
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

R.J .R. BACK

IW 144/80

CHECKING WHETHER PROGRAMS ARE CORRECT OR INCORRECT

~
MC

SEPTEMBER

kruislaan 413 1098 SJ amsterdam

811:lWOTHl:EK MATHEMATISCH OENHWM
-AMSTER.tAM-

PJun:ted a.t .the Mathe.ma;Uc..ai. Cen.tJr.e., 413 K.1U.L.U,laan, Am6.tvuf.am.

The Ma.the.ma.tic.al. Cen.tJr.e , fiounded .the 11-.th ofi FeblUlall.y 1946, b., a. non
p.twfi..U ..ln6.t,.Lt,u,t.i_on a,un..lng a.t .the. p.ltomoilon ofi puJte ma.the.ma;Uc.l. a.nd m
a.ppt.i.c..a;Uon,6. I.t b., 1.>pon60.1ted by .the Ne.the.ltla.nd6 GoveJtnmen:t .thJtough .the
Ne.thvzi.a.nd6 O.tr.ga.n..lza.ti.on o oJt .the Adva.nc..e.me.n:t o O PUite Ru ea1tc..h (Z. W. 0.) .

1980 Mathematics subject classification: 68B05, 68B10

ACM-Computing Reviews-categoriey: 5.24

Checking whether programs are correct or incorrect.

by

R.J.R. Back

ABSTRACT

A pro<Jram is considered as consisting of two :r,arts, an algorithm part

and a specification part, where the latter records the programmer's inten

tions as to how the algorithm should work. The question of what is a proper

notion of semantic correctness for such programs is discussed, the emphasis

being on finding a criterion which supports the construction and maintenance

of correct programs. For a suitable notion of semantic correctness, a system

to check it for programs is described. This system will either declare a

program to be semantically correct, or it will show it to be incorrect by

_exhibiting a semantic error.

KEY WORDS 8, PHRASES: program verification, partial correctness, total cor

rectness, clean termination, run-time errors, loop in

variants, multiple exits, transition diagrams, program

construction, symbolic execution, testing, debugging,

variable initialisation

1

1. INTRODUCTION

In talking about program correctness one usually distinguishes between

syntactic and semantic correctness. A program is syntactically correct if

it is written according to the grammatical rules of the programming language

used. If it also works as the programmer intended it to work, then the pro

gram is semantically correct. Syntactic correctness is in most cases check

ed mechanically by the compiler. Checking semantic correctness is, however,

more difficult. A number of different techniques are used for this purpose,

ranging from program testing to formal verification of program correctness.

One of the problems with checking semantic correctness is that the

methods used are not strong enough to decide whether a program is semanti

cally correct or not. Thus program testing can be used to show that a pro

gram is incorrect, by exhibiting an input for the program which does not

produce the correct results. However, the fact that no errors are found by

testing does not allow us to infer that the program is correct. Further

testing might reveal an error not previously detected. The converse is true

of proving program correctness. The fact that we are not able to prove a

program correct does not justify the conclusion that the program is incor

_rect. The program could still be correct, but the proof of its correctness

can be difficult to find.

One way to solve this problem is to strenghten the traditional methods

so that it becomes possible to decide whether a program is correct or not.

GOODENOUGH & GERHART [8] discuss how to strengthen the method of program

testing so that the correctness of a program can be inferred from the fact

that no errors are detected by testing. KATZ & MANNA [11] and BRAND [3]

again describe how to extend verification techniques to proving that a

program is incorrect. An alternative approach is to combine program testing

and program proving, e.g. by first testing the program, and if no errors

are found try to prove the program correct. This latter approach still

leaves the possibility open that testing fails to produce an error while

the correctness proof does not succeed either; in this case we still do

not know whether the program is correct or not.

The situation with respect to semantic correctness should be compared

with the way in which syntactic correctness of programs is checked. The

2

checking is done by a compiler which analyzes the program and decides

whether it is syntactically correct or not. Moreover, if the program is

found to be incorrect, the compiler will indicate the place and nature of

the syntactic error(s) responsible for the incorrectness. Something similar

would clearly be desirable for checking semantic correctness of programs:

a system which analyses a program and decides whether it is semantically

correct or not, and in case of incorrectness indicates the semantic errors

responsible for the incorrectness. Such a system would at the same time be

a program verifier (proving semantic correctness), a program tester (proving

semantic incorrectness) and a program debugger (locating the semantic error).

Obviously the program code alone does not contain enough information

to enable one to determine whether a program is semantically correct or not,

as this also depends on the intentions of the programmer. Checking semantic

correctness does, however, become possible if these intentions are recorded

as part of the program test. The system can, by inspecting the program text,

then try to check whether the actual behaviour of the program is consistent

with its intended behaviour. In this ~ay semantic correctness is turned

into an inherent property of the program, which only depends on the seman

tics of the programming language used. The situation is then the same as

for syntactic correctness, which only depends on the syntax of the program

ming language used.

We will here pursue this approach to semantic correctness. We are aim

ing at a notion of semantic correctness which guarantees that the program

works as intended-by the-programmer. This-not only implies that the program

must produce the correct results upon termination, but also that the program

is guaranteed to terminate, and that the termination is clean (SITES [13]),

i.e. the execution may not fail because of a run-time error. We will show

how semantic correctness can be checked in a manner similar to the way in

which a compiler checks syntactic correctness, and that the checking will

decide whether the program is correct or not.

✓•• INVARIANT BASED PROGRAMS

An obvious candidate for semantic correctness is the partial correctness

3

of programs. In this case the intentions of the programmer are expressed by

the pre- and postconditions he provides for the program. Checking semantic

correctness would thus amount to checking whether the program is partially

correct with respect to these conditions.

The usual technique for proving partial correctness of iterative pro

grams is to attach some suitably chosen invariant (intermediate assertion)

to each loop in the program (FLOYD [6]). Using these invariants and the pre

and postconditions, a number of verification conditions are computed. If

these verification conditions all hold, then the program will be partially

correct.

This technique allows us to prove that a program is partially correct,

but it does not allow us to decide whether a program is partially correct

or not. To see this, consider the situation when some verification condi

tion is found not to hold. From this we may infer that the program either

is not partially correct, or that it is partially correct, but that the in

variants were wrongly chosen. Thus the question whether it is partially

correct or not is left open. Incorre~tness can only be inferred from the

fact that no choice of program invariants will make all verification con

ditions hold, a fact which is much more difficult to prove.

This argument should be sufficient to indicate that partial correctness

does not lend itself easily to correctness checking along the lines desired.

On the other hand, we may ask whether the programmer really wants this no

tion of semantic correctness. Consider again the situation in which the

verification conditions do not hold. If the program in fact is partially

correct then the invariants supplied by the programmer are wrongly chosen.

