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ABSTRACT 

A programming system is a language made from a fixed class of data ab­

stractions and a selection of familiar deterministic control and assignment 

constructs. It is shown that the sets of all "before-after" first-order as­

sertions which are true of programs in any such language can uniquely de­

termine the input-output semantics of the language providing one allows the 

use of auxiliary operators on its ground types. 

After this, we study programming systems wherein the data types are 

syntactically defined using a first-order specification language with the 

objective of elimating these auxiliary operators. Especial attention is 

paid to algebraic specifications, complete first-order specifications; and 

to arithmetical computation in the context of a specified programming 

system. 
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INTRODUCTION 

The idea that a general programming language, or a specialised program­

ming system, PS can be usefully defined by the axioms and rules of inference 

underlying proofs of various properties of programs written in the language 

can be traced to R.W. FLOYD [13]. As Hoare pointed out in [19], it is an 

attractive thesis for demanding that any implementation of PS be made to 

satisfy these axioms and rules provides a criterion for the correctness of 

its implementations and establishes a set of provable features for programs 

in PS common to all its implementations: everything proved true of a program 

Sin PS will be true in each implementation however the all important un­

defined features of PS are handled. The acceptance of such a formal axiom­

atic system as authoritative in specifying the meaning of a language has 

been advocated by several writers. For example, E.W. DIJKSTRA [10], C.A.R. 

HOARE [20], Z. MANNA [23], HOARE and LAUER [21]; and, of course, in HOARE 

and WIRTH [22] where Floyd's idea is applied to make a definition for a 

part of PASCAL (see, in addition, R. SCHWARTZ [32]). Despite its familiarity 

in the literature on program language design, Floyd's thesis is, by the 

standards of the theoretical literature, as vague as it is intriguing: what 

proof systems for which properties of programs in what kinds of program 

languages can characterise semantics, and in which precise senses? It seems 

fair to say that, at present, as little is understood about the issues in­

volved as was known about Hoare's logic for proving program correctness 

before S.A. Cook took up that subject in his seminal study [8] (see [9] and 

the important survey article of K.R. APT [1]). 

This paper will settle upon one natural and precise formulation of 

Floyd's principle and will study it in quite some technical ·detail. The 

program properties on which the specification method is based we take to 

be partial correctness as this is formalised by first-order definable as­

sertions. The semantics of a programming system we require to be defined 

uniquely up to the input-output behaviour of its programs, one of the stan­

dard measures of denotational semantics. Typically, we have in mind a prog­

ramming system PS with all the usual deterministic control and assignment 

constructs and whose data types are fixed independently by, say, procedures 

without side effects in some general purpose programming language L. This 
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leads to a model of PS in which program texts are represented by program 

schemes of some standard design PROG - for example, while-programs with 

counters and stacks - and in which the data types are semantically given 

as various classes of interpretations for the primitives appearing in PROG. 

Each program S of PS will involve a finite collection I of constant and opera­

tor symbols and so will belong to the set PROG(I) of programs in PROG having 

this signature r. To PROG{I) is associated a class K of I-structures which 

we explicitly think of as representing the data type semantics of PS at 

least as far as the primitives in I are concerned. 

We are thus led, in Section 2, to define various partial correctness 

theories PCK(S) as sets of first-order partial correctness assertions about 

S true throughout the interpretations of K. We shall say that a (particular 

kind of) partial correctness theory determines the input-output semantics 

of the programming system PS if for each pair of programs S, S' of PS, ad­

mitting interpretations throughout K, if PCK(S) = PCK(S') then Sand S' com­

pute the same partial function on each interpretation A EK. And our paper 

will be taken up with investigating determinateness for various types of 

-correctness theory and various classes of interpretations. 

From the point of view of Floyd's thesis, we make rapid progress: our 

first theorem (Section 3, Theorem 3.1) does indeed confirm in a precise, 

formal and respectable way, that there are first-order partial correctness 

theories available which determine the input-output semantics of any deter­

ministic programming system. As a result of this it can now be said that 

as long as one can axiomatise the appropriate kind of correctness theory 

for a programming system then Floyd's principle, in this formulation, is a 

theoretically realistic method for defining it. This proviso is, of course, 

the second half of the problem of making theoretical sense of Floyd's prin­

ciple. And, as such, it is an almost independent source of many interesting 

problems about the existence, or non-existence, of sound and complete Hoare 

logics for proving the partial correctness of programs relative to given 

classes of interpretations. As will be made clear, the state of that partic­

ular art - as reported in Apt's recent survey [1], for example - is nowhere 

near sufficiently well developed to service this enquiry. Because of this, 

and other ramifications of the proviso, here we are content to concentrate 

on the determinateness problem and more or less ignore axiomatisations. 
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(Two of us have, however, begun to investigate Hoare logics for the partial 

correctness theories of highly specific programming systems [5] and we will 

provide here some information about howperplexing the situation seems to 

be.) 

It now remains for us, in this introduction, to explain how a very 

general and reasonable solution to the determinateness problem fails to com­

pletely settle even that issue in Floyd's thesis and how it leads directly 

to the powerful machinery of algorithmic logic which characterises the sec­

ond half of our paper. The correctness theories employed in our first solu­

tion have an irritating technical defect: they include assertions which use 

operators which do not appear in the programs and whose semantics are ex­

trinsic to that of the programming systems as given. The problem of eliminat­

ing "hidden functions" from the specifying assertions forces us to be much 

more explicit about what the data type semantics of our programming systems 

really are and, in particular, how they are prescribed. In Section 5, we 

make the assumption that the classes of interpretations which represent the 

data type semantics of programming systems have specifications written out 

as axioms in the first-order assertion languages. And we explain how this 

hypothesis embraces the algebraic specification methods for data types (ADJ 

[15]) as well as the specification assumptions about data types which are 

implicit in studies of Hoare's logic in the manner of COOK [9]. After a 

change of correctness theory, we look at determinateness for programming sys­

tems with data type specifications and with a particular emphasis on those 

specifications used for algebraic definitions and used in the theory of Hoare 

logics. At this point, the model-theoretic nature of the problem of deter­

minateness becomes clearly visible and its solution becomes the business of 

algorithmic logic. In Section 6, we tackle determinateness for computations 

on the set of natural numbers w under the assumption that arithmetic is not 

semantically given outright, but must be syntactically specified as (part of) 

the semantics of a programming system. 

Our interest in Floyd's thesis and its mathematical analysis we owe 

entirely to A.R. Meyer who invited us ([25]) to work on the problem of de­

terminateness in cases of the form K = ALG([), the class of all structures 

of signature r, where implicitly no conditions are placed on the data types 

on which the programs compute. Subsequently, Meyer and J.Y. Halpern indepen-
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dently, and exhaustively, analysed this sptcial case ([26]) and a preliminary 

report on their work has already appeared [28]. All readers of this paper 

are recommended [28] for a detailed exposition of the informal issues in­

volved in a theoretical examination of Floyd's thesis based upon the hypo­

thesis that a general purpose program language should be modelled by program 

schemes PROG(I) and all interpretations ALG(I). This view is not, however, 

the outlook of the present-paper. As will be explained in Section 2, here 

we take the (mathematically) more general notion of a programming system as 

the basic object of study and model a general purpose programming language 

by the totality of all possible programming systems. The advantage, as far 

as Floyd's principle is concerned, is a much sharper analysis of determi­

nateness; the "disadvantage" is that the necessary layers of conceptual and 

technical complications ask as many new questions as they answer old ones. 

In any case, the mathematical results will speak for themselves: our readers 

should have no difficulties in comparing them with those of Meyer and Halpern 

and connecting them with the early work of DE BAKKER [2] (see also the more 

recent paper HENNESSY [18]) on proof systems for program equivalence; or, 

more generally, to the field of algorithmic logic associated with ENGELER 

[11], and the Polish and American Schools [4], [17]. 

1. PROGRAMS AND ASSERTIONS 

Any of the common designs for deterministic program schemes will serve 

to model the programs required in our study: flow charts; while-programs; 

recursive procedures; all with, or without, arrays, counters, bool_ean vari­

ables and the like. This is because with input-output semantics what matters 

is the class of functions defined on an interpretation, not the mechanisms 

involved in their computation: the meaning of a program is to be the mapping 

it computes. If our work is to bear on Floyd's thesis then it is necessary 

(and, ultimately, it is sufficient) that we are able to consider program 

families which are sufficiently strong to compute on each interpretation A 

all those functions effectively calculable on A by means of finite determin­

istic algorithms. The appropriate generalised Church-Turing thesis is known: 

among many disparate, yet equivalent, definitions of computability on a 

relational structure A in use in the literatures of theoretical computer 
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science and mathematical logic, the formula which is most familiar to the 

reader is the set of all flow charcs wich councers and arrays. From the 

point of view of mathematical logic, the key characterisation is, perhaps, 

Y.N. Moschovakis' absoluce prime compucabilicy in [30] as it direccly de­

fines the minimal model of the axiomatic notion of a computation theory 

over A, see J.E. Fenstad's monograph [12]. Between the two subjects lie the 

effeccive definicional schemes and finice algorichmic procedures of H. 

FRIEDMAN [14] which we, the authors, favour. The former concept is the one 

chosen for Meyer and Halpern's work [28], incidentally. (For a survey of 

research into the subject of a generalised Church-Turing thesis for general 

algebras see [29,34].) 

The point is that with input-output semantics we can leave undefined 

the general class of deterministic programs PROG used throughout the paper 

thus allowing the reader to apply our results to the class(es) of his or 

her choice. In addition, the reader is free to choose the full computation­

al semantics of his or her program formula from which its input-output se­

mantics must be derived. The different ways of defining computational se­

mantics are legion, of course: as well as the text-books on program schemes, 

MANNA [24] and GREIBACH [16], we recommend de Bakker's monograph on denota­

tional semantics [3]. The interesting paper A. MEYER & I. GREIF [27] is 

useful for further guidance on issues ·involved in this "choice" of computa­

tional semantics. 

To sum up, then, PROG represents some set of deterministic program 

schemes capable of defining all computable functions on any interpretation. 

We assume it closed under composition and if* then* else* fi statements 

and we will use it with the following notational conventions. The.syntax 

of PROG has 

£1•~2•··· as constant symbols; 

k k function symbols of k arguments; f 1 , f.2, ••• as 

k k relation symbols of k arguments; R1, R2, ••• as 

xi ,x2, ••• as variables. 

But we reserve the right to abuse this notation by dropping the arities 

from function and relation symbols and by introducing y's and z's as 
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variables, and so on. 

