
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)'

J.A. BERGSTRA & J.V. TUCKER

~
MC

IW 143/80 SEPTEMBER ·

ALGEBRAICALLY SPECIFIED PROGRAMMING SYSTEMS AND HOARE'S LOGIC

Preprint

kruislaan 413 1098 SJ amsterdam

-·~• ,nTl-l!CFK MATHEMATISCH OE+HRUM

P,unt,e,d a:t ;the. Mathe.ma.tic.al. Ce.n.tll.e., 413 Kll.l.l..U,la.a.n, Am6;tvuf.a.m.

The. Ma:the.ma.:tic.ai. Ce.n.tll.e. , fiounded ;the. 11-;th oo Fe.bfU.1.a.JLy 1946, ,u., a. non­
pno oU ..[w.dU1Ltlo n a,&n..[ng a:t ;the. pnomoilo n a o pMe. ma:the.matiC-6 a.nd m
a.ppUc.ationo. I;t ,u., .oponoone.d by ;the Ne,;the/f,.f.a.ncu, Gove,/f,nment. :thMugh ;the,
Ndhma.ncL~ OILgruzation O O/f, ;the Adva.n.c.ement. a O PMe Reo e.Mc.h (z. w. 0.) •

1980 Mathematics subject classification: 03D45, 03D80, 68B15, 03D35, 03D75, 68B10

ACM - Computing Review - category 4.34, 5.24

*) Algebraically specified programming systems and Hoare's logic

by

**) J.A. Bergstra & J.V. Tucker

ABSTRACT

We describe a special set 9f program constructs for computing on data

types defined by algebraic specifications using initial algebra semantics.

And we provide an algebraically styled Hoare logic for proving algebraic

statements about the partial correctness of programs in the resulting pro­

gramming language. It is shown that given any computable data type A and any

algebraica'l.ly asserted program {p}S{q} which is provable in a Hoare logic

using computable intermediate assertions then there exists an algebraic spec­

ification, involving at most 6 hidden functions and 4 equations, which de­

fines A and allows {p}S{q} to be provable in our algebraic Hoare logic using

intermediate assertions formally provable from the axioms of the specifica­

tion.

KEY WORDS & PHRASES: computable data types, equational specifications, ini­

tial algebra semantics, equational logic, partial

correctness, Hoare logics, computable intermediate

assertions

*) This paper will be submitted for publication elsewhere.

**) Department of Computer Science, University of Leiden, Wassenaarseweg 80,
Postbus 9512, 2300 RA Leiden, The Netherlands

1

INTRODUCTION

In this paper we will look at the structure of Hoare-like logics which

are designed to prove partial correctness properties of programs belonging

to algebraically specified programming systems. By an algebraically speci­

fied programming system we have in mind a program language possessing a se­

lection of deterministic assignment and control constructs, and a fixed fin­

ite collection of data types defined by an algebraic specification using ini­

tial algebra semantics. We will be interested in Hoare logics which are in­

trinsically defined by these languages in the sense that all assertions about

the underlying data types, allowed in correctness proofs, must be formally

derivable from their algebraic specifications. Thus, viewed from the point

of view of specification languages for data types, the basic question we will

be exploring is, "To what extent can information about a data type, and the

computations it supports, be 'encoded' in an algebraic specification for the

type?".

To begin with, let us recall the role intended for a data type specifi­

cation in the construction of a programming system. A syntactic specification

(E,E) is supposed to axiomatically characterise a data type semantics in

terms of properties E of the type's primitive operators E. An algebraic spec­

ification, in conjunction with initial algebra semantics, achieves this in a

straightforward proof-theoretical way: given syntactic expressions, or terms,

t and t' over Ethen t and t' are semantically equivalent if, and only if,

one can formally prove that t = t' from the axioms of E. At first sight, it

seems that little else beyond these correctness of representation assertions

can be extracted from a specification by formal deductions. For example, con­

sider the data type of natural numbers N equipped with zero, successor and

predecessor. An obvious specification for N consists of the operator signa­

ture E = {0,SUCC,PRED} and the set E of axioms

PRED(0) = 0 PRED(SUCC(X)) = X.

But assertions like

X = 0 V SUCC(PRED(X)) = X and 0 -:f:. SUCC(0)

2

which are clearly true in the initial model N are not provable from E. In

designing a Hoare logic for an algebraically specified programming system we

would do well to avoid negated and disjunctive formulae altogether.

Now the programming systems we want to analyse are those modelled by

standard while-programs computing on a single-sorted structure defined by an

algebraic specification o:,E). Because of the special nature of assertions

provable from algebraic axioms, we wish to experiment with Hoare logics based

upon assertion languages consisting of finite conjunctions of equations only.

But such a language EL is incompatible with the sort of boolean tests appear­

ing in the control structures of standard while-programs. We dissolve this

difficulty by applying the thesis that programming constructs should be de­

signed with the problem of proving statements about their behaviour clearly

in mind, a thesis associated with the names E.W. Dijkstra, R.W. Floyd and

C.A.R. Hoare. To match the correctness proofs, which will involve equational

assertions only, we design a new set of control structures, allowing only

equational tests, and then derive some proof rules about their operation.

