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INTRODUCTION 

Suppose you have it in mind to define a data type by means of a set of 

operators E whose behaviour is to be governed by a set of axioms E. Then 

initial and final ~lgcbra semantics represent two distinct, though natural, 

ways of settling upon a unique meaning for the specification (!:,E) when the 

axioms E are written in certain algebraic normal forms. As its semantics, 

they each assign to (E,E) a many-sorted algebra, unique up to isomorphism, 

from the class ALG(E,E) of all algebraic systems of signature E which satis

fy the properties prescribed by E. Viewed from the proof theory of the axioms 

E, initial algebra semantics formalise the decision that two formal syntactic 

expressions, or terms, t,t' over E should be semantically equivalent if, and 

only if, t'= t' can be proved from the axioms E. While final algebra seman

tics allows t,t' to be semantically identified as long as t = t' does not 

contradict the requirements of E, or - as one says in the terminology of 

model theory - t = t' is consistent with E. 

Both techniques have been widely discussed in the literature devoted 

to the design of programming languages with varying degrees of exactness and 

approval; and it seems fair to say that most theoretical and practical work 

on algebraic data types can be placed in one or other of these opposing ini

tial and ftnal camps, usually the former. For example, looking at the origins 

of the algebraic specification methods, one sees that the ADJ GROUP [9,10] 

and ZILLES & LISKOV [16,25,26] used initial algebra semantics for their spec

ifications, but that J.V. GUT'I'AG [11] probably thought in terms of final al

gebra semantics. (At least, GUTTAG & HORNING [12] deny they are taking ini

tial models·for their specifications and come close to an informal descrip

tion of the final model strategy. Moreover, in the first paper to explicitly 

formulate final algebra semantics, [23], Wand argues that it is indeed the 

denotational semantics of Guttag's theory of specifications.) Mathematically 

exact declarations in favour of the far less well-understood final algebra 

semantics can be seen in HORNUNG & RAULEFS [13], KAMIN [14], KAPUR & SRIVAS 

[15], the MUNICH GROUP [8,24] and WAND [23]. 

The issues involved in the initial and final alternatives are many and 

complex; they seem to turn on independent theoretical and practical options 

for specific problems to do with data types. Unfortunately, no thoroughly 
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researched comparative study of the questions involved is yet available. 

However it is an objective of this paper to provide some theoretical perspec

tive for such a discussion by reporting the technical facts of life about a 

rather basic problem, the adequacy problem for specification methods, which 

lead to the conclusion that the theory of algebraic data types needs both 

the initial and the final techniques. We will prove two theorems, the First 

and Second Characterisation Theorems below, which characterise two kinds of 

effectively computable data types in terms of the initial and final algebra 

semantics for algebraic specifications allowing finite sets of conditional 

equations only. Before giving their statements we shall explain some back

ground issues to do with data types which the theorems are meant to resolve; 

after this introduction we shall adopt an exclusively technical outlook. 

Roughly speaking, a specification method Mis characterised partly by 

syntactical properties of the specifications its uses and partly by these

mantical conditions it imposes on their meanings. For example, a method M 

may allow specifications with equations only, or with conditional equations; 

it may require those sets of axioms to be finite or it may let them be re

cursively enurnerable. Each of these four decisions yields two distinct meth

ods depending on which of the initial and final algebra semantics is chosen. 

And the two ways of introducing hidden or auxiliary operators to assist in 

specifying ,data types doubles the number of methods based upon these familiar 

options. The adequacy problem for a particular specification method Mis the 

informal question Does the method M define all the data types one wants? 

Our theorems will frame exact,answers to two of three precise formulations 

of this question when Mis assumed to use finite sets of conditional equa

tions only and an elementary mechanism for involving hidden operators. The 

three versions of the adequacy question are determined by three natural and 

distinct kinds of effectively computable data type semantics: 

Let us say that an algebra A is effectively presented whenever we pos

sess an effective enumeration of its elements and we can effectively cal

culate its opeirations. Then A is said to be a semicomputable algebra, or a 

cosemicomputable algebra, if in addition the equality relation of A is r.e., 

or co-r.e., reispectively. A is a computable algebra when equality is decid

able. 

Now it is obvious that an r.e. algebraic specification o:,E) defines 
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a semicomputable algebra under its initial semantics: remembering the proof 

theoretical basis of the technique, with an r.e. set of axioms E one can 

simply enumerate all proofs and list the identifications EI- t = t'. It is 

less well known, though almost equally obvious, that the final algebra se

mantics df an r.e. algebraic specification defines a cosemicomputable alge

bra. Therefore, if a data type can be specified both initially and finally 

by two r.e. sets of axioms then it must be computable. Clearly, then, equa

tional term rewriting systems, formal grammars, and so forth, with r.e. but 

not recursive word problems qualify as data types without any effectively 

definable final algebra specification. On the other hand in [6 ], we showed 

that the set of functions computed by LOOP-programs on the natural numbers

the primitiye recursive functions - composed a data type with a finite equa

tional specification (allowing hidden functions) under final algebra seman

tics, but that it does not possess an effective algebraic specification of 

any kind using initial algebra semantics. We will give some new examples to 

divide the methods in Section 2. 

Concentrating on the two methods based upon finite sets of conditional 

equations (and allowing hidden operators), the three formal adequacy prob

lems per method boil down to the question Can the following known implica

tions be reversed? 

FINITE' CONDITIONAL SPECIFICATIONS+ INITIAL SEMANTICS 

+ SEMICOMPUTABLE DATA TYPES 

FINITE CONDITIONAL SPECIFICATIONS+ FINAL SEMANTICS 

+ COSEMICOMPUTABLE DATA TYPES 

BOTH SPECIFICATION METHODS+ COMPUTABLE DATA TYPES 

In Section 3, we prove that the second implication can be reversed. This 

argument will go quite some way toward reversing the first implication, at 

least far enough to prove that the third implication is an equivalence; we 

deal with these points in Section 4. On top of the characterisations, we 

are able to put numerical upper bounds for the number of auxiliary opera

tors and the number of equations necessary to specify the cosemicomputable 

and computable data types: 

FIRST CHARACTERISATION THEOREM. Let A be an algebra finitely generated by 

elements named in its signature E. Then the following are equivalent: 
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1. A is cosemicomputable. 

2. A possesSE!S a conditional equation specification, involving at most 5 

hidden functions and 15 + 1E1 axioms, which defines A under its final 

algebra semantics. 

SECOND CHARACT'ERISATION THEOREM. Let A be an algebra finitely generated by 

elements named in its signature L Then the following are equivalent: 

1. A is computable. 

2. A possesses two conditional equation specifications, each involving at 

most 5 hidden functions and 15 + 1E1 axioms, such that one specifica

tion defines A under its initial algebra semantics while the other de

fines A'under its final algebra semantics. 

This papeir is the sixth in our series of mathematical studies of the 

power of definition and adequacy of algebraic specification methods for data 

type definition [2,3,4,5,6] see also [7]. Obviously, the reader is assumed 

familiar with the informal issues and basic algebraic machinery of algebraic 

specifications and their semantics. For this material ADJ[lO] is essential, 

but the reader ought also to be experienced in following algebraic arguments 

as he or she will then find this paper virtually self-contained: our previous 

work is involved explicitly in an appeal to [5] which dispenses with finite 

data types, and implicitly in that we talk about single-sorted algebras only. 