Each s E PROG is assumed to name certain variables as input variables 

and a variable as an output variable; this fixes the arity of the function 

S computes over its various interpretations. By the signature of SE PROG 

we mean the finite list E(S) of all constant, function and relational sym­

bols appearing in its text. The set of all SE PROG of signature Ewe de­

note by PROG(E). Thus, S 6 PROG(E) defines a partial function on precisely 

those relational structures whose signatures certain E. For such a program 
n 

Sand interpretation A, if S names n input variables and a EA then by 

S(a) we ambiguously denote the computation of S applied to a E An and the 

output value when this exists; converging and diverging computations are 

distinguished, as usual, by S(a)+ and S(a)t respectively. 

If P and Qare programs of signatures E(P) and E(Q) respectively, and 

A is a relational structure whose signature contains E(P) u E(Q) then P 

and Qare said to be A-equivalent, written P =A Q, if for all a E An either 

P(a)+ and Q(a)+ and P(a) = Q(a) or both P(a)t and Q(a)t. 

We take for granted that the reader has available, in his or her com­

putational semantics for PROG, formal definitions of a state description 

in a computation S(a) and of length of computation 1S(a) 1 and that the fol­

lowing basic facts can be proved (see [34]): 

1.1 LOCALITY OF COMPUTATION LEMMA. In any computation S(a1 , ... ,an) all the 

elements of A appearing in all the state descriptions of S(a1 , ... ,an) lie 

within <a1 , ••• ,an>, the subalgebra of A generated by a 1 , ••. ,an EA. In 

particular, if S(a1 , ... ,an) converges then its output lies in <a1 , ... ,an>. 

1.2 INVARIANCE LEMMA. Let A and B be relational structures, of common 

signature r, isomorphic by~= A+ B. Then for any SE PROG(E), E c r, and 

any input a 1, ••• ,an EA 

The first-order assertion language Lis based upon the syntactic 

vocabulary of PROG and is assumed to possess equality as well as the usual 

logical connectives and quantifiers. The semantics of the formulae and 
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sentences of L take their standard definition in model theory, see CHANG & 

KEISLER [7]. Corresponding to PROG(E) we take L(E) to be the first-order 

sublanguage of L made from the constant, function and relation symbols ap­

pearing in the signature E. 

Lets E PROG(E) have named input variables x = (x1, ••• ,xn) and output 

variable y. Let r be a signature extending E. If a= a(x) and B = B(y) are 

formulae of L(r), having x and y as their free variables, then we can make 

a new kind of syntactic object, the so-called asserted program {a}S{B}, the 

semantics of which is defined thus: for A a relational structure of signa­

ture r, the asserted program {a}s{B} is valid for A, written A I= {a}s{B}, 

whenever A 1= a (a) for a E An then either S (a){, and A I= B (S (a)) or else 

S(a)t. In the obvious informal notation 

n 
A I= {a}S{S} if, and only if, for all a E A , 

A I= a(a) + [(S(aH A SS(a)) v S(a)t]. 

The following fact must be verified by the reader. 

1.3 DEFINABILITY LEMMA. Let SE PROG(E) have input variables x = (x 1 , ... ,xn) 

and output variable y. Then for each l E w there exists a quantifier-free 

formula COMPs,l(x,y) of L(E) such that for each relational structure A whose 

signature contains E, and for all a E An, b EA, A 1= COMPs,l(a,b) if, and 

only if, the computation S(a) terminates in l steps or less and the output 

variable is valued at b. In symbols, 

A 1= COMP O (a,b) if and only if, 1 S (a) I :;:; l and S (a) = b. s,,(_, 

Thus, by choosing a suitable polynomial OUT(x), each individual terminating 

computation of Scan be defined by a quantifier-free first-order formula of 

L(E) of the form 

COMPs,l(x) = COMPs,l(x,y) A y = OUT(x) 

n 
in the sense that for each A, and all a EA 
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A I= COMP O (a) if, and only if, 1 S (a) 1 ~ l and S (a) = OUT (a) • s,,(,, 

2. PROGRAMMING SYSTEMS AND DETERMINATENESS 

Algorithms are written in a definite program formalism and are designed 

to compute functions over a definite data type semantics. The equation 

algorithms= programs+ data types 

is a slogan implicit in this investigation in the sense that we use PROG(E) 

to fix the assignment, control and memory mechanisms available for the en­

coding of algorithms while the semantics of the data type primitives named 

in I are fixed by a class K of relational structures of signature I or some 

extension r => I. 

A pair [K, PROG(E)] we call a programming system. 

This first model of progrannning systems sees them as small scale program 

languages with a fixed range of data type primitives which are given an al­

gebraic semantics. One can imagine that these programming systems are real­

ised in some general purpose program language - by implementing their basic 

operators by functional procedures without side effects, for example. But 

nothing is actually assumed of their data types' syntactic definition or 

abstract specification, at least not at this point in our paper. Incidental­

ly, the meaning of "algebraic semantics" here is exactly that in the current 

progrannning methodology literature: the semantics of data types are modelled 

by many-sorted algebras. (Our decision to work with "essentially" single­

sorted program languages and their single-sorted interpretations is more a 

matter of notational convenience than technical necessity.) 

For SE PROG(E) and Ka class of relational structures of signature 

r => I, the first-order partial correctness theory of S with respect to al­

gebraic data type semantics K is defined to be the set of preconditions and 

postconditions for asserted programs 

PCK(S) = { (a,f3): a,f3 E L(r) and for each A E K, A I= fo}S{f3}}. 

The second clause of the definition we abbreviate K 1= {a}S{f3}. 



For P,Q E PROG(L), we say that P and Qare K-equivalent if for each 

A EK, P =A Q. And this we abbreviate P =K Q. 

The first-order partial correctness theories are said to determine 

program equivalence, and therefore the input-output semantics, for the 

programming system [K, PROG(I)], if for every P,Q E PROG(I) 

This last property is what we take as the principal technical issue in 

formulating Floyd's thesis and, mathematically, this paper is given over 

to its study for various K. We shall refer to it as the determinateness 

property for the system [K, PROG(I)]. 

DETERMINATENESS FOR A GENERAL PURPOSE PROGRAM LANGUAGE 

9 

The correctness theories determine the input-output semantics of the 

general purpose program language PROG if they determine the input-output 

semantics of every specialised programming system1 it fathers. We take the 

"sum" of the determinateness problems for all the [K, PROG(I)] to be the 

determinateness problem for PROG. 

In this formulation, the theoretical value of the determinateness 

property for PROG depends upon that of the formal model of a programming 

system. Since we are not yet assuming any conditions on our data type clas­

ses, the current determinateness property for PROG is enormously strong: 

the correctness theories are asked to determine program equivalence for some 

far-fetched examples of programming systems which PROG cannot implement. 

Nevertheless our first theorem, Theorem 3.1, will establish determinateness 

for PROG at this level of generality and in an apparently reasonable way. 

Indeed, the main objection to relying on the type of correctness theory 

used in that result is its surprising power. 

It is more usual to see the semantical theory of PROG based on the 

pairs [ALG(I), PROG(I)] where ALG(I) is the species of all I-structures; 

this is the path taken by MEYER and HALPERN [28], for example. We do not 

take up this option because it misrepresents the relationship between the 

programming systems and the general language in which they are realised. 
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Moreover, we think it misrepresents the role played by data types in the 

proof theory that must be considered and so creates a misleading impression 

of the determinateness question for PROG. Of course, these issues can only 

be properly considered in the hindsight of Section 4. 

SOME EXAMPLES 

Consider a programming system [K, PROG(I)] whose data type semantics 

has been defined uniquely up to isomorphism, the case of singleton classes 

K = {A} containing all I-structures isomorphic to some representative struc­

ture A. This is one of the standard situations considered in the algebraic 

specification theory for data types where it is assumed that the semantics 

of a data type is modelled by an algebra finitely generated by initial ele­

ments named in its signature; such structures are called minimal because 

they contain no proper substructures. It is very easy to show 

2.1 LEMMA. Let A be a minimal structure of signature I. Then for any 

p I Q E PROG ( I) 

An immediate corollary of Lemma 2.1 is that the partial correctness 

theories determine program equivalence for PROG over the standard model of 

arithmetic N. N we take to be the structure with domain the set of natural 

numbers w, with the operations of successor, addition, and multiplication, 

with zero as distinguished constant, and with the ordering of was a basic 

relation. The signature of N we write I 'th" ari 
Lemma 2 • :1 also applies to the so cal led prime rings :iZ and :iZ, and the n 

prime fields:~ and Q. The following proposition is designed to generate 
p 

some equally simple counter-examples to determinateness without minimality. 

2. 2 LEMMA. Leit K be a class of I-structures satisfying these two properties: 

there is s E PROG(I) such that (i) for each A EK, S computes an automorphism 

of A, and (ii) there exist A EK and a EA where S(a) f,. a. Then the first­

order partial correctness theories fail to determine program equivalence for 

PROG (I) over K. 
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PROOF. Let P be the S hypothesised and let Q be a program for the identity 

map. Condition (ii) asserts that P iK Q and we shall show PCK(P) = PCK(Q). 

Assume for a contradiction that these sets do not coincide: let (a,S) lie 

in PCK(P) but not in PCK(Q), say. Using the facts that P,Q always compute 

total functions and that Q computes the identity we know that 

for each A E K, a E A, A 1= a (a) -+ SP (a) , and 

for some BEK, b EB, B "]# a(b)-+ S(b). 

The second property implies B 1= a (b) A 7S (b) and so we know that B I= a (b) 

and B IF S (b), B 1= SP (b). But P computes an automorphism cf> of B and since 

B is first-order we get a contradiction from the fact that B I= S (x) if, 

and only if, B 1= Sep (x) for any x. 

The second case, where (a,S) E PCK(Q) - PCK(P), is equally easy to 

check. Q.E.D. 

Here are some examples where PROG(r) can be seen to loose determinate­

ness on its straight-line programs. 

2.3 FINITE FIELDS 

Let F be a finite field of characteristic p. Then cp(x) =~is a field 

automorphism of F. If Fis not ZZ then cf> is not the identity. So take K 
p 

to be any class of finite fields of characteristic p containing at least 

one GF(pn) for n # 0,1; in particular take K = {GF(pn)} with n # 0,1. 

(Remember that PROG is determined over K = { ZZ } • ) See PARIKH [ 31 J in con-
p 

nection with this example. 