This new algebraically styled programming language we call the set of equa­

tional while-programs EOJP; it has essentially the same computing strength as the

standard whil«~-programs (Theorem 2. 2) . With these preparations, we can con­

sider, our ori9inal problem well-posed: Can an algebraic specification for a

programming language be made to axiomatise information required for correct­

ness proofs for its programs? We prove the following adequacy theorem (Theo­

rem 4.1):

THEOREM. Let A be any infinite computable data type of signature E. Let S be

any equationa,l while -program over E. And let p and q be any precondition and

postcondition for S taken from EL(E). If the partial correctness statement

{p}S{q} is provable in the Hoare logic for EWP which allows any computable

assertion about A in its correctness proofs then there exists a finite equa­

tional speciEication (E 0 ,E0), involving at most 6 auxiliary operators and 4

equations only, such that

(1) (E 0 ,E0) defines A under initial algebra semantics; and

(2) the statement {p}S{q} can be proved in the equational Hoare logic for

EWP using equational assertions from EL(E0) all of which are provable

from the axioms of E.

3

The existence of such a concise specification for computable data types

is of interest independently of the extra proof-theoretic information it can

be expected to contain. Notice the number of equations does not even depend

upon the number of operators of the data type.

This paper is the seventh. in our series on the power and adequacy of

algebraic specifications for data types [9,10,11,12,13,14], see also [15].

To date, the general proof theory of algebraic specifications has not re­

ceived the especial attention it deserves although its problematic nature is

well-known: it arises frequently in studies of the correctness of data type

specifications made from Horn formulae - for example, ADJ [28], EHRIG et al.

[18], and in work on data type specification languages - for example,

BURSTALL & GOGUEN [16] and GOGUEN & TARDO [20]. 'the first attempt at a sys­

tematic treatment of the subject is contained in the interesting thesis of

KAPUR [23]; this we recommend to our readers for further information and

other new directions for research. (Caution: in [23], KAPUR uses final alge­

bra semantics for his algebraic specifications.) 'this paper is also related

to our wor){ with J. Tiuryn on axiomatically specified programming systems

and their program correctness theories [7,8], and it may interest readers

familiar with the properties of Hoare logics based upon computable asser­

tions, see APT, BERGSTRA & MEERTENS [3] and APT [2].

We assume the reader is well versed in the theory of algebraic specifi­

cations for data types and is familiar with the mathematical study of Hoare's

logic initiated by COOK [17]. 'the two basic references for these subjects

are ADJ [21] and APT [1] respectively. Knowledge of our ealier papers is

desirable, but is not strictly necessary.

We would like to thank W.P. de Roever and K.R. Apt for focussing our

attention on the proof theoretic capacities of algebraic specifications in

seminars of the Programming Language Semantics Workgroup of the Mathemati­

cal Centre and the University of Utrecht.

1 • DATA TYPES

Syntactically, our programming systems are modelled by a pair

[o::,E), PROO (L)]

4

consisting of an algebraic specification (E,E) and a set of program schemes

PROG(E) based upon the operator names contained in the signature E. Semanti­

cally, we model these languages by a pair

[A,PROG(A)]

wherein A is an algebra of signature E defined by the specification (E,E),

under initial algebra semantics, and PROG(A) is the set of all partial func­

tions on A computable by the program schemes in PROG(E) interpreted in A.

The specific program schemata in which we will be interested are discussed

in the next section; here we collect together some remarks about the syntax

and semantics of data type specifications.

Let us n~peat that we are assuming the reader to be familiar with the

background issues and technical machinery to do with data types and their

algebraic specification, ADJ [21]. Here a data type will be modelled by a

single-sorted algebra finitely generated by elements named in its signature.

(The rest:i:;ict:ion to single-sorted structures is made for convenience in nota­

tions and to enable us to better explain the mathematical issues involved;

readers acquainted with our earlier work will see immediately how to write

this paper in its many-sorted generalisation.) All signatures are finite and

all specifications use either equations or conditional equations as axioms.

The semantics of a specification (E,E) will always be its initial algebra

semantics. Thus, the unique meaning of the specification o::,E) is the ini­

tial algebra I(E,E) of the category ALG(E,E) containing all I-algebras satis­

fying the axioms of E. By T(E,E) we denote the standard term algebra con­

struction of I(E,E); that is the factor algebra of the E-term algebra T(E)

determined by the least E-congruence on T(E).

A given algebra A has a finite equational (or conditional equational)

specification (E,E) if the signature of A is E, Eis a finite set of equa­

tions (or conditional equations) over E, and A~ T(E,E).

We allow hidden operators into specifications in precisely the follow­

ing way.

Let A be an algebra of signature EA and let Ebe a signature extended

by EA; that is E c EA. Then we mean by

Air the E-algebra whose domain is that of A and whose operations and

constants are those of A named in E: the E-reduct of A; and by

5

<A>E the E-subalgebra of A generated by the operations and constants of

A named in E viz. the smallest E-subalgebra of Air·

A given algebra A of signature E has a finite equational (or conditional

equational) hidden enrichment specification cr0 ,E0) if E c r 0 and Eis a fin­

ite set of equations {or conditional equations) over E such that

Finally, we formalise the concept of a computable data type using the

standard definition of a computable algebra due to M.O. RABIN [27] and

A.I. MAL'CEV [25].

