stichting
mathematisch |
centrum MC

AFDELING INFORMAT LCA IW 148/80 OKTOBER
(DEPARTMENT OF COMPUTER SCIENCE)

H.B.M. JONKERS
DESIGNING A MACHINE INDEPENDENT STORAGE MANAGEMENT SYSTEM

Preprint

kruislaan 413 1098 SJ amsterdam

Lot Gl PR

Printed at the Mathematical Centrne, 413 Kuwislaan, Amstendam.

The Mathematical Centre , founded the 11-th of February 1946, 48 a non-
progit imstitution aiming at the promotion of pure mathematics and Lts
applications. 1t is sponsored by the Netherlands Government through the
Netherlands Onganization fon the Advancement of Pure Research (Z.W.0.).

1980 Mathematics subject classification: 68B20

ACM-Conputing Reviews category: 4.12, 4.49

*
Designing a machine independent storage management system

1

by

H.B.M. Jonkers

ABSTRACT

A systematic method of designing a storage management system for a
machine independent language implementation is described. It is based on
constructing an abstract model, which contains exactly the information
relevant to storage management and no more than that. The model allows
the problem to be approached in a rigorous and transparent way, up to a
level of formality where proofs of correctness are possible. The
effectiveness of the method is demonstrated in the design of a storage

"management system for a machine independent ALGOL 68 implementation.

KEY WORDS & PHRASES: storage management, machine independence,

abstract machine, abstract model, invariant

* .
)This report will be submitted for publication elsewhere.

1. INTRODUCTION

A usual way to obtain a portable implementation of a programming
language L is to construct a compiler C, which translates programs in L
into code for an "abstract ﬁachine" M [3]. The latter is a hypothetical
machine, which is designed in such a way that it is easily implementable on
a large class E of existing machines. Given the compiler C, the job of an
implementer is then, apart from installing C, to implement M on his
particular machine M*. I1f M* € E, this involves only a minor overhead. The
price to be paid for portability is thus kept to a minimum.

In each implementation of a programming language the problem of
storage management must be solved. Let us consider this problem in the
context of the above approach to programming language implementation. A
first way to "solve'" the problem is to shift it off to the implementer of
the abstract machine M. This implies that the operations which have to do
with storage management are kept abstract in M, much like the way they are
kept abstract in the programming lamguage L. The advantage of this approach
is twofold. First, the problems of code generation and storage managemént
are separated entirely. The designer of the code generator need not engage
‘in the details and intricacies of a storage management system. This greatly
simplifies the design of the code generator. Second, each implementer can
design a storage management system of his own. Since he can tune this
storage management system to his particular machine, it will probably be
quite efficient. On the other hand the design and implementation of a
storage management system may involve a considerable overhead in the
implementation of the abstract machine M. This, of course, is in
contradiction with the requirement that M should be easily implementable.

The way out is not to change the abstract machine M, but instead
provide it with a standard storage management system written in a subset of
the instruction code of M. Such a storage management system can be viewed
as an implementation of those instructions of M, which relate to storage
management, in terms of simpler instructions of M. The two advantages
mentioned above are retained this way. Code generation and storage
management remain separated, and each implementer is still free to design

his own storage management system. If the overhead of designing and

implementing a storage management system is considered to be too large,
however, the standard storage management system can be used. The only
remaining disadvantage is thaty because the standard storage management
system is machine independent, it is probably not optimally efficient on
each existing machine. A cafeful design of the system may remove a great
deal of this objection.

This paper addresses the problem of designing a (standard) storage
management system as described above. It will be demonstrated by means of
an example how this problem can be tackled in a systematic way. The example
is not artificial. It is taken from the construction of the ALGOL 68 [11]
compiler which is currently being developed at the Mathematical Centre. In
this compiler the above approach is pursued. The abstract machine used in
this compiler is called the "MIAM" ('"Machine Independent Abstract Machine'")
[9] . The treatment will be such that no knowledge of either ALGOL 68 or the
MIAM is required.

Let us first discuss the problem in general terms. The nature of a
storage management system to be designed for an abstract machine depends to
a large extent on the operations which are performed by the abstract
‘machine. The first thing to do therefore is to investigate which
requirements are imposed by the abstract machine on a storage management
system and also which properties of the abstract machine can be used to
make the storage management system more efficient. For any but simple
abstract machines this is a complicated job. The point is that one easily
gets mixed up in all kinds of details of the abstract machine, which are
completely irrelevant to the storage management problem. The only way to
avoid this is to bring about a '"'separation of concerns'". That is, an
abstraction of the abstract machine should be made, which contains only
those details of the abstract machine which are or may be relevant to the
storage management problem. In such a (usually rather rudimentary) model of
the abstract machine the problem of storage management can be studied in
isolation, which makes the problem much more transparent.

Apart from the latter, there are a number of additional advantages.
First of all a storage management system designed this way is in a sense

generally applicable. It cannot only be used with the abstract machine it

was designed for, it can be used with any other machine that "fits" the
model. So it is machine independent in a double sense. The second advantage
is that it aids to a modularization of the process of compiler
construction. Through the model the storage management problem can be
presented to someone (e.g.‘a specialist in designing storage management
systems), who need not know anything of the programming language or
abstract machine in question. Finally it allows a nontrivial storage
management system to be discussed as in this paper, without perishing in a

host of implementation details.

As mentioned before the method will be demonstrated through the design
of a machine independent storage management system for the abstract machine
MIAM, which is used in a machine independent ALGOL 68 implementation. In
the next section the model of the MIAM will be described (after which one
can forget about the MIAM completely). Then the storage management problem
will be formulated in section 3. Finally the design of an efficient machine

independent storage management system will be described in section 4.

2. MODEL

Let us first look at the data structures which MIAM programs operate
upon. Considered at the lowest level these data structures are merely
pleces of storage. Here a more abstract look will be taken at them. They
will be considered as abstract objects, which are called areas. Different
areas correspond to disjoint pieces of storage. There are two kinds of

areas, called locales and blocks:

An area is either a locale or a block.

Speaking in technical terms a locale corresponds to an "activation record"
and a block corresponds to a ''data area'. That is, if during the execution
of an ALGOL 68 program the range S showed in Fig. 1 is entered, a locale L
will be created in the MIAM, after which we say that '"control resides in

L". At arrival at the declaration of the array A a block B (for the
elements of A) will be created. We shall say that B is "created in L".

Areas have a number of entities associated to them. First consider

locales:

Each locale L has:

status(L): variable status,

type(L): constant type,

scope(L): constant integer,

establisher(L): constant locale.
Here the '"status" of L indicates whether L is "alive" or '"'dead':
A status is an element from the set {alive, dead}.

Intuitively speaking a locale is alive if control resides in it or if
control will ever return in it. Otherwise the locale is dead. The "type" of
L is a value, the exact nature of which is completely irrelevant here. The
only thing we need to know is that the (machine independent) type of L
determines the (machine dependent) size of the piece of storage

corresponding to L. The "scope" of L is the ALGOL 68 scope of the range

corresponding to L. The latter is an integer which indicates the lifetime
of the locale (the larger the scope, the shorter the locale will live). The
"establisher" of L corresponds,to what is usually called a "dynamic link".
It is the locale where control resided immediately before control was
transferred to L. For insténce, if in Fig. 1 prior to entering the range S
control resides in the locale M and entry of the range S results in the
creation of a locale L,Vthen establisher (L) = M.

Next consider blocks:

Each block B has:

status(B): variable status,

type(B): constant type,

scope(B): variable integer,

generator(B): variable locale.