2.4 LINEAR ALGEBRA 

An involution* of a (not necessarily commutative) ring R is an auto-
** morphism such that for all r ER, r = r. Take K to be any class of rings 

with involution containing at least one R where the involution is not the 

identity. For example, let K contain the complex number field C with complex 

conjugation a+ib-+ a-ib. Or let K contain the ring of 2x2 matrices over a 

field with the symplectic involution defined (a b)* = ( d -b). 
C d -c a 
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The determinateness problem for programming systems of the form [A, 

PROG(E)] does not admit the clear cut solution suggested by Lemmas 2.1 and 

2.2, however. Minimality is, indeed, an obvious condition to place on the 

interpretations which arise in the study of data type semantics and specifi­

cations. It st.ands between the simple idea that one wants names in the sig­

nature E of a specification (E,E) of a data structure A for initial values 

which generate the structure A,and the concept of initiality (say) which is 

a mathematical expression of how (E,E) specifies A:see ADJ [15]. But it is 

misleading when one considers the specification theory of data types in the 

wider context of programming systems as is done in Sections 5 and 6. There 

minimality disappears because the semantics of the proof systems one needs 

depends upon all the models of its specifying axioms ALG(E,E). The obvious 

example is ordinary arithmetic. It is trivial to give a concise algebraic 

axiomatisation of~, but the proof theory one needs for arithmetic computa­

tions on N is unavoidably that based on Peano-like axioms as data type speci­

fications and all their models as the data type semantics; Section 6 is 

devoted to this example. 

TECHNICAL PRELIMINARIES 

The definition of K-equivalence consists of two clauses: P =K Q if, 
. n 

and only if, (1) for each A EK and all a EA such that P(a)+ and Q(a)+, 
n 

P(a) = Q(a) in A, and (2) for each A EK and all a EA, P(a)+ if, and only 

if, Q(a)+. The first condition should naturally be called weak K-equivalence 

(cf. [24]), the second we call K-convergence equivalence. We denote these 

relations by= and= K respectively. From these two notions we make two 
WK C 

determinateness properties: 

The partial correctness theories are said to determine weak equivalence 

for PROG(E) over Kif for any P,Q E PROG(E) 

The partial correctness theories are said to determine convergence 

equivalence for PROG(E) over Kif for any P,Q E PROG(E) 



13 

2.3 LEMMA. The program correctness theories determine program equivalence 

for PROG(r) over Kif, and only if, they determine both weak and convergence 

equivalence over K. 

Let A be a structure and let a 1, ••• ,an EA. Then adjoining these ele­

ments a 1, ••• ,an to A as distinguished constants makes a new structure 

denoted (A,a1 , ••• ,an). 

A closed program Sis one without any uninitialised variables. 

2.4 CONVERGENCY LEMMA. Let K be a class of structures of common signature 

rand let r c r. The following condition is sufficient for the partial cor­

rectness theories to determine convergence equivalence for PROG(r) over K. 

For any finite extension of r by constants, r(g) = ru{g1, ••• ,gn}, and 

for any closed program S over reg), if S diverges on some algebra in K then 

there is a sentence A, first-order over r(g), which is satisfied in some 

algebra in Kand such that for any A EK and a 1 , .•• ,an EA, (A,a1 , ••. ,an) 

F e ➔ s+. 

PROOF. Assuming the condition holds we are to prove that for any P,Q E PROG(r) 

So, contrapositively, suppose that P,Q are r-programs for which there exists 
n A EK and a= (a1 , ••• ,an) EA where P(a) converges but Q(a) diverges (say). 

Let ]P(a) I= t and define a new program abbreviated by 

S(x) - if COMPP,t(x) then Q(x) else STOP fi 

Notice that S has signature rand, moreover, it does not require program­

ming features beyond those assumed for P,Q. (This is because a straight-line 

program over r can be written to decide COMPP,t(x).) 

Adding the new constants g1 , ••• ,gn tor we create the closed program 

s(g) over reg) by replacing input variable xi of S with constant gi, 

1 ~ i ~ n. By hypothesis, (A,a1 , ••• ,an) 1= S(g)+. And applying the condition 

we get a sentence 0 which is first order r(c) and K-consistent and which 
= 
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implies the divergence of S(~) throughout K. Let 00 (x) be 0 with each con­

stant c. replaced by variable x., 1 ~ i ~ n. 
=i i 

We claim: (0o(x), false) E PCK(Q) - PCK(P). 

The pair cannot lie in PCK(P) because whenever e0 (x) is true S(x) 

diverges and, by definition, P(x) converges and {00}P{false} is not true. 

On the other hand {e0 }Q{false} is valid for K because e0 (x) is true implies 

Q(x) must diverge. Q.E.D. 

3. DETERMINATENESS VIA EXTENDED SEMANTICS 

Consider a typical programming system [K, PROG(I:)] wherein K is any 

class of E-structures. Our first project is to show that a conservative 

and uniformly definable extension of the assertion language and its seman­

tics enables the partial correctness theories to determine program equival­

ence at this level of generality. 

Let I: 'th= {o, SUCC, ADD, MULT, ORDER} be the signature of arithmetic 
ari 

assumed disjoint from LA structure B, of signature I: u E 'th' is a (formal) 
ari 

arithmetical expansion of a E-structure A if the E-reduct of Bis isomorphic 

to A. 

Let AE(K) denote the class of all arithmetical expansions of all al­

gebras in K. 

3.1 BASIC EXTENSION THEOREM. Let K be any class of E-structures. Then for 

any P,Q E PROG(E) 

PCAE(K) (P) = PCAE(K) (Q) implies P -K Q 

Let us first consider the positive aspects of Theorem 3.1 and postpone 

our reservations until after its proof. 

This theorem is, indeed, a striking result in faviour of Floyd's thesis, 

especially when one sets the weakness of first-order assertion languages 

against the strength of PROG and the generality of K. As far as the input­

output semantics of PROG(E) is concerned, the two programming systems are 

identical: each SE PROG(I:) is interpreted by the same class of I-structures 

and over each such structure S computes the same function. If K is specified 
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by first-order axioms over r, or if K is specified by algebraic axioms in 

conJunction with initial algebra semantics (ADJ [15]), then·, in both cases, 

precisely these axioms over r u r 'th uniquely characterise AE(K). Indeed, ari 
Theorem 3.1 is "best possible" in the sense that a result for arbitrary K 

cannot avoid the use of hidden functions in the assertion language; we have 

seen this in Lemma 2.2. And, in any case, it is known in the algebraic 

theory of data types that.to specify all the data types one wants it is 

necessary (and sufficient) to use hidden functions from the language set 

aside for the purpose. 

In MEYER and HALPERN [28] the role of our Theorem 3.1 is played by 

their Theorem 4.1. 

PROOF OF THE BASIC EXTENSION THEOREM 

Let P,Q E PROG(L). Observe that p -K Q if, and only if, p -AE(K) Q: 

we shall prove that 

PCAE(K) (P) = PCAE(K) (Q) implies p =AE(K) Q. 

First consider convergence equivalence. By the Convergency Lemma 2.4, 

it is sufficient to examine closed programs over finite extensions by 

constants of r. Lets be a closed program over r(g) where g = <g 1, ••• ,gn). 

Suppose A E AE(K) and that for a 1, ••• ,an EA we have (A,a1, ••• ,an) I= st. 

we shall construct a sentence e first-order over r( __ c) u r 'th which is ari 
satisfied on (A,a1 , ••• ,an) and such that for each BE AE(K) and each 

b 1, ... ,bn EB 

Now if A is finite then the· r-substructure of A generated by a 1, ••• ,an 

is finite and can be defined, up to isomorphism, by a first-order sentence 

0(£) over E(£). This 0(g) is trivially satisfied on (A,a1, ••• ,an) and, using 

the Locality Lemma 1.1 and the Invariance Lemma 1.2, it is easy to show for 

any B E AE (K) and any bl,. •• ,bn E B that if (B,bl, ••• ,bn) 1= 0 (g) then 

(B,b1 , ••• ,bn) I= st. Therefore, we may take 0(~) to bee. (Notice no hidden 
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functions were required here.) 

Assume A is infinite. We define a unary formula N, first-order over 

L 'th by ari 

N(x) - 3y.SUCC(y) = x 

Without loss of generality it can be further assumed of A that 

(i) A = {a EA: Al= N(a)} is a Lu L 'th substructure of A and contains 
N ari 

(ii) 

<a1, ••• ,an>; in a nutshell,~ is a L(g) u Larith substructure of 

(A,a1 , ... ,an). 

The reduct ~I~ . is isomorphic to N. 
'-'arith 

This transformation is easy to arrange. First fix that <a1, ••• ,an> (is or) 

lies in a countably infinite L-substructure X of A. Then define O, SUCC, ADD, 

MULT on X and A-X such that~= X. 

Since (A,a1 , ... ,an) 1= St, for each t E w, A 1= 7COMPS,t(~). And the 

next step is to formalise an arithmetisation of COMPS,t(~) in the first-
t 

order language of L(=c) u L 'th" Fort E w we denote by t the term SUCC (0) ari = 
over L 'th" ari 

3.2 REPRESENTATION LEMMA. Let r be any signature and let {0t(x): t E w} be 

a recursively enumerable sequence of open formulae of L(r) with variables 

x = (x 1 , ..• ,xn). Then there exists a sentence 'I' and a formula 0(y,x) in 

the first-order language of r u L 'th such that ari 

(i) 'I' is true in any r u L 'th structure A in which~= {a EA: ari 
3y.SUCC(y) = a} is a r u L 'th substructure of A and A IL ~ ~; 

ari N arith 
(ii) for each t E w, 'I' 1- N(x1 ) A ••• A N(xn) + [et(x) +4 0(~,x)]. 

We do not stop to prove this lemma as its argument is a rather straight­

forward adaptation of the proof of the representability of the recursive 

functions in arithemtic. 

Applying the Representation Lemma 3.2 with r = L(£) and e = 7cOMPs t(£) 
- t , -

we choose appropriate 'I' and 0(y) = 9(y,~), first-order over L(~) u Larith" 

By our choice of A, we can get from the lemma that (A,a1, ••• ,an) 1= 'I' and 

so 



Therefore, (A,a1 , ••• ,an) 1= 9(~,;;> for every t E w. 

The sentence we require is 

0 - 1 A Vy.[N(y) + 9(y,£)] 

we now verify the local condition of the Convergency Lemma 2.4. 0 is 

clearly first-order over r(c) u r 'th and is consistent by its construe-= ari _ 
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tion. Suppose B E AE (K) and b 1 , ••• ,bn E B are such that (B,b1 , ••• ,bn) I= 0. 

Then (B,b1 , ••• ,bn) ·1= 0 (~,~) for all t and, using 

we may deduce that 

(B,b1 , ••• ,b ) 1= At 7cOMP t (c) n EW S, = 

which means the program diverges. 

We now consider how the partial correctness theories determine weak 

equivalence for r-programs over AE(K)~ 

Let P,Q E PROG(L) and let A E AE(K). Suppose that for a= (a1 , ••• ,an) 

E An, P(a) and Q(a) converge to distinct values. Taking IP(a) I= k and 

IQ(a) I= l we define the difference formula 

It is now straightforward to separate the correctness theories of P and Q 

with the pair (a,B) defined by 

a(x) DIFF(x) A A~ [sf(i) (0) = x.J 
- i=l i 

B (y) 

wherein f(i) = (µj)[aj=ai]. We leave to the reader the task of verifying 
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(a, 8) E PCAE (K) (P) but (a, 8) i PCAE(K) (Q). Q.E.D. 