An algebra A is said to be computable if there exists a recursive set

of natural numbers n and a surjection a: n + A such that to each k-ary opera­

tion cr of A there corresponds a recursive tracking function cr: wk+ w which

commutes the following diagram,

cr
Ak----------➔ A

cr

wherein ak(x1 , ••• ,~) = (ax1 , ••• ,a~). And, furthermore, the relation =a,

defined on n by x = y iff a{x) = a{y) in A, is recursive. a
In this formal definition, the notion becomes a so-called finiteness

condition of Algebra: an isomorphism invariant possessed of all finite struc­

tures. Equally important is this other invariance property:

If A is a finitely generated algebra computable under both a: na + A and

B: n8 +Athena and Bare recursively equivalent in the sense that there

exist recursive functions f, g which commute the diagram:

6

A

f

A corollary of this property is the following theorem.

If A is computable under coordinatisation a then a set S c An is said to

be (a-)computable if the set a-1 (s) = {(x1 , ... ,xn) E Qn: (ax1, .•. ,axn) ES}

is recursive.

1.1. THEOREM. Let A be a finitely generated computable algebra, and Sc An.

If Sis computable with respect to one computable codification of A then it

is computable with respect to every computable codification of A.

See MAL'CEV [25].

Given A computable under a then combining the associated tracking func­

tions on the domain Q makes up a recursive algebra of numbers from which a

is an epimorphism to A. Applying the recursiveness of_ to this observation
a

it is easy to prove this useful fact.

1.2. LEMMA. Every computable algebra A is isomorphic to a recursive number

algebra Q whose domain is the set of natural numbers, w, if A is infinite,

or else is the set of the first m natural numbers, wm, if A is finite of

cardinality m.

We proved this in its many-sorted version in [9].

A reference for the elementary theory of the recursive functions is

MACHTEY & YOUNG [24]. However, our main tool is in no way elementary:

Let 7i: [x1 , •.• ,xn J denote the ring of polynomials with integer coeffi­

cients in indeterminates x1 , ••• ,xn. A set Q c wk is said to be diophantine

if there exists a polynomial p E :?i: [x1 , ••• , ~, Y 1 , ••• , Y,e] such that

7

Equivalently, a diophantine set n can be defined by asking for polynomials

p,q E w[x1, ••• ,¾,Y1, ••• ,Yl], the semiring of polynomials with natural num­

ber coefficients in the indeterminates x1 , ••• ,¾,Y1, ••• ,Yl, such that

Clearly, each diophantine set is recursively enumerable; the converse
V

is due to Y. Matijacevic:

1.3. DIOPHANTINE THEOREM. All recursively enumerable sets are diophantine.

A good exposition of this subject is contained in MANIN [26].

2. WHILE-PROGRAMS

Lett be a signature and let WP= WP(E) denote the class of standard

while-programs over E. For the semantics of WP we leave the reader free to

choose any sensible account of while-program computations applicable to an

arbitrary E-structure A, from the graph-theoretical semantics of GREIBACH

[22] to the sophisticated denotational semantics of DE BAKKER [6]. For the

purposes at hand, perhaps a naive operational view would be best [29], but

the reader's choice can hardly be problematical.

The class of equational while-programs EWP = EWP(E) represents a modi­

fied program formulae, one designed to avoid the use of negations and dis­

junctions because the Hoare logics we have in mind to service algebraic spec­

ifications are proof systems based upon equational first~order formulae. The

class EWP is inductively defined from assignment statements by means of com­

position, multiple conditionals and the while-construct augmented by an alge­

braic assertion as a correctness check:

ASSIGNMENT

COMPOSITION

For X a program variable and ta polynomial expres­

sion over Ewe may form an assigiJlllent statement

X := t

For s1 and s2 equational while-programs we may form

8

their composition

S1;S2

MULTIPLE CONDITIONALS Fort. and t! (1 Si S k) polynomial expressions over
l. l.

GUARDED ITERATION

rand S. (1 sis k) equational while-programs we may
l.

form the rrrultiple conditional

(tl =ti+ S1O ••• ~ = ~ + Sk)

Fort, t', r, s polynomial expressions over rand S

an equational while-program then we may form the

guarded iteration

while t=t' do Sod now check r=s won

It is quite adequate for ~e technical work to follow to give an infor­

mal description of the semantics of equational while-program computations.

The semantics of the assignment statements and composition operation are

handled in the usual way (of the reader's chosen semantics). For the multiple

conditional operator dnd the guarded iteration operator the reader must for­

malize the following naive operational meanings for these constructs:

An execution of the multiple conditional results in a divergent compu­

tation whenever none of the tests t. = t~ holds true of the initial state or
l. l.

more than one of the tests t. = t! holds true, 1 sis k. If precisely one
l. l.

index 1 sis k exists for which t. = t! is true of the initial state then
l. l.

Si is executed on that state.

An execution of the guarded iteration construct corresponds to the

usual execution of the while-construct except that for termination executing

the preceding while-construct must lead to a terminating state for which

r = s holds true.

For A any r-structure, let WP(A) and EWP(A) denote the sets of all par­

tial functions on A computable by the programs of WP and EWP respectively.