Here the "status'", "type" and "scope'" of B are analogous to the
corresponding entities associated to locales. The "generator" of B is the
locale in which B was created. For instance, if in Fig. 1 entry of the
range S and execution of the declaration of A would result in the creation
.of a locale L and a block B respectively, then after that generator(B) = L.
The reason why the scope and generator of a block are variable and not
constant entities will be discussed later.

The above covers the discussion of areas. However, areas are not the
only data structures which are of interest to the storage management
problem. One of the more exotic features of ALGOL 68 is the possibility to
specify that certain parts of a program should be executed in parallel,
where synchronization can be done through "semaphores" [2]. Programs using
this feature will be called "parallel programs'. The other "normal"
programs will be called 'sequential programs'". In order to model
parallellism neatly the concept of a process must be introduced. As opposed
to areas, processes do not correspond to separate pieces of storage. They
are "embedded" in locales.

Let us first discuss processes informally. In general a number of
processes may simultaneously be active during the execution of a program on

the MIAM, where each process has its own control. Only when executing a

sequential program there is only one active process. Suppose control of the
active process P resides in the locale L corresponding to the range S in
Fig. 2. When control arrives at the parallel clause "par(Sl, S2, S3)",
which specifies that S1, S2 and S3 should be executed in parallel, three
new active processes P1, P2 and P3 (corresponding to S1, S2 and S3) will be
created, while P becomes inactive until P1, P2 and P3 are completed. That
is, P "ramifies" over Pl, P2 and P3. We shall say that Pl, P2 and P3 are

"created by P in L".

begin

I
S J par (S1, S2, S3);

end

Fig.2

The concept of a process will now be defined more precisely:

Each process P has:

mode(P): variable mode,

origin(P): constant locale,

environ(P): variable locale,

spawvner(P): constant process.

Here the "mode" of P indicates whether P is "active', "spawned" (= ramified

over a number of processes) or 'completed":

A mode is an element from the set {active, spawned, completed}.

The "origin'" of P is the locale in which P was created and the "environ" of
P is the locale in which control of P currently resides. The "spawner" of P
is the process which created P. For instance, in the example discussed in
the previous paragraph spawner(P1) = spawner(P2) = spawner(P3) = P. |
From the data structure point of view the model of the MIAM can now be

regarded as a collection of four variables:

The model consists of:

- L: variable set of locales,

- B: variable set of blocks,

- P: variable set of processes,

- R: wvariable process.

The variables L, B and P represent the set of all locales, blocks and
processes respectively which have so far been created during the execution
of a program. The variable R has to do with the fact that the MIAM is a
sequential machine. Only one process at a time can be executed on the MIAM,
which implies that parallellism must be '"'serialized'. The variable R
indicates which (active) process is currently being executed. R will be

- called the "running process'" and the environ of R will be called the
"current environ".

Prior to the execution of a program the following holds:

Initially
-L = {LO},
-B =40, .
_P={PO},
- R =P,

where LO is a locale such that
- status(LO) = alive,

- type(LO) =",

- scope(LO) = 0,

- establisher(LO) = LO’

and PO is a process such that

- mode (P = active,

0’
- origin(PO) = LO,
- environ(PO) = LO,

- spawner(Po) = PO.

The locale LO’ which will stay alive during the entire execution of a
program, will be called the "initial locale'". Among other things it

contains the constant table. The process P, will be called the "initial

0
.process".

This completes the daté structure part of the MIAM model. A thing one
can argue about is whether the data structures described capture all
information relevant to the storage management problem. An important
concept that seems to be missing is that of a "reference" between areas, or
more abstractly the concept of "reachability'". This is an important concept
because of the occurrence of '"heap objects'" in ALGOL 68, which correspond
to areas with "infinite'" lifetimes (their scope is zero). The only
effective way to cope with the storage management problems caused by these
objects is the use of a ''garbage collector". The design of a garbage
collector is a problem in its own right, which will not be discussed in
this paper. Hence the concept of reachability need not be introduced in the
model. Instead a garbage collection operation will be introduced as a
primitive operation in the problem definition.

Let us now look at the operations performed by the MIAM. They can be

modelled in terms of operations on the data structures described in the

foregoing. Before doing so a few definitions will be introduced.

Definition "¢, " and "<, " .
1L Y

TiA" and "<, " are relations on the set A of all locales, defined as

A

follows:

L M*3n>0I[L= establisher” (M)] (L, M € A)
L<AM°L_<_AMA_L¢M (L, M € 10)

Definition "¢ " and "<q

"
1r 1=

fgn" and "<H" are relations on the set I of all processes, defined as
follows:

P.SH Q®3In>0([P= spawner™(Q)] (P, Q € 1)
P< Q®P< QAP#Q (p, Q €1

Here "establisher™(M)" and "spawner™(Q)" denote the result of applying
"establisher" and "spawner" n times to M and Q respectively. So in other
words, "<," and "<;" are the reflexive and tramsitive closures of the
relations "L = establisher(M)" and "P = spawner(Q)" respectively, while
"<," and "< " are the antireflexive contractions of "<," and "< "
-respectively. Note that all four relations are constant. Restricted to the
sets L and P they are variable, however (because L and P are variable). To
illustrate these relations, consider Fig. 3 which shows a possible state of
the machine. That is, it shows the locales, blocks and processes in L, B
and P respectively at a certain point of the execution of a program. In

this figure among other things the following holds:

L0 <A L, L0 N\ E, -'(LiAEVE_SA L,

P. <. P, P

0 < =-(P < RVR_<_HP).

o “n® "2

As can be seen from this figure the locales in L and the processes in P
each constitute a tree. If L is a locale in L, the set of all locales M in
L with M <, L constitutes a list, which 1is usually called the "dynamic
chain" emanating from L. The dynamic chain emanating from the current

environ will be called the "current dynamic chain".

11

The first operation which will be introduced corresponds to entering a
range in ALGOL 68. It reads as follows:
ESTABLISH(t):
Precondition:
t is a type.
Action:
Let E = environ(R).
Let L be a locale such that
-LEL,
- status(L) = alive,
- type(L) = t,
— scope(L) = scope(E) + 1,
- establisher(L) = E.
L :=Lu {L}

environ(R) := L.

It amounts to creating a fresh, living locale L of type t. Hence L ¢ L,
status(L) = alive and type(L) = t. The scope of this locale must be one
- larger than the scope of the current environ E (it is ''mewer" than E).
Since control will be transferred from E to L, establisher(L) should be
equal to E. L must then be added to L and control must be transferred to L
(by making L the new current environ).

The second operation corresponds to leaving a range in ALGOL 68 (the

range corresponding to the current environ):

FINISH:

Precondition:
environ(R) # origin(R).

Action:
Let E = environ(R).
environ(R) := establisher(E).
status(E) := dead.
For each B € B with generator(B) = E

status(B) := dead.

12

Control of the running process R cannot be transferred beyond the locale in
which R was created, which explains the precondition environ(R) #
origin(R). When leaving the range corresponding to the current environ E,
control must be transferred from E to the "old" current environ. That is,
environ(R) must be changed‘into establisher(E). This turns E into a dead
area, but also all blocks created in E (the blocks B with generator(B) =
E). The status of all these areas should therefore be changed into 'dead".
The third operation to be discussed is concerned with the creation of

blocks:

GENERATE(t, L):
Precondition:
t is a type,
LE [, L SA environ(R) .
Action:
Let B be a block such that
-BE B,
- status(B) = alive,
- type(B) = t,
- scope(B) = scope(L),
- generator(B) = L.