Our previous articles established a standard procedure for turning single

sorted adequacy theorems into'their many-sorted generalisations, and that 

procedure readily applies here. 

1. SPECIFICATIONS AND THEIR SEMANTICS 

The purpose of this first section is to describe, in a summary form, 

two denotational semantics for algebraic data type specifications: initial 

algebra semantics and final algebra semantics. Our working definitions of 

these two mechanisms for assigning a meaning to a specification are given 

as Definitions 1.5 and 1.6 below: they, and they alone, represent what we 

will have in i~ind for initial and final algebra semantics in the technical 

work which fo}lows. By way of exposition of these two different semantics 



we describe them from the standpoints of category theory, logic and lastly 

algebra. Let us repeat that we take it for granted that the reader is well 

versed in the mathematical theory of data types created by the ADJ GROUP 

[10,21,22]. 
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Semantically, a data type is modelled by an algebra A finitely generated 

by elements named in its signature I, a so-called (finitely generated) minimal 

algebra. A specification (I,E) for a data type distinguishes the category 

* ALG (I,E) of all minimal algebras of signature I satisfying the axioms E and 

all morphisms between them. Thus, the.semantics of a specification (I,E) is 

* designed so as to pick out some algebra from ALG (I,E) as the unique meaning 

M(I,E) where the uniqueness of M(I,E) is measured up to algebraic isomorphism. 

Given a dat~ type semantics (modelled by an algebra) A, a specification (I,E) 

can be said to correctly define the data type when M(I,E) ~A.· 

* Seen from the point of view of the category ALG (I,E), initial algebra 

semantics for algebraic specifications assigns as the meaning of (I,E) the 

* initial algebra I(I,E) in ALG (I,E); this I(I,E) always exists and is unique 

up to isomorphism. On the other hand, final algebra semantics would like to 

* pick out the fin~l object from ALG (I,E) as the meaning of (I,E), but clear-

ly this final algebra is in all cases the trivial one-point, or unit, I-al-

* * gebra 1 E ALG (I,E). (Notice 1 may not play an initial role in ALG (I,E) 

because of ,the minimality assumption.) Instead, final algebra semantics 

* * turns to the category ALG0 (I,E) which is simply ALG (I,E) with the unit al-

* gebra removed. Unfortunately, ALG0 (I,E) need not always possess a final ob-

ject F(I,E), but when it does,this object is unique. 

Because of this asynnnetry, defining and using the final algebra seman

tics of algebraic specifications is a rather delicate matter when compared 

with the initial technique. Nevertheless, the technical motives behind final 

algebra semantics are natural enough and complement those behind initial al

gebra semantics. To explain these we adopt a logical point of view toward 

algebraic specifications from which the raison d'etre of the semantics be

comes evident. 

Given any data type semantics A, a minimal algebra of finite signature 

I, consider the algebra T(I) of all syntactic terms over I. There is an 

obvious semantic mapping vA: T(I) + A which evaluates the formal expressions 

over I as data belonging to A; vA is an epimorphism of I-algebras and is 
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uniquely determined as a function by A. The congruence -A induced on T(L) 

by vA, defined by 

(1) t - t' 
A 

if, and only if, vA(t') in A, 

for t,t' E T(r), is uniquely determined as a set by A and clearly 

(2) 

Combinatorially, devising a specification (r,E) for A amounts to devising 

axioms E which determine this congruence in some precise way. -A 
The first, and most obvious, method is to choose axioms E such that 

t,t' E T(L)' have the same meaning in A if, and only if, one can prove that 

t = t' from the axioms E. In the standard notation of logic, the desired 

relationship between A and Eis 

(3) A l= t = t' if, and only if, E J- t = t', 

or, equivalently, 

(4) t t' if, and only if, E 1- t = t' • -A. 

This is exactly the decision made when one seeks an algebraic specification 

(r,E) and uses initial algebra semantics to define A: the equivalence 

I(L,E) 1= t = t' if, and only if, E I- t = t' 

is always true, and entails equivalence (4) when I (r,E) ;;;;- A. 

Final alg·ebra semantics corresponds to a different use of the axioms 

in a specification (L,E). There one decides to assume t,t' E T(L) to have 

the same meaning in A if, and only if, one can assert t = t' without con

tradicting the, axioms of E: 

t - t' 
A 

if, and only if, t = t' is consistent with E. 

This notion of' consistency simply means that there is some non-unit model 
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* BE ALG (E,E) where B 1= t = t'. Equivalently, the relationship desired 

between A and E can be expressed as follows: the congruence =A has the 

property that for every congruence= on T(E) which defines a non-unit alge-
* bra T(E)/= in ALG (E,E) we have that 

t - t' implies 

As will be seen, when this relationship between =A and E can be arranged we 

* have A as the final object of ALG0 (E,E). And it is precisely these technical 

observations to do with consistency which lie behind the notion of semantic 

observability much used in writings on final algebra semantics. 

Now we,come to our purely algebraic definitions of these semantics 

framed in terms of congruences on T(E). 

Let A be an algebra of signature E. 

A congruence= on A is said to be the unit congruence if for any a,b 

EA we have a= b; or, equivalently, if A/= is the unit algebra of signature 

A congruence =2 on A is said to extend another congruence _1 on A if 

for any a,b EA we have a =1 b implies a =2 b. 

Let Ebe a set of conditional equations over E. 

If A satisfies the axioms of Ewe say that A is an E-algebra. 

A congruence= on algebra A is said to be an E-congruence if for each 

conditional equation in variables X = (X1, ••• ,Xn) 

and for any a E An 

if t 1 {a) - ti(a), ••• ,~{a) = ~(a) in A then t(a) - t' (a) in A. 

1.1 LEMMA. Let= be a congruence relation on A E ALG(E~E). Then - is an E

congruence if, and only if, A/= is an E-algebra. 

we will now define certain least and largest E-congruences on T(E) 

whose corresponding factor algebras will be the initial and final objects 
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* of ALG0 (r,E) respectively. Let us consider the initial case first. 

Define =min(E) to be the intersection of all E-congruences on T(L) and 

set TI(L,E) = T(L)/=min(E)" It is easy to see that =min(E) is an E-congruence 

and to verify that 

* 1.2 LEMMA. TI(r,E) is isomorphic to any initial object I(r,E) of ALG (L,E). 

Define =max(E) to be the smallest E-congruence extending all the non

unit E-congruences on T(L). Equivalently, let =max(E) be the smallest E

congruence containing the union of all non-unit E-congruences on T(L). And 

set TF(L,E) = T(L)/=max(E)" 

Of course we have no guarantee that =max(E) is not the unit congruence, 

and that TF(r,E) is not the unit algebra, but it is easy to prove that 

1.3 LEMMA. Whenever is not the unit congruence, TF(L,E) is isomorphic 
-max(E) * 

to any final object F(r,E) of ALG0 (r,E). 

1.4 OBSERVATION. For t,t' E T(L), t ,max(E)t' if, and only if, the least E

congruence extending= . (E) u {t=t'} is the unit congruence. min • 

We ca~ now define precisely what we mean by initial and final algebra 

specifications for data types. 

1.5 SEMANTICS OF ALGEBRAIC SPECIF~CATIONS 

Let Ebe a set of conditional equations over the signature rand let 

A be an algebra of signature r. 

