macro 

grammar and of space-bounded auxiliary pushdown automaton we consider in 

Section 3 Fischer's IO Standard Form Theorem [12] in somewhat more detail. 

Using this theorem we effectively construct for each IO-macro language L0 

a \-free IO-macro grammar G such that (i) L(G) = L0-{\}, and (ii) for each 

x in L(G) there exists a derivation of x of length at most linear in the 

length !xi of x. 

Using this result we construct in Section 4 for each IO-macro language 

L, a nondeterministic auxiliary pushdown automaton which accepts each word 

x in L within polynomial time using at most log !xi space on its work tapes. 

By Theorem 1 of [23] this immediately implies that the family of IO-macro 

languages is (many-one) log-space reducible to the family of context-free 

languages. As corollaries we obtain the known inclusion IO c P [17], as well 

as the improvement of the space bound already mentioned above. 
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2. DEFINITIONS 

We assume familiarity with standard terminology and basic results in 

formal language and complexity theory. So for precise definitions of, for 

instance, the complexity classes P, NSPACE(S(n)), and DSPACE(S(n)) for any 

space bound S(n) we refer to standard texts like [15,16]. 

Macro grammars have originally been introduced in [12]. But here we 

only assume that the reader is familiar with the contents of the extended 

abstract [13J. We recall the main definitions in order to establish 

notation. 

A ranked alphabet~ is a finite set of symbols, each of which is 

provided with a unique nonnegative integer called the rank. For each 

i ~ 0, ~- denotes the subalphabet of~ consisting of all symbols of rank 
l. 

i (So~- n ~-=¢whenever i ¥ j). PC denotes the alphabet of punctuation 
l. J 

characters, viz. left parenthesis, right parenthesis, and comma symbol. 

The set of terms T(~) over~ is the smallest set of strings over~ u PC 

satisfying: 

(i) Each element of ~O and the empty word. ). are in T(~), 

(ii) If t 1 and t 2 are in T(~), then t 1t 2 is in T(~), 

(iii) If A is in ~m for some m ~ 1, and if t 1 , ••• ,tm are in T(~), then 

A(t1 , ••• ,tm) is in T(~). 

An inside-out (or IO-) macro grammar G = (~,E,X,P,S) consists of 

- an initial symbol S (S has rank zero: S € ~0 ), 

- a ranked alphabet~ of nonterminals, 

- a terminal alphabet E, 

- a finite set X of variables (The elements in both E and X have rank 

zero. ~,E and X are assumed to be mutually disjoint. X contains at 

least as many variables as the highest rank of any symbol present in~), 

- a finite set P of productions each of the form A(x1 , ••• ,xm) ➔ t 

with A€~, x 1 , ••• ,x are mutually distinct elements from X, and tis 
m m 

a term from T(~ u {x1 , ••• ,xm} u E). 

The sentential forms obtainable by Gare elements in T(~ u E). More 

precisely, for cr and T in T(~uE), cr => T holds if 
IO 

- cr contains a substring over~ u Eu PC of the form A(w1 , ••• ,wm) for 

* some A in ~m (m~O) and w1 , ••• ,wm € E (i.e. this occurrence of A in cr is 
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innermost), 

- A(x1 , ••• ,xn) ➔ tis a production in P, 

- Tis the result of replacing that occurrence of A(w1 , ••• ,wm) in cr by t', 

where t' is obtained by substituting the word w. for the variable 
l. 

x. ( 1~i~m) in t. 
l. 

As usual ;, + is the transitive closure of the relation ro• The 

language L(G) generated by G is defined by L(G) = {w E r*ls ~+w}. The 

family of languages generated by IO-macro grammars is denoted by IO. 

An IO-macro grammar G is called A-free if the right-hand side of 

each production does not contain any occurrence of A. 

