
AFDELtNG INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

J.A. BERGSTRA, J. TIURYN & J.V. TUCKER

FLOYD'S PRINCIPLE, CORRECTNESS THEORIES
AND PROGRAM EQUlVALENCE

Preprint

~
MC

IW 145/80 SEPTEMBER

kruislaan 413 1098 SJ amsterdam

BJBLIOTHEEK Mt,THEiv1:,:r:::.;c1-1 CEN ll,UM
/-\/ViSTEHDAM

P,unted a.t .the Ma:the.maU.c.ai. CentJr..e, 413 Kll.t.U.6£.aa.n, A~.tvc.dam.

The Ma.thematic.al. Centlte , 6ounded .the 11-.th 06 FeblUUVl.y 1946, -U a. non­
p1to6..U: b11,ti:tution (Wfl,(_ng a.t .the p1tomo:Uon 06 puJte ma.the.mrue6 a.nd li-6
a.ppU,c.aU.ow.,. 1.t ,U J.ipow.,01ted by .the Ne.theJli.a.ncJ.J.i Gove.Jtnment .th/tough .the
Ne.thelli.a.ndJ.i 0.1tga.nlzaU.on 60ll- .the Adva.nc.e.ment 06 PUite Rue.a1tc.h (Z.W.O.).

1980 Mathematics subject classification: 03C52, 03D75, 68B10

ACM - Computing-Review-categories: 5.24

*)
Floyd's principle,correctness theories and program equivalence

by

) *}
J.A. Bergstra, J. Tiuryn & J.V. Tucker

ABSTRACT

A programming system is a language made from a fixed class of data ab­

stractions and a selection of familiar deterministic control and assignment

constructs. It is shown that the sets of all "before-after" first-order as­

sertions which are true of programs in any such language can uniquely de­

termine the input-output semantics of the language providing one allows the

use of auxiliary operators on its ground types.

After this, we study programming systems wherein the data types are

syntactically defined using a first-order specification language with the

objective of elimating these auxiliary operators. Especial attention is

paid to algebraic specifications, complete first-order specifications; and

to arithmetical computation in the context of a specified programming

system.

KEY WORDS & PHRASES: programming systems with and without data type speci­

fications; program semantics specification; first­

order correctness theories; program equivalence

**)

***)

This report is an extensive revision of IW 119/79. It is not for re­
view as it will be published elsewhere.

Department of Computer Science, University of Leiden, Wassenaarseweg 80,
Postbus 9512, 2300 RA LEIDEN, The Netherlands

Mathematics Institute, University of Warsaw, PKiN 00-901 WARSAW, Poland

1

INTRODUCTION

The idea that a general programming language, or a specialised program­

ming system, PS can be usefully defined by the axioms and rules of inference

underlying proofs of various properties of programs written in the language

can be traced to R.W. FLOYD [13]. As Hoare pointed out in [19], it is an

attractive thesis for demanding that any implementation of PS be made to

satisfy these axioms and rules provides a criterion for the correctness of

its implementations and establishes a set of provable features for programs

in PS common to all its implementations: everything proved true of a program

Sin PS will be true in each implementation however the all important un­

defined features of PS are handled. The acceptance of such a formal axiom­

atic system as authoritative in specifying the meaning of a language has

been advocated by several writers. For example, E.W. DIJKSTRA [10], C.A.R.

HOARE [20], Z. MANNA [23], HOARE and LAUER [21]; and, of course, in HOARE

and WIRTH [22] where Floyd's idea is applied to make a definition for a

part of PASCAL (see, in addition, R. SCHWARTZ [32]). Despite its familiarity

in the literature on program language design, Floyd's thesis is, by the

standards of the theoretical literature, as vague as it is intriguing: what

proof systems for which properties of programs in what kinds of program

languages can characterise semantics, and in which precise senses? It seems

fair to say that, at present, as little is understood about the issues in­

volved as was known about Hoare's logic for proving program correctness

before S.A. Cook took up that subject in his seminal study [8] (see [9] and

the important survey article of K.R. APT [1]).

This paper will settle upon one natural and precise formulation of

Floyd's principle and will study it in quite some technical ·detail. The

program properties on which the specification method is based we take to

be partial correctness as this is formalised by first-order definable as­

sertions. The semantics of a programming system we require to be defined

uniquely up to the input-output behaviour of its programs, one of the stan­

dard measures of denotational semantics. Typically, we have in mind a prog­

ramming system PS with all the usual deterministic control and assignment

constructs and whose data types are fixed independently by, say, procedures

without side effects in some general purpose programming language L. This

2

leads to a model of PS in which program texts are represented by program

schemes of some standard design PROG - for example, while-programs with

counters and stacks - and in which the data types are semantically given

as various classes of interpretations for the primitives appearing in PROG.

Each program S of PS will involve a finite collection I of constant and opera­

tor symbols and so will belong to the set PROG(I) of programs in PROG having

this signature r. To PROG{I) is associated a class K of I-structures which

we explicitly think of as representing the data type semantics of PS at

least as far as the primitives in I are concerned.

We are thus led, in Section 2, to define various partial correctness

theories PCK(S) as sets of first-order partial correctness assertions about

S true throughout the interpretations of K. We shall say that a (particular

kind of) partial correctness theory determines the input-output semantics

of the programming system PS if for each pair of programs S, S' of PS, ad­

mitting interpretations throughout K, if PCK(S) = PCK(S') then Sand S' com­

pute the same partial function on each interpretation A EK. And our paper

will be taken up with investigating determinateness for various types of

-correctness theory and various classes of interpretations.

From the point of view of Floyd's thesis, we make rapid progress: our

first theorem (Section 3, Theorem 3.1) does indeed confirm in a precise,

formal and respectable way, that there are first-order partial correctness

theories available which determine the input-output semantics of any deter­

ministic programming system. As a result of this it can now be said that

as long as one can axiomatise the appropriate kind of correctness theory

for a programming system then Floyd's principle, in this formulation, is a

theoretically realistic method for defining it. This proviso is, of course,

the second half of the problem of making theoretical sense of Floyd's prin­

ciple. And, as such, it is an almost independent source of many interesting

problems about the existence, or non-existence, of sound and complete Hoare

logics for proving the partial correctness of programs relative to given

classes of interpretations. As will be made clear, the state of that partic­

ular art - as reported in Apt's recent survey [1], for example - is nowhere

near sufficiently well developed to service this enquiry. Because of this,

and other ramifications of the proviso, here we are content to concentrate

on the determinateness problem and more or less ignore axiomatisations.

3

(Two of us have, however, begun to investigate Hoare logics for the partial

correctness theories of highly specific programming systems [5] and we will

provide here some information about howperplexing the situation seems to

be.)

It now remains for us, in this introduction, to explain how a very

general and reasonable solution to the determinateness problem fails to com­

pletely settle even that issue in Floyd's thesis and how it leads directly

to the powerful machinery of algorithmic logic which characterises the sec­

ond half of our paper. The correctness theories employed in our first solu­

tion have an irritating technical defect: they include assertions which use

operators which do not appear in the programs and whose semantics are ex­

trinsic to that of the programming systems as given. The problem of eliminat­

ing "hidden functions" from the specifying assertions forces us to be much

more explicit about what the data type semantics of our programming systems

really are and, in particular, how they are prescribed. In Section 5, we

make the assumption that the classes of interpretations which represent the

data type semantics of programming systems have specifications written out

as axioms in the first-order assertion languages. And we explain how this

hypothesis embraces the algebraic specification methods for data types (ADJ

[15]) as well as the specification assumptions about data types which are

implicit in studies of Hoare's logic in the manner of COOK [9]. After a

change of correctness theory, we look at determinateness for programming sys­

tems with data type specifications and with a particular emphasis on those

specifications used for algebraic definitions and used in the theory of Hoare

logics. At this point, the model-theoretic nature of the problem of deter­

minateness becomes clearly visible and its solution becomes the business of

algorithmic logic. In Section 6, we tackle determinateness for computations

on the set of natural numbers w under the assumption that arithmetic is not

semantically given outright, but must be syntactically specified as (part of)

the semantics of a programming system.

Our interest in Floyd's thesis and its mathematical analysis we owe

entirely to A.R. Meyer who invited us ([25]) to work on the problem of de­

terminateness in cases of the form K = ALG([), the class of all structures

of signature r, where implicitly no conditions are placed on the data types

on which the programs compute. Subsequently, Meyer and J.Y. Halpern indepen-

4

dently, and exhaustively, analysed this sptcial case ([26]) and a preliminary

report on their work has already appeared [28]. All readers of this paper

are recommended [28] for a detailed exposition of the informal issues in­

volved in a theoretical examination of Floyd's thesis based upon the hypo­

thesis that a general purpose program language should be modelled by program

schemes PROG(I) and all interpretations ALG(I). This view is not, however,

the outlook of the present-paper. As will be explained in Section 2, here

we take the (mathematically) more general notion of a programming system as

the basic object of study and model a general purpose programming language

by the totality of all possible programming systems. The advantage, as far

as Floyd's principle is concerned, is a much sharper analysis of determi­

nateness; the "disadvantage" is that the necessary layers of conceptual and

technical complications ask as many new questions as they answer old ones.

In any case, the mathematical results will speak for themselves: our readers

should have no difficulties in comparing them with those of Meyer and Halpern

and connecting them with the early work of DE BAKKER [2] (see also the more

recent paper HENNESSY [18]) on proof systems for program equivalence; or,

more generally, to the field of algorithmic logic associated with ENGELER

[11], and the Polish and American Schools [4], [17].

1. PROGRAMS AND ASSERTIONS

Any of the common designs for deterministic program schemes will serve

to model the programs required in our study: flow charts; while-programs;

recursive procedures; all with, or without, arrays, counters, bool_ean vari­

ables and the like. This is because with input-output semantics what matters

is the class of functions defined on an interpretation, not the mechanisms

involved in their computation: the meaning of a program is to be the mapping

it computes. If our work is to bear on Floyd's thesis then it is necessary

(and, ultimately, it is sufficient) that we are able to consider program

families which are sufficiently strong to compute on each interpretation A

all those functions effectively calculable on A by means of finite determin­

istic algorithms. The appropriate generalised Church-Turing thesis is known:

among many disparate, yet equivalent, definitions of computability on a

relational structure A in use in the literatures of theoretical computer

5

science and mathematical logic, the formula which is most familiar to the

reader is the set of all flow charcs wich councers and arrays. From the

point of view of mathematical logic, the key characterisation is, perhaps,

Y.N. Moschovakis' absoluce prime compucabilicy in [30] as it direccly de­

fines the minimal model of the axiomatic notion of a computation theory

over A, see J.E. Fenstad's monograph [12]. Between the two subjects lie the

effeccive definicional schemes and finice algorichmic procedures of H.

FRIEDMAN [14] which we, the authors, favour. The former concept is the one

chosen for Meyer and Halpern's work [28], incidentally. (For a survey of

research into the subject of a generalised Church-Turing thesis for general

algebras see [29,34].)

The point is that with input-output semantics we can leave undefined

the general class of deterministic programs PROG used throughout the paper

thus allowing the reader to apply our results to the class(es) of his or

her choice. In addition, the reader is free to choose the full computation­

al semantics of his or her program formula from which its input-output se­

mantics must be derived. The different ways of defining computational se­

mantics are legion, of course: as well as the text-books on program schemes,

MANNA [24] and GREIBACH [16], we recommend de Bakker's monograph on denota­

tional semantics [3]. The interesting paper A. MEYER & I. GREIF [27] is

useful for further guidance on issues ·involved in this "choice" of computa­

tional semantics.