B :=B U {B}.

It describes the creation of a fresh, living block B of type t in the
locale L, which should be in the current dynamic chain (the precondition L
2 environ(R)). During this operation control can be thought to be
temporarily transferred from the current environ to L. The block B will
live as long as L, and hence the scope of B should be equal to the scope of
L. Because B is created in L, the generator of B should be equal to L. The
actual creation of B is accomplished by adding B to B. A thing to be noted
here is that blocks corresponding to ALGOL 68 heap objects are created in

the initial locale L, (through "GENERATE(t, LO)")° Consequently these

o ¢
blocks have scope zero.

The fourth operation is somewhat trickier than the ones met before in

the sense that it does not correspond directly to any ALGOL 68 operation.

13

It is an operation which is concerned with efficiency. The point is that it
is sometimes useful to be able to extend the lifetime of a (large) block,
e.g. to prevent an expensive copy operation. A typical example is found in
passing procedure values. This lifetime extension is exactly what the

following operation accompiishes:

KEEP(B, L):
Precondition:
B € B, generator(B) = environ(R),
Lel, L # LO’ L o\ environ(R) .
Action:
generator(B) := L.

scope(B) := scope(L).

It extends the lifetime of the block B to that of the locale L, with the
restriction that B must have been created in the current environ and L must
belong to the current dynamic chain. This amounts to changing generator(B)
to L. Since the scope of an area indicates its lifetime, in addition to
this the scope of B must be changed to the scope of L. This explains why
. the scope and the generator of a block are variable.
The fifth operation corresponds to entering an ALGOL 68 parallel

clause:

14

SPAWN(n):
Precondition:
n > 0. ,
Action:
Let @ be a set of n processes such that for each P € Q
-PEP,
- mode(P) = active,

- origin(P) = environ(R),

- environ(P) = environ(R),
- spawner(P) = R.
P:=PUQ,

mode(R) := spawned.
Let P € P with mode(P) = active.
R := P.

Through this operation n fresh, active processes are created. Each process
P in the set @ of these new processes is created in the current environ,
with control of P initially residing in the current environ. The creator of
each P is the running process R. Hence origin(P) = environ(P) = environ(R)
.and spawner(P) = R. The set of new processes Q) is then added to P. After
that the running process is made to be "spawned" and an arbitrary active
process P (e.g. from Q) is made to be the new running process.

The sixth operation relates somehow to the operation SPAWN(n) as
FINISH relates to ESTABLISH(t). It corresponds to leaving a constituent
statement of an ALGOL 68 parallel clause:

15

COMPLETE:

Precondition:

environ(R) origin(R), R # PO.
Action:

mode (R) := compléted.

Let S
Let Q = {P € P | spawner(P) = S}.
IfVPEQ [mode(P) = completed]

spawner (R) .

mode(S) := active.
Let P € P with mode(P) = active.
R := P.

This operation "completes" the current running process R. The precondition
is that control of R has returned in the locale in which R was created and
that R is not the initial process. After having changed the mode of R to
"completed'", the process S which created R is determined. This is a spawned
process, which should be made active if all processes created by it (all
processes in the set Q) are completed. Then, an arbitrary active process P
must be selected and made to be the new running process.

The seventh operation is concerned with the situation that the running

process runs into an impassable semaphore:

SWITCH:
Precondition:
3 PEPI[P+ R, mode(P) = active]l.
Action:
Let P € P with P # R and mode(P) = active.
R := P.

If the running process 1s halted by an impassable semaphore, R must be
changed to an active process which is not. The operation SWITCH models this
change of running process by selecting an arbitrary active process P # R
and assigning P to R. The precondition of SWITCH takes care that the choice
of P is always well-defined. Of course, even if the precondition of SWITCH

is satisfied, there may in reality not exist an active process P which is

16

not waiting for an impassable semaphore (''deadlock'"). Instead of the
operation SWITCH the program is then supposed to be aborted.

The ALGOL 68 equivalent of the eighth and final operation is a jump to
some global label. Its definition reveals the disruptive nature of the
"goto':

JUMP(L, P):
Precondition:

LEL, L L) environ(R),

PEP,P_S_HR,

origin(P) SA L SA environ(P).
Action:

R := P.

mode(R) := active.

environ(R) := L.

For each M € L with L < M

l status(M) := dead.

For each B € B with L <4 generator (B)
I status(B) := dead.

For each Q € P with P < Q

I mode(Q) := completed.

L is the locale corresponding to the range where the label jumped to
occurs. P is the process which takes over control by jumping to the label.
The fact that the label jumped to must be "visible" implies that L <

A
environ(R) and P <. R. Furthermore, L should be a locale to which control

of P has access: oEigin(P) L2 environ(P). The jump is accomplished by
making P the running process, changing the mode of R (= P) to "active' and
then transferring control to L. Through this jump to the locale L of
process P the lifes of all locales and blocks which were created "after" L
(the locales M with L <A M and blocks B with L <A generator(B)) are
aborted. The status of these areas must therefore be changed into '"dead".
Also all processes which were started "after" P (the processes Q with P <
Q) are aborted, which amounts to changing their mode into "completed".

The entire model of the MIAM has now been introduced. From a storage

17

management point of view the execution of any program on the MIAM can be
modelled by a sequence of the operations described above. Not bothered by
irrelevant details, the job is,to design a storage management system for
this model. In doing so it should be assumed tﬁat any sequence of the above
operations not violating the preconditions is allowed.

Before going deeper into the problem of storage management it is
worthwhile to take a closer look at the model. The model satisfies a number
of invariants, which are listed below. They can be proved by showing that
they hold initially and by checking that each operation, assuming its
precondition holds, does not affect them. This is a simple job, which is
left to the reader.

Invariants for L

Kl. L0 € L.

K2. status(LO) = alive.
K3. scope(LO) = 0.

K4, establisher(Lo) =L

0

0-

Invariants for P
ol. PO € P.

02. mode(PO) # completed.
03. origin(PO) =1

0

O.
04. spawner(PO) = PO’

Invariants for R
Rl. R€ P.
R2. mode(R) = active.

18

Invariants for locales L € L
L1. establisher(L) € L.

L2. Ly <, L. !
L3. If status(L) = alive

status(establisher(L)) = aglive.
L4. If status(L) = alive
There is a P € P such that
mode(P) = active,
L 2 environ(P).
L5. If L # L
l scope(L) = scope(establisher(L)) + 1.

Invariants for blocks B € B

Bl. generator(B) € L.
B2. status(B) = status(generator(B)).
B3. scope(B) = scope(generator(B)).

Invariants for processes P € P
Pl. origin(P) € L.

P2. environ(P) € L.

P3. spawner(P) € P.

P4. Py <y P

P5. origin(P)_f_A environ(P) .
P6. If mode(P) = active
status(environ(P)) = alive.

P7. If P # PO’ mode(P) # completed

mode (spawner (P)) = spawned,

origin(P) = environ(spawner(P)).

P8. If mode(P) = spawned

There is a Q € P such that
spawner(Q) = P,

mode (Q) # completed.

From these invariants can be inferred that indeed the relations TSA"

and "<' impose a tree structure on L and P with treetops Lo and P,

19

respectively, as was indicated in Fig. 3. The set of all living locales in
L constitutes a subtree with treetop Ly of the tree imposed by ﬁgﬂ" on L.
The leaves of this subtree are formed by the environs of the active
processes. Analogously the set of all not yet completed processes in P

constitutes a subtree with.treetop P, of the tree imposed by fgn" on P. The

leaves of this subtree are the activg processes. Notice that the invariants
imply that the operation "Let P € P with mode(P) = active'" in COMPLETE is
well-defined. Notice also that dead areas and completed processes are
really "garbage'" in the model: they are not referenced or used in any other
way any more.