Although we accept Theorem 3.1 as a respectable theoretical statement 

about Floyd's thesis we also see it as a reference point which dictates a 

refinement of the analysis to be in order. This refinement we organise 

around the question Under what circumstances can the hidden functions be 

eliminated? It is the proof of the theorem itself which forces this opinion. 

The argument rests on the remarkable definability properties of the recur­

sive functions on the natural numbers: rather than internalising or imitat­

ing this number-theoretic machinery within the semantics of the programming 

system that is given, we have simply expanded the semantics to make use of 

it. (If we had applied this technique solely to the [ALG(E), PROG(E)] then 

we would have obscured its power and, for that matter, its technical struc­

ture.) Undermining the satisfactory features of Basic Extension Theorem 3.1, 

documented prior to its proof, is the feeling that stronger, and still 

fairly general, results are possible and that, in particular, these results 

would be more illuminating even if they are no more conclusive as far as 

the viability of Floyd's principle is concerned. Certainly, Theorem 3.1 

seems to say as much about the power of the recursion-theoretic equipment 

as it does about the semantical problems involved. 

4. ELIMINATING HIDDEN FUNCTIONS 

This section is devoted to proving the following theorem, the most 

difficult to be found in our paper. 

4.1 THEOREM. Let Ebe any signature except one containing exclusively unary 

relations and at most one unary function symbol. Then for any P,Q E PROG(E) 

Mathematically, Theorem 4.1 represents the fate of the plausible ob­

servation that one has only to internalise the arithmetic mechanisms, seen 

in the proof of Theorem 3.1, to rid oneself of the hidden functions: it can 

almost be done, but only when there are no requirements placed on the data 

type semantics. To this we add the conjecture: 



4.2 CONJECTURE. For those signatures of the kind explicitly ruled out in 

the hypothesis of Theorem 4.1 the conclusion of that theorem is false. 

19 

Those readers who prefer to conceive of the semantical theory of PROO 

as being determined by programming systems [ALG(E), PROG(E)] should attach 

quite some weight to Theorem 4.1 and to th~ open problem represented by 

Conjecture 4.2. (Remember:· any program naming only the constant zero, the 

successor function, and some unary boolean conditions. for an arithmetical 

computation is left uncovered by Theorem 4.1.) Although the theorem has less 

bearing on Floyd's principle in the context of our own analysis, its proof 

is of great technical interest when contrasted with the proof of Theorem 

3.1. 

Theorem 4.1 appears, in a slightly weaker form, as Theorem 7.2 in 

MEYER and HALPERN [28]. 

PROOF OF THEOREM 4.1 

The plan of the argument is this. We begin by proving determinacy for 

weak equivalence. The proof of determinacy for convergency is based upon 

the Convergency Lemma 2.4 and it divides into a singular case, in which E 

contains one unary function symbol and some constants, and the usual one of 

those signatures remaining. The argument for the usual case is, indeed, in­

volved and we take it next leaving the singular case as a loose end to con­

clude the section. 

4.3 LEMMA. Let Ebe a signature containing at least one function symbol. 

Then the partial correctness theories determine weak program equivalence 

on ALG(E). 

PROOF. Suppose there is a E-structure A and a= (a1, ••• ,an) E An such that 

P(a)- and Q(a) converge to distinct values. Let 1P(a)1 = k and IQ(a) I= l 
and define the difference formula 
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where x = (x1, ••• ,xn). It is sufficient to make a first-order definition 

over I of some x = (x1 , ... ,xn) for which DIFF(x) holds throughout ALG(I) 

and to show consistency. We will construct unary formulae ¢1, •.• ,¢n such 

that 

is consistent. This done, it is easy to check that the pair (a,S) defined 

by 

a (x) - tP (x) , S (x) 

lies in PCI(P) = PCALG(I) (P) but not in PCI(Q) = PCALG(I) (Q). 

We will first construct a I-structure B which is to witness the con-

sistency of tP. Let f be a k-ary operation of A. The structure Bis simply 

A with this operation f redefined along its diagonal. 

The computations P(a) and Q(a) take place within the subsystem <a> of 
n 

A generated by a= (a1 , .•. ,an) EA (Locality Lemma 1.1). Let X c <a> be 

the set of all elements appearing in either of these computations. Now 

choose some u E A-X and ½n(n+l) distinct elements {b .. : 1 s i < j s n} from 
k iJ 

A - xu{u]. Define g: A ➔ A by 

g(y1,·••1Yk) f(y 1, •.• ,yk) if Yi ,;, y, for some 1 s i, j s n 
J 

= a. if y = b .. 
J 1J 

= f (y' •.• 'y) if y E X and f(y, ... ,y) E X 

= u if y E X and f(y, ••• ,y) i X 

= u if y = u 

= y otherwise. 

Replacing f by gin A makes B. We now leave to the reader the task of veri­

fying what remains of the proof on taking 

- 3z1 , ... ,z.[ A z :f,ztA A 73z.f(z, ... ,z) = 
1 lss<tsi s 1sjsi 

z, A 
J 

A f(z., •.. ,z.) 
1<"<" J J -J-1 

= x. J. 
1 

Q.E.D. 
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4.4 LEMMA FOR THE USUAL CASES. Let I be (a finite extension by constants of) 

a signature containing at least two functions or at least a function of 

arity greater than one or a unary function and a relation of arity greater 
.:;, 

than one. Then for any closed program S over I, if for some A E ALG(I) 

A F s+ then there is a sentence <I>, first-order over I, which is consistent 

with ALG(I) and such that ALG(I) F <I> -+ s+. 

PROOF. The proof of the lemma is based upon the argument for convergency 

in the proof of the Basic Extension Theorem 3.1 where arithmetic syntax 

is adjoined to obtain K-consistent formulae implying convergence for closed 

programs throughout K. The pleasant feature there is that the arithmetic 

required in no way interferes with the computations considered since the 

programs make reference only to operations prescribed for K. Here, however, 

we are to make available comparably strong, but internal, mechanisms. our 

techniques to do this have some set theory in the role of arithmetic and 

will make full use of the freedom to manoeuvre, model-theoretically, char­

acteristic of ALG(I). 

We will formulate the machinery in general terms using a 2-sorted 

first-order language destined to be interpreted in L(I) with the result 

that the bulk of the proof will then rest on Lemma 4.5 about its specifi­

cation and its interpretation. After Lemma 4.5 we have to show that each 

signature I admits an appropriate interpretation, a task which depends on 

the composition of the signature and cannot be made uniform. 

Let r be any single-sorted signature. This we expand to a 2-sorted 

signature r 2 by adding tor a new sort called SET, and renaming by DOM 

the original (implicit) sort of r, together with the binary relations€ 

and CODE of sorts SET x SET and SET x DOM respectively. Given A E ALG(f2) 

we denote by AjDOM the r-reduct of A and by AjSET the {SET,E}-reduct of A. 

The first-order language L(r2) over r 2 has two kinds of variables 

ranging over sorts DOM and SET respectively although we drop the super­

scripts whenever confusion seems unlikely. We assume, for brevity, the 

languages L(f) and L(r2) use only the connectives 7, v and the quantifier 

3. 
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Now an interpretation of L(f2) in L(f) is determined as soon as formulae 

of L(f) are chosen to define predicates for each sort and to define the rela­

tions E and CODE. Suppose we are given four formulae of L(f), say the list 

I= {Q (x),QS(x),Q (x,y),Q (x,y)}. This list I determines an interpretation 
D E C 

HI: L(f2) + L(f) in an obvious way: 

I D 
H (x.) = X 

i 2i 
I S 

H (X.) = x 2 . l 
1 1+ 

I I I 
H (f(t1 , ... ,tk)) = f(H (t1), ..• ,H (~)) 

rs s rs rs 
H (x. Ex.) = Q (H (x.),H (x.)) 

1 J E 1 J 
I S I S I 

H (CODE(x.,t)) = Q (H (x.),H (t)) 
1 C 1 

HI(~v,) = HI(~) V Hr(,) 

HI(7~) = 7HI(~) 
I D 

H (3x .. <P) = 
1 

I 
3x2i.(QD(x2i) AH (~)) 

I S 
H (3xi.~) = 3x2i+1·<%(x2i+1) A HI(~)) 

where f is a k-ary operation of r, t,t1 , •.. ,tk are r-terms; and~., are 

formulae of L(r 2). 

We are able to prove Lemma 4.4 for precisely those signatures L which 

admit interpretations HI satisfying the hypothesis of the following general 

lenuna. 

I 
4.5 LEMMA. Let 0 be a sentence of L(f) and let H be an interpretation of 

L(f 2) into L(f) which together satisfy these two conditions: 

(1) Given any closed program S over r which diverges on some r-structure 

there exists a r-structure A where A l= 0 and A 1= St . 

(2) For any sentence, of L(r2) whenever 0 A, is consistent with respect 

to ALG(r2) then HI(0A,) is consistent with respect to ALG(f). 

Then given any closed program S over r which diverges somewhere in ALG(f) 

there exists a sentence~ of L(r) which is consistent with respect to ALG(f) 

and ALG(r) F ~ + St. 
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PROOF. Let S be a closed program over r diverging somewhere in ALG(r). By 

condition ( 1) we can choose an A E ALG ( r) on which S di verges and A I= 0. 

Let M(0) be the subclass of ALG(r) composed of those algebras satisfying 0. 

Using the arguments for convergence in the proof of the Basic Extension 

Theorem 3.1, we may find a sentence 4> 0 , first-order over r u E 'th' such 
ari 

that 

ALG (r u Earith) n M (0) J= q>O -+ St 

and 4> 0 is there consistent. 

From 4>0 we shall construct a sentence~ of L(r2) such that 

(i) 0 A~ is ALG(r 2} consistent and ALG(r 2 ) 1= ~-+ st. 
Therefore, HI(0A~} is ALG(r} consistent, by condition (2), and we may take 

I 
4> = H (0A~) and prove 

(ii) ALG(r) 1= q> -+ St 

which completes the argument for the lemma. 

First of all let us prove this latter statement (ii) assuming~ to 

have been constructed and that it satisfies statement (i). 
I Suppose A E ALG(r) satisfies 4> = H (0A~}. We extend A to a r 2-

structure B by adding {a EA: AF Q5 (a)} as a set-theoretic domain and 

defining E and CODE for B by QE and Qc. Now for every sentence o E L(r2} 

B ·1= o if, and only if, A F HI ( o) • 

Therefore, B I= 0 A ~ and, by condition (i}, B 1= st which means B I= 
B I= Ak 7COMP S k. Applying HI to this formula, and using the fact that 

I EW , 
H (7COMP S, k) = 7COMP S ,k, we deduce A 1= St. 