To sum up, then, PROG represents some set of deterministic program

schemes capable of defining all computable functions on any interpretation.

We assume it closed under composition and if* then* else* fi statements

and we will use it with the following notational conventions. The.syntax

of PROG has

£1•~2•··· as constant symbols;

k k function symbols of k arguments; f 1 , f.2, ••• as

k k relation symbols of k arguments; R1, R2, ••• as

xi ,x2, ••• as variables.

But we reserve the right to abuse this notation by dropping the arities

from function and relation symbols and by introducing y's and z's as

6

variables, and so on.

Each s E PROG is assumed to name certain variables as input variables

and a variable as an output variable; this fixes the arity of the function

S computes over its various interpretations. By the signature of SE PROG

we mean the finite list E(S) of all constant, function and relational sym­

bols appearing in its text. The set of all SE PROG of signature Ewe de­

note by PROG(E). Thus, S 6 PROG(E) defines a partial function on precisely

those relational structures whose signatures certain E. For such a program
n

Sand interpretation A, if S names n input variables and a EA then by

S(a) we ambiguously denote the computation of S applied to a E An and the

output value when this exists; converging and diverging computations are

distinguished, as usual, by S(a)+ and S(a)t respectively.

If P and Qare programs of signatures E(P) and E(Q) respectively, and

A is a relational structure whose signature contains E(P) u E(Q) then P

and Qare said to be A-equivalent, written P =A Q, if for all a E An either

P(a)+ and Q(a)+ and P(a) = Q(a) or both P(a)t and Q(a)t.

We take for granted that the reader has available, in his or her com­

putational semantics for PROG, formal definitions of a state description

in a computation S(a) and of length of computation 1S(a) 1 and that the fol­

lowing basic facts can be proved (see [34]):

1.1 LOCALITY OF COMPUTATION LEMMA. In any computation S(a1 , ... ,an) all the

elements of A appearing in all the state descriptions of S(a1 , ... ,an) lie

within <a1 , ••• ,an>, the subalgebra of A generated by a 1 , ••. ,an EA. In

particular, if S(a1 , ... ,an) converges then its output lies in <a1 , ... ,an>.

1.2 INVARIANCE LEMMA. Let A and B be relational structures, of common

signature r, isomorphic by~= A+ B. Then for any SE PROG(E), E c r, and

any input a 1, ••• ,an EA

The first-order assertion language Lis based upon the syntactic

vocabulary of PROG and is assumed to possess equality as well as the usual

logical connectives and quantifiers. The semantics of the formulae and

7

sentences of L take their standard definition in model theory, see CHANG &

KEISLER [7]. Corresponding to PROG(E) we take L(E) to be the first-order

sublanguage of L made from the constant, function and relation symbols ap­

pearing in the signature E.

Lets E PROG(E) have named input variables x = (x1, ••• ,xn) and output

variable y. Let r be a signature extending E. If a= a(x) and B = B(y) are

formulae of L(r), having x and y as their free variables, then we can make

a new kind of syntactic object, the so-called asserted program {a}S{B}, the

semantics of which is defined thus: for A a relational structure of signa­

ture r, the asserted program {a}s{B} is valid for A, written A I= {a}s{B},

whenever A 1= a (a) for a E An then either S (a){, and A I= B (S (a)) or else

S(a)t. In the obvious informal notation

n
A I= {a}S{S} if, and only if, for all a E A ,

A I= a(a) + [(S(aH A SS(a)) v S(a)t].

The following fact must be verified by the reader.

1.3 DEFINABILITY LEMMA. Let SE PROG(E) have input variables x = (x 1 , ... ,xn)

and output variable y. Then for each l E w there exists a quantifier-free

formula COMPs,l(x,y) of L(E) such that for each relational structure A whose

signature contains E, and for all a E An, b EA, A 1= COMPs,l(a,b) if, and

only if, the computation S(a) terminates in l steps or less and the output

variable is valued at b. In symbols,

A 1= COMP O (a,b) if and only if, 1 S (a) I :;:; l and S (a) = b. s,,(_,

Thus, by choosing a suitable polynomial OUT(x), each individual terminating

computation of Scan be defined by a quantifier-free first-order formula of

L(E) of the form

COMPs,l(x) = COMPs,l(x,y) A y = OUT(x)

n
in the sense that for each A, and all a EA

8

A I= COMP O (a) if, and only if, 1 S (a) 1 ~ l and S (a) = OUT (a) • s,,(,,

2. PROGRAMMING SYSTEMS AND DETERMINATENESS

Algorithms are written in a definite program formalism and are designed

to compute functions over a definite data type semantics. The equation

algorithms= programs+ data types

is a slogan implicit in this investigation in the sense that we use PROG(E)

to fix the assignment, control and memory mechanisms available for the en­

coding of algorithms while the semantics of the data type primitives named

in I are fixed by a class K of relational structures of signature I or some

extension r => I.

A pair [K, PROG(E)] we call a programming system.

This first model of progrannning systems sees them as small scale program

languages with a fixed range of data type primitives which are given an al­

gebraic semantics. One can imagine that these programming systems are real­

ised in some general purpose program language - by implementing their basic

operators by functional procedures without side effects, for example. But

nothing is actually assumed of their data types' syntactic definition or

abstract specification, at least not at this point in our paper. Incidental­

ly, the meaning of "algebraic semantics" here is exactly that in the current

progrannning methodology literature: the semantics of data types are modelled

by many-sorted algebras. (Our decision to work with "essentially" single­

sorted program languages and their single-sorted interpretations is more a

matter of notational convenience than technical necessity.)

For SE PROG(E) and Ka class of relational structures of signature

r => I, the first-order partial correctness theory of S with respect to al­

gebraic data type semantics K is defined to be the set of preconditions and

postconditions for asserted programs

PCK(S) = { (a,f3): a,f3 E L(r) and for each A E K, A I= fo}S{f3}}.

The second clause of the definition we abbreviate K 1= {a}S{f3}.

For P,Q E PROG(L), we say that P and Qare K-equivalent if for each

A EK, P =A Q. And this we abbreviate P =K Q.

The first-order partial correctness theories are said to determine

program equivalence, and therefore the input-output semantics, for the

programming system [K, PROG(I)], if for every P,Q E PROG(I)

This last property is what we take as the principal technical issue in

formulating Floyd's thesis and, mathematically, this paper is given over

to its study for various K. We shall refer to it as the determinateness

property for the system [K, PROG(I)].

DETERMINATENESS FOR A GENERAL PURPOSE PROGRAM LANGUAGE

9

The correctness theories determine the input-output semantics of the

general purpose program language PROG if they determine the input-output

semantics of every specialised programming system1 it fathers. We take the

"sum" of the determinateness problems for all the [K, PROG(I)] to be the

determinateness problem for PROG.

In this formulation, the theoretical value of the determinateness

property for PROG depends upon that of the formal model of a programming

system. Since we are not yet assuming any conditions on our data type clas­

ses, the current determinateness property for PROG is enormously strong:

the correctness theories are asked to determine program equivalence for some

far-fetched examples of programming systems which PROG cannot implement.

Nevertheless our first theorem, Theorem 3.1, will establish determinateness

for PROG at this level of generality and in an apparently reasonable way.

Indeed, the main objection to relying on the type of correctness theory

used in that result is its surprising power.

It is more usual to see the semantical theory of PROG based on the

pairs [ALG(I), PROG(I)] where ALG(I) is the species of all I-structures;

this is the path taken by MEYER and HALPERN [28], for example. We do not

take up this option because it misrepresents the relationship between the

programming systems and the general language in which they are realised.

10

Moreover, we think it misrepresents the role played by data types in the

proof theory that must be considered and so creates a misleading impression

of the determinateness question for PROG. Of course, these issues can only

be properly considered in the hindsight of Section 4.

SOME EXAMPLES

Consider a programming system [K, PROG(I)] whose data type semantics

has been defined uniquely up to isomorphism, the case of singleton classes

K = {A} containing all I-structures isomorphic to some representative struc­

ture A. This is one of the standard situations considered in the algebraic

specification theory for data types where it is assumed that the semantics

of a data type is modelled by an algebra finitely generated by initial ele­

ments named in its signature; such structures are called minimal because

they contain no proper substructures. It is very easy to show

2.1 LEMMA. Let A be a minimal structure of signature I. Then for any

p I Q E PROG (I)

An immediate corollary of Lemma 2.1 is that the partial correctness

theories determine program equivalence for PROG over the standard model of

arithmetic N. N we take to be the structure with domain the set of natural

numbers w, with the operations of successor, addition, and multiplication,

with zero as distinguished constant, and with the ordering of was a basic

relation. The signature of N we write I 'th" ari
Lemma 2 • :1 also applies to the so cal led prime rings :iZ and :iZ, and the n

prime fields:~ and Q. The following proposition is designed to generate
p

some equally simple counter-examples to determinateness without minimality.

2. 2 LEMMA. Leit K be a class of I-structures satisfying these two properties:

there is s E PROG(I) such that (i) for each A EK, S computes an automorphism

of A, and (ii) there exist A EK and a EA where S(a) f,. a. Then the first­

order partial correctness theories fail to determine program equivalence for

PROG (I) over K.

11

PROOF. Let P be the S hypothesised and let Q be a program for the identity

map. Condition (ii) asserts that P iK Q and we shall show PCK(P) = PCK(Q).

Assume for a contradiction that these sets do not coincide: let (a,S) lie

in PCK(P) but not in PCK(Q), say. Using the facts that P,Q always compute

total functions and that Q computes the identity we know that

for each A E K, a E A, A 1= a (a) -+ SP (a) , and

for some BEK, b EB, B "]# a(b)-+ S(b).

The second property implies B 1= a (b) A 7S (b) and so we know that B I= a (b)

and B IF S (b), B 1= SP (b). But P computes an automorphism cf> of B and since

B is first-order we get a contradiction from the fact that B I= S (x) if,

and only if, B 1= Sep (x) for any x.

The second case, where (a,S) E PCK(Q) - PCK(P), is equally easy to

check. Q.E.D.

Here are some examples where PROG(r) can be seen to loose determinate­

ness on its straight-line programs.

2.3 FINITE FIELDS

Let F be a finite field of characteristic p. Then cp(x) =~is a field

automorphism of F. If Fis not ZZ then cf> is not the identity. So take K
p

to be any class of finite fields of characteristic p containing at least

one GF(pn) for n # 0,1; in particular take K = {GF(pn)} with n # 0,1.

(Remember that PROG is determined over K = { ZZ } •) See PARIKH [31 J in con-
p

nection with this example.