We conclude this section with a comparison of the computing powers of

these two classes of programs.

First of all, let WP0 = WP0 (r) be the class of all those standard while­

programs which involve boolean tests in their conditional and while-con­

structs only of the forms

t = t or t 'Ft'

fort, t' polynomial expressions over E.

Let WP0 (A) be the set of all functions on E-structure A computable by

programs from WP0 •

The proof of the following fact is a routine exercise.

2.1. LEMMA. For any E-structure A, WP0 (A) = WP(A).

2.2. THEOREM. Let A be any structure. Then EWP(A) c WP(A). If A possesses

constants T, F and a binary operator

E(a,b) = f lF

then EWP(A) = WP(A).

if a= b

if a 'F b

9

PROOF. Consider the inclusion EWP(A) c WP(A). we inductively define a syn­

tactic mapping <P: EWP(E) + WP(E) which assigns to each equational while-pro­

gram s a standard while-program <P(S) to compute the same function, uniformly

over any E-structure A. Let <P be the identity on assignment statements; and

let <P(S 1;s2) = <P(s 1) ;<P(S2). To translate multiple conditionals we unfold them

as follows: let DIVERGE denote any everywhere divergent while-program,

<P(t1=ti + s 1□ ... ~=~ + Sk) is defined to be

if-~- t.=t! A t.=t~ then DIVERGE
- 1rJ 1 1 J J

else if t 1=ti then <P(s1)

else if t 2=t2 then <P(s2)

else

else if ~=i:: then <P(Sk)

else DIVERGE

10

And the translation of guarded while-construct is simply this

<I>(while t=t' do Sod now check r=s won) is defined to be

while t=t' do <I>(S) od

if r=s then skip else DIVERGE fi

The verification that <I> correctly simulates programs from EWP by programs

from WP we leave to the reader and his or her chosen semantics.

Consider now the converse inclusion WP(A) c EWP(A). Applying Lemma 2.1,

it is sufficient to define inductively a transformation 'l': WP0 (I:) + EWP(I:).

The map 'l' is the identity on assignment statements and 'l'(S 1 ;s2) = 'l'(s 1) ;'l'(s2).

Conditional constructs are handled as follows:

Positive Case: '¥(if t=t' then s 1 else s 2 fi) is defined to be

Negative Case: '¥(if tjt' then s 1 else s 2 fi) is defined to be

The while-constructs are handled as follows:

Positive Case: '¥(while t=t' do Sod) is defined to be

while t=t' do 'l'(S) od now check E(t,t') = F won.

Negative Case: '¥(while tft' do Sod) is defined to be

while E (t , t 1) = F do 'l'(S) od now check t=t' won.

Again the verification that 'l' performs the task required of it is left to

the reader.

Q.E.D.

11

3. HOARE LOGICS FOR EQUATIONAL WHILE-PROGRAMS

Havin~r settled on the programming formalism EWP for operating with alge­

braically specified data types, it remains for us to provide it with the two

Hoare logic:s for proving partial correctness properties for its computations.

The first Hoare logic HL(EL(E) ,EO(E)) has an algebraic form and is designed

for use with algebraic programming systems

[(I , E) , EWP (I) J •

Its principal characteristics are an equational assertion language EL(E) and

an oracle EO(E) for the Rule of Consequence which consists of those equation­

al assertions provable from the data type specification (Z:,E).

The second Hoare logic HL(CL(A) ,CO(A)) is made to model a Hoare logic

whose assertion language CL(A) defines precisely the decidable assertions

about a computable data type A and has as its oracle the set of all decidable

assertion~ CO(A) true of A.

We shall define both these Hoare logics as particular instances of a

general description of Hoare logics for EWP. This general format is made in-

side the infinitary language L = L (I) based upon the signature I as
w1 ,w w1 ,w

this language is sufficiently expressive to faithfully represent CO(A) where-

as first-order logic is not. (In this use of L to circumvent express-
w1,w

ibility problems in the logic of program correctness we follow ENGELER [19]

and BACK [4 , 5 J .)

Let L be a sublanguage of L (I) by which we mean Lis a set of in-
w1,w

finitary formulae closed under finite conjunctions and substitutions.

The basic syntactic object of a Hoare-like logic with assertion language

L is the L--asserted program. This is an expression of the form {p}S{q} where

Sis a program and p,q EL and, in this paper, the finitely many free vari­

ables of S ,, p, q coincide.

Let O c L x L such that if (a, B) E O then the formulae a and B have the

same finite set of free variables.

The Hoare logic HL(L,0) for EWP based upon assertion language Land

oracle O is defined as the set of all asserted programs {a}S{B} for a,B EL

and SE EWP generated by the following axioms and proof rules: let

12

s,s 1 , ••• ,sk E EWP; p,q,p1,q1,r EL; and let t,t 1 ,t1,ti,···,tk,tk,s,s' be

polynomial expressions over E.

1. ASSIGNMENT AXIOM:

{p[t/X]} X := t{p}

where p[t/X] stands for the result of substituting the expression t for

free occurirences of variable X in p.