We now construct~ from 4> 0 and prove statement (i). Here is a technical 

lemma whose proof is a tedious exercise in axiomatic set theory which we 

take the liberty of omitting. 

4.6. LEMMA. Let~ be a finite signature and let o be a sentence of L(~}. 

Then there is a sentence panda formula q(x} of the first-order language 

of Zermelo-Fraenkel set theory L(ZF) such that 

(a} ZF I- p. 
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(b) If B 1= p then for b E B, B 1= q (b) if, and only if, b is a fl-structure 

which satisfies the sentence o. 

This lemma we apply to fl= r u Earith and o = cf>o A 0 to obtain appropriate 

p and q(x). Let~ be a sentence, first-order over r 2 , which expresses the 

following property of a r 2-structure B: 

"If p and 3x.q(x) are true of B then for some b E BlSET' q(b) holds 

and CODE restricted to {b' E B1SET: b' Eb} x BlDOM is the graph of 

a r-isomorphism b + Bl 00M." 

We set~= p A 3x.q(x) A~ and aim to show this~ is ALG(r2)-consistent 

and that ALG (r 2) 1= ~ + st. 

Consider consistency. we seek a r 2-structure C satisfying~- For that 

part of C of sort DOM we choose any B E ALG (r u E • th) such that B I= cf>o. 
ari 

For the set-theoretic part of C we take any model of Zermelo-Fraenkel set 

theory containing an element b which is in fact a r u E .th-structure iso-
ari 

morphic to B. And, to complete the construction of C, we define CODE as the 

graph of any function which restricted to bis a r-isomorphism b + B. It is 

easy to verify C 1= ~. 
Consider divergence. Let A be any r 2-structure with A 1= 0 A~- Choose 

a E A I SET such that A 1= q (a). As A 1= p we know a is a r u Earith-struc­

ture which satisfies cf>0 • As ALG(f u Earith) n M(0) I= cf>0 + st we know 

a I= St. But CODE, under these hypotheses, represents an isomorphism 

a+ Al and, therefore, S diverges on A. 
DOM 

This concludes the proof of Lemma 4.5. 

To complete the argument for the usual cases is a matter of defining 

interpretations HI for the various signatures and proving true of them the 

two hypotheses of Lennna 4.5. We give two representative cases: 

(i) E contains one binary function f and a constant c. 

Here take 0 - 3x,y.[xh A Vx.3y(f(y,y) = x)] 

- 3y.f(y,y) = X 

Q (x,y) 
E 

= 73y.f(y,y) = X 

- xh A f (x,y) = c 

Qc(x,y) - X = f(y,y) 

(ii) E contains two unary functions f,g. 



Here take 0 = Vx3y.f(y) = x 

Let Q(x) = 73y.f(y) = x and define 

Q8 (x) - 3y.(Q(y) A f(y) = x) 

QD(x) - 7Q(x) A 7Q (x) 
s 

QE(x,y) - 3z. (Q (z) A f (z) = X A g (z) 

Q (x,y) - f (x) = y. 
C 
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= y) 

Q.E.D. 

4.6 LEMMA FOR THE SINGULAR CASE. Let I be (a finite extension by constants 

of) a signature containing exactly one unary function and let K be any class 

of I-algebras which is closed under taking subalgebras. Then for any closed 

program S over I, if for some A E K A 1= St then there is a sentence c/>, 

first-order over I, which is consistent with K and such that K I= c/> ➔ st. 

PROOF. Assume S = S(~) is a closed program over I involving~= (~1 , •.. ,~n) 

and that A E K is such that A l= st when ~ is interpreted by a = (a1 , ... ,an). 

We make a special decomposition of the subalgebra <a1 , ••. ,an> of A. For f 

the unary operation of A and for any a EA and k E w define 

and then 

i 
orbk(f,a) = {b EA: 3i < k, f (a) = b} 

Thus, <a 1 , .... ,an> = orb(f,a1) u ... u orb(f,an). There arises just a few pos­

sible types of orbit in this decomposition of interest to us, illustrated 

in the figure below: (i) orb(f,a.) is finite; 
l 

(ii) orb(f,a.) is infinite 
l 

and meets no other orbit; (iii) orb (f,a.) 
l 

is infinite but intersects some 

orb(f,a.). In this third case notice that if b E orb(f,a.) n orb(f,aj) then 
r J s rlk s+k 

f (a.) = b = f (a.) for some r,s and hence for all k, f (a.) = f (a.). 
l J l J 

u 
case (i) 

t7 
case (ii) ------------------4------ -----------

case (iii) 
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Choose k0 so large as to bound the cardinalities of the finite orbits and 

the finite parts of intersecting orbits which remain distinct; set 

U = Uk~k0orbk(f,ai) 

i~n 

we aim to represent this subalgebra structure in a first-order sentence 

over r. 

Then 

Let 

Let Ube defined by the formula 

U(x) = V. <k x 
3:-- 0 
J~n 

i = f (c.). 
=] 

Let R define all equalities and inequalities in U in this way: set 

r(½) = 

T (i, j ,p,q) = 

fl. (c ) I =p 

R = A. . <k T ( i, j , p, q) 
:,J- 0 
i,q~n 

fj (c ) 
=q 

fj (c ) 
=q 

if fi(a) = fj (a ) in A p q 

otherwise. 

W = (Vx)[7u(x)+f(x)::/x A 7U(f(x)) A Vy,z.[f(y)=f(z)=x-+y=z]J. 

And choosing those aA , •• : ~aA such that for all b E U, f (b) I aA. ( 1~ i ~ t) 
1 t 1. we define 

Let cf> = R A W A V. We claim cf> to be K-consistent and that K l= cf> + s+. 

The consistency of cf> follows from its construction from <a1, ••• ,an> and the 

hypothesis that subalgebras of K-algebras are again K-algebras. To obtain 

K l= cf> + s+ one proceeds as follows. Let B E K and B l= cf>. Let B' be the 

subalgebra of B generated by the elements of B named by the constants ins. 

One can now show that B' 1= cf> implies B' is isomorphic to <a1, ••• ,an>. 
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Therefore, S diverges on B' by Invariance Lemma 1.2, and so B F St by Local­

ity Lemma 1.1. The proof of the isomorphism we leave to the reader. Q.E.D. 

Given some sympathy for our conception of a programming system, the meth­

ods used to internalise the hidden operators of Theorem 3.1 which go into 

the proof of Theorem 4.1 can be seen as an abuse of the semantical compo­

nents of Floyd's thesis. Underlining our reservations about modelling the 

semantics of PROG through [ALG(E), PROG(E)] is the fact that this view of 

a general programming language sees these techniques as quite acceptable. 

5. FLOYD'S PRINCIPLE AND PROGRAMMING SYSTEMS WITH SPECIFICATIONS 

In Sections 2,3 and 4 we have achieved our first objective of provid­

ing a fairly thorough account of the determinateness problem for a liberal 

model of a programming system and, by extension, for a liberal formulation 

of the determinateness problem for a general purpose programming language. 

Certainly, with our current definitions, we have exhausted the implications 

of the determinateness problem for Floyd's thesis. We are now to start on 

a second analysis, one which forgets about general programming languages 

(and so parts company with MEYER and HALPERN [28]) and is carefully tailored 

to specialised programming systems. Of course, we know from our Basic Ex­

tension Theorem 3.1 that some hidden functions in the assertion language 

and an expansion of the data type semantics of the programming system will 

settle the problem at once. our objective here is to think through the 

issues without recourse to the remarkable, but extrinsic, powers of recur­

sion-theoretic definability theory. Instead, we will take as a guide certain 

reasonable assumptions about modelling a programming system with a limited 

field of application. Our main idea is that the data types of such a prog­

ramming system must be syntactically specified and that its specification 

(E,E) has an essential role to play in the construction of any proof theory 

for partial correctness in the system. This new parameter, the specifica­

tion, allows us to search for new information about Floyd's principle through 

more delicate mathematical experiments in the style of algorithmic logic. 

In this penultimate section, we present a new technical exegesis of the 

determinateness problem which is designed to overcome the hasty counter-
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examples assc,ciated with Lemma 2.2. After this, we encorporate specifica­

tions into the models of programming systems and prove some basic results 

about determinateness in these new systems. In the last subsection, we care­

fully analyse several programming systems made to handle arithmetical com­

putations. 

THE DETERMINJ!,TENESS PROBLEM FOR PROGRAMMING SYSTEMS REVISITED 

We circumvent Lemma 2.2 with a new definition of partial correctness 

theories talrnn from MANNA [24, pp.164]. 

Let SE PROG(I) have named input variables x = (x1 , .•• ,xn) and out­

put variable y. For a= a(x) and B = B(x,y), formulae of L(I) having x and 

y as their free variables, we call {a}S{B} an i/o asserted program - i/o 

reads input-output, of course - the semantics of which is defined by 

n 
A I= {a}S{ B} if, and only if, for all a E A , 

AF a(a) ➔ [(S(a)+ & B(a,S(a')) v S(a)t] 

where A is a I-structure. 

For SE PROG(I) and Ka class of I-structures, the new first-order i/o 

partial correctness theory of S over K is defined to be the set of precon­

ditions and postconditions for i/o asserted programs 

I/O-PCK(S) = {(a,13): a,B E L(I) and for each A EK, A F {a}s{B}}. 

Let us postpone any comments on this modification until we have seen what 

it achieves. Lemma 2.2 now disappears from the discussion: 

5.1 TERMINATION LEMMA. Let K be any class of I~structures. If P,Q E PROG(I) 

define total functions on each A EK then 

I/O-PCK(P) = I/O-PCK(Q) implies P -K Q. 

PROOF. Suppose p =K Q and let A EK, a E An be such that P(a) -:/= Q(a) in A. 

Assume P(a) terminates int steps. By the Definability Lemma 1.3, we can 



encode the computation P(a) into the fonnula COMP t(x) and polynomial P, 
OUTP,t(x) over L(E) so that for any b E An, A 1= COMPP,t(b) if, and only 

if, IP(b)1 ~ t and P(b) = OUTP,t(b). Define 

It is easy to check that (true, 0(x,y)) lies in I/0-PCK(P) but not in 

Q.E.D. 
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Thus, the i/o correctness theories determine the semantics of the 

everywhere terminating programs of any programming system (without recourse 

to hidden functions). Indeed, when the two kinds of correctness theory are 

compared, one finds that it is the issues to do with convergence which 

distinguish them. 