2.4 LINEAR ALGEBRA

An involution* of a (not necessarily commutative) ring R is an auto-
** morphism such that for all r ER, r = r. Take K to be any class of rings

with involution containing at least one R where the involution is not the

identity. For example, let K contain the complex number field C with complex

conjugation a+ib-+ a-ib. Or let K contain the ring of 2x2 matrices over a

field with the symplectic involution defined (a b)* = (d -b).
C d -c a

12

The determinateness problem for programming systems of the form [A,

PROG(E)] does not admit the clear cut solution suggested by Lemmas 2.1 and

2.2, however. Minimality is, indeed, an obvious condition to place on the

interpretations which arise in the study of data type semantics and specifi­

cations. It st.ands between the simple idea that one wants names in the sig­

nature E of a specification (E,E) of a data structure A for initial values

which generate the structure A,and the concept of initiality (say) which is

a mathematical expression of how (E,E) specifies A:see ADJ [15]. But it is

misleading when one considers the specification theory of data types in the

wider context of programming systems as is done in Sections 5 and 6. There

minimality disappears because the semantics of the proof systems one needs

depends upon all the models of its specifying axioms ALG(E,E). The obvious

example is ordinary arithmetic. It is trivial to give a concise algebraic

axiomatisation of~, but the proof theory one needs for arithmetic computa­

tions on N is unavoidably that based on Peano-like axioms as data type speci­

fications and all their models as the data type semantics; Section 6 is

devoted to this example.

TECHNICAL PRELIMINARIES

The definition of K-equivalence consists of two clauses: P =K Q if,
. n

and only if, (1) for each A EK and all a EA such that P(a)+ and Q(a)+,
n

P(a) = Q(a) in A, and (2) for each A EK and all a EA, P(a)+ if, and only

if, Q(a)+. The first condition should naturally be called weak K-equivalence

(cf. [24]), the second we call K-convergence equivalence. We denote these

relations by= and= K respectively. From these two notions we make two
WK C

determinateness properties:

The partial correctness theories are said to determine weak equivalence

for PROG(E) over Kif for any P,Q E PROG(E)

The partial correctness theories are said to determine convergence

equivalence for PROG(E) over Kif for any P,Q E PROG(E)

13

2.3 LEMMA. The program correctness theories determine program equivalence

for PROG(r) over Kif, and only if, they determine both weak and convergence

equivalence over K.

Let A be a structure and let a 1, ••• ,an EA. Then adjoining these ele­

ments a 1, ••• ,an to A as distinguished constants makes a new structure

denoted (A,a1 , ••• ,an).

A closed program Sis one without any uninitialised variables.

2.4 CONVERGENCY LEMMA. Let K be a class of structures of common signature

rand let r c r. The following condition is sufficient for the partial cor­

rectness theories to determine convergence equivalence for PROG(r) over K.

For any finite extension of r by constants, r(g) = ru{g1, ••• ,gn}, and

for any closed program S over reg), if S diverges on some algebra in K then

there is a sentence A, first-order over r(g), which is satisfied in some

algebra in Kand such that for any A EK and a 1 , .•• ,an EA, (A,a1 , ••. ,an)

F e ➔ s+.

PROOF. Assuming the condition holds we are to prove that for any P,Q E PROG(r)

So, contrapositively, suppose that P,Q are r-programs for which there exists
n A EK and a= (a1 , ••• ,an) EA where P(a) converges but Q(a) diverges (say).

Let]P(a) I= t and define a new program abbreviated by

S(x) - if COMPP,t(x) then Q(x) else STOP fi

Notice that S has signature rand, moreover, it does not require program­

ming features beyond those assumed for P,Q. (This is because a straight-line

program over r can be written to decide COMPP,t(x).)

Adding the new constants g1 , ••• ,gn tor we create the closed program

s(g) over reg) by replacing input variable xi of S with constant gi,

1 ~ i ~ n. By hypothesis, (A,a1 , ••• ,an) 1= S(g)+. And applying the condition

we get a sentence 0 which is first order r(c) and K-consistent and which
=

14

implies the divergence of S(~) throughout K. Let 00 (x) be 0 with each con­

stant c. replaced by variable x., 1 ~ i ~ n.
=i i

We claim: (0o(x), false) E PCK(Q) - PCK(P).

The pair cannot lie in PCK(P) because whenever e0 (x) is true S(x)

diverges and, by definition, P(x) converges and {00}P{false} is not true.

On the other hand {e0 }Q{false} is valid for K because e0 (x) is true implies

Q(x) must diverge. Q.E.D.

3. DETERMINATENESS VIA EXTENDED SEMANTICS

Consider a typical programming system [K, PROG(I:)] wherein K is any

class of E-structures. Our first project is to show that a conservative

and uniformly definable extension of the assertion language and its seman­

tics enables the partial correctness theories to determine program equival­

ence at this level of generality.

Let I: 'th= {o, SUCC, ADD, MULT, ORDER} be the signature of arithmetic
ari

assumed disjoint from LA structure B, of signature I: u E 'th' is a (formal)
ari

arithmetical expansion of a E-structure A if the E-reduct of Bis isomorphic

to A.

Let AE(K) denote the class of all arithmetical expansions of all al­

gebras in K.

3.1 BASIC EXTENSION THEOREM. Let K be any class of E-structures. Then for

any P,Q E PROG(E)

PCAE(K) (P) = PCAE(K) (Q) implies P -K Q

Let us first consider the positive aspects of Theorem 3.1 and postpone

our reservations until after its proof.

This theorem is, indeed, a striking result in faviour of Floyd's thesis,

especially when one sets the weakness of first-order assertion languages

against the strength of PROG and the generality of K. As far as the input­

output semantics of PROG(E) is concerned, the two programming systems are

identical: each SE PROG(I:) is interpreted by the same class of I-structures

and over each such structure S computes the same function. If K is specified

15

by first-order axioms over r, or if K is specified by algebraic axioms in

conJunction with initial algebra semantics (ADJ [15]), then·, in both cases,

precisely these axioms over r u r 'th uniquely characterise AE(K). Indeed, ari
Theorem 3.1 is "best possible" in the sense that a result for arbitrary K

cannot avoid the use of hidden functions in the assertion language; we have

seen this in Lemma 2.2. And, in any case, it is known in the algebraic

theory of data types that.to specify all the data types one wants it is

necessary (and sufficient) to use hidden functions from the language set

aside for the purpose.

In MEYER and HALPERN [28] the role of our Theorem 3.1 is played by

their Theorem 4.1.

PROOF OF THE BASIC EXTENSION THEOREM

Let P,Q E PROG(L). Observe that p -K Q if, and only if, p -AE(K) Q:

we shall prove that

PCAE(K) (P) = PCAE(K) (Q) implies p =AE(K) Q.

First consider convergence equivalence. By the Convergency Lemma 2.4,

it is sufficient to examine closed programs over finite extensions by

constants of r. Lets be a closed program over r(g) where g = <g 1, ••• ,gn).

Suppose A E AE(K) and that for a 1, ••• ,an EA we have (A,a1, ••• ,an) I= st.

we shall construct a sentence e first-order over r(__ c) u r 'th which is ari
satisfied on (A,a1 , ••• ,an) and such that for each BE AE(K) and each

b 1, ... ,bn EB

Now if A is finite then the· r-substructure of A generated by a 1, ••• ,an

is finite and can be defined, up to isomorphism, by a first-order sentence

0(£) over E(£). This 0(g) is trivially satisfied on (A,a1, ••• ,an) and, using

the Locality Lemma 1.1 and the Invariance Lemma 1.2, it is easy to show for

any B E AE (K) and any bl,. •• ,bn E B that if (B,bl, ••• ,bn) 1= 0 (g) then

(B,b1 , ••• ,bn) I= st. Therefore, we may take 0(~) to bee. (Notice no hidden

16

functions were required here.)

Assume A is infinite. We define a unary formula N, first-order over

L 'th by ari

N(x) - 3y.SUCC(y) = x

Without loss of generality it can be further assumed of A that

(i) A = {a EA: Al= N(a)} is a Lu L 'th substructure of A and contains
N ari

(ii)

<a1, ••• ,an>; in a nutshell,~ is a L(g) u Larith substructure of

(A,a1 , ... ,an).

The reduct ~I~ . is isomorphic to N.
'-'arith

This transformation is easy to arrange. First fix that <a1, ••• ,an> (is or)

lies in a countably infinite L-substructure X of A. Then define O, SUCC, ADD,

MULT on X and A-X such that~= X.

Since (A,a1 , ... ,an) 1= St, for each t E w, A 1= 7COMPS,t(~). And the

next step is to formalise an arithmetisation of COMPS,t(~) in the first-
t

order language of L(=c) u L 'th" Fort E w we denote by t the term SUCC (0) ari =
over L 'th" ari

3.2 REPRESENTATION LEMMA. Let r be any signature and let {0t(x): t E w} be

a recursively enumerable sequence of open formulae of L(r) with variables

x = (x 1 , ..• ,xn). Then there exists a sentence 'I' and a formula 0(y,x) in

the first-order language of r u L 'th such that ari

(i) 'I' is true in any r u L 'th structure A in which~= {a EA: ari
3y.SUCC(y) = a} is a r u L 'th substructure of A and A IL ~ ~;

ari N arith
(ii) for each t E w, 'I' 1- N(x1) A ••• A N(xn) + [et(x) +4 0(~,x)].

We do not stop to prove this lemma as its argument is a rather straight­

forward adaptation of the proof of the representability of the recursive

functions in arithemtic.

Applying the Representation Lemma 3.2 with r = L(£) and e = 7cOMPs t(£)
- t , -

we choose appropriate 'I' and 0(y) = 9(y,~), first-order over L(~) u Larith"

By our choice of A, we can get from the lemma that (A,a1, ••• ,an) 1= 'I' and

so

Therefore, (A,a1 , ••• ,an) 1= 9(~,;;> for every t E w.

The sentence we require is

0 - 1 A Vy.[N(y) + 9(y,£)]

we now verify the local condition of the Convergency Lemma 2.4. 0 is

clearly first-order over r(c) u r 'th and is consistent by its construe-= ari _

17

tion. Suppose B E AE (K) and b 1 , ••• ,bn E B are such that (B,b1 , ••• ,bn) I= 0.

Then (B,b1 , ••• ,bn) ·1= 0 (~,~) for all t and, using

we may deduce that

(B,b1 , ••• ,b) 1= At 7cOMP t (c) n EW S, =

which means the program diverges.

We now consider how the partial correctness theories determine weak

equivalence for r-programs over AE(K)~

Let P,Q E PROG(L) and let A E AE(K). Suppose that for a= (a1 , ••• ,an)

E An, P(a) and Q(a) converge to distinct values. Taking IP(a) I= k and

IQ(a) I= l we define the difference formula

It is now straightforward to separate the correctness theories of P and Q

with the pair (a,B) defined by

a(x) DIFF(x) A A~ [sf(i) (0) = x.J
- i=l i

B (y)

wherein f(i) = (µj)[aj=ai]. We leave to the reader the task of verifying

18

(a, 8) E PCAE (K) (P) but (a, 8) i PCAE(K) (Q). Q.E.D.

Although we accept Theorem 3.1 as a respectable theoretical statement

about Floyd's thesis we also see it as a reference point which dictates a

refinement of the analysis to be in order. This refinement we organise

around the question Under what circumstances can the hidden functions be

eliminated? It is the proof of the theorem itself which forces this opinion.