2. COMPOSITION RULE:

{p}s1{r},{r}s2{q}

{p}S1;S2{q}

3. MULTIPLE CONDITIONAL RULE:

{pAt1 =ti }S l {q}, ••• , {pA~ =~ }Sk {q}

{p} (t1 =ti+S1□ .. -□~ =~+Sk) {q}

4. GUARDED ITERATION RULE:

{pAt=t'}S{p} __
{p} while t=t' do sod now check s=s' won {pAs=s 1 }

5 • CONSEQUENCE RULE :

(p,p1)E0, {p1}S{q1}, (ql,q)EO

{p}S{q}

Notice ~~at all proofs in HL(L,0) are finitely long.

The semru~tics of HL(L,O) is simply that of the partial program correct­

ness semantics for asserted programs derived from the standard satisfaction

semantics of the infinitary formulae of the assertion language. Thus, a given

asserted program {p}S{q}, withs, p, q having n free variables, is said to
n

be valid over a E-structure A if for each a EA, whenever A I= p(a) then

either S(a) converges and A I= q(S(a)) or else S(a) diverges. We shall abbre­

viate validity by A I= {p}S{q}.

The part.ial correctness theory of EWP in language Lover E-structure A

is defined by

13

PC(L,A) = {{p}S{q}: AF {p}S{q} for SE EWP, p,q EL}

A Hoare logic HL(L,O) is said to be sound for structure A if HL(L,O) c

PC(L,A). The oracle O is said to be valid over a structure A if for any

(p,q) E 0, with p, q having n -free variables, and for any a E An, AF p(a) ➔

q (a).

3.1. SOUNDNESS THEOREM. Let HL(L,O) be a Hoare logic and A any L-structure.

If the oracle O is valid for A then the Hoare logic HL(L,O) is sound.

The proof of Theorem 3.1 we leave as an easy exercise for the reader

and his or her semantics for EWP. The following observation is obvious.

3.2. FINITENESS LEMMA. Suppose HL(L,O) I- {p}S{q} for p,q EL and SE EWP.
If o c O is the set of all oracle assertions appearing in some proof of

p,q
{p}S{q} then HL(L,o) 1-. {p}S{q}.

p,q

3.3. Equational Hoare Logic

Given an algebraic specification o::, E) we assign to it an equational

Hoare logic HL(EL(L),EO(E)) defined by taking the assertion language L to be

the set EL(E) of all finite conjunctions of equations over Land taking as

the oracle O the set EO(E) of all pairs of finite conjunctions of equations

(p ,q) E EL (L) x EL (E) such that

EI- p ➔ q.

Thus, HL(EL(E) ,EO(E)) is an entirely syntactical construction and

HL(EL(E),EO(E)) I- {p}S{q}

tells us that the pre- and post- conditions p and q are finite conjunc­

tions of equations defining a partial correctness statement provable from

equational information derivable from the axioms E.

14

3.4. Computable Hoare logic

Given a computable data type A of signature Ewe assign to it a Hoare

logic of computable assertions HL(CL(A) ,CO(A)) defined by taking the asser-

tion language L to be the set .CL(A) of all infinitary formulae p EL such
W1,W

that the set

is computable. Notice this CL(A) is an absolutely well-defined construction

thanks to Theorem 1.1. As an oracle Owe take the set CO(A) of all pairs of

infinitary formulae (p,q) E CL(A) x CL(A) such that

AF p-+ q.

Thus, HL(CL(A),CO(A)) is, in all essential respects, a semantical construc­

tion and ,

HL(CL(A) ,CO(A)) ~ {p}S{q}

tells us that the pre- and post- conditions are decidable predicates defin­

ing a partial correctness statement deducible using true computable inter­

mediate assertions only: see APT, BERGSTRA & MEERTENS [3] for a thorough dis­

cussion of this hybird type of Hoare logic and its mathematical structure.

3.5. BASIC OBSERVATION

For any computable data type A of signature E, each computable subset

Sc An is definable in CL(A). Clearly, EL(E) c CL(A).

4. THE ADEQUACY THEOREM

4.1. THEOREM. Let A be an infinite computable data type of signature E. Sup­

pose that

HL(CL(A) ,CO(A)) ~· {p}S{q}

15

wherein SE EWP(E) and p,q E EL(E). Then there exists an equational specifi­

cation (E0 ,E0), with E0 - E containing at most 5 new function symbols and 1

constant and with E0 containing 4 equations over E0 , such that

(1) under its initial algebra semantics (E0 ,E0) defines A as a hidden enrich­

ment specification, and

(2) HL(ELCEO> ,E0CE0» I- {p}s{q}.

PROOF. We will divide the proof into two largely independent blocks. First

of all, let A be isomorphic to a recursive number algebra R with domain w

(Lemma 1.2). We will make a new recursive number algebra~, of signature

EH, such that ~, E = <~>E = R. And we will make a set of conditional equa­

tions EH, which are true of~,

and for which

The second block is the proof of the following general specification

cum compression theorem.

4.2. SPECIFICATION THEOREM. Let A be an infinite computable algebra finitely

generated by elements named in its signature E. Then there exists a specifi­

cation (E 0 ,E0), in which E0 extends Eby 5 new function symbols and 1 new

constant and E0 contains only 4 equations over E0 , such that (E 0 ,E0) defines

A as a hidden enrichment specification under its initial algebra semantics.