The pair (L,E) is said to be a conditional equation specification of 

the algebra A with respect to (1) initial algebra semantics or (2) final 

algebra semantics if (1) TI(L,E) ;;;;- A or (2) TF(L,E) ;;;;- A. 

When the set of axioms Eis finite we speak of finite conditional equa

tion specifications with respect to these semantics. 

To conclude this preparatory section, we shall expiain our favoured 

method of involving hidden or auxiliary functions into algebraic specifica

tions for data types. 



Let A be an algebra of signature EA and let Ebe a signature E c EA. 

Then we mean by 

AIE the E-algebra whose domain is that of A and whose constants and 

operators are those of A named in E: the E-reduct of A; and by 

<A>i the E-subalgebra of A generated by the constants and operators of 

A named in E viz the smallest E-subalgebra of Air• 
The following represents the two basic working definitions of specifi

cation theory in this paper. 

1.6 ALGEBRAIC SPECIFICATIONS WITH HIDDEN OPERATORS 

9 

The specification (E,E) is said to be a finite conditional equation hid

den enrichment specification of the algebra A with respect to (1) initial 

algebra semantics or (2) final algebra semantics if EA c E, and Eis a fi

nite set of conditional equations over the (finite) signature E such that 

(1) 

or 

(2) 

In this pa~er, all specifications involving hidden operators are made to 

define data types as described in Definition 1.6. 

2. EFFECTIVELY COMPUTABLE ALGEBRAS 

A countable algebraic system A is said to be effectively presented 

when it is given an effective coordinatisation consisting of a recursive 

set n cw and a surjection a: n + A, and, for each k-ary operation cr of A, 

a recursive tracking function a which commutes the following diagram 
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wherein a.k(x1, ••• ,xk) = (a.x1 , ••• ,a.~ • 

The algebra A is said to be computable, semicomputable, or cosemicom

putable, if there exists an effective presentation a.: Q ➔ A for which the 

relation - on Q defined by 
Cl. 

n __ m 
a 

if, and only if, a.n =a.min A 

is recursive, r.e., or co-r.e., respectively. 

These three notions are the standard formal definitions of construc

tive algebraic structures currently in use in mathematical logic and they 

derive from the work of M.O. RABIN [20] and, in particular, A.I. MAL'CEV 

[18] devoted to founding a theory of computable algebraic systems. Their 

special featw~e is that they make computability into a finiteness condi

tion of algebra: an isomorphism invariant possessed of all finite struc

tures. In the case of finitely generated algebras, the concepts enjoy a 

much stronger recursion-theoretic invariance property which we shall now 

explain. 

Let a. and B be effective presentations of some algebra A. Then a. re

cursively reduces to B (in symbols: a. s; B) if there exists a recursive func

tion f to commute the following diagram, 

And a. is recursively equivalent to B if both a.:::; f3 and f3:,; a.. 

Recursi VE~ equivalence is the fundamental identity relation between 

numberings of algebras and is meant to measure the uniquness of the recur

sion-theoretical concepts under their translation to algebraic systems. 

Let R be a k-ary relation on A and let A be effectively presented by 

a.. Then R is said to be a-computable if its preimage 

-'.l 
a. R = {(x 1 , ••. ,x.) E QkCI.: (a.x CI.X) ER} .k 1, .•. , k 



is recursive. The definitions of a-semicomputable and a-cosemicomputable 

relations follow mutato nomine. The following fact is easy to check. 
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2.1 LEMMA. Let R be an a-computable (a-semicomputable or a-cosemicomputable) 

relation·on A. If 8 is another effective presentation for A and 8 recursively 

reduces to a then Risa-computable (8-semicomputable or 8-cosemicomputable). 

In particular, the effectivity of a relation on an algebra is unique up to 

the recursive equivalence of codifications. 

The invariance property for finitely generated algebras which interests 

us is the existence of certain canonical effective presentations which solve 

the irritating problem of how to speak of a relation as being computable 

(say) with~ut also having to name a coordinatisation. 

Henceforth, assume A is an algebra finitely generated by elements named 

in its signature r. 
" Clearly, the term algebra T(L) is computable under any natural godel 

. " numbering of terms. It is easy to make a general definition of such a godel 

numbering and to go on to prove that godel numberings compose an equivalence 

class under recursive equivalence; so the choice of y: w + T(E) is unimpor-
a 

tant. Let v: T(E) +Abe the unique term evaluation homomorphism. We define 

the standard effective presentation of A derived from y to be the composi
* 

tion 

To see that YA is indeed an effective coordinatisation of A one need only 

observe that an effective presentation for A is nothing more than an epi

morphism between A and a recursive algebra of natural numbers. 

2.2 REDUCTION LEMMA. The standard effective presentation yA of A recursively 

reduces to every effective presentation a of A. 

A proof of this can be found in MAL'CEV [18]; coupled with Lemma 2.1, 

it has several important consequences. 

2.3 INVARIANCE THEOREM. The algebra A is computable, semicomputable or 
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cosemicomputable .i[, ."!lid only if, it is so under the standard effective 

presentation yA. 

2.4 COROLLARY. Any two semicomputable coordinatisations of A are recursively 

equivalent. 

Let R be a recursive number algebra and a: R + A a homomorphism. Let 

us say that a is a decidable, r.e. or co-r.e. homomorphism accordingly as 

the congruence it induces on R 

n - m 
a 

if, and only if, an= am in A 

is recursive, r.e. or co-r.e. respectively. 

2.5 REPRESENTATION LEMMA. If A is semicomputable, or cosemicomputable, then 

it can be represented as the image of a recursive number algebra R with 

domain w under an r.e., or co-r.e., homomorphism a respectively. In partic

ular, A is isomorphic to the factor algebra R/= of R under the r.e., or 
a 

co-r.e., congruence induced by a •. If A is computable then it is isomorphic 

to a recursive number algebra R with domain w providing A is infinite • 

. 
What material we need from the theory of the recursive functions is 

elementary and is well covered by MACHTEY & YOUNG [17] with one exception: 
V 

Matijacevic's Diophantine Theorem. 

Let ZZ: [x1 , ... ,xn] denote 'the ring of polynomials in indeterminates 

x 1, ••• ,x and with integer coefficients. A set n c wn is said to be diophann . 
tine if there exists a polynomial p E zz; [x1, ••• ,xn,Y1, •.• ,Ym] such that 

Clearly, each diophantine set is recursively enumerable; the converse is a 
V 

hard theorem of Y. Matijacevic: 

2.6 DIOPHANTINE THEOREM. All recursively enumerable sets are diophantine. 

The number of search variables y 1, •.. ,yn can always be chosen to be 13 
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or less, incidentally. A good exposition of the theorem appears in MANIN [19]. 

We will always use the Diophantine Theorem to obtain polynomials over 

the natural numbers w rather than over :i:Z. We will now write down an equiv

alent characterisation of a diophantine set of natural numbers, one more 

suited to our special tasks. 

Let w[x1, ••• ,Xn] denote the set of all polynomials having natural num

ber coefficients and involving only addition and multiplication. 
n 

A set n cw is w-diophantine if there exist p and q E w[x1, ••• ,xn, 

Y1, ••• ,Ym] such that 

(x1,·••rXn) E n .... 3y1,·••1Ym E w.[p(X11•••rXn,Y1,···•Ym) = 

q(xl' • • • ,xn,y 1' • • • ,ym) ]. 