The argument rests on the remarkable definability properties of the recur­

sive functions on the natural numbers: rather than internalising or imitat­

ing this number-theoretic machinery within the semantics of the programming

system that is given, we have simply expanded the semantics to make use of

it. (If we had applied this technique solely to the [ALG(E), PROG(E)] then

we would have obscured its power and, for that matter, its technical struc­

ture.) Undermining the satisfactory features of Basic Extension Theorem 3.1,

documented prior to its proof, is the feeling that stronger, and still

fairly general, results are possible and that, in particular, these results

would be more illuminating even if they are no more conclusive as far as

the viability of Floyd's principle is concerned. Certainly, Theorem 3.1

seems to say as much about the power of the recursion-theoretic equipment

as it does about the semantical problems involved.

4. ELIMINATING HIDDEN FUNCTIONS

This section is devoted to proving the following theorem, the most

difficult to be found in our paper.

4.1 THEOREM. Let Ebe any signature except one containing exclusively unary

relations and at most one unary function symbol. Then for any P,Q E PROG(E)

Mathematically, Theorem 4.1 represents the fate of the plausible ob­

servation that one has only to internalise the arithmetic mechanisms, seen

in the proof of Theorem 3.1, to rid oneself of the hidden functions: it can

almost be done, but only when there are no requirements placed on the data

type semantics. To this we add the conjecture:

4.2 CONJECTURE. For those signatures of the kind explicitly ruled out in

the hypothesis of Theorem 4.1 the conclusion of that theorem is false.

19

Those readers who prefer to conceive of the semantical theory of PROO

as being determined by programming systems [ALG(E), PROG(E)] should attach

quite some weight to Theorem 4.1 and to th~ open problem represented by

Conjecture 4.2. (Remember:· any program naming only the constant zero, the

successor function, and some unary boolean conditions. for an arithmetical

computation is left uncovered by Theorem 4.1.) Although the theorem has less

bearing on Floyd's principle in the context of our own analysis, its proof

is of great technical interest when contrasted with the proof of Theorem

3.1.

Theorem 4.1 appears, in a slightly weaker form, as Theorem 7.2 in

MEYER and HALPERN [28].

PROOF OF THEOREM 4.1

The plan of the argument is this. We begin by proving determinacy for

weak equivalence. The proof of determinacy for convergency is based upon

the Convergency Lemma 2.4 and it divides into a singular case, in which E

contains one unary function symbol and some constants, and the usual one of

those signatures remaining. The argument for the usual case is, indeed, in­

volved and we take it next leaving the singular case as a loose end to con­

clude the section.

4.3 LEMMA. Let Ebe a signature containing at least one function symbol.

Then the partial correctness theories determine weak program equivalence

on ALG(E).

PROOF. Suppose there is a E-structure A and a= (a1, ••• ,an) E An such that

P(a)- and Q(a) converge to distinct values. Let 1P(a)1 = k and IQ(a) I= l
and define the difference formula

20

where x = (x1, ••• ,xn). It is sufficient to make a first-order definition

over I of some x = (x1 , ... ,xn) for which DIFF(x) holds throughout ALG(I)

and to show consistency. We will construct unary formulae ¢1, •.• ,¢n such

that

is consistent. This done, it is easy to check that the pair (a,S) defined

by

a (x) - tP (x) , S (x)

lies in PCI(P) = PCALG(I) (P) but not in PCI(Q) = PCALG(I) (Q).

We will first construct a I-structure B which is to witness the con-

sistency of tP. Let f be a k-ary operation of A. The structure Bis simply

A with this operation f redefined along its diagonal.

The computations P(a) and Q(a) take place within the subsystem <a> of
n

A generated by a= (a1 , .•. ,an) EA (Locality Lemma 1.1). Let X c <a> be

the set of all elements appearing in either of these computations. Now

choose some u E A-X and ½n(n+l) distinct elements {b .. : 1 s i < j s n} from
k iJ

A - xu{u]. Define g: A ➔ A by

g(y1,·••1Yk) f(y 1, •.• ,yk) if Yi ,;, y, for some 1 s i, j s n
J

= a. if y = b ..
J 1J

= f (y' •.• 'y) if y E X and f(y, ... ,y) E X

= u if y E X and f(y, ••• ,y) i X

= u if y = u

= y otherwise.

Replacing f by gin A makes B. We now leave to the reader the task of veri­

fying what remains of the proof on taking

- 3z1 , ... ,z.[A z :f,ztA A 73z.f(z, ... ,z) =
1 lss<tsi s 1sjsi

z, A
J

A f(z., •.. ,z.)
1<"<" J J -J-1

= x. J.
1

Q.E.D.

21

4.4 LEMMA FOR THE USUAL CASES. Let I be (a finite extension by constants of)

a signature containing at least two functions or at least a function of

arity greater than one or a unary function and a relation of arity greater
.:;,

than one. Then for any closed program S over I, if for some A E ALG(I)

A F s+ then there is a sentence <I>, first-order over I, which is consistent

with ALG(I) and such that ALG(I) F <I> -+ s+.

PROOF. The proof of the lemma is based upon the argument for convergency

in the proof of the Basic Extension Theorem 3.1 where arithmetic syntax

is adjoined to obtain K-consistent formulae implying convergence for closed

programs throughout K. The pleasant feature there is that the arithmetic

required in no way interferes with the computations considered since the

programs make reference only to operations prescribed for K. Here, however,

we are to make available comparably strong, but internal, mechanisms. our

techniques to do this have some set theory in the role of arithmetic and

will make full use of the freedom to manoeuvre, model-theoretically, char­

acteristic of ALG(I).

We will formulate the machinery in general terms using a 2-sorted

first-order language destined to be interpreted in L(I) with the result

that the bulk of the proof will then rest on Lemma 4.5 about its specifi­

cation and its interpretation. After Lemma 4.5 we have to show that each

signature I admits an appropriate interpretation, a task which depends on

the composition of the signature and cannot be made uniform.

Let r be any single-sorted signature. This we expand to a 2-sorted

signature r 2 by adding tor a new sort called SET, and renaming by DOM

the original (implicit) sort of r, together with the binary relations€

and CODE of sorts SET x SET and SET x DOM respectively. Given A E ALG(f2)

we denote by AjDOM the r-reduct of A and by AjSET the {SET,E}-reduct of A.

The first-order language L(r2) over r 2 has two kinds of variables

ranging over sorts DOM and SET respectively although we drop the super­

scripts whenever confusion seems unlikely. We assume, for brevity, the

languages L(f) and L(r2) use only the connectives 7, v and the quantifier

3.

22

Now an interpretation of L(f2) in L(f) is determined as soon as formulae

of L(f) are chosen to define predicates for each sort and to define the rela­

tions E and CODE. Suppose we are given four formulae of L(f), say the list

I= {Q (x),QS(x),Q (x,y),Q (x,y)}. This list I determines an interpretation
D E C

HI: L(f2) + L(f) in an obvious way:

I D
H (x.) = X

i 2i
I S

H (X.) = x 2 . l
1 1+

I I I
H (f(t1 , ... ,tk)) = f(H (t1), ..• ,H (~))

rs s rs rs
H (x. Ex.) = Q (H (x.),H (x.))

1 J E 1 J
I S I S I

H (CODE(x.,t)) = Q (H (x.),H (t))
1 C 1

HI(~v,) = HI(~) V Hr(,)

HI(7~) = 7HI(~)
I D

H (3x .. <P) =
1

I
3x2i.(QD(x2i) AH (~))

I S
H (3xi.~) = 3x2i+1·<%(x2i+1) A HI(~))

where f is a k-ary operation of r, t,t1 , •.. ,tk are r-terms; and~., are

formulae of L(r 2).

We are able to prove Lemma 4.4 for precisely those signatures L which

admit interpretations HI satisfying the hypothesis of the following general

lenuna.

I
4.5 LEMMA. Let 0 be a sentence of L(f) and let H be an interpretation of

L(f 2) into L(f) which together satisfy these two conditions:

(1) Given any closed program S over r which diverges on some r-structure

there exists a r-structure A where A l= 0 and A 1= St .

(2) For any sentence, of L(r2) whenever 0 A, is consistent with respect

to ALG(r2) then HI(0A,) is consistent with respect to ALG(f).

Then given any closed program S over r which diverges somewhere in ALG(f)

there exists a sentence~ of L(r) which is consistent with respect to ALG(f)

and ALG(r) F ~ + St.

23

PROOF. Let S be a closed program over r diverging somewhere in ALG(r). By

condition (1) we can choose an A E ALG (r) on which S di verges and A I= 0.

Let M(0) be the subclass of ALG(r) composed of those algebras satisfying 0.

Using the arguments for convergence in the proof of the Basic Extension

Theorem 3.1, we may find a sentence 4> 0 , first-order over r u E 'th' such
ari

that

ALG (r u Earith) n M (0) J= q>O -+ St

and 4> 0 is there consistent.

From 4>0 we shall construct a sentence~ of L(r2) such that

(i) 0 A~ is ALG(r 2} consistent and ALG(r 2) 1= ~-+ st.
Therefore, HI(0A~} is ALG(r} consistent, by condition (2), and we may take

I
4> = H (0A~) and prove

(ii) ALG(r) 1= q> -+ St

which completes the argument for the lemma.

First of all let us prove this latter statement (ii) assuming~ to

have been constructed and that it satisfies statement (i).
I Suppose A E ALG(r) satisfies 4> = H (0A~}. We extend A to a r 2-

structure B by adding {a EA: AF Q5 (a)} as a set-theoretic domain and

defining E and CODE for B by QE and Qc. Now for every sentence o E L(r2}

B ·1= o if, and only if, A F HI (o) •

Therefore, B I= 0 A ~ and, by condition (i}, B 1= st which means B I=
B I= Ak 7COMP S k. Applying HI to this formula, and using the fact that

I EW ,
H (7COMP S, k) = 7COMP S ,k, we deduce A 1= St.

We now construct~ from 4> 0 and prove statement (i). Here is a technical

lemma whose proof is a tedious exercise in axiomatic set theory which we

take the liberty of omitting.

4.6. LEMMA. Let~ be a finite signature and let o be a sentence of L(~}.

Then there is a sentence panda formula q(x} of the first-order language

of Zermelo-Fraenkel set theory L(ZF) such that

(a} ZF I- p.

24

(b) If B 1= p then for b E B, B 1= q (b) if, and only if, b is a fl-structure

which satisfies the sentence o.

This lemma we apply to fl= r u Earith and o = cf>o A 0 to obtain appropriate

p and q(x). Let~ be a sentence, first-order over r 2 , which expresses the

following property of a r 2-structure B:

"If p and 3x.q(x) are true of B then for some b E BlSET' q(b) holds

and CODE restricted to {b' E B1SET: b' Eb} x BlDOM is the graph of

a r-isomorphism b + Bl 00M."

We set~= p A 3x.q(x) A~ and aim to show this~ is ALG(r2)-consistent

and that ALG (r 2) 1= ~ + st.

Consider consistency. we seek a r 2-structure C satisfying~- For that

part of C of sort DOM we choose any B E ALG (r u E • th) such that B I= cf>o.
ari

For the set-theoretic part of C we take any model of Zermelo-Fraenkel set

theory containing an element b which is in fact a r u E .th-structure iso-
ari

morphic to B. And, to complete the construction of C, we define CODE as the

graph of any function which restricted to bis a r-isomorphism b + B. It is

easy to verify C 1= ~.
Consider divergence. Let A be any r 2-structure with A 1= 0 A~- Choose

a E A I SET such that A 1= q (a). As A 1= p we know a is a r u Earith-struc­

ture which satisfies cf>0 • As ALG(f u Earith) n M(0) I= cf>0 + st we know

a I= St. But CODE, under these hypotheses, represents an isomorphism

a+ Al and, therefore, S diverges on A.
DOM

This concludes the proof of Lemma 4.5.