But the programmer cannot know that the program is partially correct (this

is what he is supposed to find out). The only thing he sees is that the

program does not work in the way in which he thought it would work, where

his ideas of how the program should work are expressed by the invariants

he has provided for the program. The programmer, especially if he has con

structed both program. and invariants himself, is now as likely to suspect

the program as the invariants of being wrong. He will feel free to change

either one (or both) in order to achieve consistency between program and

invariants (i.e. in order to make all verification conditions hold).

4

Thus the programmer is really interested in consistency between program

and invariants. We should therefore take semantic correctness to mean con

sistency of this kind. The fact that some verification condition does not

hold is then interpreted as a semantic error, which can be located to a

specific part of the program (the part from which the verification condi

tion was computed). This interpretation of semantic correctness does in fact

provide us with a method for deciding correctness: a program will be seman

tically correct if and only if all verification conditions hold. (Of course

we do not necessarily get a decision method 'in the recursion theoretic

sense, as the truth of the verification conditions might not be decidable

in the underlying theory.)

The price to be paid for this is that the invariants now have to be

considered part of the program text. In other words, not only has the pro

grammer to record his intentions as to what should be the pre- and post

conditions of the program, but he also has to state his intentions as to

how the postcondition is to be achieved by the program, by describing the

appropriate intermediate assertions for the program. We will refer to pro

grams of this kind as invariant based programs. A simple programming language

in which to describe programs of this kind will be defined below. This lan

guage is a slight modification of the multi-exit statements previously

described in BACK [2].

3. A LANGUAGE FOR INVARIANT BASED PROGRAMS

A simple programming language in which to express invariant based

programs can be defined as follows. First we define simple (multi-exit)

statements s. These are of the form

s ::= Llx1 , ... ,~ := e 1 , ••• ,ek; s 1 I if b 1 + s 10 ... □ bk+ sk fi

(k;:-:1) ,

where s 1 , ••• ,sk are simple statements, x 1 , ••• ,~ are (distinct) program

variables, e 1 , ••• ,ek are expressions, b 1 , ••• ,bk are boolean expressions and

Lis a label.

5

A compound (multi-exit) statement Chas the form

(k~O) ,

where s 0 ,s 1, ••• ,sk are simple statements and L1, ••• ,½:_ are (distinct) labels.

Fork= O, C stands for the simple statement s0 •

A declaration Dis of the form

D : := var x T I label L Q

where xis a variable, Tis an assertion (the data invariant), Lis a label

and Q is an assertion (the label invariant). An environment Eis a sequence

of declarations, i.e. it is of the form

E : := Dl; •• •;Dk, (k~O) •

A block Bis of the form

B : := E; C,

i.e. it consists of an environment E (the local environment) and a compound

statement C.

Finally, an (invariant based) program H ls of the form

H: := E{P}B

where Eis an environment (the global environment), Pis an assertion (the

precondition) and Bis a block.

The simple multi-exit ststements are similar to Dijkstra's multiple

assigned statements and guarded conditional statements [4]. The difference,

as compared to Dijkstra's guarded commands, is that the syntax forces each

execution of a simple statement to end in an explicit label L, signalling

a jump to that label (i.e. L can be understood as goto L). Thus each simple

statement has a single entry point but may have multiple exit points.

6

a compound multi-exit statement

corresponds to an ordinary Pascal block, with the symbol 'I' replacing•~•.

The execution of this statement starts with s0 • If s0 ends in one of the

labels L., 1 $ i $ k, then execution continues with the corresponding state-
J.

ment Si, and so on. If s0 ends in a label different from L1 , ••• ,Lk, the com-

pound statement is exited (by a jump to that label). The order in which the

labelled statements L.: s. are given in the compound statement does not in-
J.].

fluence the computation, as an execution of one labelled statement never can

fall through to the next statement.

The programmer describes his intention by the declarations. The declaration

var x: T states that any value assigned to x during the computation must

satisfy the assertion T. Thus for instance

var x integer(x) AO$ x $ 100

restricts x to vary in the set {0,1, ••• ,100}. This same restriction is ex-

_pressed by the Pascal declaration (WIRTH [14]} -~ x: o •• 100. However,

data invariants are in general more powerful, in that any restriction on

the values of the program variables is allowed. (The syntax of assertions

will not be fixed here, but essentially we think of them as first-order

formulas.) The declaration label L: Q states that we may assume Q to be

true whenever execution of the program has reached label L. The syntax of

the programming language is such that a loop can only be constructed using

backward jumps to labels in a compound statement. It is thus illegal to

program a loop without also giving the necessary intermediate assertion.

The program E{P}B contains all the information about the intended be

haviour that is needed to check the semantic correction of it. The global

environment E declares all global variables used in B. It also declares every

possible exit L from the block B, together with the exit condition Q which

must hold when exit Lis taken (this is given in the form of a label declara

tion label L: Qin E). The precondition P states the condition on the global

variables which may be assumed to hold initially.

7

4. CONSTRUC'.rING INVARIANT BASED PROGRAMS

In order to make the programming language above truly usable, we need

to show how to construct invariant based programs in the first place. We

will describe a technique in which one starts from the program invariants,

giving a more or less formal description of these, and then tries to con

struct a program which respect these invariants. This approach reverses the

usual order of program construction, in which the program is built first,

and then one tries to discover the proper invariants. The approach outlined

here has in various forms been considered by HOARE [10], DIJKSTRA [4],

REYNOLDS [12] and VAN EMDEN [5]. The use of this program construction tech

nique together with multi-exit statements has previously been described in

BACK [1].

We will describe the programming technique and the use of multi-exit

statements with the following simple lexical analysis problem: Let a line

be a sequence of characters composed of letters and blanks only. A word is

a sequence of letters only. The parse of a line is the sequence of words,

in order, contained in the line. The words in the line are delimited by

blanks or the end of the line. Our task is to construct a program for ob

taining the parse of a line, given the line.

We start by fixing the global environment of the program. The input

is given as the global variable l, declared as

var l: charseq(l).

Here charseq(l) is true iff lissome sequence of characters. The output

is given as the global variable p, declared as

wordseq (p) ,

where wordsE~q (p) is true iff p is a sequence of words.

The precondition will be that l = l 0 , where l 0 is the given sequence

of letters and blanks. The purpose of the program is to compute the right

value for the variable p, i.e. it must establish the situation

8

label parse computed: p = parse of l 0 •

Here "parse computed" is a global label, to which the control is transfer

red when the computation is ready.