It is easy to check that the w-diophantine sets are precisely the dio

phantine sets. 

These technical preliminaries concluded, we can now turn our attention 

to data types and their specifications. 

2.7 BASIC LEMMA. Let (r,E) be a specification with Ea recursively enumer

able set of conditional equations. Then TI(r,E) is semicomputable and TF(r,E) 

is cosemicomputable. In particular, if algebra A possesses an r.e. condi

tional equation hidden enrichment specification with respect to (1) initial 

algebra semantics or (2) final algebra semantics then (1) A is semicomput

able or (2) A is cosemicomputable.' If A possesses such specifications with 

respect to both initial and final algebra semantics then A is computable. 

The proof of Basic Lennna 2.7 is routine and is left as an exercise for 

the reader. (Hint: Use Observation 1.4.) Here are examples of semicomputable 

and cosemicomputable algebras which are not computable. 

2.8 COMBINATORY LOGIC 

Consider the signature r consisting of constants KtS,I and a single 

binary operation• • Combinatory logic can be axiomised by three equations 

over this r. 
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(K•X)•Y = X 

( (S•X) •Y) •Z = (X•Z) • (Y•Z) 

I•X = X. 

where X,Y,Z are variables. The initial algebra of the resulting variety is 

known as the term model for combinatory logic and we denote it TMCL. Clearly, 

it is an algebra having a finite equational specification and it is semi

computable. It is not a computable algebra, however, because combinatory 

logic is a formalism strong enough to define all recursive functions; see 

BARENDREGT [1] for details. 

2. 9 POLYNOMJ:AL FUNCTIONS 

The typical cosemicomputable algebra is a set of computable functions 

structured by some effective operators. For example, let A be a computable 

algebra of signature :E and let T:E[x1, ••• ,xn] be the algebra of formal poly

nomials inn indeterminates over :E. Each t E T:E[x1, ••• ,Xn] defines an n

argument polynomial function An+ A which is computable. It is easy to derive 

an effective presentation of the :E-algebra PF(An,A) of all n-ary polynomial 

functions over A from a computable coordinatisation of T:E[x1, ••• ,xn]; and to 

prove that PF(An,A) is a cosemicomputable algebra. We give an A for which 

PF(An,A) i~ not computable when n ~ 13. 

Let A have domain w, constants 0,1 E w, and the operations of addition 

x+y, minus x~y, multiplication x.~, and 

-- {01 min (x) 
if X = 0; 

if X ~ 1. 

Let :Ebe the signature of A. 

Now let n be any r.e. subset of wand assume it defined by the Diophan

tine Theorem as 

n 
n En~ 3y E w .[p(n,y) = q(n,y)J 

m 
for p,q E w[x,Y1 , ••• ,Ym]. Define a family of polynomial maps w + w over A 
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Clearly, ,the family {H: n E w} is a computable subset of PF(Am,A) and if n 
PF(Am,A) were a computable algebra then we could decide whether or not 

H = 1 n 

where l(y) = 1 for ally E wm. However, it is easy to see that 

H = 1 if, and only if, n E Q. 
,n 

15 

Thus, choosing Q to be r.e. and not recursive shows that PF(Am,A) cannot be 

computable. The reader might care to find a finite algebraic specification 

for PF(Am,A) as an exercise. 

3. COSEMICOMPUTABLE DATA TYPES 

This section is entirely given over to proving the First Characterisa

tion Theorem stated in the Introduction. In view of Basic Lemma 2.7, we have 

only to prove that (1) implies (2). 

Let A be a cosemicomputable algebra of signature r. 
First of all we dispense wi~ the relatively easy case when A is finite. 

In [SJ, we proved that any finite algebra possesses a finite conditional 

equation specification under initial algebra semantics which involves at 

most 1 auxiliary operator, 1 simple equation and 2 conditional equations. As 

it happens, precisely the same syntactic specification designed there for a 

finite algebra A also defines A under its final algebra semantics. Thus, we 

leave the reader to check this claim (or to devise his or her own proof of 

the theorem in this special case) and we move on to the considerably more 

difficult case when A is cosemicomputable and infinite. 

We divide the proof of this case into two parts. First, we will frame 

an auxiliary hypothesis Hand prove the First Characterisation Theorem for 

any infinite cosemicomputable algebra satisfying the extra condition H. This 
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done, we will then prove that, indeed, every infinite cosemicomputable al

gebra satisfies our hypothesis H. 

3. 1 PARTITION HYPOTHESIS 

Let A be effectively presented by a: Q +A.By an a-computable parti
a 

tion we mean a. family V = {V.: i E w} of non-empty subsets of A such that 
l. 

(i) 

(ii) 

(iii) 

V. n V. = 0 if ii j. 
l. J 

U. V. = A. 
l.EW l. 

The V. a.re a-computable subsets of A uniformly in i; that is, the 
l. 

function¾= w x Qa + {0,1} defined by 

is recursive. 

if an E V.; 
l. 

if an i V.; 
l. 

Thanks to Lemma 2.1 and the Reduction Lemma 2.2 we need not be careful about 

the coding a to which an a-computable partition is tied. And as our hypo

thesis H we may take the statement that A possesses a computable partition. 

' 3.2 THE PROOF FOR A INFINITE, COSEMICOMPUTABLE, AND POSSESSING A 

COMPUTABLE: PARTITION 

Let A be the image of recurs±ve number algebra R, with domain w, under 

co-r.e. homomorphism a: R + A (Representation Lemma 2.5) and assume A has a 

computable partition with respect to this a. In outline,our plan is to add to 

Ra constant and some 5 functions to make a new recursive number algebra R0 

such that 

(a} Rolr = <Ro>r = R; 
(b) =a is a congruence on R0 • 

In consequence:, 

RI= I =<RI=> = R/= ~ A. o a I o a r a 

F'or R0/=a we will make a conditional equation specification (I0 ,Ea) which 
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defines it under final algebra semantics and which satisfies the required 

boundedness conditions. The first four new functions are designed to simulate 

arithmetic on Rand, in particular, to respect the congruence - on R. This 
Cl 

latter condition will mean that the new functions will induce an arithmetic 

on R0/=a~ With arithmetic internalised in this way, the fifth function will 

internalise an entirely new coding of R whose domain is the arithmetic on R. 

And, because the fifth function respects the congruence=, this coding may 
Cl 

be internalised to R0/=a· This done we are able to systematically specify 

the coding, the recursive functions of Rand the congruence= itself, all 
Cl 

by means of the Diophantine Theorem 2. 6. So much for the informal descrip

tion: first we built the arithmetic in R from the hypothesis of A having an 

a-computable partition. 

Let V,= {V.: i E w} be an a-computable partition of A. Now V determines 
l. 

an a-computable equivalence relation =v on A whose equivalence classes are 

the vi. In particular, the factor set A/=v is a computable set under coordina

tisation a(V): R + A/=v defined by a(V) (n) = [an]. This set supports a natur

al arithmetic based upon using v 0 as zero, and taking 

v. 
l. 

(V. ,V.) 
l. J 

, (Vi, V j) 

+ Vi+l as suc9essor 

+ vi+j as addition 

+ V .. as multiplication 
l..J 

and this partition arithmetic on A/=v is what we propose to model in R by 

special tracking functions fo~ =a(V)" 

The first four functions are determined by choosing a recursive trans-

versal for =a(V) on R. 