To complete the argument for the usual cases is a matter of defining

interpretations HI for the various signatures and proving true of them the

two hypotheses of Lennna 4.5. We give two representative cases:

(i) E contains one binary function f and a constant c.

Here take 0 - 3x,y.[xh A Vx.3y(f(y,y) = x)]

- 3y.f(y,y) = X

Q (x,y)
E

= 73y.f(y,y) = X

- xh A f (x,y) = c

Qc(x,y) - X = f(y,y)

(ii) E contains two unary functions f,g.

Here take 0 = Vx3y.f(y) = x

Let Q(x) = 73y.f(y) = x and define

Q8 (x) - 3y.(Q(y) A f(y) = x)

QD(x) - 7Q(x) A 7Q (x)
s

QE(x,y) - 3z. (Q (z) A f (z) = X A g (z)

Q (x,y) - f (x) = y.
C

25

= y)

Q.E.D.

4.6 LEMMA FOR THE SINGULAR CASE. Let I be (a finite extension by constants

of) a signature containing exactly one unary function and let K be any class

of I-algebras which is closed under taking subalgebras. Then for any closed

program S over I, if for some A E K A 1= St then there is a sentence c/>,

first-order over I, which is consistent with K and such that K I= c/> ➔ st.

PROOF. Assume S = S(~) is a closed program over I involving~= (~1 , •.. ,~n)

and that A E K is such that A l= st when ~ is interpreted by a = (a1 , ... ,an).

We make a special decomposition of the subalgebra <a1 , ••. ,an> of A. For f

the unary operation of A and for any a EA and k E w define

and then

i
orbk(f,a) = {b EA: 3i < k, f (a) = b}

Thus, <a 1 , ,an> = orb(f,a1) u ... u orb(f,an). There arises just a few pos­

sible types of orbit in this decomposition of interest to us, illustrated

in the figure below: (i) orb(f,a.) is finite;
l

(ii) orb(f,a.) is infinite
l

and meets no other orbit; (iii) orb (f,a.)
l

is infinite but intersects some

orb(f,a.). In this third case notice that if b E orb(f,a.) n orb(f,aj) then
r J s rlk s+k

f (a.) = b = f (a.) for some r,s and hence for all k, f (a.) = f (a.).
l J l J

u
case (i)

t7
case (ii) ------------------4------ -----------

case (iii)

26

Choose k0 so large as to bound the cardinalities of the finite orbits and

the finite parts of intersecting orbits which remain distinct; set

U = Uk~k0orbk(f,ai)

i~n

we aim to represent this subalgebra structure in a first-order sentence

over r.

Then

Let

Let Ube defined by the formula

U(x) = V. <k x
3:-- 0
J~n

i = f (c.).
=]

Let R define all equalities and inequalities in U in this way: set

r(½) =

T (i, j ,p,q) =

fl. (c) I =p

R = A. . <k T (i, j , p, q)
:,J- 0
i,q~n

fj (c)
=q

fj (c)
=q

if fi(a) = fj (a) in A p q

otherwise.

W = (Vx)[7u(x)+f(x)::/x A 7U(f(x)) A Vy,z.[f(y)=f(z)=x-+y=z]J.

And choosing those aA , •• : ~aA such that for all b E U, f (b) I aA. (1~ i ~ t)
1 t 1. we define

Let cf> = R A W A V. We claim cf> to be K-consistent and that K l= cf> + s+.

The consistency of cf> follows from its construction from <a1, ••• ,an> and the

hypothesis that subalgebras of K-algebras are again K-algebras. To obtain

K l= cf> + s+ one proceeds as follows. Let B E K and B l= cf>. Let B' be the

subalgebra of B generated by the elements of B named by the constants ins.

One can now show that B' 1= cf> implies B' is isomorphic to <a1, ••• ,an>.

27

Therefore, S diverges on B' by Invariance Lemma 1.2, and so B F St by Local­

ity Lemma 1.1. The proof of the isomorphism we leave to the reader. Q.E.D.

Given some sympathy for our conception of a programming system, the meth­

ods used to internalise the hidden operators of Theorem 3.1 which go into

the proof of Theorem 4.1 can be seen as an abuse of the semantical compo­

nents of Floyd's thesis. Underlining our reservations about modelling the

semantics of PROG through [ALG(E), PROG(E)] is the fact that this view of

a general programming language sees these techniques as quite acceptable.

5. FLOYD'S PRINCIPLE AND PROGRAMMING SYSTEMS WITH SPECIFICATIONS

In Sections 2,3 and 4 we have achieved our first objective of provid­

ing a fairly thorough account of the determinateness problem for a liberal

model of a programming system and, by extension, for a liberal formulation

of the determinateness problem for a general purpose programming language.

Certainly, with our current definitions, we have exhausted the implications

of the determinateness problem for Floyd's thesis. We are now to start on

a second analysis, one which forgets about general programming languages

(and so parts company with MEYER and HALPERN [28]) and is carefully tailored

to specialised programming systems. Of course, we know from our Basic Ex­

tension Theorem 3.1 that some hidden functions in the assertion language

and an expansion of the data type semantics of the programming system will

settle the problem at once. our objective here is to think through the

issues without recourse to the remarkable, but extrinsic, powers of recur­

sion-theoretic definability theory. Instead, we will take as a guide certain

reasonable assumptions about modelling a programming system with a limited

field of application. Our main idea is that the data types of such a prog­

ramming system must be syntactically specified and that its specification

(E,E) has an essential role to play in the construction of any proof theory

for partial correctness in the system. This new parameter, the specifica­

tion, allows us to search for new information about Floyd's principle through

more delicate mathematical experiments in the style of algorithmic logic.

In this penultimate section, we present a new technical exegesis of the

determinateness problem which is designed to overcome the hasty counter-

28

examples assc,ciated with Lemma 2.2. After this, we encorporate specifica­

tions into the models of programming systems and prove some basic results

about determinateness in these new systems. In the last subsection, we care­

fully analyse several programming systems made to handle arithmetical com­

putations.

THE DETERMINJ!,TENESS PROBLEM FOR PROGRAMMING SYSTEMS REVISITED

We circumvent Lemma 2.2 with a new definition of partial correctness

theories talrnn from MANNA [24, pp.164].

Let SE PROG(I) have named input variables x = (x1 , .•• ,xn) and out­

put variable y. For a= a(x) and B = B(x,y), formulae of L(I) having x and

y as their free variables, we call {a}S{B} an i/o asserted program - i/o

reads input-output, of course - the semantics of which is defined by

n
A I= {a}S{ B} if, and only if, for all a E A ,

AF a(a) ➔ [(S(a)+ & B(a,S(a')) v S(a)t]

where A is a I-structure.

For SE PROG(I) and Ka class of I-structures, the new first-order i/o

partial correctness theory of S over K is defined to be the set of precon­

ditions and postconditions for i/o asserted programs

I/O-PCK(S) = {(a,13): a,B E L(I) and for each A EK, A F {a}s{B}}.

Let us postpone any comments on this modification until we have seen what

it achieves. Lemma 2.2 now disappears from the discussion:

5.1 TERMINATION LEMMA. Let K be any class of I~structures. If P,Q E PROG(I)

define total functions on each A EK then

I/O-PCK(P) = I/O-PCK(Q) implies P -K Q.

PROOF. Suppose p =K Q and let A EK, a E An be such that P(a) -:/= Q(a) in A.

Assume P(a) terminates int steps. By the Definability Lemma 1.3, we can

encode the computation P(a) into the fonnula COMP t(x) and polynomial P,
OUTP,t(x) over L(E) so that for any b E An, A 1= COMPP,t(b) if, and only

if, IP(b)1 ~ t and P(b) = OUTP,t(b). Define

It is easy to check that (true, 0(x,y)) lies in I/0-PCK(P) but not in

Q.E.D.

29

Thus, the i/o correctness theories determine the semantics of the

everywhere terminating programs of any programming system (without recourse

to hidden functions). Indeed, when the two kinds of correctness theory are

compared, one finds that it is the issues to do with convergence which

distinguish them.

Let A= {(a,8): a= a(x), 8 = 8(y) E L(E)} the set of all preconditions

and postconditions for assertions. Then

and so

5.2 LEMMA. Let K be any class of E-structures. For any P,Q E PROG(E), if

I/0-PCK(P) = I/0-PCK(Q) then PCK(P) = PCK(Q).

That the converse of Lemma 5.2 is false follows from Lemma 2.2 and 5.1, of

course. The following basic connections between the correctness theories -

all to do with termination properties - we prove in an appendix. Recall

the Convergency Lemma 2.4; this now becomes

5.3 LOCALISATION LEMMA. Let K be any class of E-structures. The following

statements are equivalent:

(i) for all P,Q E PROG(E),

(ii) for any finite extension of Eby constants, E(g) =Eu {g1, ... ,gn},

30

and for any closed program S over EC£), !f S diverges on some algebra

in K then there is a sentence 0, first-order over EC£), which is

satisfied in some algebra in Kand such that for any A EK and

a 1, ••• ,an EA, CA,a1 , ••• ,an) 1= 0 + s+.

In stating the next results we bring in the i/o total correctness

theories: let K be any class of E-structures and let SE PROGCE). Define

I/0-TCK(S) = {(a,$): for all A EK, a E An, A f= a(a) + [S(a)+ A B(a,S(a))]}

5.4 LEMMA. Let K be any class of E-structures. For any P,Q E PROG(E), if

I/0-TCK(P) = I/0-TCK(Q) then

5.5 LEMMA. There exists a class Kand programs P and Q for which

The decision to use the PCK(S) 's.at the start of our investigation was

made so as to conform with the standard practice of the literature on partial

correctness (APT [1]); and these are the correctness theories used by MEYER

and HALPERN [28]. The change to the i/o correctness theories is dictated by

Lemma 2.2, but it hardly represents a less natural means of formulating

Floyd's principle to require assertions to remember inputs when speaking of

outputs. Indeed, Lemmas 5.1 and 5.3 suggest the opposite to be true. We

should also say that using i/o correctness theories from the beginning would

only have weakened our Basic Extension Theorem 3.1 and made not a guilder's

worth of difference to the difficulty of proving Theorem 4.1.

PROGRAMMING SYSTEMS WITH SPECIFICATIONS

We are now going to consider programming systems [K, PROG(E)] with K

a class of E-structures syntactically defined by a set of axioms from a data

31

type specification language. This language we take to be L(E) with its usual

semantics in model theory, that based on Tarski's notion of satisfaction.

Thus, our programming systems will be entirely syntactic objects of the form

[(E,E), PROG(E)], where Eis a set of sentences of L(E), and their input­

output semantics will be based on K = ALG(E,E), the class of all E-structures

satisfying the axioms in E; such Kare called first-order axiomatisable

classes.

How does this description connect with those of the literature on the

syntax and semantics of data types? All current work on data type specifica­

tion uses first-order specifications (E,E) and their semantics ALG(E,E).