We will construct the obvious algorithm for solving this problem, i.e.

we are going to scan the input line from left to right, and accumulate the

words met in the variable p. There are two basic situations which re~ated

ly occur during the scan: either we are scanning blanks or we are scanning

letters. These situations are illustrated in the following picture:

.t .t l
~~----------------

scanning blanks
• I
I I
I I

~
I I
I I
: I
I I -----..,----"--r'.__ _____________ _,

scanning letters
w

The shaded regions in the picture represent strings of letters, while the

white regions represent strings of blanks. Consider first the situation in

which we are scanning blanks. Part of the original line .t0 has been scanned,

and we can consider .t0 as being built up of three consecutive strings, .t1 ,

.t2 and the current line, i.e • .t0 = .t1•.t2 •.t (the dot denotes concatenation).

The words in .t1 are already accumulated in the parse, i.e. p = parse of .t1 •

The string .t2 gives the blanks already scanned, i.e • .t2 contains only blanks.

Moreover, .t2 must contain at least one blank, i.e • .t2 ~<>,otherwise we

would not know that we are scanning blanks. This gives us the following in

variant:

scanning blanks: .t0 = l 1•.t2 •.t,
blanks and l 2 ~

p = parse of .t1 , l 2 contains only

<>, for some strings l 1 and .t2•

For the other invariant we need an auxiliary variable w, declared as

var w: word (w) ,

in which we accumulate the word being scanned. A similar reasoning as the

one above gives us the following invariant:

p = parse of l 1 , w 1 <>, l 1 =<>or

9

last cl1) = I I , for some string l 1 •

Here the condition l 1 =<>or last (l1) = ' ' expresses the fact that w

contains all the initial letters of the word being scanned.

From the initial situation Cl= l 0) we reach one of these two invariants

or the exit by the following simple multi-exit statement:

p := <>· I

if l =<>+parse computed

□ l 1 <> + c, l := first(l),rest(l);

fi

if c =' '+ scanning blanks

O c #' '+ w := <c>; scanning letters

fi

.In a similar way we show how to proceed from the two invariants, scanning

blanks and scanning letters. The algorithm for computing the parse is given

by the following block:

var w: word (w);

var c: char(c);

label scanning blanks: 3l1 ,l2 (charseq(l1), charseq(l2),l0 = l 1 •l2 •l,
p = parse of l 2 , l 2 aontains only blanks and

l 2 1 <>);

label scanning letters:3l1 (charseq(l1),l0 = l 1 •w•l, p = parse of l 1 ,

w 1 <>, l 1 =<>or last(l1) =' ');

begin p := <>;

i.f l = <> + parse computed

□ l'/ <> + c,l := first(l), rest(l);

if c =' '+ scanning blanks

0 c / ' ' + w := <c>

scanning letters fi fi

10

I
/

I scanning blanks:

if l =<>+parse computed

□ l F <> + c,l := first(l), rest(l);

if c =' '+ scanning blanks

D c F' '+ w := <c>;

scanning letters fi fi

I scanning letters:

end

if l = <> + p := p•<w>;

parse computed

□ l F <> + c,l := first(l), rest(l);

if C = 1 1 + p := p•<w>;

scanning blanks

D c ¥' '+ w := w•<c>;

scanning letters fi fi

5. TRANSITION DIAGRAMS

An alternative way of describing invariant based programs is provided

by transition diagrams (REYNOLDS [12], VAN EMDEN [5]). A transition diagram

is a finite graph, where invariants are associated with the nodes of the

graph and state transformations with the arcs of the graph. The program con

structed in the previous section e.g. corresponds to the following

transition diagram:

parse comP.uted

scanning blanks ----------... scanning letters

11

Here initial is a node associated with the initial situation (l = l 0). The

state transformation associated with the transition from "scanning blanks"

to "scanning letters" is e.g.

l -I <>;

c,l := first(l), rest(l);

C 'P I I • ,

w := <c>;

The guards in the conditional statements of the program thus correspond to

partially defined identity transformations: l #<>is e.g. a state trans

formation which is defined only if the condition l #<>holds, and which

does not change the values of any program variables.

The multi-exit statements provide a linear notation for transition

diagrams. Such a linear notation is clearly to be preferred when the state

transformations and/or the invariants become more complex and lengthy. The

compound statement

bundles all transitions from label L. together to form the single statement
1.

Si (L0 ~ the initial state). The statement Si is constructed by a carefully

progressing case-analysis of the different possible situations which can

occur when the invariant associated with Li is known to hold initially.

The syntax of simple statements is designed to make it possible to treat

each case separately from the others, thus making the program construction

task easier and the resulting program easier to understand and to modify.

6. SEMANTIC CORRECTNESS OF INVARIANT BASED PROGRAMS

We now turn to the question of defining a suitable notion of semantic

correctness for invariant based programs. To motivate the definition to be

given, we first look a little bit closer at the technique for constructing

invariant based programs exemplified in the previous section.

12

The construction of a program E'{P}E:C starts by describing the global

environment E' of the program. Let E' be the environment

var y 1 :u 1; ••• ;var y :u;
-- --.rr
label K1 :R1; ••• ;label Kn:Rn.

Here y 1 , ••• ,y (r?::1) are the global variables which the program will use. ·r
The labels K1 , ••• ,Kn (n?::1) are the possible exits of the program, while

R1 , ••• ,Rn are the postconditions associated with these exits.Riis thus

an assertion about the values of y 1 , ••• ,yr, which should be true when execu

tion of the program terminates at label K .• In addition to this we also have
1.

to state the precondition P of the program. This describes what we may assume

to be initially of the values of the program variables y 1 , ••• ,yr.

The next step consists in setting up the local environment E for the

program. This means that we have to determine the local variables which the

program is going to manipulate, and that we also have to describe a number

of intermediate stages of an algori~hmic process aimed at establishing the

postconditions of E' • Thus E will be of the form

~ x1:T1; ••• ;~ ¾:Tk;

label L1 :Q1; ••• ;label Lm:Qm:

where x 1 , ... ,xk are the local variables and L1 , •.• ,Lm the local labels. The

variable x. may only be assigned values that satisfy condition T .. The
1. 1.

label L. provides a name for an intermediate stage in the computation, while
1.

the associated invariant Qi says what we may assume to be true of the values

of the variables x 1 , .•. ,¾, y 1 , ••• ,yr when this stage has been reached.

Finally we have to show how the computation can proceed from one in

termediate stage to other stages (intermediate or final). This we do by

providing for each intermediate stage L. a single statements. which
1. 1.

describes how the computation continues from this stage. Initialisation is

provided by a statement s 0 which shows how to reach the intermediate stages

(or directly a final stage) from a situation in which only the precondition

Pis known to hold. This gives us the compound statement C, where C is

This completes the program construction task.