Moreover, for any finite set E of conditional axioms over E satisfied

by A, (EO,EO) can be chosen so that each axiom of Eis formally provable by

the rules of first-order logic from E0 .

Our theorem now follows immediately from these two blocks. In the Speci­

fication Theorem 4.2, take A=~ as the algebra to be specified and take

E = EH as the axioms to be compressed. The specification (EO,EO) specifies

~ and since EO proves Ewe know that EO proves {p}S{q} in the equational

Hoare logic over EH. To obtain the result of our main theorem we recover R

16

from~ and check the numerical bounds claimed; these latter tasks are tri­

vial, of course. Consider now the part of the proof devoted to the Hoare

logics involved.

Suppose that HL(CL(R),CO(R)) ~· {p}S{q} wherein p,q E CL(R) are conjunc­

tions of equations. Let P be a proof of this fact in the Hoare logic and let

1 l { P, ... , P}

be a list of all the formulae of CL(R) occurring in P. Let x1 , ••• ,~ be a

list of all the free variables mentioned in the formulae of P. Now, each

formula ip arising in the proof P can be assumed to be factorised into the

form

a(i)
/\ ip.

j=l J

where iP. is either an equation over E or is some formula of CL(R) that is
J

neither an equation, nor a conjunction of two other formulae of CL(R). We

shall transform Pinto a proof ~(P) in an equational Hoare logic and we pro­

pose to do this by replacing these latter complex subformulae of the ip with

equations over a signature EH extending E; thus, ip is turned into a formula

~(iP) which is a finite conjunction of equations over EH. Replacing each

occurrence of ip in P by the formula ~(iP) results in a syntactical object

~(P) which looks like a proof of {p}S{q} in an equational Hoare logic over

EH. What remains is the task of finding an oracle to define a Hoare logic in

which ~(P) is indeed such a proof. And, of course, we have to show that the

oracle can be specified by a finite set of conditional axioms.

The formal role of the algebra~ is to prove the consistency of these

syntactic manoeuvres and to act as a template for the second half of the

proof which applies the Specification Theorem 4.2. But it seems best to intro-

duce ~ straightaway to

For each 1 ~ i ~ l,

those subformulae iP. of
J

To define~ we add

explain the idea behind our choice of EH.

let I. c {1, ... ,a(i)} denote the set of indices for
. l.
l.P which are not equations.

to R the numbers 0,1,2 ER as distinguished con-

stants and also these two functions

17

~(x) = x+l

if Q:s;;i:s;;.f., je:Ii and Al= ip. (xl, ••• ,~);
. J

].. f Q<_1.· <_D, J0 €Ii d All l.p () -c.. an ,- j x 1 , ••• ,~ ;

otherwise.

Since each ip defines a computable predicate on R, the function sat is re-
j

cursive.

Let the signature of~ be EH= EU {O, TRUE, FALSE, SUCC, SAT}

The syntactic transformation of the proof Pinto cj>(P) proceeds as fol­

lows. Given the formula ip of P, we leave alone all those components iP.
J

which are already equations over E, and we replace each iP. which is not by
J

which is an equation over EH. The resulting formula cj>(iP) is a finite con­

junction of equation7 over EH as expected; and therefore, replacing every

occurrence of every 1.P in the proof P produces cj>(P) which could be a proof

of the asserted program {p}S{q} in an equational Hoare logic over LH. To de­

fine that Hoare logic we must inspect the oracle axioms appearing in the

proof P.

Let Q = { Q1 +Qi, ••• , Qt+ Qt} be a list of every use of the oracle CO (R)

in the proof P. By the Finiteness Lemma 3.2,

HL(CL(R),Q) ~ {p}S{q}.

Since each Q. and Q!, for 1 :s;; i :s;; t, are some AP and Pp we can define
l. l.

A trivial induction on proof structure allows us to conclude that

Thus to complete this stage of the argument we have only to get the oracle

18

~(Q) specified by a set EH of conditional equations over EH. Now remember

that each

is almost a conditional equation: the deviation is that ~(Q!) is a conjunc-
i

tion of equations over EH. The following lemma shows how to unpick the con-

junctions of ~(Q1) to form a set of conditional equations EH; its proof is

a simple logical exercise.

4.3. LEMMA. Let r be any signature and let {r. (X) = r! (X): 1:;;; i:;;; n} and
l. l.

{s. (X) = s '. (X): 1 :;;; j :;;; m} be two sets of equations over r in a list of vari-
J J

ables X. Then for any formula~ E L(r) the following are equivalent:

1.

2.
n

r! (X)
l.

{l.. ~1 r. (X) = r! (X) + s. (X) = s ~ (X) : 1 :;;; j :;;; m} l- ii>
l. l. J J

PROOF OF THE SPECIFICATION THEOREM. First, let A be infinite and isomorphic

with a recursive number algebra R whose domain is w (Lemma 1.2). We add the

following constants and operations to R to make a new recursive number alge­

bra R
w

0, x+l, x+y, x.y

(If R contains any of these functions beforehand then some of this list is

redundant, of course:~ already possesses zero and the successor function

remember.)