However, it is there common to want to define the meaning of (E,E) as a

particular structure in ALG(E,E), unique up to isomorphism. This arises

quite naturally from the widely held informal view of data types as objects

composed of different kinds of data domains on which are prescribed a number

of primitive operations: the meaning of a data type T becomes an algebraic

structure A(T) and a specification (E,E) of type Tis accepted as correct

if its semantics is an algebra A(E,E) isomorphic to A(T). At best, logical

semantics is able to define structures uniquely up to elementary equivalence

only and this is far weaker than isomorphism. Thus, in working with data

type specification problems in isolation, one refines the satisfaction se­

mantics of (E,E) to (usually) its initial algebra semantics (ADJ [15]) and

(sometimes) its final algebra semantics ([6, 35]) whose purpose it is to

pick out a structure from ALG(E,E) as the meaning of (E,E). The nature of

these new semantic mechanisms need not concern us here though it is useful

to point out that they impose conditions on the syntactical structure of

the axioms E: the axioms are usually required to be equations or conditional

equations. (A partial explanation of this is Corollary 3.2.5 in CHANG &

KEISLER [7].) The crucial point, then, in assessing the relevance of our

treatment of data types, lies not with the essentially algebraic problem

of the correctness of data type specifications, but with the logical prob­

lem of proving partial correctness for programs relying on these specifica­

tions, independently of whether they are correct or not.

Mathematically, the proof theory of partial correctness for [(E,E),

PROG(E)] must be built up from first-order components: assertions from L(E)

with the axiom oracle for the Rule of Consequence taken as Thm(E,E), the

32

set of all sentences of L(E) provable from the axioms of Eby the rules of

first-order logic. Whatever the data type semantics intended for the program­

ming system through the specification (E,E) might be, the proof theory for

partial correctness is obliged to deal with the satisfaction semantics

ALG(E,E) as that of the programming system.

Our formal model of a programming system allows an equally perspicuous

description of the standard treatment of Hoare's logic initiated by COOK [2]

where the words data type and specification are not mentioned. There, one

gives general rules of inference for the control structures of PROG(E) and

completes the construction of the proof system by fixing an interpretation

A and taking Th(A) as the axiom oracle for the Rule of Consequence. This

corresponds to our description of the canonical Hoare logic of the program­

ming system [(E, Th(A)), PROG(E)] where Th(A) acts as a data type specifica­

tion. But the semantics of (E,Th(A)) is not the singleton class {A~; it is

the class ALG(E,Th(A)) which contains many structures not isomorphic to A.

The fundamental example of this is provided by the standard model of arith­

metic~, of course.

To return, for a moment, to the situation for algebraic specifications,

the best that can be arranged is a partition of the specification into an

algebraic part (E,EA) which correctly defines the data type semantics A,

uniquely up to isomorphism by, say, initial algebra semantics, together with

a proof theoretical part (E,E~) chosen to make up the proofs of the correct­

ness of programs of interest. This E~ must be a subset of Th(A), and for the

intended system [A, PROG(E)] the strongest proof theory possible will be

that of [ALG(E,Th(A)), PROG(E)].

So it is then, that the study of the determinateness problem must

contend with complex model-theoretic classes as representing the semantics

of data types even when addressing computations on essentially simple minded

data types such as arithmetic.

We will now consider determinateness for programming systems with (1)

arbitrary first-order data type specifications; (2) algebraically styled

specifications; and (3) complete first-order specifications which cover the

(E,Th(A)) specifications described above.

33

GENERAL FIRST-ORDER SPECIFICATIONS

The i/o correctness theories fail to determine program equivalence not

only for the first-order specified programming systems in general but for

those with algebraic specifications and for those with complete first-order

specifications. Thus, here we begin by proving a useful structural fact

about the determinateness problem.

5.6 COUNTABILITY LEMMA. Let K be a first-order axiomatisable class of E­

structures and let K0 be the subclass of K composed of all its countable

structures. Then for any P,Q E PROG(E)

p - Q if, and only if, P -Ko

Moreover, for any SE PROG(E),

I/O-PCK (S) = I/O-PCK(S).
0

K Q.

To obtain this we look again at the local structure of computations.

Let K be any class of E-structures. A E-structure A is said to be

locally a K-structure if each finite subset of A is contained within a E­

substructure of A which belongs to K; write L(K) for the class of all local­

ly K-structures.

5.7 LEMMA. Let K be a class of E-structures. Then for P,Q E PROG(E)

P -L(K) Q if, and only if, P _K Q.

PROOF. Now P =L(K) Q implies P =K Q because Kc L(K). Conversely, assume

P =K Q. Let A EK and consider an arbitrary computation of P,Q on a=

(a1 ; ... ,an) E An. If Bis a substructure of A containing {a1 , ... ,an} then,

by the Locality of Computation Lemma 1.1,

P(a) =A Q(a) if, and only if, P(a) _8 Q(a).

Thus, p -K Q implies p -L(K) Q. Q.E.D.

34

PROOF OF LEMMA 5.6. Obviously, P =K Q implies P -Ko Q as Koc K. By Lemma

5.7, P =Ko Q implies P =L(Ko) Q: we show that Kc L(K0). Let A EK and

a 1, ••• ,an EA. From a Downward L8wenheim-Skolem argument (for example,

Theorem 3.1.6 in CHANG & KEISLER [7]), we may deduce there is a countable

elementary substructure A0 of A containing a 1 , ••• ,an which is a K-structure

as K is axiomatisable. Since A0 E K0 we have that A E L(K0).

With regard to the last statement of the lemma, note that I/O-PCK(S) c

I/O-PCK (S) because K0 c K. Assume for a contradiction that (a,S) lies in
0

I/O-PCK (S) but not in I/O-PC (S). Consequently, there is A EK and a E An
0 K

such that A 1= a (a) and P (a)+ but A I# S (a,P (a)). Since P (a)+ we can first-

order express this computation:

Again by the Lowenheim-Skolem Theorem, there is a countable elementary sub­

structure A0 of A where

From this it follows, from propositional manipulations and the locality of

computations, that (a,S) t I/O-PCK (S)~ the required contradiction.
0

ALGEBRAIC SPECIFICATIONS

Q.E.D.

Algebraic specifications are the simplest of the first-order specifica­

tions. This operates in their favour as far as the theory and practice of

specifying data types is concerned, but against the needs of the subsequent

proof theory. We will show that the i/o correctness theories fail to deter­

mine program equivalence for a very simple programming system with an al­

gebraic specification.

5.8 THEOREM. Let Ebe a signature composed of two unary functions f,g and

a constant. Let K be the class of all E-structures satisfying the equations

fg(x) = gf(x) = x.

35

Then there exist flow-chart programs P,Q E PROG(E) such that

The simplest possible counter-example is ruled out by the Singular

Case Lemma 4.6 and the next simplest candidate is represented by our Con­

jecture 4.2. Having two function symbols with no axioms as a counter-example

is ruled out by the Usual Case Lemma 4.4, so the variety defined in Theorem

5.8 is probably the best for our purpose. Notice that under their initial

algebra semantics the equations define the integer arithmetic

(22:; o, x+l, x-1).

PROOF OF THEOREM 5.8. Let P compute the two argument projection function

P(x,y) = x throughout K. For Q we require that

Q(x,y) - {X
- undefined

if <x> or <y> is finite or x E <y> or y E <x>

otherwise.

Given the defining equations for K, it is straightforward to design a flow­

chart program to play the role of Q. Clearly, P tK Q.

Assume~, for a contradiction, that the i/o correctness theories are

distinct. Since I/0-PCK(P) c I/0-PCK(Q), let a= a(x,y) and 8 = (x,y,z) E

L(E) such that

K F {a}Q{ 8} and K I# {a}P{B}.

Applying the known properies of P and Q, these expressions simplify to

K F a(x,y)-+ [(Q(x,y)+ A B(x,y)) v Q(x,y)t]

K ~ a (x,y) -+ 8 (x,y).

Set y(x,y) = a(x,y) A 78(x,y) and observe that for each A EK, a,b EA

A J= y (a,b) implies Q (a,b) t

36

and, therefore,

A 1= y(a,b) implies <a> and are infinite, and a I.. , b I.. <a>.

Our hypotheses allow us to choose such an A EK and elements a,b EA and it

is to this step we find a contradiction by means of the Compactness Theorem,

Theorem 1.3.22 in CHANG and KEISLER [7].

Let L = L(I) and add to it a constant symbol~ to obtain L(g). Then

(A,a) != y (~,b) and for each b E (A,a), (A,a) != y (~,b) implies Q(a,b) t.

Set T = Th(A,a), the set of all sentences of L(~} true in (A,a). Next

we add a new constant symbol~ to L(~) and define the following set of

sentences from L(g,~):

T' {7y(g,~), " is infinite", "~ i <g>"}

It is easy to express the statements in quotation marks given the special

definition of K.

By a routine application of the Compactness Theorem, the set of sen­

tences Tu T' can be shown to have a model BEK. In such a B there are

elements a,b,c such that

B != y (a,b) and B != 7y (a,c) .

We now use the following fact which is easy to prove from the specifica­

tions of K: if A EK and a,b,c EA are such that and <c> are infinite,

and a,b,c do not appear in one another's subalgebras, then there is. some

cf> E Aut(A) for which cf>(a) = a and cf>(b) = c. Therefore, b,c EB can be ex­

changed, by an automorphism fixing a, in the pair of valid formulae above.

And this is the sought for contradiction. Q.E.D.

COMPLETE FIRST-ORDER SPECIFICATIONS

By a complete axiomatisable class we mean the class K = ALG(I,E) of

all models of a first-order theory (I,E) having the property that for every

sentence cf> of L(I) either cf> or 7cp is provable from E. By an w-categorical

37

axiomatisable class we mean an axiomatisable class K = ALG(L,E) having the

property that any two countably infinite models in Kare isomorphic.

Complete classes arise in two ways. First, the implicit specifications

(L,Th(A)) in Hoare's logic are complete first-order theories; this is ob­

vious. Secondly, the familiar numerical data types w, the reals IR and com­

plex numbers C have natural first-order axiomatisations (L,E) in the theories

of Presburger Arithmetic,·real closed fields and algebraically closed fields,

all of which are complete.

Programming systems whose data type semantics form such classes are

particularly well characterised by their complete first-order specifications

from the points of view of both proof theory and the theory of their count­

able models (see Section 2.3 cf CHANG & KEISLER [7]; notice how several

kinds of models distinguished by their morphism properties prove to be unique

up to isomorphism). We will prove

5.9 THEOREM. Let K be a complete axiomatisable class of L-structures and let

P,Q E PROG(L). Then the following properties are equivalent.

(i) I/O-PCK(P) = I/O-PCK(Q);

(ii) for some countable A E K, p = Q; A
(iii) for some countable A E K, I/O-P~A(P) = I/O-PCA(Q).

Yet, the i/o-correctness theories fail to determine program equivalence for

complete cl~sses. In the next section we will prove the following important

fact:

5.10 THEOREM. Let K be the class of all L 'th structures elementary equiva­_ari
lent to the standard model of arithmetic~- Then there exist P,Q E

PROG(L 'th) such that ari

Determinateness for complete classes can be neatly expressed in terms

of a logic of effective definitions LED developed by TIURYN in [33] where

it is equivalent to the condition on a class being ~-LED complete.

Assuming the truth of Theorem 5.9 it is easy to obtain this positive

result about w-categorical axiomatisable classes, however.