We may now ask whether the program constructed in this way is seman

tically correct. More precisely, is the initialisation s0 correct and has

13

each intermediate stage L,
1

been given a correct continuations .• A continua-
1

tion s. will be considered
1

correct, if executing S, for any initial state
1

in which the (values of) the program variables x 1 , ••• ,xk,y1 , ••• ,yr satisfy

the condition Q. associated with the intermediate stage L. (condition Pin
1 1

case of s 0), one of the exit labels of S, is reached. Execution of S, will
1 1

not reach one of the exit labels if it fails because of a semantic error. A

semantic error occurs at an assignment statement if an attempt is made to

assign to a program variable a value which does not satisfy the data invar

iant associated with the variable. At a conditional statement a semantic

error occurs if one of the guards is undefined or if none of the guards is

true. Finally, a semantic error occurs at an exit label if the assertion

associated with the label is not satisfied by the values of the program

variables.

Thus, to summarise, we have the following definition. The program

'E'{P}E;C will be semantically correct if each simple statement S, in C is
1

correct, i = 0,1, •.• ,m. The simple statement S, is correct, if for any
1

initial state satifying condition Qi (Q0= P), execution is guaranteed to

reach an exit label of s., where Q. is the condition associated with label
1 1

L. in E, i = 1, ••• ,m.
1

A program will essentially be semantically correct if and only if the

verification conditions of the prngram are all satisfied. Thus semantic

correctness implies partial correctness. It also implies that no run-time

errors will occur. It does not, however, guarantee termination of the pro

gram. We will later show how to extend the notion of semantic correctness so

that also termination of the program will be certain.

It might seem that a weaker notion of semantic correctness actually

would be more appropriate: In the definition above, S, would not be re-
1

quired to work correctly for any initial state satisfying Q., but only for
1

those initial states which actually can be reached by some computation of C

14

starting from an initial state satisfying precondition P. This is still

stronger than partial correctness, because it implies that whenever a

label is reached by the execution the assertion associated with the label

will be true for the present state of the computation. For partial correct

ness it is only necessary that assertions associated with exit labels are

satisfied when these labels are reached.

This weaker notion of semantic correctness will, however, be rejected

for the following reason. Assume that the block B above is correct according

to the weaker notion but not semantically correct according to the defini

tion we have qiven above. This means that some simple statement S. of C
1

does not work correctly for some initial states which satisfies condition

Q but that this state never can occur at label L. during any execution of
i' 1

the block starting from a state satisfying condition P.

This means that the correctness of S. depends on the not explicitly
1

stated assumption that the states never will be produced by the other

simple statements in C (or bys. itself). Consider now changing some other
1

statements. in C, which has as one of its exits L .• Changing s. in a way
J . 1 J

which will produce states at exit L. but still results in the condition Q.
1 1

holding at this exit seems to be a perfectly valid change in the context of

S.. However, this change in one part of the program (S.) will now produce
'J J
an error in an other part of the program (S.). This we consider to be high-

1

ly undesirable, and therefore choose to regard implicit assumptions of this

kind as semantic errors.

Thus, by choosing to define semantic correctness in the way we did, we

will get a correctness criterion which is robust with respect to changes

made in the program. The interfaces between the different parts of the pro

gram are explicitly and completely stated in the form of label invariants.

Therefore changes made in one part of the program will not affect the cor

rectness of the other parts of the program, as long as the changes are con

sistent with the label invariants.

7. CHECKING SEMANTIC CORRECTNESS

The definition of semantic correctness given above shows that checking

semantic correctness essentially amounts to checking that all the verification

conditions are satisfied. One way of doing this is to compute all the

verification conditions at once and ask the progrannner (or maybe an auto

matic theorem prover) to prove them correct. The effect of this, however,

is that the familiar program with which the programmer has been working

15

now is changed into something very different, a set of theorems to be proved.

Thus the programmer easily loses control of the verification process,

finding it difficult to relate the correctness or incorrectness of the veri

fication conditions to the semantic correctness of his program. We there

fore prefer to have a technique for checking semantic correctness which

works directly on the original program without transforming it into some

different representation.

The technique to be presented here is based on symbolic execution

(HANTLER & KING [9]) and is a forward substitution technique (GERHART [7])

for checking the correctness of verification conditions. This is preferred

to a backward substitution technique, because it more closely resembles the

usual method of hand simulating program execution, with which most program

mers are familiar.

A program His assumed to be of the form

E{R and X = t}B,

where

E is the global environment,

R is an assertion,

X is a list of variables,

t is a list of terms and,

B is a statement (a block, compound statement or simple statement).

These will be subject to the following restrictions: E may not contain mul

tiple declarations of the same identifier. No variable declared in E may

occur free in R or occur in any term int. The variables in the list x are

all distinct, and every variable is declared in E. Finally, the lists x and

tare of equal length.

16

The precondition should be read as

= t ,
m

where mis the length of the lists x and t. It asserts that the value of

the variable x. is initially given by the term t., i = 1, ••. ,m. This value
1 1

of x. is expressed in terms of some symbolic constants, i.e. auxiliary vari-
1

ables not declared in the environment E or in the program B. The assertion R

states what we know about these symbolic constants. The use of symbolic con

stants makes it possible to relate the initial values of program variables

to their values upon exit from the program. This is necessary in order to

formulate thei adequate postconditions for the program.

The example program built in section 3 (let us call it B) is of this

form, i.e. it is

E{l0 contains only blanks and letters~ l,p = l 0 ,p0 }B,

where Eis the environment

~E. l: charseq(l}; ~ p: wordseq(l);

label parse computed: p = parse of l 0 ;

The system for checking semantic correctness will essentially be a proof

system, i.e. a system for generating all semantically correct programs. This

proof system will contain no axioms but a number of proof rules. A proof

rule will be of the form

(m,n ~ 0)
H

where H1, ••• ,Hn and Hare programs and F1 , ••• ,Fm are some other conditions

(usually first order formulas). The proof rule says that H will be seman

tically correct if H1 , ••• ,Hn all are semantically correct and if in addition

the conditions F1 , ••. ,Fm are satisfied.

We will depart from the standard way of writing a proof rule and

write the proof rule above in the form

H ---> H1,·••1H when F1,·••1F n-- m

This notation emphasises an alternative way of reading a proof rule: to

show H correct, we have to show that H1 , ••• ,Hn are all correct and that

17

F1 , ••• ,Fm all hold (i.e. the question of whether His correct is reduced to

the question whether H1 , ••• ,Hn are all correct, assuming F1 , .•. ,Fm hold).

The following proof rules are given for checking semantic correctness

of invariant based programs:

1. variable declaration

E {Rand x = t} var y:T; B

---> E; vary: T {RA T[y'/y] and x,y = t,y'} B

We assume that y is not declared in E before (this requirement could be ex

pressed by a when-condition too). y' is some new symbolic constant by which

the initial value of y is denoted. T[y'/y] denotes the formule we get by

substituting y' for all free occurences of yin T. Thus the variable y is

assumed to be initialized to some value y' satisfying the data invariant T.

2. Label declaration

E { Rand x = t} label L:Q; B

---> E; label L: Q { Rand x = t} B.