Let A= {(a,8): a= a(x), 8 = 8(y) E L(E)} the set of all preconditions 

and postconditions for assertions. Then 

and so 

5.2 LEMMA. Let K be any class of E-structures. For any P,Q E PROG(E), if 

I/0-PCK(P) = I/0-PCK(Q) then PCK(P) = PCK(Q). 

That the converse of Lemma 5.2 is false follows from Lemma 2.2 and 5.1, of 

course. The following basic connections between the correctness theories -

all to do with termination properties - we prove in an appendix. Recall 

the Convergency Lemma 2.4; this now becomes 

5.3 LOCALISATION LEMMA. Let K be any class of E-structures. The following 

statements are equivalent: 

(i) for all P,Q E PROG(E), 

(ii) for any finite extension of Eby constants, E(g) =Eu {g1, ... ,gn}, 
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and for any closed program S over EC£), !f S diverges on some algebra 

in K then there is a sentence 0, first-order over EC£), which is 

satisfied in some algebra in Kand such that for any A EK and 

a 1, ••• ,an EA, CA,a1 , ••• ,an) 1= 0 + s+. 

In stating the next results we bring in the i/o total correctness 

theories: let K be any class of E-structures and let SE PROGCE). Define 

I/0-TCK(S) = {(a,$): for all A EK, a E An, A f= a(a) + [S(a)+ A B(a,S(a))]} 

5.4 LEMMA. Let K be any class of E-structures. For any P,Q E PROG(E), if 

I/0-TCK(P) = I/0-TCK(Q) then 

5.5 LEMMA. There exists a class Kand programs P and Q for which 

The decision to use the PCK(S) 's.at the start of our investigation was 

made so as to conform with the standard practice of the literature on partial 

correctness (APT [1]); and these are the correctness theories used by MEYER 

and HALPERN [28]. The change to the i/o correctness theories is dictated by 

Lemma 2.2, but it hardly represents a less natural means of formulating 

Floyd's principle to require assertions to remember inputs when speaking of 

outputs. Indeed, Lemmas 5.1 and 5.3 suggest the opposite to be true. We 

should also say that using i/o correctness theories from the beginning would 

only have weakened our Basic Extension Theorem 3.1 and made not a guilder's 

worth of difference to the difficulty of proving Theorem 4.1. 

PROGRAMMING SYSTEMS WITH SPECIFICATIONS 

We are now going to consider programming systems [K, PROG(E)] with K 

a class of E-structures syntactically defined by a set of axioms from a data 
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type specification language. This language we take to be L(E) with its usual 

semantics in model theory, that based on Tarski's notion of satisfaction. 

Thus, our programming systems will be entirely syntactic objects of the form 

[(E,E), PROG(E)], where Eis a set of sentences of L(E), and their input­

output semantics will be based on K = ALG(E,E), the class of all E-structures 

satisfying the axioms in E; such Kare called first-order axiomatisable 

classes. 

How does this description connect with those of the literature on the 

syntax and semantics of data types? All current work on data type specifica­

tion uses first-order specifications (E,E) and their semantics ALG(E,E). 

However, it is there common to want to define the meaning of (E,E) as a 

particular structure in ALG(E,E), unique up to isomorphism. This arises 

quite naturally from the widely held informal view of data types as objects 

composed of different kinds of data domains on which are prescribed a number 

of primitive operations: the meaning of a data type T becomes an algebraic 

structure A(T) and a specification (E,E) of type Tis accepted as correct 

if its semantics is an algebra A(E,E) isomorphic to A(T). At best, logical 

semantics is able to define structures uniquely up to elementary equivalence 

only and this is far weaker than isomorphism. Thus, in working with data 

type specification problems in isolation, one refines the satisfaction se­

mantics of (E,E) to (usually) its initial algebra semantics (ADJ [15]) and 

(sometimes) its final algebra semantics ([6, 35]) whose purpose it is to 

pick out a structure from ALG(E,E) as the meaning of (E,E). The nature of 

these new semantic mechanisms need not concern us here though it is useful 

to point out that they impose conditions on the syntactical structure of 

the axioms E: the axioms are usually required to be equations or conditional 

equations. (A partial explanation of this is Corollary 3.2.5 in CHANG & 

KEISLER [7].) The crucial point, then, in assessing the relevance of our 

treatment of data types, lies not with the essentially algebraic problem 

of the correctness of data type specifications, but with the logical prob­

lem of proving partial correctness for programs relying on these specifica­

tions, independently of whether they are correct or not. 

Mathematically, the proof theory of partial correctness for [(E,E), 

PROG(E)] must be built up from first-order components: assertions from L(E) 

with the axiom oracle for the Rule of Consequence taken as Thm(E,E), the 
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set of all sentences of L(E) provable from the axioms of Eby the rules of 

first-order logic. Whatever the data type semantics intended for the program­

ming system through the specification (E,E) might be, the proof theory for 

partial correctness is obliged to deal with the satisfaction semantics 

ALG(E,E) as that of the programming system. 

Our formal model of a programming system allows an equally perspicuous 

description of the standard treatment of Hoare's logic initiated by COOK [2] 

where the words data type and specification are not mentioned. There, one 

gives general rules of inference for the control structures of PROG(E) and 

completes the construction of the proof system by fixing an interpretation 

A and taking Th(A) as the axiom oracle for the Rule of Consequence. This 

corresponds to our description of the canonical Hoare logic of the program­

ming system [(E, Th(A)), PROG(E)] where Th(A) acts as a data type specifica­

tion. But the semantics of (E,Th(A)) is not the singleton class {A~; it is 

the class ALG(E,Th(A)) which contains many structures not isomorphic to A. 

The fundamental example of this is provided by the standard model of arith­

metic~, of course. 

To return, for a moment, to the situation for algebraic specifications, 

the best that can be arranged is a partition of the specification into an 

algebraic part (E,EA) which correctly defines the data type semantics A, 

uniquely up to isomorphism by, say, initial algebra semantics, together with 

a proof theoretical part (E,E~) chosen to make up the proofs of the correct­

ness of programs of interest. This E~ must be a subset of Th(A), and for the 

intended system [A, PROG(E)] the strongest proof theory possible will be 

that of [ALG(E,Th(A)), PROG(E)]. 

So it is then, that the study of the determinateness problem must 

contend with complex model-theoretic classes as representing the semantics 

of data types even when addressing computations on essentially simple minded 

data types such as arithmetic. 

We will now consider determinateness for programming systems with (1) 

arbitrary first-order data type specifications; (2) algebraically styled 

specifications; and (3) complete first-order specifications which cover the 

(E,Th(A)) specifications described above. 
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GENERAL FIRST-ORDER SPECIFICATIONS 

The i/o correctness theories fail to determine program equivalence not 

only for the first-order specified programming systems in general but for 

those with algebraic specifications and for those with complete first-order 

specifications. Thus, here we begin by proving a useful structural fact 

about the determinateness problem. 

5.6 COUNTABILITY LEMMA. Let K be a first-order axiomatisable class of E­

structures and let K0 be the subclass of K composed of all its countable 

structures. Then for any P,Q E PROG(E) 

p - Q if, and only if, P -Ko 

Moreover, for any SE PROG(E), 

I/O-PCK (S) = I/O-PCK(S). 
0 

K Q. 

To obtain this we look again at the local structure of computations. 

Let K be any class of E-structures. A E-structure A is said to be 

locally a K-structure if each finite subset of A is contained within a E­

substructure of A which belongs to K; write L(K) for the class of all local­

ly K-structures. 

5.7 LEMMA. Let K be a class of E-structures. Then for P,Q E PROG(E) 

P -L(K) Q if, and only if, P _K Q. 

PROOF. Now P =L(K) Q implies P =K Q because Kc L(K). Conversely, assume 

P =K Q. Let A EK and consider an arbitrary computation of P,Q on a= 

(a1 ; ... ,an) E An. If Bis a substructure of A containing {a1 , ... ,an} then, 

by the Locality of Computation Lemma 1.1, 

P(a) =A Q(a) if, and only if, P(a) _8 Q(a). 

Thus, p -K Q implies p -L(K) Q. Q.E.D. 
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PROOF OF LEMMA 5.6. Obviously, P =K Q implies P -Ko Q as Koc K. By Lemma 

5.7, P =Ko Q implies P =L(Ko) Q: we show that Kc L(K0). Let A EK and 

a 1, ••• ,an EA. From a Downward L8wenheim-Skolem argument (for example, 

Theorem 3.1.6 in CHANG & KEISLER [7]), we may deduce there is a countable 

elementary substructure A0 of A containing a 1 , ••• ,an which is a K-structure 

as K is axiomatisable. Since A0 E K0 we have that A E L(K0). 

With regard to the last statement of the lemma, note that I/O-PCK(S) c 

I/O-PCK (S) because K0 c K. Assume for a contradiction that (a,S) lies in 
0 

I/O-PCK (S) but not in I/O-PC (S). Consequently, there is A EK and a E An 
0 K 

such that A 1= a (a) and P (a)+ but A I# S (a,P (a)). Since P (a)+ we can first-

order express this computation: 

Again by the Lowenheim-Skolem Theorem, there is a countable elementary sub­

structure A0 of A where 

From this it follows, from propositional manipulations and the locality of 

computations, that (a,S) t I/O-PCK (S)~ the required contradiction. 
0 

ALGEBRAIC SPECIFICATIONS 

Q.E.D. 

Algebraic specifications are the simplest of the first-order specifica­

tions. This operates in their favour as far as the theory and practice of 

specifying data types is concerned, but against the needs of the subsequent 

proof theory. We will show that the i/o correctness theories fail to deter­

mine program equivalence for a very simple programming system with an al­

gebraic specification. 

5.8 THEOREM. Let Ebe a signature composed of two unary functions f,g and 

a constant. Let K be the class of all E-structures satisfying the equations 

fg(x) = gf(x) = x. 
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Then there exist flow-chart programs P,Q E PROG(E) such that 

The simplest possible counter-example is ruled out by the Singular 

Case Lemma 4.6 and the next simplest candidate is represented by our Con­

jecture 4.2. Having two function symbols with no axioms as a counter-example 

is ruled out by the Usual Case Lemma 4.4, so the variety defined in Theorem 

5.8 is probably the best for our purpose. Notice that under their initial 

algebra semantics the equations define the integer arithmetic 

(22:; o, x+l, x-1). 

PROOF OF THEOREM 5.8. Let P compute the two argument projection function 

P(x,y) = x throughout K. For Q we require that 

Q(x,y) - {X 
- undefined 

if <x> or <y> is finite or x E <y> or y E <x> 

otherwise. 

Given the defining equations for K, it is straightforward to design a flow­

chart program to play the role of Q. Clearly, P tK Q. 