An important special case is that of sequential programs. In
sequential programs the operations SPAWN(n), COMPLETE and SWITCH will not

occur. It is easy to see that no processes will be created then, which

amounts to the following invariant:

Invariants for sequential programs

S] ° P = {Po}o

Together with invariant L4 this invariant impliés that the living locales
in L constitute a single linear list (the "dynamic chain") as indicated in
Fig. 4. The locales in L as a whole, however, need not constitute a linear

list (but a tree).

20

Fig. &

21
3. PROBLEM

- In this section the storage management problem is supposed to be
defined. However, in the model as we described it there is no storage
management problem. Areas which are created in the model simply fall out of
the blue. The question where they come from is completely irrelevant. The
storage management problem is a problem which arises only in the

implementation of the abstract machine. When implementing the abstract

machine on a real machine the creation of an area must be modelled by
"allocating" a piece of storage to it. In contrastvwith the number of areas
the amount of storage is limited, however. It is here where the storage
management problem arises. In order to arrive at the point where the
storage management problem can be formulated, we will therefore start
implementing (the model of) the abstract machine described before. The
method of "adding and removing variables" [6] will be used for that
purpose. In a nutshell this method amounts to the following. An algorithm
(or a machine) is implemented by adding extra variables and assignments to
these variables to the algorithm. This creates a redundancy in the
algorithm which enables certain expressions containing the '"old" wvariables
.of the algorithm to be replaced by equivalent expressions containing the
"new" variables. When applied in a systematic way the old variables of the
algorithm can be turned into '"ghost variables" this way, which may be
removed from the algorithm. Thus an implementation of the algorithm in
terms of the new variables is obtained. The method will be applied here by
augmenting the model with an extra variable (the "allocation function™).
Moreover, an abstract operation on this variable will be introduced. This
operation is supposed to model or "implement" the creation of an area,
which is expressed in its specification. The operation is inserted in the
model at those points where areas are created. The storage management
problem can then be defined as implementing this operation as efficiently
as possible. In doing so a number of primitive operations on the allocation
function are allowed, which may be inserted throughout the model. In
particular an attempt should be made to '"remove' as much abstract variables
(such as e.g. the "status" of areas) from the implementation. Thus the

overhead caused by the storage management system is kept to a minimum.

22

The first thing that needs to be done is the introduction of some

"store'". This model should conform as closely to the store of

model of a
the MIAM and the stores of existing machines as possible. We will assume
the store to be a row of '"cells" labelled by "addresses", which are
integers 0, ¢s:., N-I. Here N is some (large) machine dependent integer. A
set of consecutive cells in the store will be called a "field" and the
number of cells in a field F will be denoted as "size(F)". See Fig. 5.
Though this model of a store does not cover segmented memories, it is

sufficiently general to call it machine independent.

cells

N
N
NN
NN

addresses 0 N-1

Fig.5

In an implementation of the abstract machine on a real machine the
creation of an area A must be modelled by "allocating'" a field in the store
to it, which the area is from then on said to "occupy". This will be made
more precise by introducing a new variable F, called the "allocation

function", in the model:

The model is augmented with:

F: variable mapping from areas on fields.

The domain of F (which is also wvariable) will be denoted as "domain(F)". It
contains those areas which are "located" (= occupy a field) in the store.
The value of F can be changed by a number of primitive operations only,
which will be discussed in the sequel. Note that the domain of F contains
only locales and blocks, and no processes. Processes, as mentioned before,

are "embedded" in areas. This means that the storage occupied by a process

23

P is part of the storage occupied by an area, to wit the origin of P.

The allocation function F must satisfy two obvious invariants. First
of all, fields occupied by different areas may not overlap. Second, areas
must occupy a field of the "proper" size. The size of the field occupied by
an area will usually depend on the type of the area. The dependency need
not be unique, however. It may be useful to implement certain areas of a
given type different from other areas of that type. Hence areas of the same
type may occupy fields of different sizes. We will therefore add an
additional entity to each area A, the "size" of A, which indicates the size
of the field that A should occupy. We shall assume‘here that the size of
the field occupied by an area will not change during the execution of the

program. So the size of an area is constant:

Each locale L is augmented with

- size(L): constant integer.

Each block B is augmented with.

- gsize(B): constant integer.
. The two invariants which F must satisfy can now be formulated as follows:

Invariants for F
Fl. For each area A, B € domain(F)
| a#38=F@ nFm -0
F2. For each area A € domain(F)
I size(F(A)) = size(A).

These are global invariants for F, not to be violated by any operation on

F. In the initial situation the following should hold:

Initially
domain(F) = {LO},
size(F(LO)) = size(LO).

In other words, at the beginning of the execution of a program the initial

24

locale should be the only area located in the store and occupy a field of
the proper size (see the initial state of the model). The invariants for F
are thus trivially satisfied in the initial situation.

The next thing to do is to introduce an abstract operation on f, which
models the creation of an area. It should allocate a field in the store to
a (new) area A and will be denoted as "ALLOCATE(A)". It should do so,
however, by means of the primitive operations (to be) defined on F

exclusively. This is specified below:

ALLOCATE(A):
Precondition:
A is an area, A€ L U B.

Action:
Establish the truth of the assertion A € domain(F) by means of

the primitive operations defined on F.

The operation ALLOCATE(A) should be inserted at those points in the
model where areas are created. It should therefore be added to the
operations ESTABLISH(t) and GENERATE(t, L). At the same time this gives us

- an opportunity to associate the proper size to an area being created:

ESTABLISH(t):
Precondition:
t is a type. |
Action:
Let E = environ(R).
Let L be a locale such that
-LE¢L,
- status(L) = alive,
- type(L) = t,
- scope(L) = scope(E) + 1,
- establisher(L) = E,
- size(L) = .
ALLOCATE(L) .
L :=Lu{L}.

environ(R) := L.

GENERATE(t, L):
Precondition:
t is a type,
LEL, L 2 environ(R) .
Action:
Let B be a block such that
- B € B,
- status(B) = alive,
- type(B) = t,
- scope(B) = scope(L),
- generator(B) = L,
- gize(B) = e
ALLOCATE(B) .
B := B U {B}.

Here """ is some implementation dependent integer, which depends on the
type t.
Before formulating the problem there remains only one thing to be

discussed: the set of primitive operations allowed on F. We shall discuss

26

these operations by investigating how ALLOCATE(A) can be implemented. The
effect of ALLOCATE(A) should be that A is added to the domain of F. So the
first operation we need is an operation to extend the domain of F with an
area. Due to the invariants for F and the finiteness of the store this may
be impossible, however. First of all, it may be impossible to find a field
F of "free cells" (= cells not occupied by areas) such that size(F) =
size(A), even though the total number of free cells is more than
sufficient. This is due to a phenomenon known as 'fragmentation'". Second,
the total number of free cells may simply be insufficient ("storage
overflow").

The first problem (fragmentation) can be coped with by introducing an
operation to "move" areas in the store from one field to an other, i.e.
change the value of F(A) for certain A € domain(F). Thus small fields of
free cells can be united into larger fields. A thing to be borne in mind
with this is that in practice moving areas is an expensive operation,
because all "pointers" to or into a moved area must be "updated". The
second problem (storage overflow) can only be dealt with by allowing areas
to be "deallocated" too, i.e. to be removed from the domain of F. Of course
only areas which are no longer used by the program should be deallocated.