Lett: w + R be a recursive function enumerating the following "least 

code" transversal T(V,R) for =a(V)' 

t(i) = (µZER)[azEV. ]. 
l. 

Thus T(V,R) = im(t) and, obviously, it is a recursive set such that T(V,A) = 
{an: n E T(V,R)} is an a-computable transversal for =v on A. 

we also define the recursive function d: R + w by 
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d(n) = (11zEw)[anEV J z 

which gives the location of n, and so of an, in the equivalence classes of 

=\1. (V), and =v· 
The ·new operators required on R to make R0 are 

Projection projR(x) = t(d(X)) 

Zero OR = t (0) 

Successor succR(x) = t(d(x)+l) 

Addition addR(x,y) - t(d(x)+d(y)) 

Multiplication multR(x,y) = t(d(x) .d(y)) 

The readeir should pause to become familiar with the effects of these 

functions. Notice, for example, that by the guiding principles of their 

design, these operators make an algebra 

which is recursive and is isomorphic to the arithmetic we described on 

A/=v under thei mapping a (V) : T (V ,R) ➔ A/=v· The role of projR is solely to 

internalise this transversal arithmetic within R. Notice, too, that what 

the partit~on property provides is this: because =vis a coarser equivalence 

relation than equality in A, the relation =a(V) is coarser than =a on R with 

the result that each of the four new maps respect= in a particularly strong 
a 

way: 

X -

X -

x' 
a 

x' 
a 

implies projR(x) = projR(x') 

implies succR(x) = succR(x') 

and similarly for addR and multR. Thus, -

gebra R when these functions are added. 

remains a congruence on the al
a 

Let E 't:h = {O, SUCC, ADD, MULT} denote the signature of the transari · 
versal ari thmeitic. 

The fifth function required is there to code R by our transveral arith

metic. Choose any recursive bijection enull\J,R: T(V,R) ➔ R. This bijective 

renumbering of R we refer to as the transversal coding, but it should be 

thought of strictly in terms of the arithmetical structure of T(V,R) and 
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divorced from its original connections with a-codes. This can be made visible 

in our notations. Observe that the arithmetical structure of T(V,R) entails 

we may write the set as a list without repetitions 

T(V,R) n E w} 

and, moreover, implicit in our view of the transversal coding is this compo

sition 

w T(V,R) 
eimll\, R . 

I ' -

Still, the transversal coding must be internalised.and this means it must be 

defined outside T(V,R). Thus, we tak~,as our last function in the construc

tion of R0 from R. 

Again, we s.ee that the partition yields 

X - X 1 

a 
implies enu~(x) = enumR(x') 

and so we know that -a is a congruence on R0 • Thus, given (a) and (b) we 

concentrate on the problem of specifying R0/=a by conditional equations 

(without hidden functions a.nd,using 15 + lrl formulae). This task we divide 

into the problems of specifying R0 and then pressing on to specify R0/=a· 

As it turns·out, the first job will be to give a specification cr0 ,E0), 

involving no hidden functions and 14 axioms, which defines R0 by means of 

initial algebra semantics. Whence one more axiom ea added to E0 will make 

a specification o:0 ,Ea) which completes the proof of the theorem in Case 

3.2 (the reader curious about this arrangement is invited to read the proof 

of Lemma 3.7 first). Here is the specification o:0 ,Ec} for R0 • 

The first 10 equations specify the transversal arithmetic. 

Projection PROJ(O) = 0 

PROJ(SUCC(X)) = SUCC(PROJ(X)) 

PROJ(X) = PROJ(PROJ(X)) 

l1) 

(2) 

(3) 
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Successor 

Addition 

Multiplication 

SUCC (X) = SUCC (PROJ (X) ) 

ADD(X,O) = PROJ(X) 

ADD(X,SUCC(Y)) = SUCC(ADD(X,Y)) 

ADD(X,Y) = ADD(PROJ(X),PROJ(Y)) 

MULT(X,O) = 0 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) MULT(X,STJCC(Y)) = ADD(MULT(X,Y),X) 

MULT(X,Y) = MULT(PROJ(X) ,PROJ(Y)) (10) 

Next we construct 3 formulae to specify the transversal coding of R. 

Consider these two sets designed to recover T(V,R) from that coding. (We 

drop the subscript R from the operations of R0 .) 

n n m 
J 1 = { {n,m) E wxw: enum (succ (OR)). ET (V, R) & enum (succ (OR)) = succ (OR)} 

J 2 = {(n,m) Ewxw: enum(succn(OR)) iT(V,R) &proj(enum(succn(OR))) = 

enum(succm(OR))}. 

Our hypotheses imply that both sets are r.e. subsets of wxw and hence, by 

the Diophantine Theorem, there are polynomials p 1 ,q1 and p 2 ,q2 , in 2+k (1) 

and 2 + k (2) variables respectively, such that 

k (1) 
(n,m) E J 1 <=> 3z E w .[p1 (n,m,z) = q 1 (n,m,z)] 

k(2) 
(n,m) E J 2 ~ 3z E w • [p2 (n,m, z) = q 2 (n,m, z)]. 

' Let P1,Q1 and P2 ,Q2 be formal polynomials over t:arith corresponding to p 1, 

q 1 and p 2,q2 respectively. Then our enumeration axioms are 

P 2 (X, Y ,zl, ••• ,zk (2)) = Q2 (X, Y ,zl, ••• ,zk (2)) +PROJ(ENUM(PROJ(X))) = 
ENUM(PROJ(Y)) (12) 

ENUM (X) = ENUM (PROJ (X)) ( 13) 

It now re!mains to add axioms to specify the new constant O and the 

original constants and operations of R. We need one formula in each case 

and this will make the total 1E01 = 14 + !El. 
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Let c ER be a constant named by~ E {O}ur. To this c there corresponds 
n 

a unique n E w such that c = enum(succ (OR)): assign the identification 

n 
c = ENUM(SUCC (0)). 

k Let f: R + R be an operation named by f Er. Consider the graph off 

translated to the transversal coding 

G(f) = { (n(1), •.• ,n(k) ,m): f (enum (succn ( 1 ) (OR), ••• , enum (succn (k) (0 ) ) ) = 
- R m 

enum (succ (OR) ) } • 

Our·hypothe9es imply G(f) is an r.e. set and again we define it by means of 

the Diopharttine Theorem. Let pf,qf be polynomials in k+1+k(f) variables such 

that 

{n(l)', ••• ,n(k) ,m) E G(f) 
k(f) 

~ 3zEw .[pf(n(1), ••• ,n(k),m,z) = 
qf(n(1), ••• ,n(k),m,z)]. 

And choosing formal polynomials Pf,Qf over rarith corresponding to pf,qf we 

assign the axiom 

Pf(X1, ••• ,Xk,Y,z1, ••. ,zk(f)) = Qf(X1, ••• ,~,Y,z1, •.. ,zk(f)) 

➔ !(ENUM(PROJ(X1 )), ••• ,ENUM(PROJ(~))) = ENUM(PROJ(Y)) 

3.3 LEMMA. The specification cr0 ,E0) defines R0 with respect to initial al

gebra semantics: 

PROOF. First we picture R0 through the transversal coding 

- n 
R0 = {enum (succ (0)) : n E w}. 