Assume~, for a contradiction, that the i/o correctness theories are 

distinct. Since I/0-PCK(P) c I/0-PCK(Q), let a= a(x,y) and 8 = (x,y,z) E 

L(E) such that 

K F {a}Q{ 8} and K I# {a}P{B}. 

Applying the known properies of P and Q, these expressions simplify to 

K F a(x,y)-+ [(Q(x,y)+ A B(x,y)) v Q(x,y)t] 

K ~ a (x,y) -+ 8 (x,y). 

Set y(x,y) = a(x,y) A 78(x,y) and observe that for each A EK, a,b EA 

A J= y (a,b) implies Q (a,b) t 
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and, therefore, 

A 1= y(a,b) implies <a> and <b> are infinite, and a I.. <b>, b I.. <a>. 

Our hypotheses allow us to choose such an A EK and elements a,b EA and it 

is to this step we find a contradiction by means of the Compactness Theorem, 

Theorem 1.3.22 in CHANG and KEISLER [7]. 

Let L = L(I) and add to it a constant symbol~ to obtain L(g). Then 

(A,a) != y (~,b) and for each b E (A,a), (A,a) != y (~,b) implies Q(a,b) t. 

Set T = Th(A,a), the set of all sentences of L(~} true in (A,a). Next 

we add a new constant symbol~ to L(~) and define the following set of 

sentences from L(g,~): 

T' {7y(g,~), "<b> is infinite", "~ i <g>"} 

It is easy to express the statements in quotation marks given the special 

definition of K. 

By a routine application of the Compactness Theorem, the set of sen­

tences Tu T' can be shown to have a model BEK. In such a B there are 

elements a,b,c such that 

B != y (a,b) and B != 7y (a,c) . 

We now use the following fact which is easy to prove from the specifica­

tions of K: if A EK and a,b,c EA are such that <b> and <c> are infinite, 

and a,b,c do not appear in one another's subalgebras, then there is. some 

cf> E Aut(A) for which cf>(a) = a and cf>(b) = c. Therefore, b,c EB can be ex­

changed, by an automorphism fixing a, in the pair of valid formulae above. 

And this is the sought for contradiction. Q.E.D. 

COMPLETE FIRST-ORDER SPECIFICATIONS 

By a complete axiomatisable class we mean the class K = ALG(I,E) of 

all models of a first-order theory (I,E) having the property that for every 

sentence cf> of L(I) either cf> or 7cp is provable from E. By an w-categorical 
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axiomatisable class we mean an axiomatisable class K = ALG(L,E) having the 

property that any two countably infinite models in Kare isomorphic. 

Complete classes arise in two ways. First, the implicit specifications 

(L,Th(A)) in Hoare's logic are complete first-order theories; this is ob­

vious. Secondly, the familiar numerical data types w, the reals IR and com­

plex numbers C have natural first-order axiomatisations (L,E) in the theories 

of Presburger Arithmetic,·real closed fields and algebraically closed fields, 

all of which are complete. 

Programming systems whose data type semantics form such classes are 

particularly well characterised by their complete first-order specifications 

from the points of view of both proof theory and the theory of their count­

able models (see Section 2.3 cf CHANG & KEISLER [7]; notice how several 

kinds of models distinguished by their morphism properties prove to be unique 

up to isomorphism). We will prove 

5.9 THEOREM. Let K be a complete axiomatisable class of L-structures and let 

P,Q E PROG(L). Then the following properties are equivalent. 

(i) I/O-PCK(P) = I/O-PCK(Q); 

(ii) for some countable A E K, p = Q; A 
(iii) for some countable A E K, I/O-P~A(P) = I/O-PCA(Q). 

Yet, the i/o-correctness theories fail to determine program equivalence for 

complete cl~sses. In the next section we will prove the following important 

fact: 

5.10 THEOREM. Let K be the class of all L 'th structures elementary equiva­_ari 
lent to the standard model of arithmetic~- Then there exist P,Q E 

PROG(L 'th) such that ari 

Determinateness for complete classes can be neatly expressed in terms 

of a logic of effective definitions LED developed by TIURYN in [33] where 

it is equivalent to the condition on a class being ~-LED complete. 

Assuming the truth of Theorem 5.9 it is easy to obtain this positive 

result about w-categorical axiomatisable classes, however. 
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5.11 COROLLARY. Let K be an w-categorical axiomatisable class of E-structures 

having an infinite element but having no finite elements. Then for any 

P ,Q € PROG (E} 

PROOF. Assume the correctness theories coincide. By the las-Vaught Test 

(Theorem 3.1.10 in CHANG & KEISLER [7]}, K is complete. By Theorem 5.9 

there is a countably infinite structure A EK such that P =A Q. Let K0 be 

the class of all countable K-structures. Since each structure in K0 is iso­

morphic to A we know that P =Ko Q. Thus, by the Countability Lemma 5.6, 

Q.E.D. 

PROOF OF THEOREM 5.9. First we prove that (1) implies (2). Now for A EK, 
n P =A Q if, and only if, for no a EA any one of the following are true: 

(i) for some k,l € w, A I= COMPP,k(a} A COMP l(a} Q, A OUT k (a) P, -f OUTQ,l(a); 

(ii) for some k, A 1= COMPP,k(a) and for all l E w, A IF COMPQ,l(a); 

(iii) for some l, A 1= COMPQ,l(a) and for all k E w, A IF COMPP,k (a) 

Clearly (i) is irrelevant for, in the presence of the hypothesis I/O-PCK(P) = 
I/O-PCK(Q), when P and Q converge their outputs must coincide. Thus, we 

rephrase the situation as follows: let 

Then for any A EK, P =A Q if, and only if, no a E An satisfies or realises 

either one of the types TP,k(x), TQ,l(x}. (This is standard terminology in 

model theory. } 

To prove (2) we look for some countable A EK which omits these types. 

Because K is complete we can apply the Extended omitting Types Theorem 

(Theorem 2.2.15 in CHANG & KEISLER [7]} so that it is sufficient to prove 

K locally omits these types. 

Suppose, for a contradiction, that TP,k(x} is locally realised. Then 

there is a formulae consistent with Kand such that 



K F 0(x) + COMPP,k(x) and K F 0(x) + 7coMPQ,l(x) for le: w. 

We claim the contradiction that (0(x), false) lies in I/0-PCK(Q) but not 

in I/0-PCK (P). This is easy to see: let A e: K, a e: An. If A F. 0 (a) then 

Q(a)t and hence 

A F 0 (a) + [Q (a)+ A false] v Q (a) t. 
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Thus K F {0}Q{false} and since, trivially, A F 0(a) entails P(a)+ we have 

K I# {0}P{false}. Applying the same argument to TQ,l(x) shows all the types 

are locally omitted and the implication is proved. 

Now, that (2) implies (3) is obvious. And we conclude with a lemma 

which demonstrates that (3) implies (1). 

5.12 LEMMA. Let K be a complete axiomatisable class of E-structures and let 

Se: PROG(E). Then for each A e: K 

PROOF. Since A e: K, I/0-PCK(S) c I/0-PCA(S). For the reverse inclusion, 

suppose for .a contradiction that the 1:.heories are distinct. There exist 

formulae a. = a. (x), 13 = 13 (x,y) such that A F fo}s{ 13} but for some B e: K, 
n be: B we have S (b)+ and B F a.(b) A 713(b,S (b)). Let IS(b) I = t and define 

Now, clearly, B F 0 (b) and B I= 3x. 0 (x) • Since K is defined by a complete 

theory Ewe have E ~ 3x.0 (x). Therefore, as A r=E, we have that AF 3x.6(x) 

which by the construction of 0 contradicts A F fo}S{ 13}. Q.E.D. 

6. ARITHMETIC PROGRAMS 

The programs of AP= PROG(E 'th) we will henceforth call arithmetic 
ari 

programs. The purpose of arithmetic programs is to compute recursive func-

tions on the set wand, semantically, it seems reasonable to insist that 

one's interest in them is confined to the (unspecified) programming system 
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[~,AP] where~ is the standard model of arithmetic. This is not acceptable, 

however. Although we know, from Lemma 2.1, that the correctness theories 

determine program equivalence for [~,AP] we also know that Hoare logics 

for partial correctness do not operate without some £irst-order specifica­

tion of~ acting as an interface between data type and proof theory. Thus 

the extensive collections of proof rules for programming constructs and the 

studies of their completeness properties in the monograph BE BAKKER [3], 

for example, pertain not to [~,AP] but to [CNT,AP] where CNT is the class 

of all models of Th(~), so called complete number theory. Here, of course, 

we have natural Hoare logics which are complete and so syntactically define 

the correctness theories but, in their turn, the correctness theories fail 

to determine program equivalence (Theorem 5.10 which we prove here). Even 

if this latter state of affairs were not the case then the fact that the 

specification Th(~) is not even arithmetical, having Turing degree ow, 

forces a difficult compromise with our expectations about data type speci­

fications. 

Let us consider an alternate method of casting arithmetical computa­

tions in the form of a programming system. As is well-known, the class WP 
of all while-programs can compute all recursive functions on w using a set 

of primitives smaller than r .th; it is sufficient to user= {o,succ}. 
ari 

The axioms of Presburger over r form a·specification (L,E) which is re-

cursive, complete and whose set of consequences is even decidable. Let 

PrA = ALG(r,E). The first difficulty encountered by Floyd's principle is 

that [PrA,WP(r)] fails to possess any reasonable Hoare logic which is sound 

and complete for proving partial correctness (see BERGSTRA & TUCKER [5]). 

Having introduced, and discounted, CNT and PrA as candidates ~it to 

support arithmetical computation in a programming system, there is but one 

more first-order specification which ought to be tried: Peano's axioms. 

Let PA denote the class of all models of Peano arithmetic. Most regrettably, 

we have been unable to prove that the i/o-correctness theories determine 

program equivalence over PA. Thus, our first task is to offer an open prob­

lem and an opinion: 

6.1 CONJECTURE. For any arithmetic programs P,Q 
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We can provide, however, the following partial result. 

Let TI 1 (~_) be the set of all universal first-order sentences over L arith 
true in the standard model of arithmetic~- Now let K be the subclass of 

those models in PA which, in addition, satisfy TI 1 (~). Clearly, CNT is a sub­

class of K. 

6.2 THEOREM. For any arithmetic programs P,Q 

I/O-PC A(P) = I/O-PC (Q) implies P =K Q. P PA 

Before proving Theorem 6.2, we shall explain why it is of any interest 

in these discussions. First, observe that it is easy to show 

6.3 THEOREM. For any arithmetical programs P,Q 

So the point at issue it that there is interesting information to be had 

about programs computing on N by considering their behaviour over K. This 

next theorem will show that programs on~' equivalent up to their input­

output semantics over~, can be detected as operationally distinct over N 

from the inequivalence of their input-output semantics over K. 