What are "no longer used" areas? One thing we know for sure is that
dead areas are not used any more. So dead areas can be deallocated with
impunity. Yet even the deallocation of all dead areas may not help. The
only escape is then to deallocate no longer used living areas too. The
latter areas are considerably harder to detect than dead areas, however.
The use of a ''garbage collector" is required for that. The design of a
garbage collector will not be discussed in this paper (but see [7]). Hence
an unspecified primitive operation "COLLECT GARBAGE" on F is introduced.
This operation is supposed to deallocate all no longer used areas
(including all dead areas), while it may also move areas. It is a very
expensive operation which should only be used as a last resort. As far as
certain properties of COLLECT GARBAGE are important or even essential to
the storage management system to be designed, these properties will be
postulated in the form of "Requirements for COLLECT GARBAGE". If even a
garbage collection does not help, the only way out is to abort the program.

The above accounts for the following list of primitive operations

27

allowed on F:

Primitive operations on F,

1. Adding an area to domain(F).

2. Changing the value of F(A) for a number of A € domain(F).

3. Removing a number of A ¢ domain(F) with status(A) = dead from
domain(F).

4. COLLECT GARBAGE.

In all this it is implicitly assumed that the operations do not violate the
Invariants for F.

The storage management problem now boils down to:

Problem

= Implement ALLOCATE(A) efficiently.

The word "implement" must be taken in a broad sense here. This implies not
only that ALLOCATE(A) must be expressed in terms of the primitive
operations on F, but also that operations on F may be inserted anywhere in

- the model in order to make the implementation more efficient. The
collection of all operations on F thus added to the model constitutes the
"storage management system'.

We require that efficiency of the storage management system to be
designed should primarily be achieved for sequential programs. The
rationale behind this is that ALGOL 68 was not specifically designed as a
language for writing parallel programs. The majority of programs written in
ALGOL 68 will be purely sequential. Hence it is reasonable if the use of
parallellism costs a little extra.

The design of an efficient storage management system will be started

in the next section.

28
4. DESIGN

A general approach to the: design of a storage management system is to
divide the areas in a number of classes dependent upon certain properties.
For each class a special storage management strategy is used, which
exploits the properties of the areas in that class. Let us assume n classes
C], sesy Cn of areas are distinguished. Then the allocation function F can
correspondingly be written as F = F] U...U Fn’ where domain(Fi) c Ci (i =
1, ¢ces, n). Let us call the set of all cells occupied by the areas in
domain(Fi) the "region" of Fi. The job is to implement the operation
"ALLOCATE(A)" efficiently in terms of operations on the Fi. These
operations may freely be chosen from the set of primitive operations
defined on F. If the operations are applied arbitrarily, however, a
comprehensive bookkeeping is necessary in order to ensure the Invariants
for the allocation function are satisfied. This bookkeeping can be |
simplified greatly if the regions of the Fi are kept "compact" (=
constituting a field). In that case.only operations may be performed on the
Fi’ which do not disturb the compactness of the regioms.

We shall comply with the above by abstractly modelling each Fi as a
- "pile" Ui. A pile is a stack of areas which (apart from "push" and "pop")
has a number of additional operations defined on it (to be discussed

later). If a pile I contains the areas A esoy A.m in the order from bottom

‘l’

to top, this will be denoted as U = <A,, «.., Am>. A pile ([= <A;, co., Am>

1 1
can be "located" in the store in two different ways as indicated in Fig. 6.

Here the areas Ai occupy contiguous fields of size(Ai) cells.

29

U
r . M
00777
000 ///éf,"f
bottom top .

U
r - \
WA 4% 5%
W
top bottom
Fig. 6

It is useful to dwell briefly on what we did in the above. We
represented the allocation function F as a (yet to be fixed) number of
piles u], seey Un. On the one hand this can be viewed as a matter of
abstraction: we abstracted from the store. This has the advantage that it
makes life a lot easier. We do not need to talk in such "low level'" terms
as "cells", "addresses", '"fields", etc. any more. A minor drawback is the
fact that everything we said about F must now be translated in terms of the
piles U], cosy “n' Since the correspondence between F and U], coey un is
obvious, this will be omitted. Note that F can only be reconstructed from
the U‘, oon, Un after locating the latter in the store. On the other hand
the things we did in the above can be viewed as a matter of concretion (the
inverse of abstraction): we made a certain choice as to the structure of
the allocation function. This was a design decision in order to reduce the
problems caused by the Invariants for the allocation function. It also
reduces the freedom of design, of course.

Up to two piles can efficiently be accommodated in the store (in the
case of two piles: one at each end of the store). Though storage management

systems with a larger number of piles are certainly conceivable, we will

30

therefore limit the number of piles to two. The following are plausible
choices:

1. One pile for all areas.

2. Two piles, for locales and blocks.

3. Two piles, for areas with scope > 0 and for areas with scope = 0.

The first choice does not exploit the different properties of areas. Hence
it may not be expected to result in an efficient storage management system.
The second choice exploits the differences between locales and blocks. This
may lead to an efficient storage management scheme for locales (in the
absence of parallellism locales have nested lifetimes), but for blocks
(which may occupy the majority of the storage) it is just as bad as the
first choice. The third choice seems the most appropriate here. It closely
(but not entirely) fits in with the difference between ALGOL 68 stack and
heap objects. This alternative will therefore be chosen.

The above implies that we have.two piles § and # in our storage
management system. S contains the areas with scope > 0 and H those with

scope = 0. We assume they are located in the store as indicated in Fig. 7.

As with the allocation function F the piles S and H must satisfy a
number of invariants. First, the fact that S and H correspond to (the
domain of) a mapping (F) implies that no area may occur twice in § and H.
Second, the Invariants for F must be translated into invariants for S and
H. Invariant Fl1 amounts to the fact that the sum of the sizes of the areas

in S and H must be less or equal to the size N of the store. Invariant F2

31

need nor can be expressed any more. (This invariant is incorporated in the
correspondence between F and the piles S and H.) Third, S and H should

contain only areas with scope > 0 and scope = 0 respectively. So we have:

Invariants for S and H

Ul. If S = <A,
H = <Am+], e 00, An>

I i#j.—-bAi#Aj (i’j=]’ ® o0y n)-

U2. E : size(A) < N.

AeSUH

004 Am>’

U3. For each A€ S
scope(A) > 0.
U4. For each A € H
scope(A) = 0.

For notational convenience the piles S and H are considered here
occasionally as the sets of their elements. The translation of the initial

situation for F into the initial situation for S and H leads to:

Initially
S =40,
H = <Ly>-

In this situation the Invariants for S and H are trivially satisfied.

During the further design of the storage management system care must
be taken that Invariants Ul through U4 are not violated. These invariants
could be violated in two ways. First of all the operations of the abstract
machine might violate Invariants U3 and U4. Invariants U3 and U4 use the
scope of areas, which is variable for blocks. However, the only operation
that may affect the scope of an area is KEEP(B, L) and this operation will
never change the scope of an area from > 0 into = 0 or vice versa (use
Invariants L2 and L5 and the fact that L # LO). The Invariants for S and H
can therefore never be violated by any operation of the abstract machine.
The second way the invariants could be violated is because of some

operation on S or H that we insert in the model. It should be checked in

32

each individual case that such an operation does not violate the Invariants
for S and H.