Remembering that 
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w T(V ,R) enum 
R 

We write =Eo as= and denote the equivalence class oft E T(E0) under - by 

[t]. To show that~ is bijective is to prove that 

T = {ENUM(SUCCn(O)): n E w} 

is a transversal for=· To show~ is a homomorphism will be an easy exercise 

afterwards, 

Consider T as a transversal. It is easy to check that no distinct ele

ments of Tare equivalent under= because they denote different elements of 

R0 and R0 is an E0-algebra. Thus, we have to prove that each t E T(E0 ) is 

E0-equivalent to some member of T and this is done by induction on term' 

complexity. 

The basis is obvious thanks to the identifications assigned to the 

constants of r0 • 

Assum~, as induction hypothesis, that all subterms oft E T(E0) are 

E0-equivalent to some element of T. We have to consider each situation cor

responding to the leading function symbol oft: 

PROJ, succ, ADD, MULTI ENUM, f E E 

CASE 1: t = PROJ(s) 

By the induction hypothesis s = ENUM(SUC~(O)). 

n T(V,R) then PROJ(s) ENUM (SUCCn (O) ) Subcase 1.1. If enum(succ (OR)) E -
n 

ii. PROJ(s) ENUM (succfD' (0) ) Subcase 1.2. If enum (succ (OR)) T(V ,R) then - for 

(n,m) E J2. 

PROOF OF SUBCASE 1.1. This first subcase is quite involved as it introduces 

techniques and lemmata of use throughout the proof of Lemma 3.21 we shall 
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write out its argument in detail. The bulk of the work lies in showing this 

important fact: 

n m n m 
3.4 LEMMA. Let enum(suca (OR)) = succ (OR). Then ENUM(SUCC (0)) = SUCC (0). 

Assume we have done this. Thus, immediately we know that for (n,m) E J 1 

PROJ(ENUM(SUCCn(O))) - PROJ(SUCcfl(O)). 

A little lennna already required in the proof of Lemma 3.4 is this: 

3.5 LEMMA. For any k E w, PROJ(sucJc (0)) - sucJc (0). 

PROOF. This is an easy induction on k whose basis is covered by equation (1) 

and whose induction step is covered by equation (2). Q.E.D. 

Applying Lemma 3.5 we can deduce that 

PROJ(ENUM(SUCCn(O))) - sucd°(O) 

- ENUM(SUCCn(O)) 

the latter 'step using Lemma 3.4 again. This is what is required for Subcase 

1.1. 

Consider the proof of Lemma 3.4. We must use equation (11) which means 

we must verify the premiss that there exist t 1, ••• ,~(i) E T(t0) for which 

From this premiss we can conclude, directly, that 

ENUM(PROJ(SUCCn(-0))) - PROJ(SUCcfl(O)). 

By Lemma 3.5, the Lemma 3.4 follows. 

So consider the premiss. Since (n,m) E J 1 we know there exists z = 
k (1) 

(z(1), ••• ,z(k(1))) E w such that p 1 (n,m,z) = q 1 (n,m,z). We claim the 
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z(i) 
premiss is true on choosing t. = SUCC (0), 1 ~ i ~ k(1}. This follows 

l. 

from another invaluable general lennna: 

3.6 LEMMA. Let p(x1 , ••. ,~} be any polynomial over wand let P(X1, ••• ,¾} 
be its formal translation to a polynomial over E .th. Then for any 

ari 
n ( 1) , ••• , n (k) E w 

P(succn(1) (0), ••• ,succn(k) (0)) _ succP<n(l), ••• ,n(k}) (0). 

PROOF. This is done by a straightforward induction on the complexity of the 

polynomial P(X1, ••• ,¾)· The basis case, where P(X1, ••• ,~) = 0 or 

P(X1, ••• ,~) = Xi for 1 ~ i ~ k, is immediate. The induction step divides 

into 3 cases determined by the leading operator symbol of P(X1, ••• ,~). 

When this is SUCC the induction.step is immediate. When it is ADD one re

quires an easy induction on m to prove that 

ADD(SUC~(O),succ!°(O)) _ succn+m(O). 

The basis of this induction will use equation (5) and Lemma 3.5; the induc

tion step will use equation (6). When the leading operator symbol is MULT 

one has to prove 

by induction on m. Here the basis is covered by equation (8); and the in

duction step is covered by equation (9) together with the previously com-

pleted case of addition. Q.E.D. 

PROOF OF SUBCASE 1.2. Given the pattern of reasoning in Subcase 1.1, this 

subcase can be completed quite concisely. Let proj(enum(succn(OR))) = 
m enum(succ (OR)) so that (n,m) E J 2 • We shall prove that 

PROJ(ENUM(SUCCn(O))) - ENUM(SUC<:J11(0)) 

by using equation (12). Thanks to Lemma 3.5, it is enough to verify the 



premiss of (12) that there exist t 1 , .•. ,~(2) E T(E0) such that 

P 2 csucr!1 CO) ,succ!1 CO) , t 1 , ••• , ~ (2)) 

= Q2 (sucr!1co) ,succ!1co) ,t1, ..• ,~C 2)). 

k(2) 
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Since (n,m) E J 2 , there exists z = (z(1), ••• ,z(k(2))) E w such that 

p 2 (n,m,z) = q 2 (n,m,z). Taking ti = SUCCz (i) (0) and applying Lemma 3.6 the 

premiss is true. 

This first case providP.s two evidently important identities: Lemma 

3.4 and the statement of Subcase 1.2: 

(n,m) E Jl if, and only if, ENUM(SUCCn(O)) = SUCCm(O) 

(n,m) E J2 if, and only if, PROJ(ENUM(SUCCn(O)) = ENUM(succ!1(0)) 

n 
From these we can deduce for enum(succ (OR)) i T(V,R) 

PROJ(ENUM(SUCCn(O))) - succm(O), if and only if, 3z.[(n,z) E J2 & 

(z ,m) E J 1 ] 

and taken together we have the means to access the algebraic specification's 

model of tjle transversal arithmetic. The next three cases t = SUCC(s), 

t = ADD(s 1,s2) and t = MULT(s1,s2) are routine to check. 

CASE 2: t = SUCC (s) 

By the induction hypothesis s = ENUM(SUCCn(O)) 

Subcase 2.1. n T(V,R) then SUCC ( s) ENUM(sucd° (O)) If enum (succ (OR)) E -
(n, z) E Jl & (z+l ,m) E J1. 

n i T(V,R) then SUCC(s) ENUM (sued° ( 0) ) If enum(succ (OR)) -Subcase 2.2. 

(n,z) E J 2 and (z,w), (w+1,m) E J 1 • 

Consider enum(succn(OR)) E T(V,R). Then Lemma 3.4 says that 

SUCC(ENUM(sucrf1(o))) - SUCC(SUCCZ(O)) 

_ succz+l(O) for (n, z) E J 1 • 

for 

for 
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To make a reduction to an element of T, we have only to prefix an ENUM to 
z+1 z 

the right-hand side by applying Lemma 3.4 again: SUCC (0) = ENUM(SUCC (0)) 

for (z+1,m) E J 1 • 

Consider enum(succn(OR)) i. T(V,R). Then equation (4) and Subcase 1.2 

allows us to write 

SUCC(ENUM(SUCCn(O))) - SUCC(PROJ(ENUM(SUCCn(O}))) 

- SUCC(ENUM(SUCCz(O))) for (n,z) E J 2 • 

z 
But enum(succ (OR)) E T(V,R) so the right-hand side is covered by Subcase 

2.1. Thus 

'SUCC(ENUM(SUCCz(O))) :: ENUM(SUCcf1(0)) for (z,w) E J 1 and (w+l,m) E Jl. 