EXAMPLE 2.1. Consider G = (~,E,X,P,S) with~= ~o u ~1' ~o = {s}, 

~1 = {A,B}, E = {a,b} and X = {x}. P consists of the following productions: 

S ➔ A(a) 

A(x) ➔ B(A(xa)) 

A(x) ➔ B(x) 

B(x) ➔ xbx 

Then L (G) = {am(bam)nlm ~ 1; n = 2m-1} is in IO. In [12,13] it was shown 

that L(G) is not an indexed (or, equivalently, an or-macro) language. D 

Next we turn to nondeterministic auxiliary pushdown automata and 

related concepts. Formal definitions are given in [6,10,11,23,24], but for 

our purpose an intuitive description suffices. 

* * Let f:E 1 ➔ r 2 be a mapping, where r 1 and r 2 are alphabets. Then f is 

log-space computable if there exists a deterministic Turing machine with a 

two-wny read-only input tape, a one-way write-only output tape, and a two-

* way read/write work tape, which when started with x E r1 on its input tape 

halts with f(x) Er; on its output tape, and uses at most loglxl tape 

squares on its work tape during the computation of f(x). 

A language L1 over r1 is (many-one) log-space reducible to a language 

L2 over r2 , denoted by L1 ~lo L2 , if 
* * g function f:E 1 ➔ r2 such that, for all 

f(x) is in L2 • 

there exists a log-space computable 

* x E El, xis in L1 if and only if 

The family of languages log-space reducible to context-free languages 

is denoted by LOG(CF), i.e., LOG(CF) = {LIL ~l L' for some L' in CF}. 
og 

Many examples of language families which are included in LOG(CF) can be 
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found in [10,11,22,23]. 

Finally, a nondeterministic log(n)-space bounded auxiliary pushdown 

automaton is a nondeterministic Turing acceptor with a two-way read-only 

input tape, a finite number of log(n)-space bounded read/write work tapes 

(where n is the length of the input), and an unbounded pushdown store. 

Adding a polynomial time restriction on these devices yields a character

ization of the class LOG(CF), as it was established by Sudborough in 

[23]: 

THEOREM 2.2 [23]. 

(1) A language L is in LOG(CF) if and only if it is accepted by some non

deterministic log(n)-space bounded auxiliary pushdown automaton in 

polynomial time. 
2 (2) LOG(CF) c P n DSPACE((log n) ). D 

3. A LINEAR BOUND ON THE DERIVATION LENGTH 

In this section we first recall Fischer's IO Standard Form Theorem [12]. 

Then we transform each A-free IO-macro grammar (in IO Standard Form) into 

an equivalent A-free IO-macro grammar allowing a linear bound on the deriv

ation length for all words in the corresponding language. In general, however, 

the new grammar need not be in IO standard form. 

DEFINITION 3.1. A A-free IO-macro grammar G = (~,E,X,P,S) is in IO standard 

form if 

( 1) each of its productions is argument preserving, i.e. 

is in P, then x 1 , ••• ,xm do occur int, 

(2) each of its productions is of one of the following two forms: 

(2.1) A(x1 , ••• ,xm) + B(C(y1 , .•• ,yk),z2 , ••• ,zl) (m ~ 0, l ~ 1) where 

A€ ~m' B € ~l' CE ~k and y 1 , ••• ,yk, z2 , .•• ,zl € {x1 , .•. ,xm} 

(Note that by {1), for each x (l~p~m), there is either a p -
y. (l~i~k) with y. = x, or a z. (2~j~l) with z. = x). 

1 1 p J + J p 
(2.2) A(x1 , ••• ,xm) + w with win (Eu {x1 , .•• ,xm}) and m ~ 0. (By 

(1) each x (l~p~m) occurs at least once in w). D 
p 

From this definition and a straightforward induction over the length of 
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derivation we obtain the following consequences Clwl denotes the length of 

the word w). 