An operation that could particularly violate the Invariants for S and
H is COLLECT GARBAGE. The informal "definition" of COLLECT GARBAGE states
that it removes all no 1onger used areas (including all dead areas) from
the domain of the allocation function F. Speaking in terms of the piles S
and H this implies that COLLECT GARBAGE removes all no longer used areas
from S U H. In this process the remaining areas in S and H could in
principle be shuffled arbitrarily. They could even be transferred from S to
H or vice versa (thus violating Invariant U3 or U4). This wiil be prevented

by the following requirements:

Requirements for COLLECT GARBAGE

1. No areas are added to S.

2. No areas are added to f.
It is easy to see that these two requirements are sufficient to let COLLECT
GARBAGE '"respect' the Invariants for S and H. Apart from these two

requirements a third will be imposed which is not strictly necessary:

Requirements for COLLECT GARBAGE

3. The order of the remaining areas in S and H is not affected.

It says that the garbage collector must be "genetic order preserving",
which is a desirable property of garbage collectors [10]. Why this is so
will turn out soon. Notice that the removal of a number of areas from S and
H may affect the compactness of the regions of S and H. Consequently the
garbage collector must perform a '"compaction" in order to restore the
situation of Fig. 7. This need not be expressed in the Requirements for
COLLECT GARBAGE because COLLECT GARBAGE is considered as an operation on
the "abstract" piles S and H here. It follows directly from the
correspondence between S and H and the allocation function F.

Let us now attempt to design a first storage management system.

33

4.1 The initial system

The obvious way to obtain.a usable storage management system is as
follows. Storage can only be allocated to an area A if there is enough room
between the piles S and H in the store. The room between S and H (measured

in cells) will be denoted as "FREE":

o= D stse)

AeSUH

If FREE < size(A) there is not enough room and a garbage collection is used
to make room. If after a garbage collection there is still not enough room,
the program is aborted. Otherwise storage can be allocated on S or H (using

a "push" operation), dependent on the scope of A. This leads to:

System 1
ALLOCATE(A):

Let s = size(A).

If FREE < s
COLLECT GARBAGE.
If FREE < s
] ABORT.

Case

1. scope(A) > 0

' PUSHS(A).

2. scope(A) =0

| PUSH, (A) -

Notice that all operations performed on S and H correspond to legal
(primitive) operations on the allocation function F. Notice also that the
Invariants for S and H are not violated.

The above storage management system is not very satisfactory for a
number of reasons. One of them is the following. Suppose during the
execution of a program the situation is reached that a garbage collection

delivers only a small amount of free storage (just about sufficient to

34

proceed). Then it will probably be necessary to perform a garbage
collection very soon again, which may once more deliver only a small amount
of free storage, etc.. Since a garbage collection is a time consuming
operation, this may lead to the situation that the majority of the
execution time of a prograﬁ is spent collecting garbage before the program

is finally aborted. This will be remedied in the next subsection.

4.2 Avoiding frequent garbage collections

The problem of frequent garbage collections can be solved by requiring
that the garbage collector delivers a minimum number of free cells, which
will be denoted as "minfree'. This number should be large enough to let the
program proceed undisturbedly for some time after a garbage collection.

Thus we obtain:

System 2
ALLOCATE(A) :
Let s = size(A).
If FREE < s
COLLECT GARBAGE.
If FREE < max(s, minfree)
l ABORT.
Case
1. scope(A) > 0
PUSHS(A).
2. scope(A) =0
| PUSH, (4) .

This removes one objection to System 1. There is another severe objection
to both Systems 1 and 2, however. For the deallocation of areas both
systems rely entirely on garbage collection, which does not make them very

efficient. We will do something about that below.

35

4.3 Restraining the use of the garbage collector

Checking the list of primitive operations defined on the allocation
function F we see that the only way to deallocate areas other than through
a garbage collection, is tﬁe deallocation of dead areas. Dead areas may
freely be removed from the piles S and H. As far as the pile H is concerned
this does not bring us any further, because in H no dead areas occur (this
follows from Invariants U4, K2, L2, L5, B2, B3 and the fact that He L U
B). So all dead areas in S U H occur in S. It would not be very wise,
however, to allow dead areas to be deallocated arbitrarily inside S,
because that would require an expensive 'compaction' in order to restore
the compactness of the region of S. Dead areas can be popped from the top
of S with impunity, however. This gives us a cheap mechanism to deallocate
areas over the head of the garbage collector.

The question is where in the model the operation to pop dead areas
from S should be inserted. The most natural places to do so seem to be
those places where areas are "killed". If a killed area happens to reside
at the top of S, A and all dead areas "below" it can immediately be pobped
from S. An operation "RELEASE", which does just that, will therefore be
* introduced. It will be inserted in the operations FINISH and JUMP(L, P),

which are the only machine operations that kill areas:

FINISH:

Precondition:
environ(R) # origin(R).

Action:
Let E = environ(R).
environ(R) := establisher(E).
status(E) := dead.
For each B € B with generator(B) = E

status(B) := dead.

RELEASE.

36

JUMP(L, P):
Precondition:
LEL, L i environ(R),
PEP, P 5 R
origin(P) 5L environ(P) .
Action:
R = P.
mode(R) := active.
environ(R) := L.
For each M€ L with L <, M
’ status(M) := dead.
For each B € B with L <, generator(B)
I status(B) := dead.
For each Q € P with P < Q
I mode (Q) := completed.
RELEASE.

Notice that at all places where ALLOCATE(A) and RELEASE occur all system
invariants hold (the invariants need only hold between two machine

.operations).

Storage management system 3 now looks as follows:

37

System 3
ALLOCATE(A)

Let s = size(A). ,
If FREE < s
COLLECT GARBAGE.
If FREE < max(s, minfree)
l ABORT.
Case
1. scope(A) > 0
l PUSHS(A).
2. scope(A) =0
PUSHH(A).

RELEASE:
While DEADTOP
POP,.
S

The predicate "DEADTOP" in this system is defined as follows:
DEADTOP = S # @ and status(top(S)) = dead.

Here the "and" is used as a "McCarthy operator" and "top(S)" is the area at
the top of S. If all areas which appear in S have nested lifetimes, this
scheme will keep S free from dead areas. It may therefore be expected to
work rather efficiently for say ALGOL 60 type ALGOL 68 programs. The only
operations which may (temporarily) impede the effectiveness of this scheme
are GENERATE(t, L), where L # L0 and L # environ(R), KEEP(B, L) and SWITCH.
The latter will occur in parallel programs only, while the other two may be
expected not to be used too frequently (by a good code generator). Whatever
operations are performed, however, the above scheme will always work
correctly. Notice that Requirement 3 for COLLECT GARBAGE is essential to
the effectiveness of the scheme.

Though System 3 is a major improvement over System 2, it still rather
heavily depends on garbage collection as a deallocation tool (especially in

parallel programs). The role of the garbage collector can further be

38

diminished, as we will demonstrate.

'

4.4 Restraining the use of the garbage collector further

Suppose in ALLOCATE(A) we run out of storage (i.e. FREE < s). It may
very well turn out (especially if few areas with scope = 0 are used) that
the number of dead cells in S is large compared with the size of the store.

The number of dead cells in S will be denoted as "DEAD":

DEAD = ;> s size(A).
AES
status(A) = dead

It is profitable then not to perform a full garbage collection, but simply
to remove all dead areas from S (which implies compacting the region of S).
An operation "COMPACTS" which accomplishes this will therefore be

introduced:

COMPACTS:
Remove all A € S with status(A) = dead from S while preserving the

order of the remaining areas in S.