Next, let k denote the maximum number of conjunctions occurring in the

premisses of the conditional equations in E, or let k = 1 if E contains only

equations. Without loss of generality, we can assume every conditional equa­

tion of E has k conjunctions in their premisses by padding with trivially

valid equations X = x. Thus, each conditional equation in E has the form

19

We now define two more recursive functions which must be added to R.
w

d(x,y,z) = {
0

1

if x=y and z=O;

otherwise.

otherwise.

Let R0 be the result of adding these 5 functions and 1 constant to R. Clear­

ly, R0 1E = <R0>E = R. Let E0 =Eu {O,SUCC,ADD,MULT,D,H} be the signature of

R0 . We shall construct a specification (E0 ,E0) which encorporates the condi­

tional equations E, spec~fies R0 under its initial algebra semantics and

uses only 4 equations. This construction proceeds in several stages the first

of which ends with a conditional specification of R0 •

4.4. LEMMA. R0 possesses an initial algebra specification (E0 ,E1) in which

E1 contains at most 6 + !El conditional equations each one of which has at

most 1 premiss.

PROOF. The equations for the arithmetic are

ADD(X,0) = X; MULT(X,0)=0

ADD(X,SUCC(Y)) = SUCC(ADD(X,Y)); MULT(X,SUCC(Y)) =ADD(MULT(X,Y) ,X)

For each constant c EE naming number c ER take the identification

c = SUCCC(O)

For each function symbol!_ EE u {D,H} naming function f: wn + w which is

either an operator of R, or is d or h we construct a conditional equation

as follows. Consider the graph off,

G(f)

20

This is an r.e. set and so, by the Diophantine Theorem, there exist poly­

nomials pf and qf from oo[X,Y,Z] = oo[x1, ••• ,xn,Y,z1 , ••• ,zm] such that

G(f)
n m

= { (x,y) E oo x oo: 3z E oo .pf (x,y ,z) = qf (x,y ,z}}

Let Pf and Qf be formal translations of pf and qf to polynomials over {O,

SUCC,ADD,MULT}. For the function symbol f we assign the conditional equation

This completes the definition of E1 .

The proof that T(E0 ,E1) ~ ~O begins by defining$: RO+ T(E0 ,E1} by

$(n} = [succ?co)]

where [succ11(0)] is the equivalence class of terms in T(E0) which are E1-

equivalent to succ?co}. This map$ is the required isomorphism. The proof is

a routine exercise for any reader familiar with any one of our previous

articles [9,10,11,12,13,14] and is, in fact, a simplified version of the cor-

responding proof in [11]. We take the liberty of omitting it. Q.E.D.

Now we must absorb the conditional equations of E. Take the conditional

equations of E 1 and pad out their premisses to contain k conjunctions of

equations, if necessary. (Here it is important that k ~ 1.) This done, set

E2 = EU El.

We will now describe a transformation of the set of conditional equa­

tions E2 to a set of equations E3 satisfying these three conditions:

1. IE3 I = IE2 I + 1

2. E3 ~ E2

3. RO I= E3 •

The technique is quite general and we will use it again in a moment.

The first and "extra" equation in E3 is simply

The rest are made to correspond to the conditional equations of E2 •

For each conditional equation

in E 2 we write the equation

21

This is all of E3 • Condition (1) is obvious and the arguments for properties

(2) and (3) are straightforward logical exercises.

Now we are going to transfprm back the set of equations E 3 into a set

E4 of conditional equations! However, this E4 will contain only 3 condition­

al equations, consistent with R0 , and be able to formally prove the equations

of E3 •

The first two elements of E4 are

D(X,Y,Z) = 0 ➔ X = Y

D(X,Y,Z) = 0 ➔ Z = 0.

Let E3 = {r1=s1 , ••• ,r,e=s.e_} for£.= 6+ lrl +!El+ 1. From this list we

define the following polynomials over r0 :

D. l = D(r.,s.,D.)
l.+ l. l. l.

For i = 1, ••• ,£.-1. Take the equation

This is E4 • Again the properties we claimed for E4 are routine matters to

verify.

22

The final stage is an application of our technique which turns condi­

tional equations into equations. This produces a set of equations ES such

that

(4) IE5 I = IE4 I + 1 = 4

cs> E5 I- E4

(6) R0 r= E5

This E5 is the set of equations E0 required for the statement of the Speci­

fication Theorem 4.2.

To see that E0 proves the given conditional equations, recall the chain

And that (E0 ,E0) specifies R0 follows from this chain, condition (6) and

Lemma 4.4.

Q.E.D.

REFERENCES

[1 J APT, K.R., Ten years of Hoare,"'s logic, a survey in F. V. JENSEN,

[2]

B.B. MAYOB and K.K. M~LLER (eds.), Proceedings from 5th Scandi­

navian Logic Symposium, Aalborg University Press, Aalborg, 1979,

1-44.

-----, Recursive assertions and parallel programs, Preprint Erasmus

University, Rotterdam, 1979.

[3] APT, K.R., J.A. BERGSTRA & L.G.L.T. MEERTENS, Recursive assertions are

not enough - or are they?, Theoretical Computer Science 8 (1979)

73-87.

[4] BACK, R.J.R., On the correctness of refinement steps in program develop­

ment, Department of Computer Science, University of Helsinki,

report A-1978-4, 1978.