We assume that Lis not declared in E before. A label declaration is simply

moved into the environment, without any changes made to the precondition.

3. Compound statements

E {Rand x = t} begin s0 I L1:s1 ••• I Lm:Sm end

---> E {Rand X = t} so ,
E { Q.[x'/x] A T[x'/x] and x = x'} s., i = 1, ••• ,m.

1 1

18

we assume that the labels L1, ••• ,L all are declared in E, Q. is the
m i

assertion associated with label L. in E, i = 1, ••• ,m, and Q.[x'/x] denotes
i i

the formula we get by simultaneously substituting the list of distinct fresh

variables x' for the free occurrences of the variables x in Q .• The assertion . i

T stands for T1 A ••• A Tn' where x = x1, ••• ,x and T. is the data invariant n i

associated with variable x. in E, i = 1, ••• ,n. Correctness of a compound
i

statement is thus checked according to the definition we gave, i.e. we check

that the initialization and each simple statement in the compound statement

is correct.

4. Conditional statements

E { R and x = t} if bl + s10 ••• □ bk + sk fi

---> E {RA b.[t/x] and x = t} s., i = 1, ... ,k
i -- i

when RA x = t => bool(b.), i = 1, ••• ,k,
i

R A x = t => bl V ••• V bk.

Here bool(b.) expresses the requirement that the guard b. should have a
i i

well-defined boolean value. We also require that one of the guards must

be true, when executing the conditional statement.

5. Assignment statements

E {Rand X = t} y := e; s

---> E {Rand X = t' } s

when RAX= t => T[e/y].

we assume that each variable in y is declared in E. y must be a list

Of distinct variables of x, and e is a list of expressions Y1 , ••• ,yk
assigned to variables in y. The list of terms t' is defined by

t'
i

if xi= Yj for some j

otherwise.

= 1, ... ,k

The formula T stands for Tl A ••• A Tk, where Tj is the data invariant

19

associated with y. in the environment E. Thus we require that each expres
J

sion ej assigned toy. satisfies the data invariant associated with y .•
J J

6. Labels

E {Rand X = t}

--->

when RAX= t ... Q.

We assume that Lis declared in E. Q is the assertion associated with label

Lin the environment E. Thus, when reaching a label, we do not have to reduce

the program any further, but can immediately check whether it is correct or

not.

The proof rules given above provide us with a way of checking semantic

correctness of a program which is very similar to the way in which the

syntactic correctness of a program is checked by a recursive descent parser.

The environment E corresponds to the ~ymbol table of the parser. The when

conditions can be seen as the code generated by the parser (it compiles the

program to a sequence of correctness checks). Finally, Rand x are local

v~riables of the parser which it needs in order to compute the correctness

checks.

Alternatively we may regard the proof system as a formalization of the

way in which the programmer checks the correctness of his program by symbolic

execution. The correctness formula E {Rand x = t} B will then indicate a

place in a program (the position immediately preceeding B). E gives the

declarations valid at this place in the program, Bis the part of the pro

gram which still has to be checked for correctness, and RA x = t states

what we know to be true at this place in the program. Thus {Rand x = t}

serves as a marker. The proof rules show under which conditions the marker

may be moved forward in the program text, or removed from the program when

a label has been reached. If a marker can not be moved forward or removed,

because a when - condition is violated, then a semantic error has been de

tected and the marker indicates the place of this error.

The nature of the semantic error is determined by the specific condi

tion which is violated. A program will be correct if and only if all markers

20

introduced into the program by the proof rules eventually can be removed.

This proof system is thus seen to satisfy the basic requirements we

stated for checking semantic correctness. It can be used to determine

whether the program is semantically correct or not, and in case it is not

correct it will indicate the place and nature of a semantic error responsible

for the incorrectness. (The use of this proof system to check the correctness

of the example program of section 4 is illustrated in the appendix).

8. TERMINATION

The notion of semantic correctness defined in section 4 did not require

computation of a block to terminate. This allows one to give trivial solu

tions to program construction problems. Thus if we e.g.-are given an exter

nal environment E' and a precondition P, and have constructed the local en

vironment E with local labels L1 , ••• ,Lk,then the compound statement

will be a semantically correct solution, provided the intialization s0 is

correct. However, this compound statement will in most cases not terminate,

making the solution useless.

It therefore is necessary to include in the criteria of semantic cor

rectness a guarantee that the program will terminate. The most important

technique for showing termination is due to FLOYD [6] and is based on the

use of well-founded sets. One tries to find a function on the program vari

ables which takes its values in a well-founded set, such that each execution

of a loop in the program will decrease the value of this function. As the

value of the function only can be decreased a finite number of times, this

implies that the program must terminate.

We are now faced with a situation similar to the one encountered earlier

w.r.t. partial correctness: The proof method does not allow one to decide

whether the program terminates or not. If the chosen termination function is

decreased by each loop in the program, this will indeed prove that the pro

gram always terminates. If, however, there is some loop which does not de

crease the termination function, we are not allowed to infer that the program

21

does not always terminate. It is still possible that the program always

terminates, but that the proof failed because the wrong termination function

was chosen.

As before, we can now argue that the programmer, when faced with a

situation where the chosen termination function is not decreased by some

loop, is as likely to suspect the program to contain an error as he is to

suspect the termination function to be wrongly chosen. If for instance the

choice of termination function is made before the compound statement is

cons~ructed, then the transitions in the compound statement should be de

signed in such a way that no nondecreasing loop is ever introduced.

If such a loop is nevertheless introduced, then some transition must be

wrong. The programmer will try to achieve consistency between program and

termination function by changing the program and/or the termination function

in such a way that each loop in the program will decrease the value of the

termination function.

We will require that the programmer records his choice of termination

function in the program text. For this purpose we add a new kind of declara

tion to our programming language. This declaration has the form

D::= decrease h,

where his some integer valued expression (the termination function). At

most one such declaration is allowed in a block.

We now have to extend the notion of semantic correctness to programs

containing a declaration of a termination functions. Consider the program

H, of the form

E'{P}E; decrease h;C.

Then His semantically correct if E'{P}E;C is semanticnlly correct according

to the previous definition, and if in addition his finitely decreasing in

B = E;C.

The expression his said to be finitely decreasing in B, if the follow

ing three conditions are satisfied:

(i) The expression h has a well-defined non-negative value in any program

state satisfying some label invariant of B.

22

(ii) No transition in C from one internal label to another internal label

can increase the value of h.

(iii) Every cycle in the transition diagram of C contains at least one

transition which is guaranteed to decrease the value of h.

Obviously any semantically correct program with a termination function

declaration will be totally correct with respect to the given precondition

and environment. As explained above, the converse does not necessarily hold.

Similar objections can be raised against this way of defining semantic

correctness with termination as was raised against our definition of seman

tic correctness in section 4. Thus one might argue that the requirements

are too strcmg, and that a weaker requirement for termination would be more

appropriate. More precisely, one would only require that his decreased in

cycles which actually can be traversed by some execution of the program.