COROLLARY 3.2. Let G = (~,L,X,P,S) be a A-free IO-macro grammar in IO 

T .. * .. * standard form. Then for each <J in (~ u L) with S IO o IO x for some 

x in L+ we have 

o = AP ( ••• A2 (Al (wll, ••. ,wln1) ,w22' ••• ,w2n}, ••• wp2' ••• ,wpnp) 

+ for some A. E ~n- (n.~O;l~i~p), and some w11 , w .. in L (l~i~p; 2~j~n.) 
l. l. l. l.J l. 

where w11 and wij are nonempty subwords of x satisfying 

0 ~ I w11 I + l. . I w . . I ~ I x I • 
l., J l.J 

Moreover, the number of times we apply a rule of the form 3.1(2.2) in 

a derivation S ro+ x (x in L+) equals one plus the number of times that 

we apply a production of the form 3.1(2.1) in that derivation. D 

THEOREM 3.3 (IO Standard Form Theorem [12, Theorem 3.3.4]). For each IO-

macro grammar G, we can effectively construct a A-free IO-macro grammar 

G' in IO standard form such that L(G') = L(G) - {A}. D 

EXAMPLE 3.4. Let G' = (~',L,X,P',S) with~•= ~OU ~i, ~O = {S,C}, 

~i = {A,B,D,E,F}, L = {a,b}, X = {x}, and P' contains the productions 

S + A(C) 

C + a 

A(x) ➔ B(D(x)) 

D(x) ➔ A(E(x)) 

E(x) ➔ xa 

B(x) ➔ xbx 

A(x) ➔ B(F(x)) 

F(x) ➔ X 

Then G' is in IO standard form and L (G') = L(G) where G is the 

A-free IO-macro grammar of Example 2.1. D 

With each term tin T(~ u L) we associate a natural number f(t) which 
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* equals the length of the string in L obtained by erasing all symbols from 

~ u PC int ET(~ u L) c (~ u PC u r)*. Thus O ~ f(t) ~ ltl for each 

t ET(~ u L). Moreover f(t) 0 iff tis in T(~), and f(t) = !ti iff tis 

* in r • And if t equals the sentential form a mentioned in Corollary 3.2, 

then 

f(a) = I w11 I + l- . I w .. I 
l.,J l.J 

We now turn to the main result of this section. 

THEOREM 3.5. For each IO-macro grammar G we can effectively construct a 

A-free IO-macro grammar G' such that 

(i) L(G') = L(G) - {A}. 

(ii) for each x in L(G') there exists a derivation of x according to G' of 

length at most c•lxl where c is a constant depending on G only. 

PROOF. By Theorem 3.3 there exists a A-free IO-macro grammar GO= (~,r,x,P,S) 

in IO standard form such that L(G0 ) = L(G) - {A}. 

We call a derivation step a :W a' length preserving [length-increasing] 

if f(a) = f(a') [f(a) < f(a') respectively]; since G0 is A-free the case 

f(a) > f(a') never occurs. 
~+ 

In a derivation S IO x the number of length-increasing steps is at 

most Ix!. But in general there is no bound on the number of length-preserv

ing steps: certain subderivations may leave a sentential form unchanged 
~+ (viz. a IO a) and so these subderivations can be repeated any number of 

times (cf. Lemma 2.3 in [3] for an analogous situation). 

A production is called length-preserving [length-increasing] if, when 

applied to a sEmtential form, it gives rise to a length-preserving [length

increasing] derivation step. Since G0 is argument-preserving, a production 

of the form 

3.1(2.1) A(x1 , •.. ,xm)-+ B(C(y1 , ••• ,yk),z2 , ••• ,z.e_) (m:?:0, l:?:1) 

is length-preserving if and only if k + l = m + 1. Similarly, a production 

of the form 

3.1(2.2) A(x1 , ••• ,x ) -+ w 
. m 

(m:?:0) 

is length-preserving if and only if m:?: 1 and w = xrr(l) ••• xrr(m) for some 

permutation rr of {l, ••• ,m}. 
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The grammar G' is obtained by removing from G0 all length-preserving 

productions of the form 3.1(2.2) with m = 1, i.e., of the form Z(x1) + x 1 , 

and by adding new rules in the following way. For each production in G0 of 

the form 3.1(2.1) in which z occurs innermost, viz. 

( 1) 

we add a rule 

(1') A(x1 , ••. ,xm) +B(y1 ,z2 , ••• ,z,e> 1 ::,m::,.l 

and similarly, for each rule of the form 3.1(2.1) in which Z occurs outer

most, viz. 