[SJ -------, Proving total correctness of nondeterministic programs

in infinitary logic, to appear in Acta Informatica.

[6 J DE BAKKER, J. W., Mathematical theory of program correctness, Prentice­

Ball International, London, 1980.

23

[7] BERGSTRA, J.A., J. TIURYN & J.V. TUCKER, Correctness theories and

program equivalence, Mathematical Centre, Department of Computer

Science Research Report IW' 119, Amsterdam, 1979. (To appear in

~rheoretical Computer Science.)

[8] BERGSTRA, J.A. & J.V. TUCKER, The field of algebraic numbers fails to

possess even a nice sound, if relatively incomplete, Hoare-like

~[ogic for its while-programs, Mathematical Centre, Department of

Computer Science Research Report IW 136, Amsterdam, 1980.

[9]

[10]

[11 J

[12]

[13]

[14]

& ----, Algebraic specifications of computable and semi-

computable data structures, Mathematical Centre, Department of

Computer Science Research Report IW 115, Amsterdam, 1979.

& ____ , A characterisation of computable data types by

means of a finite, equational specification method, in J.W. DE

BAKKER and J. VAN LEEUWEN (eds.), Automata, languages and pro­

gramming 7th colloquium, Noordwijkerhout, 1980, Springer-Verlag,

'Berlin, 1980, 76-90.

& , Equational specifications for computable data types: ----
six hidden functions suffice and other sufficiency bounds, Mathe­

matical Centre, Department of Computer Science Research Report

IW 128, Amsterdam, 1980.

& ----- , On bounds for the specification of finite data ----·
i:ypes by means of equations and conditional equations, Mathemati­

cal Centre, Department of Computer Science Research Report IW 131,

Amsterdam, 1980.

& , A natural data type with a finite equational final ----
semantics specification but no effective equational initial seman­

tics specification, Bulletin European Association for Theoretical

Computer Science, 11.. (1980) 23-33.

& , Initial and final algebra semantics for data type ----
specifications: two characterisation theorems, Mathematical Centre,

Department of Computer Science Research Report IW 142. Amsterdam,

1980.

24

[15] _____ & ____ , On the adequacy of finite equational methods for

data type specification, ACM-SIGPLAN Notices 14 (11) (1979) 13-

18 ..

[16] BURSTALL,, R.M. & J .A. GOGUEN, Putting theories together to make speci­

fications, Proceedings 5th International Joint Conference on

Artificial Intelligence, Cambridge, Mass., 1977, 1045-1058.

[17] COOK, S.1~., Soundness and completeness of an axiom system for program

verification, SIAM J. Computing J_ (1978) 70-90.

[18] EHRIG, H .. , H.-J. KREOWSKI, J.W. THATCHER, E. WAGNER, J.B. WRIGHT, Para­

met:erized data types in algebraic specification languages, in

J.W. DE BAKKER and J, VAN LEEUWEN (eds.), Automata, languages and

programming, 7th Colloquium, Noordwijkerhout, 1980, Springer­

Verlag, Berlin, 1980, 157-168.

[19] ENGELER, E., Algorithmic logic, in J.W. DE BAKKER (ed.), Foundations

of computer science, Mathematical Centre Tracts 63 (1975) 57-85.

[20] GOGUEN, ~r.A. & J.J. TARDO, An introduction to OBJ: a language for writ­

inq and testing formal algebraic program specifications, Proceed­

in~JS IEEE Conference on Specifications of Reliable Software,

Cambridge, Mass. , 1979, 1 70-189.

[21] GOGUEN, ~r.A., J.W. THATCHER & E.G. WAGNER, An initial algebra approach

to the specification, correctness and implementation of abstract

data types, in R.T. YEH (ed.), Current trends in programming me­

thodology IV, Data structuring, Prentice-Hall, Engelwood Cliffs,

New Jersey, 1978, 80-149.

[22] GREIBACH,, S.'A., Theory of program structures: schemes, semantics, veri­

fication, Springer-Verlag, Berlin, 1975.

[23] KAPUR, D .. , Towards a theory for abstract data types, M.I.T. Laboratory

for Computer Science Research Report TR-237, Boston, 1980.

[24] MACHTEY, M. & P. YOUNG, An introduction to the general theory of algo­

rithms, North-Holland, New York, 1978.

[25] MAL'CEV, A.I., Constructive algebras, I., Russian Mathematical Surveys,

.!§.,, (1961) 77-129.

25

[26] MANIN, Y., A course in mathematical logic, Springer-Verlag, New York,

1977.

[27] RABIN, M.O., Computable algebra, general theory and the theory of com­

putable fields, Transactions American Mathematical Society, 95

(1960) 341-360.

[28] THATCHE:R, J.W., E.G. WAGNER & J.B. WRIGHT, Data type specification:

parameterization and the power of specification techniques, IBM­

~~.J. Watson Research Center Report RC 7757, Yorktown Heights,

1.979.

[29] TUCKER, J.V., Computing in algebraic systems, in F.R. DRAKE and S.S.

WAINER (eds.), Recurf!ion theory, its generalisations and applica­

tions, Cambridge University Press, Cambridge, 1980.