38

5.11 COROLLARY. Let K be an w-categorical axiomatisable class of E-structures

having an infinite element but having no finite elements. Then for any

P ,Q € PROG (E}

PROOF. Assume the correctness theories coincide. By the las-Vaught Test

(Theorem 3.1.10 in CHANG & KEISLER [7]}, K is complete. By Theorem 5.9

there is a countably infinite structure A EK such that P =A Q. Let K0 be

the class of all countable K-structures. Since each structure in K0 is iso­

morphic to A we know that P =Ko Q. Thus, by the Countability Lemma 5.6,

Q.E.D.

PROOF OF THEOREM 5.9. First we prove that (1) implies (2). Now for A EK,
n P =A Q if, and only if, for no a EA any one of the following are true:

(i) for some k,l € w, A I= COMPP,k(a} A COMP l(a} Q, A OUT k (a) P, -f OUTQ,l(a);

(ii) for some k, A 1= COMPP,k(a) and for all l E w, A IF COMPQ,l(a);

(iii) for some l, A 1= COMPQ,l(a) and for all k E w, A IF COMPP,k (a)

Clearly (i) is irrelevant for, in the presence of the hypothesis I/O-PCK(P) =
I/O-PCK(Q), when P and Q converge their outputs must coincide. Thus, we

rephrase the situation as follows: let

Then for any A EK, P =A Q if, and only if, no a E An satisfies or realises

either one of the types TP,k(x), TQ,l(x}. (This is standard terminology in

model theory. }

To prove (2) we look for some countable A EK which omits these types.

Because K is complete we can apply the Extended omitting Types Theorem

(Theorem 2.2.15 in CHANG & KEISLER [7]} so that it is sufficient to prove

K locally omits these types.

Suppose, for a contradiction, that TP,k(x} is locally realised. Then

there is a formulae consistent with Kand such that

K F 0(x) + COMPP,k(x) and K F 0(x) + 7coMPQ,l(x) for le: w.

We claim the contradiction that (0(x), false) lies in I/0-PCK(Q) but not

in I/0-PCK (P). This is easy to see: let A e: K, a e: An. If A F. 0 (a) then

Q(a)t and hence

A F 0 (a) + [Q (a)+ A false] v Q (a) t.

39

Thus K F {0}Q{false} and since, trivially, A F 0(a) entails P(a)+ we have

K I# {0}P{false}. Applying the same argument to TQ,l(x) shows all the types

are locally omitted and the implication is proved.

Now, that (2) implies (3) is obvious. And we conclude with a lemma

which demonstrates that (3) implies (1).

5.12 LEMMA. Let K be a complete axiomatisable class of E-structures and let

Se: PROG(E). Then for each A e: K

PROOF. Since A e: K, I/0-PCK(S) c I/0-PCA(S). For the reverse inclusion,

suppose for .a contradiction that the 1:.heories are distinct. There exist

formulae a. = a. (x), 13 = 13 (x,y) such that A F fo}s{ 13} but for some B e: K,
n be: B we have S (b)+ and B F a.(b) A 713(b,S (b)). Let IS(b) I = t and define

Now, clearly, B F 0 (b) and B I= 3x. 0 (x) • Since K is defined by a complete

theory Ewe have E ~ 3x.0 (x). Therefore, as A r=E, we have that AF 3x.6(x)

which by the construction of 0 contradicts A F fo}S{ 13}. Q.E.D.

6. ARITHMETIC PROGRAMS

The programs of AP= PROG(E 'th) we will henceforth call arithmetic
ari

programs. The purpose of arithmetic programs is to compute recursive func-

tions on the set wand, semantically, it seems reasonable to insist that

one's interest in them is confined to the (unspecified) programming system

40

[~,AP] where~ is the standard model of arithmetic. This is not acceptable,

however. Although we know, from Lemma 2.1, that the correctness theories

determine program equivalence for [~,AP] we also know that Hoare logics

for partial correctness do not operate without some £irst-order specifica­

tion of~ acting as an interface between data type and proof theory. Thus

the extensive collections of proof rules for programming constructs and the

studies of their completeness properties in the monograph BE BAKKER [3],

for example, pertain not to [~,AP] but to [CNT,AP] where CNT is the class

of all models of Th(~), so called complete number theory. Here, of course,

we have natural Hoare logics which are complete and so syntactically define

the correctness theories but, in their turn, the correctness theories fail

to determine program equivalence (Theorem 5.10 which we prove here). Even

if this latter state of affairs were not the case then the fact that the

specification Th(~) is not even arithmetical, having Turing degree ow,

forces a difficult compromise with our expectations about data type speci­

fications.

Let us consider an alternate method of casting arithmetical computa­

tions in the form of a programming system. As is well-known, the class WP
of all while-programs can compute all recursive functions on w using a set

of primitives smaller than r .th; it is sufficient to user= {o,succ}.
ari

The axioms of Presburger over r form a·specification (L,E) which is re-

cursive, complete and whose set of consequences is even decidable. Let

PrA = ALG(r,E). The first difficulty encountered by Floyd's principle is

that [PrA,WP(r)] fails to possess any reasonable Hoare logic which is sound

and complete for proving partial correctness (see BERGSTRA & TUCKER [5]).

Having introduced, and discounted, CNT and PrA as candidates ~it to

support arithmetical computation in a programming system, there is but one

more first-order specification which ought to be tried: Peano's axioms.

Let PA denote the class of all models of Peano arithmetic. Most regrettably,

we have been unable to prove that the i/o-correctness theories determine

program equivalence over PA. Thus, our first task is to offer an open prob­

lem and an opinion:

6.1 CONJECTURE. For any arithmetic programs P,Q

41

We can provide, however, the following partial result.

Let TI 1 (~_) be the set of all universal first-order sentences over L arith
true in the standard model of arithmetic~- Now let K be the subclass of

those models in PA which, in addition, satisfy TI 1 (~). Clearly, CNT is a sub­

class of K.

6.2 THEOREM. For any arithmetic programs P,Q

I/O-PC A(P) = I/O-PC (Q) implies P =K Q. P PA

Before proving Theorem 6.2, we shall explain why it is of any interest

in these discussions. First, observe that it is easy to show

6.3 THEOREM. For any arithmetical programs P,Q

So the point at issue it that there is interesting information to be had

about programs computing on N by considering their behaviour over K. This

next theorem will show that programs on~' equivalent up to their input­

output semantics over~, can be detected as operationally distinct over N

from the inequivalence of their input-output semantics over K.

6.4 THEOREM. Let P,Q be arithmetic programs. Suppose that P =N Q but_ that

P 1K Q. Then the relative run times of P and Q over N are unbounded in the
n

sense that for any t E w there exists an input a EA such that

1 P (a) 1 1 Q (a) I
]Q(a)1 + 1P(a) I > t.

n
PROOF. First suppose that for some_A EK, a EA it is the case that P(a)+,

Q(aH- but P(a) :/: Q(a). Let IP(a) 1 = k and IQ(a) I = l so that

Now since all of TI1 (~) is satisfied in A,

42

whence it follows that P,Q differ somewhere on N. As this contradicts

P =N Q we may assume that for some A EK, a E An it is the case that P(a)i

l
Define e 0 (x) _ COMP (x) A A. 7COMP (x). If, again, IP(a)I = k

k, ,t.. P, k 1= 1 Q, i
then for each l E w, A l= · 3x. ek,l (x). As this is an existential sentence

and A l= ,r 1 (~) we deduce that ~ F 3x. ek,l (x) for each l E w. Given t

choose any k,l E w such that l > tk and choose a E ~n such that ~ F ek,l (a).

Then

IP Ca> I
IQ ca> 1

+ IQ(a> I
IP (a) I

~ IQ(a> I > ;!;_ > tk t
IP(a) I - k k = • Q.E.D.

PROOF OF THEOREM 6.2. Contrapositively, assume P tK Q. If P tN Q then we

are done by Theorem 6.3; so assume P =N Q. This is the hypothesis of Theo­

rem 6.4 and, using its proof, we may further assume that somewhere in K, P

converges whilst Q diverges. Moreover, we can choose k E w such that for

all l E w, ~ F 3x. ek,l (x) where ek,l (x) is the formula defined above.

Let ~(z) be a formula such that (i) 3z.~(z) is satisfied somewhere in

PA; and (ii) for any M E PA, m E M if M F ~ (m) then m is a non-standard

element of M. Such a formula exists by Godel's Incompleteness Theorem.

There are now two cases to the proof, one of which must hold since

3z.~(z) is consistent with PA. Let COMPQ(y,x) be a first-order representa­

tion the sequence {COMP 0 (x): l E w}.
Q,,t..

CASE 1: 3z.[~(z) A 3x[COMPP,k(x) A (Vy< z). "lcOMPQ(y,x)]] is satisfied in PA.

Then we claim that with

a(x) - 3z.[~(z) A COMPP,k(x) A (Vy< z). 7cOMPQ(y,x)]

S(x) - false

we have PA 1= fo}Q{S} but PA I# fo}P{S}. To see the first asserted program

is valid is to notice its precondition can be satisfied, in which case it

implies the divergence of Q. To see the second asserted program is not valid

is to notice its precondition implies the convergence of P.

43

CASE 2: Vz.[¢(z} + Vx.[COMPP,k(x) +(Vy< z). COMPQ(y,x)]] is satisfied in PA.

Let H(x) stand for "the least y, if any exist, such that COMPQ(y,x)".
n

Assuming, M E K, m E M and M I= ¢ (m) then for any a E M ,

and sup{H(a): MF COMPP,k(a)} exists. Let this supremum be defined by formu­

la yt(s). Def.ine a.(x) = 3z.qi(z) A 3s.[yk(s) A (Vy< s). 7COMPQ(y,x)].

We claim that PA I= {a.}Q{false} but PA ~ {a.}P{false }. Consider the

first asserted program. The formula yk(s) entails thats exceeds the lengths

of all computations of Q on inputs satisfying COMP k(x). In particular, s P,
exceeds all standard numbers as these computations may have arbitrarily

large standard lengths on standard inputs. It follows that the precondition

implies Q diverges and we are done.

On the other hand, the second asserted program is invalid in PA because

3x.a.(x) is satisfied and the precondition implies the convergence of P. Q.E.D.

To illustrate, in another way, the dependence of our problem on the

specifications and the semantics they determine, we shall fix two arith­

metic programs and consider their correctness theories through 4 changes

of programming system. Let

P(x) - X := 0

Q(x) - while x-:/- 0 do x := PRED(x) od

where PRED is the name reserved for the predecessor function on ~-.Clearly,

P =N Q. Let 1: 1 = {O,PRED} c Earith" For any class K of E1-structures we

have

On the other hand, it is easy to think of K where P tK Q because Q need

not terminate. In the 4 systems to follow this will be so, but the correct­

ness theories will not always remain distinct. This exercise with the vac­

illations of determinateness is a miniature of our study of specifications.

44

6.5 EXAMPLE: TRIVIAL SPECIFICATIONS

Consider P,Q as belonging to the system [(E 1,¢), PROG(E 1)J and set

K = ALG(E) the class of all E1-structures. When we studied "trivial" prog-
1 1

ramming systems in Section 4 we were unable to settle determinateness in

this case (remember Conjecture 4.2). However, the correctness theories of P,Q

are distinct, if for no in~eresting reason: set a(x) = {x#0 A PRED(x) = x}.