(2) 

we add a production 

(2') A(x1 , ... ,xm) + C(y1 , ... ,yk) 0::, m::, k. 

Note that if Z(x1) + x 1 is the only production of the form 3.1(2.2) for 

Z, then we can replace (1) and (2) by (1') and (2') respectively, and 

.remove Z from G. 

In general we ought to iterate this construction in order to get rid 

of rules of the form A(x1 ) + Z(Z'(x1)). Clearly, a finite number of iteration 

steps always suffices. 

For the grammar G' obtained in this way it is straightforward to show 

that L(G') = L(G0). 

In G' each production has one of the forms 3.1(2.1), 3.1(2.2), or 

(*) A(x1,·••1Xm) + B(Z11•••1Z..e.) 0:,; m:,; ..e.. 
Clearly, a rule of the form(*) is length-preserving if and only if m = .l 

or, equivalently, if either m = 0 or (z 1 , ••• ,z.l) is a permutation of 

(xl, ... ,xm). 
=>+ Consider a derivation S IO x according to G'. For type 3.1(2.2) 

productions we have either m::; 1 or m ~ 2. In case m::; 1 the rules are 

length-increasing, as G' is A-free and length-preserving productions with 

m = 1 have been removed. It is now easy to see that during the derivation 

of x there are at most lxl applications of type 3.1(2.2) rules, since 

these productions are either length-increasing, or length-preserving with 

m ~ 2. In the latter case the statement follows from the fact that G' is 

A-free and argument-preserving. 

In this derivation these lxl applications remove lxl occurrences of 

nonterminals in total. These lxl occurrences can only be introduced by 
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jxj - 1 applications of type 3.1(2.1) rules, because productions of the 

form (*) preserve the number of nonterminals. So in S ~+ x there are at 

most 2jxJ -1 applications of productions of either type 3.1(2.1) or type 

3.1(2.2). But in between there may occur any number of applications of 

type (*) rules. 

The number of consecutively applied length-preserving productions 

of type (*) ca.n be bounded by 

where #cp 
m 

is the cardinality of iP and pis the largest natural number 
m 

such that iP 
p 

f ¢. This follows from the fact that in a subderivation purely 

obtained by length-preserving type (*) rules the same sentential form must 

occur twice within M + 1 steps. 

Since G' .is argument-preserving, we can use at most p length-increasing 

type (*) productions before applying again rules of the form 3.1(2.1) or 

3.1(2.2). 

Therefore, for each x in L(G'), G' allows a derivation of x of length 

at most 2p.M. jxJ. □ 

EXAMPLE 3.6. Mhen we perform this construction to the grammar of Example 

3. 4, we replac1e the last two productions of that grammar by the single 

rule A(x) ➔ B(x) while we remove F from the grammar. D 

It is even possible to reduce the constant c in Theorem 3.5 to 2. But 

then we must introduce productions of a form different from 3.1(2.1), 

3.1(2.2) and (*). Consequently, the algorithm to be presented in the next 

section becomes more complicated. 

4. THE COMPLEXITY OF RECOGNIZING IO-MACRO LANGUAGES 

The construction in the proof of Theorem 3.5 enables us to design a 

straightforward top-down recognition algorithm for IO-macro languages. 

This algorithm can easily be implemented on an auxiliary pushdown auto

maton. Finally, an analysis of the amount of time and space consumed by 

this auxiliary pushdown automaton together with Theorems 2.2(1) and 

3.5(ii) yields the main result of this paper, viz., 
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THEOREM 4.1. IO .=_ LOG(CF). 

PROOF. Consider an IO-macro language generated by a A-free IO-macro grammar 

G' = (~',I,X,P',S) obtained in the way described in proving Theorem 3.5. 

Thus each production in P' has one of the forms 3.1(2.1), 3.1(2.2) or (*). 