6.4 THEOREM. Let P,Q be arithmetic programs. Suppose that P =N Q but_ that 

P 1K Q. Then the relative run times of P and Q over N are unbounded in the 
n 

sense that for any t E w there exists an input a EA such that 

1 P (a) 1 1 Q (a) I 
]Q(a)1 + 1P(a) I > t. 

n 
PROOF. First suppose that for some_A EK, a EA it is the case that P(a)+, 

Q(aH- but P(a) :/: Q(a). Let IP(a) 1 = k and IQ(a) I = l so that 

Now since all of TI1 (~) is satisfied in A, 
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whence it follows that P,Q differ somewhere on N. As this contradicts 

P =N Q we may assume that for some A EK, a E An it is the case that P(a)i 

l 
Define e 0 (x) _ COMP (x) A A. 7COMP (x). If, again, IP(a)I = k 

k, ,t.. P, k 1= 1 Q, i 
then for each l E w, A l= · 3x. ek,l (x). As this is an existential sentence 

and A l= ,r 1 (~) we deduce that ~ F 3x. ek,l (x) for each l E w. Given t 

choose any k,l E w such that l > tk and choose a E ~n such that ~ F ek,l (a). 

Then 

IP Ca> I 
IQ ca> 1 

+ IQ(a> I 
IP (a) I 

~ IQ(a> I > ;!;_ > tk t 
IP(a) I - k k = • Q.E.D. 

PROOF OF THEOREM 6.2. Contrapositively, assume P tK Q. If P tN Q then we 

are done by Theorem 6.3; so assume P =N Q. This is the hypothesis of Theo­

rem 6.4 and, using its proof, we may further assume that somewhere in K, P 

converges whilst Q diverges. Moreover, we can choose k E w such that for 

all l E w, ~ F 3x. ek,l (x) where ek,l (x) is the formula defined above. 

Let ~(z) be a formula such that (i) 3z.~(z) is satisfied somewhere in 

PA; and (ii) for any M E PA, m E M if M F ~ (m) then m is a non-standard 

element of M. Such a formula exists by Godel's Incompleteness Theorem. 

There are now two cases to the proof, one of which must hold since 

3z.~(z) is consistent with PA. Let COMPQ(y,x) be a first-order representa­

tion the sequence {COMP 0 (x): l E w}. 
Q,,t.. 

CASE 1: 3z.[~(z) A 3x[COMPP,k(x) A (Vy< z). "lcOMPQ(y,x)]] is satisfied in PA. 

Then we claim that with 

a(x) - 3z.[~(z) A COMPP,k(x) A (Vy< z). 7cOMPQ(y,x)] 

S(x) - false 

we have PA 1= fo}Q{S} but PA I# fo}P{S}. To see the first asserted program 

is valid is to notice its precondition can be satisfied, in which case it 

implies the divergence of Q. To see the second asserted program is not valid 

is to notice its precondition implies the convergence of P. 
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CASE 2: Vz.[¢(z} + Vx.[COMPP,k(x) +(Vy< z). COMPQ(y,x)]] is satisfied in PA. 

Let H(x) stand for "the least y, if any exist, such that COMPQ(y,x)". 
n 

Assuming, M E K, m E M and M I= ¢ (m) then for any a E M , 

and sup{H(a): MF COMPP,k(a)} exists. Let this supremum be defined by formu­

la yt(s). Def.ine a.(x) = 3z.qi(z) A 3s.[yk(s) A (Vy< s). 7COMPQ(y,x)]. 

We claim that PA I= {a.}Q{false} but PA ~ {a.}P{false }. Consider the 

first asserted program. The formula yk(s) entails thats exceeds the lengths 

of all computations of Q on inputs satisfying COMP k(x). In particular, s P, 
exceeds all standard numbers as these computations may have arbitrarily 

large standard lengths on standard inputs. It follows that the precondition 

implies Q diverges and we are done. 

On the other hand, the second asserted program is invalid in PA because 

3x.a.(x) is satisfied and the precondition implies the convergence of P. Q.E.D. 

To illustrate, in another way, the dependence of our problem on the 

specifications and the semantics they determine, we shall fix two arith­

metic programs and consider their correctness theories through 4 changes 

of programming system. Let 

P(x) - X := 0 

Q(x) - while x-:/- 0 do x := PRED(x) od 

where PRED is the name reserved for the predecessor function on ~-.Clearly, 

P =N Q. Let 1: 1 = {O,PRED} c Earith" For any class K of E1-structures we 

have 

On the other hand, it is easy to think of K where P tK Q because Q need 

not terminate. In the 4 systems to follow this will be so, but the correct­

ness theories will not always remain distinct. This exercise with the vac­

illations of determinateness is a miniature of our study of specifications. 
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6.5 EXAMPLE: TRIVIAL SPECIFICATIONS 

Consider P,Q as belonging to the system [(E 1,¢), PROG(E 1)J and set 

K = ALG(E ) the class of all E1-structures. When we studied "trivial" prog-
1 1 

ramming systems in Section 4 we were unable to settle determinateness in 

this case (remember Conjecture 4.2). However, the correctness theories of P,Q 

are distinct, if for no in~eresting reason: set a(x) = {x#0 A PRED(x) = x}. 

Since for A E K1, a E A, A I= a (a) forces Q (a) to diverge we have 

Kl I= fo}Q{false} but Kl ~ fo}P{false}. 

6.6 EXAMPLE: ALGEBRAIC SPECIFICATIONS 

Set E2 = E1u{succ}. We will turn our integer specification of Tneorem 

5.8 into a Horn formula specification of the natural numbers with successor 

and predecessor. Let Ebe the set of axioms 

PRED(0) = 0 

X # 0 ➔ PRED(X) # X 

SUCC(X) # 0 

SUCC(X) # X 

PRED(SUCC(X)) = X 

X # 0 ➔ SUCC(PRED(X)) = X. 

The proof of Theorem 5. 8 may be adapted, in a simple way, to prove the 

correctness theories of P and Q coincide. 

6.7 EXAMPLE: PEANO ARITHMETIC 

Consider P,Q as belonging to the system [PA,AP]. Although determinate­

ness for this system is open it is easy to prove the correctness theories 

of P;Q are distinct. First note that P,Q differ on precisely the non-stan­

dard models in PA. By G8del's Incompleteness Theorem, there is a formula a(x), 

consistent with PA, such that for M E PA, m E M, M I= a (m) implies m is non­

standard. It follows that 

PA -1= fo}Q{false} but PA ~ {a}P{false} 



6.8 EXAMPLE: COMPLETE NUMBER THEORY 

Consider P,Q as belonging to the system [CNT, AP] where CNT is the 

subclass of PA composed of those arithmetics satisfying Th(~). We will 

prove that 

I/0-PCCNT(P) -·I/0-PCCNT(Q) 

which also proves Theorem 5.10. 

Suppose, for a contradiction, the correctness theories are distinct. 

It is, by now, easy to see how to choose a formula a(x), consistent with 

CNT I such that for M E CNT, m E M, M I= a (m) implies Q (m)t. As Th(~) is a 

complete theory, Th(~) 1- 3x. a (x) and ~ I= 3x. a (x) • Thus, there is n E N 

such that Q(n)t which by the definition of Q is impossible. 
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APPENDIX 

In this appendix we prove the Localisation Lemma 5.3 and Lemmas 5.4, 

S.S. 

PROOF OF THE LOCALISATION LEMMA 5.3 

Remember that the Convergency Lemma 2.4 said that the local condition 

(ii) in the statement of Lemma 5.3 on a class K was sufficient for the partial 

correctness theories PCK(S) to determine program equivalence over K. By Lem­

ma 5.2, the condition is sufficient for the i/o correctness theories. 

Assume the i/o correctness theories determine program equivalence over 

the class K. Let S be a closed program over the signature I(£) =IU{£i•···•£n} 

and suppose S diverges somewhere in K. We must make a trivial case distinc­

tion between n f O and n = O. 

Let n f O and lets= s 0 (£i•···•~n) where s 0 (x1 , .•. ,xn) is a program 

over r with uninitialised input variables x 1, ••• ,xn. We define P,Q E PROG(I) 

as programs abbreviating 

P(x1 , ••. ,xn) = x 1 

Q (x1 , ••• ,xn) = if s 0 (x1 , ••• ,.xn) + then x 1 else DIVERGE fi 

Clearly, P tK Q since Pis everywhere convergent whereas Q is not because s 0 

diverges by hypothesis. By their definition, I/O-PCK(P) c I/O-PCK(Q) thus 

the determinateness assumption (i) implies there is a pair of formulae a,S 

such that 

K F . fo }Q{ S} but K ~ fo}P{ S} 

The first-order sentence 0 required in condition (ii) is 

the consistency and divergence property of which are easy to check. Q.E.D. 
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PROOF OF LEMMA 5.4 

Lemma 5.3 yields one implication immediately without recourse to the 

hypothesis that the i/o total correctness theories agree. 

Assume P,Q to be programs over Kand that I/0-TCK{P) = I/0-TCK{Q). We 

shall deduce that 

Contrapositively, suppose there is some a= a{x), 13 = 13(x,y) such that 

K F fo}P{ 13} and K f# fo}Q{ 13}. 

n 
Choose some A EK and a EA scuh that Q{a)~ and 

A I= a (a) A 713 (a,Q (a)) • 

Using the Definability Lemma 1.3 we can express the computation Q(a) in the 

first-order formula COMPQ,t(x) and polynomial OUTQ,t(x) fort= IQ(a) I: 

A 1= COMPQ (a) and A 1= COMPQ t(b) implies Q(b) = OUT (b). ,t , Q,t 

Notice that the pair 

Consider now the pair 

(COMPQ t(x) A 713(x,OUT (x)), false) , Q,t 

Obviously, this pair does not belong to PC (Q) because it is invalid 
K 

on our chosen A. However it does lie in PCK(P). To see this let BEK and 
n 

b EB and assume 
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The hypothesis on i/o total correctness theories implies 

Thus P(b) = OUTQ,t(b) from which we may deduce 

B 1= COMPQ,t(b) /\ 7B(b,OUTQ,t(b)) ➔ [(P(b)+ /\ false) v P(b)t] 

Since Band b were arbitrarily chosen we are done. Q.E.D. 

PROOF OF LEMMA 5.5 

We want a class Kand program P,Q over K whose i/o partial correctness 

theories agree but whose i/o total correctness theories are distinct. Example 

6.7 will do nicely. The programs there defined over Peano Arithmetic we show­

ed to have the same i/o partial correctness theories. To see that their i/o 

total correctness theories are not the same observe that (true,true) lies in 

I/O-TCK(P) but not in I/O-TCK(Q). Q.E.D. 