One example of such a cycle is provided by the following block.

var x: integer (x) ;

label L: X C- O;

bE~gin x := O; L

I L: if X < 0 -+ L

□ X 2: 0 -+ L' fi

end

The corresponding transition diagram is

initial

lx==O
L~X<O 1 x>O

L'

Here it is obvious that the branch guarded by the condition x < 0 can

never be taken, and consequently the cycle in the transition diagram will

never be traversed by an execution.

The question now is whether such branches should be allowed or not.

If we regard them as errors, then it is not really important whether his

decreased by the cycle or not, because the program will be incorrect anyway.

23

Such branches can be detected by adding to each reduction of a formula

E { R and x == t} B the check 3x'. R, where x' are all the free variables

occurring in R. This condition will he true iff the place indicated by the

correctness formula actually can be reached from some initial state satisfy

ing the assertion associated with the preceding label. In the example above,

the correctness formula

E { x' z O Ax' < 0 and x = x'} L

would eventually be generated, and the fact that the cycle from L to L cannot

he traversecl. would be detected by noticing that

3x' (x' z O A x' < 0)

does not hold.

On the other hand, we may choose not to regard the situation above as

an error. As the branch in question cannot be traversed, it is of course

redundant, but it does not do any h~rm either. It is, however, conceivable

that the branch later will be changed in some way which makes the cycle

traversable. If we have not required h to be decreased by this cycle in the

.program, then the change might introduce a nonterminating loop into the pro

gram. Changing e.g. the guard x < 0 in the example program to x ~ 0 seems

to be a perfectly legal change and the resulting program will still be se

mantically correct w.r.t. the label invariants. It will not, however, be guar

anteed to terminate anymore.

In the example above the proof system was able to detect the fact that

the cycle could not be traversed. This is not anymore the case in the follow

ing block

var x: integer (x) ; label L1: X z O; label L2: X z O; --
begin X ·= 0; L1

I L1: if X 0 ➔ L2

□ X f:. 0 ➔ L fi
3

I L2: if X 0 ➔ L3

□ X f:. 0 ➔ X ·= x-1; L1 fi

end

24

The corresponding transition diagram is as follows:

x :r O;x:= x-1

X = 0

Obviously L2 is only reached when x = 0 holds, so that the branch from

L2 guarded by x IO cannot ever be taken, i.e. there is no traversable

cycle in the program. Using the weaker requirement for termination, we would

in this case not need any termination function at all. However, it is easy

to introduce an infinite loop into this program by what appears to be a per

fectly legal change in the program. We can do this by e.g. changing the

simple statement associated with L 1 to

L1 : if x = 0 + x := x+l; L2

0 x ':/- 0 + L3 fi.

This change will respect all the label invariants, but the program will never

terminate.

The weaker requirement with. respect to termination is too sensitive to

changes in the program and will be rejected for this reason:changes which

appear to be correct in the local context in which they are made may never

theless introduce nonterminating loops into the program. The criterion of

semantic correctness for termination that we adopted is much more robust

in this respect. Any change made to a program must respect both the invari

ants and the termination function. As long as a local change does not affect

the cycle structure of the program, this is sufficient to guarantee that

the modified program also is semantically correct.

25

9. CHECKING TERMINATION

Having extended the notion of semantic correctness to also cover termi

nation, we now need to change the proof rules of section 5. we have to check

whether the termination function of a block actually is finitely decreasing

in the block. The requirement that the termination function is well-defined

and non-negative for each label invariant is easy to check, as well as the

requirement that the value of Lis not increased by any transition. However,

checking that each cycle of a block contains a transition which actually

decreases the value of the termination function is a little bit more diffi

cult.

We will deal with this last requirement as follows. Let C be a compound

statement

We will now require that the labels L1 , ••• ,Lk are ordered in such a way that

each backward transition is quarantee~ to decrease the value of the termina

tion function. A backward transition is a transition from a label Li to a

label L., where j ~ i. As each cycle inc must contain at least one backward
J

t~ansition, this requirement is sufficient to guarantee that each cycle in

C contains at least one transition which will decrease h.

on the other hand, this requirement could be too strong. To prove that

this is not the case, we will show that each compound statement

in"which the termination function his finitely decreasing can be changed

into an equivalent statement

S· end, ik

in which each backward jump decreases h, by simply permuting the order of

the simple statements inc.

Let c be a compound statement in which his decreasing. The labels in

C' are ordered by the following procedure: Let A be a set of label identi-

26

fiers, which we initialize to contain all global exit labels occurring in

C. We choose L· to be any label s.t. each transition
ik from Li either de

k
creases the value of h, or goes to a label in A. We then add Li to the set

k
A. L·

1 k-1
is then chosen in the same way (i.e. each transition from Li

k-1
label in A) and added to A. This is continued either decreases h or goes to a

until each label L1 , ••• ,Lk has been added to A. The compound statement C'

determined by this ordering of labels in C will have the required pro~erty,

i.e. each backward transition will decrease the value of h. (This is easily

established by induction).

We also need to show that each label L1, ••• ,~ eventually will be in

cluded in the set A. Assume that this is not the case, i.e. that after a

certain number of steps we are left with a nonempty subset B of labels in

{L1, ••• ,Lk}, such that none of the labels in B can be added to A. Let Li be

some label in B. Then there must be a nondecreasing transition from Li to

a label in B, say Li, otherwise Li could be included in A. The same holds

for Li, i.e. there must be a nondecreasing transition from Li to some L3 in

B, and so on. Thus there is an infin~te sequence Li,

in B, such that there is a nondecreasing transition

i = 1,2, •••• But there can only be a finite number of

Li, L3,
from L~

1

labels

of labels

to Li+l' for

in B. Conse-

quently L'. must be equal to L'. for some i < j, i.e. C contains a cycle in
1 J

which no transition decreases h. This contradicts the assumption about C,

thus each label must eventually be included in A.

The proof rules required for checking termination can now be given.

First, we need a proof rule for the declaration of a termination function.

The proof rule is similar to the rule for label declaration, i.e. the decla

ration is simply added to the environment.

7. Termination function

E {Rand x = t} decrease h; B

----> E; decrease h {Rand x = t} B.