We present a nondeterministic algorithm which decides whether a given 

string x Er+ is in L(G'). This algorithm uses an array of length p, denoted 

by x 1 , ••. ,xp (pis the largest rank of any symbol in~•.), a pushdown 

store PDS, and two variables nt and 'IT of type "nonterminal" and "production" 

respectively. The structure of the algorithm looks as follows. 

nt: =.S; 

for i:=l step 1 to p do xi:= A od; 

while lx11 ~ !xi do 

guess 'IT E P'; 

case • 

od; 

reject 

For each 'IT in P'there is a "case" in the case-statement. We give 

examples of typical entries in this case-statement according to the form of 

'IT. First, if 'IT is of the form 3.1(2.1), i.e., A(x1 , ••• ,xm) ➔ B(C(y1 , ••• ,yk), 

z 2 , ••• ,z,e_) with l. ~ 1, the corresponding "case" reads 

if nt = A then 

for i:= l. step - 1 to 2 do PUSH(zi) od; 

PUSH(B); 

(We use< ••• > to denote parallel assignment). 

Second, when 'IT is a type 3.1(2.2) production, viz. A(x1 , ••• ,xm) ➔ w 

with m ~ 0, then its "case" looks like 
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if nt = A then 

x 1 := w; 

if PDS == empty and x 1 = x 

then accept 

fi; 

fi; 

else nt:= POP; 

for i:=2 step 1 to p (nt) do xi:= POP od; 

Here p(nt) denotes the rank of the nonterminal in nt. 

Finally, for a rule TT of the form (*), e.g. A(x 1 , ••. ,xm) ➔ B(z 1 , ••. ,zl) 

with O ~ m ~ l, the corresponding entry in the case-statement is 

if nt = A then 

<xl, •.• ,xl>:= <z1,···,zt>; 

nt:=B; 

We now show how this algorithm can be implemented on a nondeterministic 

auxiliary pushdown automaton. Firstly, the values of nt and TT do not 

depend on !xi but on G' only, and therefore they can be stored in the 

finite control. In a derivation of G' leading to x, the value of each 

argument is a substring of x, and it is determined completely by its 

beginning and its ending position in x, i.e., by two natural numbers in 

between 1 and lxl = n. So we can store each variable x. using O(log n) 
l 

bits only (cf. [18,11,14,21,3]). The pushdown alphabet equals~ u {O,1,$} 

where~ is now considered to be a non-ranked alphabet, and$ is a marker 

to separate the bit strings. 

Starting from the algorithm, the construction of a nondeterministic 

log-space bounded auxiliary pushdown automaton which accepts L(G') is now 

straightforward except for the following point. The assignment x 1 :=w 

(cf. type 3.1(2.2) rules) may result in a value of x 1 which is not a sub

string of x. Th1=refore we guess a substring of x and put it in x 1 . Then 

we test whether this guess is unequal to the value of the expression w. In 

case it is, we reject x; otherwise we continue. 

By Theorem 2.2(1) it now suffices to show that this log-space bounded 
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auxiliary pushdown automaton recognizes L(G') in polynomial time. From the 

linear bound on the derivation length (Theorem 3.5) it follows that the 

while-loop is executed O(n) times. Thus the total time consumed in recogniz

ing L(G') nondeterministically is O(n2 ), since the test and each "case" in 

the while-loop requires at most O(n) time. □ 

From Theorems 2.2(2) and 4.1 we obtain the following consequences, the 

former of which was already established in [17] using a different argument. 

COROLLARY 4.2. (1) IO.::_ P, 
2 

(2) IO .::_ DSPACE ( (log n) ) , 

(3) IO c NTIME(n2 ). □ 

2 
It is an interesting open question whether then bound in 4.2(3) can 

be improved ton log nor even ton (Remember that the context-free 

languages are in NTIME (n)) . 

Obviously, Theorem 4.1 and Corollary 4.2 also hold for subclasses of 

the family IO. In particular we mention the family of basic languages 

[12,13] and the several families generated by bounded nested IO-macro 

grammars [9]. With respect to the linear basic [12,13] or, equivalently, 

the EDTOL languages [7] it was shown in [18] that their membership problem 

can be solved in NSPACE(log n); cf. [11,14,21,3]. 
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