Notice that the operation on the allocation function F corresponding to
COMPACTS is expressible in the primitive operations defined on F. Notice
also that COMPACT_, does not violate the Invariants for S and H and that it

is "genetic orderspreserving".

The operation COMPACTS is considerably cheaper than COLLECT GARBAGE.
The reason is that an expensive '"marking phase', such as in the garbage
collector, is not necessary in COMPACTS. Moreover, the compaction (as
opposed to a garbage collection) is strictly local to the pile S: Due to
the "scope rules'" of ALGOL 68 the fact that area A contains a pointer to
area B implies that scope(A) > scope(B). Consequently areas in H do not
contain pointers to areas in S, which implies that areas in S may be moved
without having to update any pointers in areas in H.

If "mindead" denotes the (possibly dynamically determined) minimum

39

number of dead cells in S for which a compaction is more profitable than a
garbage collection, then the new storage management system looks as

follows:)

System 4
ALLOCATE(A) :

Let s = size(A).

If FREE < s

If DEAD > max(s, mindead)
COMPACIS.

else

COLLECT GARBAGE.

If FREE < max(s, minfree)
l ABORT.

Case

1. scope(d) > 0
I PUSHS(A).

2. scope(A) =0
| PUSHH(A).

RELEASE:

While DEADTOP

[POP -
The number DEAD in this system can be determined by traversing S once. In
traversing S it must be determined for each area A € S whether A is dead or
not. The assumption in all this is, as it is in COMPACTS and DEADTOP, that
in a real implementation it is possible to determine the status of an area
in S. What are the consequences of this assumption?

Areas as we described them have a number of entities associated to
them (such as "status", "type", '"scope", etc.). Except for the "size" these
are abstract entities which are used in the definition of the abstract
machine. Each implementer of the abstract machine will try to implement
these entities as efficiently as possible, and if possible he will even

avoid to implement certain entities. A number of the entities must be

40

implemented anyway: the type and size of an area (for the garbage collector
and the compaction routine), the scope of an area (for scope checks) and
the establisher of a locale (im order to return to the proper locale after
leaving a range). Other than for reasons of storage management the status
of an area and the generatdr of a block need not be implemented.

In System 4, however, the status of an area is apparently supposed to
be implemented. For locales this could be done by letting FINISH and
JUMP(L, P), which are the only two operations that kill areas, mark dead
locales as such. For blocks this is not so simple. The best way to
determine whether a block B is dead seems to use Iﬁvariant B2 and check
whether generator(B) is marked as dead or not. Yet this implies that the
generator of a block must also be implemented. This overhead deprives
System 4 of some of its attractiveness. It would be nice if the overhead
could be eliminated, and indeed for sequential programs it can. We can use
the redundancy caused by the introduction of the allocation function (in
the shape of the piles S and H) to turn the status of an area and the
generator of a block into 'redundant variables'" of the storage management
system. This will be shown and proved in the next subsection. After that we
will consider the general case of both sequential and parallel programs.

Before continuing two more requirements on the garbage collector will
be imposed. From the requirements introduced so far absolutely nothing can
be inferred as to which areas are or are not deallocated by the garbage
collector. There are certain areas from which it is easy to see that they
are (or should be) or are not (or should not be) deallocated by the garbage
collector. In particular all dead areas will be deallocated by the garbage
collector. (This was already stated informally.) Furthermore, the living
locales will not be deallocated in a garbage collection. (They are
"reachable" because control will, or should be able to ever return to
them.) The following additional requirements, which allow us to use that

information, will therefore be imposed on the garbage collector:

Requirements for COLLECT GARBAGE

4. All dead areas are deallocated.

5. No living locales are deallocated.

41

A number of additional invariants (which hold between two operations
of the abstract machine) can now be proved for System 4. In order to
formulate them more easily the following relation on the set of areas in S

will be introduced:

Definition "<S:

"<S" is a relation on the set of areas in S, defined as follows:
If S = <Al’
Ai<.SAj©i<j ‘ (i,j=], -.-,n)

° 00 gy An>

Due to Invariant Ul this relation is well-defined. The fact that A <g B
implies that A is "below" B in S. The following invariants hold:

Invariants for S and H
Us. SUHc L UB.
U6. For each L € L with status(L) = alive
| Lesun.
U7. For each L € S N L with establisher(L) # L,
establisher(L) € S,
establisher (L) <g L.
U8. For each B € SN B

generator(B) € S,
generator(B) <g B.
U9. If S # ¢

status(top(S)) = alive.

Invariant U5 is based on Requirements 1 and 2 for COLLECT GARBAGE. It
allows us to use all Invariants for L and B for areas in S and H. Invariant
U6 is based on Requirement 5 for COLLECT GARBAGE. Notice that it implies
that L, €H and L. € S for each L. € L with L # L, and status(L) = alive.
Invariants U7 and U8 are based on Requirements 1, 3 and 4 for COLLECT
GARBAGE. The informal argument for their truth is simple. The establisher
of a locale L is created before the locale itself. Hence establisher(L)
will occur below L in S. The same applies to the generator of a block B and

the block itself. The only operation that might violate the relation

42

generator(B) <g B is KEEP(B, L). However, prior to KEEP(B, L) the following
holds for the new generator L of B: L0 # L <\ environ(R) = generator(B).
With Invariant U7 this implies that L <g generator(B) <S B. Finally,
Invariant U9 is based on Requirements 1 and 4 for COLLECT GARBAGE and the
fact that dead areas are iﬁmediately popped from S. The (simple) formal
proof of Invariants U5 through U9 is left to the reader.

4.5 Removing overhead in the sequential case

In this subsection we shall assume that only sequential programs are
executed on the abstract machine. So the operations SPAWN(n), COMPLETE and
SWITCH will not occur and Invariant S1 will hold, i.e. P = {PO}. The living
locales in L then constitute a single dynamic chain, which emanates from
environ(PO) (see Fig. 4). Together with the Invariants for S and H this
implies that the store looks as in Fig. 8. In this figure the circles
represent the locales in the dynamic chain. Notice that if S # @ there is
always a living locale at the bottom of S, which amounts to the following

invariant:

Invariants for sequential programs

S2. If S=<A,, veo, A> withn >0
1 n

A, € L and status(A;) = alive.

This invariant cannot be derived from the invariants formulated so far, but
must be proved independently. It critically depends on the fact that dead

areas are popped from S as soon as they occur on the top of S.

43

\
J
\
/

LT
7, %%%%

environ(R)

N\

N
N

NN
Q$§C\
N

N\
N
NN
N
& -°-<\\

Fig.8

The locales indicated in Fig. 8 are all alive. But what can we say
about the "liveliness'" of the other areas in S? We know there is a relation
between the scope of an area and its lifetime. This relation is somewhat
obscured by the operations GENERATE(t, L) and KEEP(B, L). Can the scope of
an area be used anyway in order to determine whether the area is dead or
not? In order to answer this question the genetic order relation "<S" must
be examined more closely.

Consider a living locale L in S and an other locale M "above" L in S,
1.e. L <g M. At the moment M was created L was already in S and alive. So
just after the creation of M both L and M belonged to the dynamic chain of
which M was the beginning. This implies that at that moment L <) M. Yet,
since the relation "<A" is constant, the assertion L <) M will hold

forever. This amounts to the following invariant:

Invariants for sequential programs
S3. For each L € S N L with status(L) = alive
and each M € SN L
L <S M=1L <A M.