We also need to change the proof rule for compound statements, to check

whether the termination function is finitely decreasing. We have the follow

ing proof rule:

3'. Compound statement with termination

E {Rand x = t} begin s 0 I L1 s 1 ••• I Lk: sk end

---> E {Rand x = t} S0 ,

27

E. { Q,[x'/x] A T[x'/x] Ah= h' and x=x'} s., for i= 1, .•• ,k,
1 1 1

when Q, => h ~ 0, for i = 1, ••• ,k.
-- 1

Here Q. is as before the assertion associated with the label L. in E, his
1 ~

the termination function in E, x' is a list of fresh variables and h' is

some fresh variable. The environments E. are defined as follows, for
1

i = 1, ••• ,k. Let E' be the environment from which the declarations of the

labels L1, ••• ,Lk have been deleted. Then

Ei = E'; label L1 : Ql A h<h'; ..• ; label Li: Qi Ah< h';

label Li+l: Qi+l Ah~ h'; ••• ; label Lk: Qk Ah~ h';

In this proof rule we thus check that_ each backward jump from an internal

label does decrease the value of h, and that no forward jump to another in

ternal label increases the value of h. No restrictions need to be put on the

t_ransitions associated with the initialization statement s 0 or on the tran

sitions leading out of the block, to external labels.

This proof rule will report an error for compound statements in which

his finitely decreasing, but where the labels are in the wrong order. As

shown above, it is a straightforward matter to convert such a compound state

ment to a correct one by simply permuting the ordering of the labels. We

believe that the added clarity of the program structure together with the

better control the programmer has over termination when following the restric

tions set by this rule outweighs the inconveniencies caused by the restric-

tions.

The question of proving termination of state transition diagrams is

discussed both by VAN EMDEN [SJ and by REYNOLDS [12]. The former identifies

the usual conditions needed for establishing termination, i.e. that the ter

mination function must be finitely decreasing in the transition diagram.

Reynolds goes one step further and proposes that the geometrical structure

of the transition diagram is chosen so that each cycle is readily identified.

28

Reynolds uses the principle that a transition which increases the distance

from the origin (the initial situation) also must increase the information

content, i.e. the target node has more information than the source node.

Transitions which do not increase information must decrease the value of the

termination function. The net effect is the same as the one we get by the

proof rule above: backward transitions must decrease the termination func

tion. The two-dimensional structure of transition diagrams is here an ad

vantage, making the cycle structure of the program easy to recognise.

Finally, some other ways of handling termination are described in BACK [1]

and BACK [2].

10. INITIALIZATION OF VARIABLES

The proof rule given for variable declarations assumes that a variable

y declared by

~ y: T,

is assigned some not further specified initial value satisfying the data in

variant T. This is a simplifying but not very realistic assumption, so we

will here discuss two alternative ways of handling variable declarations.

The firs:t approach would be to assign to a variable some explicit ini

tial value upon declaration. We could change the declaration of a variable

to be of the form

~ y := e: T,

where e would be an expression giving the initial value of y. This expres

sion could be allowed to depend on values of global variables and variables

declared before y.

In this case one would have to change the proof rule for variable de

claration. The new proof rule would be as follows.

1'. Variable declaration (with explicit initialization)

E {Rand X = t} ~ y: = e: T; B

---> E; vary: T {Rand x,y = t,e[t/x]} B

when RAX= t .. T[e/y].

No other proof rule would have to be changed in this case.

29

Alternatively we could assume that a variable is only initialized when

it is assigned a proper value by an assignment statement. In this case we

would give the following proof rule for a declaration of a variable:

1". Variable declaration (without initialization)

E { R and X = t} ~ y: T; B

---> E; ~ y: T {Rand X = t} B.

In this case the list x of variables in the precondition only mentions

those variables which have been properly initialized. Thus a variable declara

tion does not add a new variable to this list, this is done only when the

variable is first assigned a proper value.

This approach requires us also to change the proof rule for assignment

statements. The new proof rule is

5". Assignment statement (with initialization)

E {Rand X = t} y := e; s

---> E {Rand x' = t' } S

when RAX= t .. T[e/y].

If y = x. for some i, 1 ~ i ~ n (n is the length oflistx) then x' = x
1

and t' = t 1 , ••• ,ti-l' e[t/x], ti+1 , ••• ,tn. Otherwise x' = x 1 , ••• ,xn, y and

t' = t 1 , ••• ,tn' e[t/x].

Finally we also have to change the rule for compound statements. For

each label in the compound statement we need to know exactly which variables

may be assumed to be initialized. We could e.g. require that each variable y

assumed to be initialized at a label is specified as such be adding the as

sertion T(y) to the corresponding invariant, where Tis the data invariant

associated with the variable y. This, however, will make the invariants

30

lengthy and writing them tedious. It would therefore be nice to have some

default convention, by which the variables assumed to have well defined

values are implicitly stated in the invariant. A reasonable default convention

is to assume that each variable occurring free in the invariant has a well

defined value, and thus must have been initialized before the corresponding

label has been :reached. A variable y which does not occur free in an invari

ant, but which we still wish to assume being initialized, can be stated as

having a well dE=fined value by adding the assertion T(y) to the invariant.

With this convention the proof rule for the coumpound statement is

changed from the form given in section 5 to the following:

3". Compound statement (with initialization)

E { JR and x = t} begin so I L1 s1 ... I Lk sk end

---> E { Rand x = t} so
{ Q/z//z] A T[z0i/z] and

i } s., i 1, ••• ,k. E z = zo =
1.

i
Here Qi is the label invariant associated with label L. in E, z is the

. • 1.

list of variablE=S occurring free in Qi and z~ is a list of fresh constants.

This second approach makes it an error to refer in an expression to the

value of a variable before this variable has been initialized to some proper

value. Such an error will be caught by the modified proof system (containing

the proof rules 1", 5" and 3"). The error will be caught in an assignment

statement or a conditional statement by the impossibility of proving that the

when--condition asserting that the expression (or the boolean expression)

in question has a well-defined value.

In e.g. thE= rule for assignment statements the when-condition has the

form

RAX= t • T[e/y].

Assume that e contains a reference to a variable z which has not been

properly initialized. This variable does therefore not occur in the list x.

Neither can it occur in the assertion R, because R may not contain free oc

currences of any variable declared in a program or in its global environment.

Consequently, nothing is known about the value of z, and the fact that

T[e/y] holds crun therefore not be proved.

31

11. SUMMARY

This report has emphasized a view of programs which can be expressed by

the quasi-definition

program= algorithm+ specification.

The specification part records the intentions of the programmer as to how the

algorithm should behave, while the actual behavior of the algorithm is deter

mined by the semantics of the programming language used.

The advantage of this viewpoint is that semantic correctness becomes

an intrinsic property of programs, only depending on the semantics of the

programming language used (which also must provide a meaning for the specifi

cation part of the program). The situation is thus similar to syntactic cor

rectness, which also is an intrinsic property of programs, only depending

on the syntax of the programming language.

One of the main problems treated in this report centers around the

question of exactly what notion of semantic correctness should be chosen.

We have used as our main criterion in selecting a suitable notion that the

notion should support the construction and maintenance of programs. This

means that it should be easy for the programmer to convince himself of the

correctness of the program he has designed, and also that it should be easy

to check that a change in the program preserves the correctness.