The two other arithmetical cases follow the same pattern: equations 

(7) and (10) guarantee that the identities of Lemma 3.4 and Subcase 1.2 can 

reduce the subterms to numerals. Lemma 3.4 gives the numeral which is E0-

equivalent tot •. And the prefixing of an ENUM, to complete the reduction of 

t to an element of T, is again done by Lemma 3.4. We omit the details leav

ing them as a straightforward, if tedious, exercise for the reader. 

CASE 5: t = ENUM (s) 

n 
By the induction steps= ENU!'f(SUCC (0)). 

Subcase 5.1. If enum(succ(OR)) E T(V,R) then ENUM(s) - ENUM(succf1(o)) for 

(n,m) E J 1 • 

Subcase 5.2. If enum(succ(OR)) i T(V,R) then ENUM(s) - ENUM(succf1(0)) for 

(n,z) E J 2 and (z,m) E J 1 • 

n 
Subcase 5.1 is immediate from Lemma 3.4 which says that ENUM(SUCC (0)) -

SUCcf1(0) for (n,m) E J 1 • 

In Subcase 5.2, we may use equation (12) and Subcase 1.2 to write 

ENUM(El-lUM(SUCCn(O))) - ENUM(PROJ(ENUM(SUCCn(O)))) 

_ ENUM(ENUM(SUCCZ(O))) for (n,z) E J2. 
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z But enum(succ (0 )) e: T(V,R) so we are in the situation of Subcase 5.1 again. 
R 

CASE 6: t = !(s1 , ... ,sk) 

that 

By the induction hypothesis s. - ENUM(SUCCn(i) (0)), 1 :;;; i :;;; k. We claim 
l. 

for (n(1), ••• ,n(k),m) e: G(f). 

Now, given n = (n(1), ••• ,n(k)) e: wk and m with (n,m) € G(f), we can choose 

z = (z(1), ••. ,z(k(f))) such that pf(n,m,z) = qf(n,m,z). Substituting 

succn(i) (0), succ1'1(0) and succz(i) (0) into the premiss of equation (13) we 

can (via Lemma 3.6) detach the identity 

f(ENUM(PROJ(SUCCn(l)(O)), ••• ,ENUM(PROJ(SUCCn(k) (0)))))= 

ENUM (PROJ wucc1'1 ( 0) ) ) • 

By Lemma 3.5 this reduces to our claim. 

To complete the proof of Lemma 3.3 we have now to verify that$: 

R0 + T(r0 ,E0 ) is a homomorphism. Each constant and each operation of R0 
must be considered, but we will write out only one case which is entirely 

typical. We will now show that for any x € R0 , 

$(enum(x)) = ENUM($(x)). 

Write x = enum(succn(OR)). 
. n 

If enum(succ (OR)) € T(V,R) then 

n m $ (enum (enum (succ (OR) ) )) = $ (enum (succ (OR.))) for (n,m} € J 1; 

n 
If enum(succ (OR)} i T(V,R) then 

= [ENUM(succfl(O))J by definition of$; 
n 

= [ENUM(ENUM(SUCC (O))}] by Subcase 5.1; 

= ENUM[ENUM(SUCCn(O))] by definition of 

ENUM; 
n 

= _ENUM[~(enum(succ (OR))]. 
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n 
ct,(enum(enum(succ (O )))) = 

R 
cf,(enum(proj(enum(succn(OR))))) 

z = ct,(enum(enum(succ (OR)))) for (n,z) 
m = ct,(enum(succ (OR))) for (z,m) E J 1; 

= [ENUM(SUCCm(O))] by definition of cf,; 

= [ENUM(ENUM(SUC~(O)))] by Subcase 5.2; 

= ENUM[ENUM(SUCCn(O))] by definition of 

ENUM; 
n -= ENUM(ct,(enum(succ (OR)))). 

This concludes the proof of L61)Jilla 3.3. 

E = 
a 

Finally, we shall make one new axiom ea which when added to E0 forms 

E0u{ea} and completes a final algebra specification for R0/=a· Translat-

ing = into the transversal coding we get 
a 

By our hypothesis, this is an r.e. set and so we can define it, via the 

Diophantine Theorem, as 

k (a.) 
{(n,m) E wxw: 3z E w .[p (n,m,z) =q (n,m,z)J}. 

a a. 

Taking P Q as formal translations of p ,q we set e to be the formula a.' a. a. a. a. 

Pa(.X,Y,z1 , ... ,zk(a.)') = ·Qa.(X,Y,z1 , ... ,zk(a.)) A ENUM(PROJ(X)) = 
ENUM(PROJ(Y)) ➔ U = V. 

3.7 LEMMA. The specification (E 0 ,Ea.) defines R0/=a. with respect to final 

algebra semantics: 

PROOF. We prove the representation as follows. Let w be the unique semantic 

evaluation epimorphism T(E0) + R0/=a. so that T(E0)/=w is isomorphic to 

Ro/=a· We will show that =Wis a maximal Ea-congruence on T(E0 ) whence it 

will follow that =w is =max(E) and 
a. 
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T (I: ) /= ( ) = T (I:o,E } ;;;; Ro/= • O max E F a a 
a 

It is a routine matter to check that =w is non-unit and is, itself, an 

E -congruence. Consider its maximality. We have to show that if= is any non
a 

unit Ea-congruence then= is a subcongruence of =w• Contrapositively, we 

shall argue that if= is an E -congruence which is not a subcongruence of 
a 

-W then= is the unit congruence. 

This is done by finding terms t,t' E T(I:0) such that 

(1.) th . t ( ) E T ("'o)k (a) f h' h (t I ) ere exis s s = s 1, ••• ,sk(a) ~ or w ic Pa ,t ,s _ 

Q (t,t' ,s) ; and 
a 

(ii) ENUM(t) = ENUM(t') 

because then we may apply conditional equation e to deduce - is unit. we 
a 

have to get these terms from R0 , of course. 

Using the assumption that= is an E -congruence and the initiality of 
a 

R0 for E0-algebras (Lemma 3.3), we can define an epimorphism ~= R0 + T(I:0 )/= 

which translates= into the numerical congruence=~ since R0/=~ is isomor

phic with T(I:0 )/=. It is easy to see that our hypothesis=¢ _W means that 

n m 
Thus, we choose enum(succ (OR)), enum(succ (OR)) E R0 such that 

n m n 
enum(succ (OR)) -~ enum(succ (OR)) but enum(succ (OR)) ta 

m 
enum(succ (OR)). 

k(a) By the diophantine definition oft there exist z = (z(l) , ••• ,z(k(a))) EW 
a 

for which Pa(n,m,z) = qa(n,m,z). We sett= SUCCn(O), t' = SUC~(O) and 

s. = SUCCZ(i) (0) for 1 ~ i ~ k(a). Now condition (i) follows from Lemma 3.6, 
1 

and condition (ii) from our choice of n,111 and, in both cases, the initiality 

Q.E.D. 

This concludes the proof of Case 3.2. 

3.8 PROPOSITION. Every infinite cosemicomputable algebra possesses a comput

able partition. 