Since for A E K1, a E A, A I= a (a) forces Q (a) to diverge we have

Kl I= fo}Q{false} but Kl ~ fo}P{false}.

6.6 EXAMPLE: ALGEBRAIC SPECIFICATIONS

Set E2 = E1u{succ}. We will turn our integer specification of Tneorem

5.8 into a Horn formula specification of the natural numbers with successor

and predecessor. Let Ebe the set of axioms

PRED(0) = 0

X # 0 ➔ PRED(X) # X

SUCC(X) # 0

SUCC(X) # X

PRED(SUCC(X)) = X

X # 0 ➔ SUCC(PRED(X)) = X.

The proof of Theorem 5. 8 may be adapted, in a simple way, to prove the

correctness theories of P and Q coincide.

6.7 EXAMPLE: PEANO ARITHMETIC

Consider P,Q as belonging to the system [PA,AP]. Although determinate­

ness for this system is open it is easy to prove the correctness theories

of P;Q are distinct. First note that P,Q differ on precisely the non-stan­

dard models in PA. By G8del's Incompleteness Theorem, there is a formula a(x),

consistent with PA, such that for M E PA, m E M, M I= a (m) implies m is non­

standard. It follows that

PA -1= fo}Q{false} but PA ~ {a}P{false}

6.8 EXAMPLE: COMPLETE NUMBER THEORY

Consider P,Q as belonging to the system [CNT, AP] where CNT is the

subclass of PA composed of those arithmetics satisfying Th(~). We will

prove that

I/0-PCCNT(P) -·I/0-PCCNT(Q)

which also proves Theorem 5.10.

Suppose, for a contradiction, the correctness theories are distinct.

It is, by now, easy to see how to choose a formula a(x), consistent with

CNT I such that for M E CNT, m E M, M I= a (m) implies Q (m)t. As Th(~) is a

complete theory, Th(~) 1- 3x. a (x) and ~ I= 3x. a (x) • Thus, there is n E N

such that Q(n)t which by the definition of Q is impossible.

REFERENCES

[1] APT, K.R., Ten years of Hoare's logic, a survey, F.V. Jensen, B.H.

45

Ma.yoh & K.K. M¢ller (eds.), Proceedings from 5th Scandinavian

Logic Symposium, Aalborg University Press, Aalborq, 1979, 1-44.

[2] DE BAKKER, J.W., Recursive procedures, Mathematical Centre Tracts 24,

Mathematical Centre, Amsterdam, 1973.

[3] , Mathematical theory of program correctness,Prentice­

Hall International, London, 1980.

[4] BANACHOWSKI, L., A. KRECZMAR, G. MIRKOWSKA, H. RASIOWA, A. SALWICKI, An

introduction to algorithmic logic, Banach Centre Publications 2

(1977) 7-99.

[5] BERGSTRA, J.A. & J.V. TUCKER, The field of algebraic numbers fails

to possess even a nice sound, if relatively incomplete, Hoare­

like logic for its while - programs, Mathematical Centre,

Department of Computer Science Research Report IW 136, Amster­

dam, 1980.

46

[6] BROY, M., w. DOSCH, H. PARTSCH, P. PEPPER & M. WIRSING, Existential

quantifiers in abstract data types, in H.A. Maurer (ed.)

Proceedings Sixth International Colloquium on Automata, Lan­

guages and Programming, Springer-Verlag, Heidelberg, 1979, 73-

87.

[7] CHANG, C.C. & H.J. KEISLER, Model theory, North-Holland, Amsterdam,

1973.

[8] COOK, S.A., Axiomatic and interpretative semantics ror an ALGOL

fragment, Technical Report 79, Department of Computer Science,

University of Toronto, 1975.

[9] , Soundness and completeness of an axiom system for program

verification, SIAM J. Computing 7 (1978) 70-90.

[10] DIJKSTRA, E.W., A discipline of programming, Prentice-Hall, Englewood

Cliffs, New Jersey, 1976.

[11] ENGELER, E., Algorithmic logic, in J.W. de Bakker (ed.) Foundations

of computer science, Mathematical Centre Tracts 63, Mathematical

Centre, Amsterdam, 1975, 57-85.

[1~:J FENSTAD, J.E., General recursion theory: an axiomatic approach,

Springer-Verlag, Berlin, 1980.

[13] FLOYD, R.W., Assigning meaning to programs, in J.T. Schwartz (ed.),

Mathematical aspects of computer science, American Mathematical

Society, Providence, Rhode Island, 1967, 19-32.

[14] FRIEDMAN, H., Algorithmic procedures, generalized Turing algprithms,

and elementary recursion theory, R.O. Gandy & C.M.E. Yates

(eds.), Logic colloquium, '69, North-Holland, Amsterdam, 1971,

316-389.

[15] GOGUEN, J.A., J.W. THATCHER & E.G. WAGNER, An initial algebra approach

to the specification, correctness and implementation of abstract

data types, in R.T. Yeh (ed.) Current trends in programming

methodology IV, Data structuring, Prenctice-Hall, Engelwood

Cliffs, New Jersey, 1978, 80-149.

47

[16] GREIBACH, S.A., Theory of program s~ructures: schemes, semantics, veri­

fication, Springer-Verlag, Berlin, 1975.

[17] HAREL, D., First-order dynamic logic, Springer-Verlag, Berlin, 1979.

[18] HENNESSY, M., A proof system for the first-order relational calculus,

J. Computer and Systems Science 20 (1980) 96-110.

[19] HOARE, C.A.R., An axiomatic basis for computer programming, Communica­

tions ACM g (1967), 576-580.

[20] , Procedures and parameters: an axiomatic approach,

E. Engeler (ed.), Symposium on the semantics of algorithmic

languages, Springer-Verlag, Berlin, 1971, 102-116.

[21] HOARE, C.A.R. & P. LAUER, Consistent and complementary formal theories

of the semantics of programming languages, Acta Informatica 3

(1974), 135-155.

[22] HOARE, C.A.R. & N. WIRTH, An axiomatic definition of the programming

language PASCAL, Acta Informatica 2 (197], 335-355.

[23] MANNA, z., The correctness of programs, Journal of Computer and System

Sciences 3 (1969), 119-127.

[24] -----, Mathematical theory of computation, McGraw-Hill, New York,

1974.

[25] MEYER, A.R., Letter to J. Tiuryn, 6th April 1979.

[26] -----, Letter to J. Tiuryn, 16th May 1979.

[27] MEYER, A.R. & I. GREIF, Specifying program language semantics: a

tutorial and critique of a paper by Hoare and Lauer, Proceed­

ings Sixth ACM Syposium on Principles of Programming Languages,

ACM, New York, 1979, 180-189.

[28] MEYER, A.R. & J.Y. HALPERN, Axiomatic definitions of programming

languages. A theoretical assessment, Proceedings Seventh ACM

Symposium on Principles of Programming Languages, ACM, New York,

1980, 203-212.

[29] MOLDESTAD, J. & J.V. TUCKER, On the classification of computable func­

tions in an abstract setting, in preparation.

48

[30] MOSCHOVAKIS, Y.N., Abstract first-order computability I, Transactions

American Mathematical Society 138 (1969) 427-464.

[31] PARIKH, R., Some applications of topology to program semantics, to

appear in Mathematical Systems Theory.

[32] SCHWARTZ, R., An axiomatic semantic definition of ALGOL 68, UCLA-ENG-

7838, University of California at Los Angeles, Los Angeles,

1978.

[33] TIURYN, J., Logic of effective definitions, RWTH Aachen Department

of Computer Science Research Report 55, Aachen, 1979.

[34] TUCKER, J.V., Computing in algebraic systems, in F.R. Drake & S.S.

Wainer (eds.) Recursion theory, its generalisations and applica­

tions, Cambridge University Press, Cambridge, 1980.

[35] WAND, M., Final algebra semantics and data type extensions, J. Computer

and Systems Science, 19 (1979) 27-44.

49

APPENDIX

In this appendix we prove the Localisation Lemma 5.3 and Lemmas 5.4,

S.S.

PROOF OF THE LOCALISATION LEMMA 5.3

Remember that the Convergency Lemma 2.4 said that the local condition

(ii) in the statement of Lemma 5.3 on a class K was sufficient for the partial

correctness theories PCK(S) to determine program equivalence over K. By Lem­

ma 5.2, the condition is sufficient for the i/o correctness theories.

Assume the i/o correctness theories determine program equivalence over

the class K. Let S be a closed program over the signature I(£) =IU{£i•···•£n}

and suppose S diverges somewhere in K. We must make a trivial case distinc­

tion between n f O and n = O.

Let n f O and lets= s 0 (£i•···•~n) where s 0 (x1 , .•. ,xn) is a program

over r with uninitialised input variables x 1, ••• ,xn. We define P,Q E PROG(I)

as programs abbreviating

P(x1 , ••. ,xn) = x 1

Q (x1 , ••• ,xn) = if s 0 (x1 , ••• ,.xn) + then x 1 else DIVERGE fi

Clearly, P tK Q since Pis everywhere convergent whereas Q is not because s 0

diverges by hypothesis. By their definition, I/O-PCK(P) c I/O-PCK(Q) thus

the determinateness assumption (i) implies there is a pair of formulae a,S

such that

K F . fo }Q{ S} but K ~ fo}P{ S}

The first-order sentence 0 required in condition (ii) is

the consistency and divergence property of which are easy to check. Q.E.D.

50

PROOF OF LEMMA 5.4

Lemma 5.3 yields one implication immediately without recourse to the

hypothesis that the i/o total correctness theories agree.

Assume P,Q to be programs over Kand that I/0-TCK{P) = I/0-TCK{Q). We

shall deduce that

Contrapositively, suppose there is some a= a{x), 13 = 13(x,y) such that

K F fo}P{ 13} and K f# fo}Q{ 13}.

n
Choose some A EK and a EA scuh that Q{a)~ and

A I= a (a) A 713 (a,Q (a)) •

Using the Definability Lemma 1.3 we can express the computation Q(a) in the

first-order formula COMPQ,t(x) and polynomial OUTQ,t(x) fort= IQ(a) I:

A 1= COMPQ (a) and A 1= COMPQ t(b) implies Q(b) = OUT (b). ,t , Q,t

Notice that the pair

Consider now the pair

(COMPQ t(x) A 713(x,OUT (x)), false) , Q,t

Obviously, this pair does not belong to PC (Q) because it is invalid
K

on our chosen A. However it does lie in PCK(P). To see this let BEK and
n

b EB and assume

51

The hypothesis on i/o total correctness theories implies

Thus P(b) = OUTQ,t(b) from which we may deduce

B 1= COMPQ,t(b) /\ 7B(b,OUTQ,t(b)) ➔ [(P(b)+ /\ false) v P(b)t]

Since Band b were arbitrarily chosen we are done. Q.E.D.

PROOF OF LEMMA 5.5

We want a class Kand program P,Q over K whose i/o partial correctness

theories agree but whose i/o total correctness theories are distinct. Example

6.7 will do nicely. The programs there defined over Peano Arithmetic we show­

ed to have the same i/o partial correctness theories. To see that their i/o

total correctness theories are not the same observe that (true,true) lies in

I/O-TCK(P) but not in I/O-TCK(Q). Q.E.D.