The notion of semantic correctness chosen in this report is such that

a semantically correct program will be guaranteed to terminate cleanly

(i.e. termination is not caused by a run-time error), producing the desired

results on termination. Thus semantic correctness implies total correctness.

The converse, however, is not true, i.e. there are programs which are

totally correct but which are not considered semantically correct. The

kind of programs that fall into this category are programs which work cor

rectly "for some mysterious reason". These programs do not work in the way

the programmer intended them to work, but still manage to produce the right

results. They are excluded both because they are difficult to maintain and

because their correctness cannot be checked in a simple way.

32

Our notion of semantic correctness is intimately tied to the specific

kind of programs we study, the invariant based programs. The algorithm part

of such programs is expressed in a simple iterative language with unrestrict

ed flow of control, while the specification part gives all th~ necessary data

and label invariants, together with a termination function. The main task of

this report has been to design a system by which the semantic correctness of

invarian.t based programs-can be checked. The system built will check semantic

correctness in a way which is analoguous to the way in which a compiler checks

the syntactic correctness of a program: The system analyses the program line

by line, checking whether there is a semantic error in the program. The pro

gram will be semantically correct if and only if no semantic error is found

by the system. In case an error is found, the system will indicate the place

of the error in the program. The system will thus decide (relative to an

oracle deciding the validity of assertions) whether a program is semantically

correct or not. In doing this, it actually carries out the tasks usually

performed by three separate systems: a program verifier (proving that a

program is correct), a program tester- (proving that a program is incorrect)

and a program debugger (locating an error in the program).

33

APPENDIX

Below we give the example program of section 4 in full. The program

checking system of section 7, together with the proof rules for termination

in section 9 assigns to each place in the program block information about

what is known about the values of the program variables, together with a

condition to be checked to make sure that there is no semantic error at the

place in question. Below we show the information and the checks for some

selected places in the program. (The proof rule for termination of a block

requires the local environment to be altered. The additions to the local

environment are shown in square brackets, and corresponds to the situation

when the transition from label "scanning letters" is being checked for

correctness.)

var l: charseq (l);

~ p: wordseq (p);

label parse computed: p = parse of l 0 ;

{l0 contains only blanks and letters and l,p = l 0 ,p0}

var w: word (w);

var c: char (c);

{l0 contains only blanks and letters A word(w0) A char{c0) and

l,p,w,c = lo,Po,wo,co}

label scanning blanks: 3l1,!2 (charseq(l1) A charseq(l2) A R.0 = l 1 •l2 •l A

p = parse of -t\ A l 2 contains only blanks A l 2 -,J <> A

[length(l) < length(l 1)]);

label scanning letters: 3l1 (charseq (l1) Ai0 = £1 •w•l A p "'." parse of l 1 Aw -,J <>

A l 1 =<>or last(l1) = 11 A [length[l] $ length[!']);

decrease length (l);

34

begin p:= <>

if l =<> ➔ parse computed

□ l # <> ➔ {l0 contains only blank and letters A ~ord(wO) A char(cO) A

lo#<> and l,p,w,c = l~,<>,wo,co;' eheck that

char(first(lO)) A charseq(rest(lO))}

c,l:= first(l), rest(l);

if c = ' ' ➔ scanning blanks

D c # '' ➔ w:= <c>;

· {l0 contains only blanks and letters A

word(wO) A char(cO) A l 0 #<>A first(i.O) # ''

and l,p,w,c = rest(lo),<>,wo,first(lo);

check that 'scanning letters' holds}

scanning letters fi fi

■scanning blanks:

if l =<> ➔ parse computed

□ l # <> ➔ c,l:= first(l),rest(l);

if c = ' ' ➔ scanning blanks

□ C # I I ➔ w:= <c>;

scanning letters fi fi

lscanning letters:

end

{'scanning letters 1 [l 1 ,p',w',c 1 /l,p,w,c] A charseq(l') A wordseq(p')

A word(w') A char(c') A length(l) = h' and .l,p,w,c = l• ,p' ,w' ,c';

check that length(l) ~ O}

if l = <> ➔ p:= p•<w>;

parse computed

□ l # <> ➔ c,l:= first(l) ,rest(l);

if C = 1 1 ➔ p:= p•<w>;

scanning blanks

D c ~ " ➔ w:= w•<c>;

scanning letters fi fi

35

ACKNOWLEDGEMENT

I would like to thank J.W. de Bakker and H.B.M. Jonkers for their

critical comments on an earlier draft of this paper, and A. de Bruin and J.V.

Tucker for the stimulating discussions we had on the topics of this report.

REFERENCES

[1] BACK, R.J.R., Program construction by situation analysis, Computing

Centre of University of Helsinki, Research Report 6, 1978.

[2] BACK, R.J.R., Exception handling with multi-exit statements, Program

miersprachen und Programmentwicklungen~-Darmstadt 1980. Inform

tik-Fachbereich 25, Springer Verlag.

[3] BRAND, D., Path calculus in program verification, Journal of ACM,

vol. 25, no. 4, October 1978, pp. 630-651.

[4] DIJKSTRA, E.W., A Discipline of Programming, Prentice-Hall, Englewood

Cliffs, N.J., 1976.

[5] VAN EMDEN, M.H., Programming with.verification conditions, IEEE Trans

actions on Software Engineering, SE-5,2, 1979.

[6] FLOYD, R.W., Assigning meanings to programs, Proc. Amer. Math. Soc.

Syrop. in Applied Mathematics 19, 1967, pp. 19-31.

[7.J -GERHART, S.L., Proof theory of partial correctness verification systems,

SIAM J. Computing, vol. 5, no. 3, September 1976, pp. 355-377.

[8] GOODENOUGH, J.B. & S.L. GERHART, Towards a theory of test data selec

tion, Proc. Int. Conf. on Reliable Software, SIGPLAN Notices 10,

June 1975, pp. 528-533.

[9] HANTLER, S.L. & J.C. KING, An introduction to proving the correctness

of programs, Computing Surveys 8,3, 1976, pp. 331-353.

[10] HOARE, C.A.R., Proof of a program:FIND, Comm. ACM 14, January 1971,

pp. 39-45.

[11] KATZ, S.M. & z. MANNA, Logical analysis of programs, Comm. ACM 19,

April 1976, pp. 185-206.

36

[12] REYNOLDS, J.C., Programming with transition diagrams, in: Gries, D.

{ed.}, Programming Methodology, Springer Verlag, Berlin, 1978.

[13] SITES, R.L., Proving that computer programs terminate cleanly. Ph.D.

Thesis, Dept •. of Comp. Science, Stanford u., STAN-CS-74-418,

May 1974.

[14] WIRTH, N. , The programming language Pascal , Acta Informatica 1 , 19 71 ,

pp. 35-63.

6 S