PROOF. Thanks to the Representation Lemma 2.5, this proposition follows 
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from this next statement whose proof is an exercise in Recursive Function 

Theory: 

3.9 LEMMA. Let= be a co-r.e. equivalence relation on w having infinitely 

many equivalence classes. Then there is a family V = {V.: i E w} of non-
1 

empty disjoint subsets of w such that 

(1) u. v. = 1EW 1 
w; 

(2) n EV. is recursive uniformly in i; 
1 

(3) if n = m and m E Vi then n E vi. 

PROOF. We will describe an effective procedure which constructs the family 

v in stages~ These stages we index by natural numbers. At each even stage 

s = 2n we will have started the building of v0 , ••• ,Vn-l' but no other mem

bers of v. Our task at this stage will be to give V its first element. At n 
each odd stages= 2n+1 we will ensure that n, itself, belongs to one of 

v0 , .•• ,vn_1 • Thus at the beginning of each stages we will have made only 

finite parts of v0 , ••• ,v 1 and nothing else. Let V~ denote the status of 
n- 1 

V. at the beginning of stages. 
1 

Even from this outline it is. clear that conditions (1) and (2) will 

hold for v. By construction, 

n EV ~is 2n & n E v2n 
i i 

and we will know that every n,is assigned sooner or later at an odd stage. 

Condition (3) will be routine to check after we have described the proce

dure. We formalise an enumeration of 1 by 

n 1 m if, and only if, 3k.R(k,n,m) 

for some recursi-ve predicate R. 

Stages= 2n. 

s-1 s-1 
non-empty, but vs-l = f4. We want to name the Now V , ••• ,v 1 are 

0 n- n s-1 s-1 s-1 
first element of V . We enumerate the finite set V = VO U ... u V l n s-1 n-
searching for some z E w such that for all m E V ' z "t m. 



Such an element z will exist because w/= is infinite. This z is put into 

v with the result that at the conclusion of this stage 
n 

v: 
1 

Stages= 2n+1 

s-1 = V. 
1 

for O :s; i :s; n-1 and Vs= 
n 

{z}. 

s-1 s-1 
Again v 0 , ••• ,vn-l are non-empty but we are concerned only with the 
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s-1 s-1 s-1 
number n. First, we recursively decide whether n EV = v 0 u ••• u Vn-l" 

s s-1 
If this is so we are done and at the conclusion of this test V. = V. 

1 l. 

for O :s; i :s; n-1. 
s-1 Assume n EV . Now we will put this n in some V., 1 :s; i :s; n-1. By 

l. 

searching s,ufficiently far out in the enumeration of 1 it is possible to 

find some k0 and an 1 :s; i :s; n-1 such that for every j f i, and O :s; j :s; n-1, 

and for every m E v;-1 there is a k < k0 for which R(k,m,n) is true. That 

is we will come across a V~-i for which we can verify that n 1 m for 
s s-1 s!1 

m E V -V. • We put n E V. • Thus, at the end of this case of stage s = 2n+l 
l. l. 

s · s-1 s s-1 
vj = vj , for j f i and 1 :s; j :s; n-1, and Vi= Vt u {n}. 

This construction proves Lennna 3.9 and so concludes the proofs of 
' 

Proposition 3.8, and of our main theorem. Q.E.D. 

4. SEMICOMPUTABLE DATA TYPES 

Our characterisation theorem for cosemicomputable data types focusses 

attention on a question we noticed and left open in the first paper of our 

series [2] (see also [7]). We shall reformulate it now as an opinion: 

4.1 CONJECTURE. Let A be an algebra finitely generated by elements named 

in its signature!. Then there exist NE wand M = M(jEj) E w such that 

the following are equivalent: 

1. A is semi computable. 

2. A possesses a conditional equation specification, involving at most N 

hidden functions and M conditional equations, which defines A as a 
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hidden enrichment under its initial algebra semantics. 

Moreover, we expect that N :S 6 and "M :S 20 + 1 I:1 • 

Since (2) implies (1) by Basic Lemma 2.7, the conjecture is the state

ment tha~ (1) implies (2). Actually, we did not ask for bounds in [2], but 

we do so here although the unbounded adequacy problem remains open. Until 

the conjecture is settled, the precise·numerical values of the bounds are 

of secondary importance, of course. 

The theoretical importance of a confirmation of the conjecture is 

evident. First, semicomputable data types abound and one simply wants an 

adequacy theorem for them (one sharper than the result we proved in [2], 

certainly). And, secondly, if Conjecture 4.1 could be turned into a theorem 

then it would completely resolve the debate between the advocates of initial 

and final algebra semantics for specifications, at least for theoria if not 

for praxis. It seems hard to imagine a more elegant state of affairs than 

that depicted in the Venn diagram of Figure 4.1. 

semi computable 
= initial 

Figure 4.1 

cosemicomputable 
= final 

We will conclude this paper by explaining the extent to which its meth

ods fail to establish our conjecture. 

Assuming A to be semicomputable, we can first of all dispense with the 

finite case because we proved the existence of a bounded conditional equa-
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tional specification for it in [SJ (1 hidden function, 1 identification and 

2 conditional equations are sufficient for any finite data type!) Now, if A 

is infinite then it turns out that a small adaptation to the proof of Propo

sition 3.2 will settle Conjecture 4.1 under the hypothesis that A has a com

putable partition. Let us explain this. 

The first change in the proof of Proposition 3.2 is made at the relative-

ly late stage of the construction of the last axiom e from a diophantine 
ct 

definition of the r.e. set J. As A is semicomputable we want to consider 
Cl 

the complement of J instead: since 
a 

is r.e. we can define it, via the Diophantine Theorem, as 

k (ct) 
{(n,m) E wxw: 3z E w .[p (n,m,z) = q (n,m,z)]} 

a ct 

for (new) polynomials p ,q. Taking P ,Q as formal versions of pN,qN we · a a ct ct u u 

take, as the new ea' the axiom 

~ct(X,Y,z1 , ... ,zk(a)) = Qct(X,Y,z1 , ... ,zk(ct)) 

-+ ENUM(PROJ(X)) = ENUM(PROJ(Y)). 

The redefined specification (40 ,E ,) specifies R/= under its initial al-
a Cl 

gebra semantics: a fact which can be readily verified and is much easier 

than LeDlllla 3.7. Thus, we know this next fact which imporves our earlier 

bounded adequacy theorem for computable data types in [4], and obtains for 

us the Second Characterisation Theorem stated in the Introduction. 

4.2 THEOREM. Let A be an infinite semicomputable algebra, finitely generated 

by elements named in its signature. If A has a computable partition then A 

possesses a conditional equation specification, involving 5 hidden functions 

and 15 + lE1 conditional equations, which defines A as a hidden enrichment 

under its initial algebra semantics. 
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Unfortunately our strategy for the semicomputable case breaks down at 

the last minute: 

4.3 THEOREM. ~'!here exists a finitely generated semicomputable algebra (hav

ing an initial'. algebra specification without hidden functions and with only 

3 equations!) which does not possess a computable partition. 

The algebra in question is that in Example 2.8 and Theorem 4.3 is mere

ly a rephrasing of Scott's Theorem about the term model of combinatory logic: 

Scott has shown that one cannot even computably partition TMCL into two sets, 

see BARENDREGHT [1], Theorem 2.21. 
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