Next consider a living locale L in S and a dead block B above L in S. Let G
= generator(B) and suppose that G <g L. From Invariant B2 we know that G is
dead. At the moment L was created G was already in S and also dead

(otherwise Invariants S3 and L3 would lead to a contradiction). Since B was

created after L this implies that B was created when G was already dead.

44

From this and Invariant B2 can be concluded that at the moment B was
created apparently generator(B) # G. Consequently the operation KEEP(B, G)
must have been applied some time thereafter. The precondition of KEEP(B, G)
says that G <L environ(R), which implies that status(G) = alive, however.
From this contradiction can be concluded that the assertion G <q L can
never hold. Since G # L this leads to the conclusion that L <g G, which is

expressed in the following invariant:

Invariants for sequential programs
S4. For each L. € S N L with status(L)
and each B € S N B with status(B)

alive
dead

L<gB=1L<g generator(B) .

A more formal proof of the above invariants is left to the mistrustful
reader.

Invariants S2, S3 and S4 give us additional information on the
relation "<S" which can be used profitably. Before showing this a
definition is introduced. For each area A in S the "base" of A is defined
to be the first living locale equal to or below A in S:

Definition base(A)

For each A € S

I base(A) = max {L € SN L | L <q A, status(L) = alive}.
< 8
S

Notice that because of Invariant S2 the base of an area in S is always

well-defined. The following invariant can now be derived from Invariants S3

and S4:

Invariants for sequential programs
S5. For each A € S
status(A) = dead ® scope(A) > scope(base(A)).

Proof:
Let A € S and let L = base(A). If A = L the proof is trivial. If A #

L, and hence L <S A, a number of cases must be distinguished. This is

done schematically below.

A€ LUB, '
If status(A) = dead

If A€EL

L<A A.

scope(A) > scope(L).
If AEB

L <g generator(A) .

L <\ generator(A) .

scope(A) > scope(L).

scope(A) > scope(L).
If scope(A) > scope(L)
If A€L
If status(A) = alive

L = A.

Contradiction.
status(A) = dead.
If AEB
If status(A) = alive
status(generator(A)) =
generator (A) <S A.
53 L.

generator (A) 2 L.

generator (A)

scope(A) < scope(L).

Contradiction.
status(A) = dead.

status(A) = dead.

status(A) = dead ¢ scope(A) > scope(L).

QED.

scope(generator(A)) > scope(L).

scope(generator(A)) < scope(L).

45

(Inv. U5)

(Inv. S3)
(Inv. L5)

(Inv. S4)
(Inv. S3)
(Inv. L5)
(Inv. B3)

(Def. base(A))
(L <S A)

(Inv. B2)

(Inv. U8)

(Def. base(A))

(Inv. S3)

(Inv. L5)

(Inv. B3)

(scope(A) > scope(L))

Invariant S5 allows us to turn the status of an area and the generator

46

of a block into redundant variables of the (augmented) model. In the entire
model the generator of a block is only used to keep track of the status of
areas and the status of an area is only really used in the storage
management operations ALLOCATE(A) and RELEASE. It is therefore sufficient
to show that the status of an area can be removed from these operations
(see System 4). First consider RELEASE. In this operation the status of an
area is used in the predicate DEADTOP only, which should be true iff S # @
and status(top(S)) = dead. It is easy to infer from Invariant S5 that if S
@, the assertion

status(top(S)) = dead
is equivalent to:
scope(top(S)) > scope(environ(R)).
Consequently DEADTOP can be determined as follows:
Determination of DEADTOP

If S=¢
DEADTOP := false.

else
Let T = top(S).
Let E = environ(R).

DEADTOP := scope(T) > scope(E).

Next consider ALLOCATE(A). In this operation the status of an area is used
in the determination of the number DEAD of dead cells in S and in COMPACTQ
(but not in COLLECT GARBAGE). From Invariants S2 and S5 (and a few more
invariants) it can be inferred that the number DEAD can be determined as

follows (see also Fig. 8):

47

Determination of DEAD

Let S = <Ap, oo, A D>

s 3

k :

[
8 o©

L := environ(R).
While k > 0
While Ak # L
If scope(Ak) > scope(L)
s =8 + size(Ak).

k:i=k ~-1.
L := establisher(L).
t=k - 1.
DEAD := s.

While traversing S this way, dead areas could at the same time be marked as
such. This would make it simple for COMPACTS to determine whether an area
is dead or not without using the status of the area.

The above shows that neither the status of an area nor the generator
of a block need be implemented, thus avoiding a time and space overhead.
. That is, if only sequential programs are executed on the abstract machine.

The latter assumption will be dropped in the next subsection.

4.6 Removing overhead in the general case

In the previous section we showed that in the sequential case we could
do away with the status of an area and the generator of a block entirely in
System 4. But what if the actions SPAWN(n), COMPLETE and SWITCH occur?
Invariant S5 will no longer hold then and the trick used to implement the
status of an area free of charge cannot be applied any more. However, an
invariant analogous to Invariant S5 could be formulated, which relates the
status of areas created by the same process to their scope. In order to
implement the status of an area through this invariant it must be possible
to determine for each area in S by which process it has been created. In

the sequential case this is obvious, because there is only on process. In

48

the parallel case it is far from obvious, because there may be many
processes and the areas created by a specific process may be scattered all
over S. This is even aggravated by the fact that after a process P has been
completed areas created by P may be left behind in S. The extra bookkeeping
necessary to apply the genéralization of the implementation trick for the
status of an area may thus become rather complicated and may cause a
considerable overhead (which it was supbosed to avoid). It is therefore
better to look for an other solution.

In section 3 it was stated that efficiency of the storage management
system to be designed should primarily be achieved for sequential programs.
This implies that it is reasonable if the use of parallellism costs a
little extra. It would not be reasonable, however, if the overhead
connected with parallellism had a negative effect on the efficiency of
sequential programs. The "easy' way to avoid the latter is to have two
storage management systems: one for sequential and one for parallel
programs. Yet, having two different storage management systems is not a
very desirable situation. Let us see how we can avoid it.

Suppose that, instead of being able to determine by which process an
area has been created, it were possible to determine whether the area has
" been created by the initial process P0 or not. The 1atter, of course, is
much easier to implement than the former. Let AO be the class of areas
created by PO and A] the class of areas created by other processes. For all
areas in AO the implementation trick for the status can be used (through an
invariant analogous to Invariant S5). This implies that in the sequential
case (where A1 = @) the storage management system is just as efficient as
before. For the areas in A] something more complicated must be done. The
simplest way to implement the status of the areas in A] seems to be as
follows. Let FINISH and JUMP(L, P) (which are the only operations that kill
areas) mark dead locales in A1 as such. This makes determination of the
status of a locale in A] trivial. The status of a block B in A] can be
determined by using the fact that status(B) = status(generator(B))
(Invariant B2). This implies that the generator function for blocks in A]
must be implemented.

The scheme sketched above results in a storage management system,

which for sequential programs is just as efficient as before. An overhead

49

is introduced in parallel programs exclusively, and even then only when the
program is really working in "parallel mode" (inside a parallel clause).
The overhead, at first sight, seems to be acceptable. The price to be paid
for all this is an increase of complexity of the system. The question is
whether the increase of coﬁplexity outweighs the gain in efficiency or not.
An alternative would be not to use the implementation trick for the status
of areas in AO’ but to implement the status of areas in AO just like the
status of areas in A]. This results in a uniform approach, but also
introduces an overhead in sequential programs. E.g., for all blocks the
generator function must now be implemented. This cduld be compensated by
not implementing the scope function for blocks explicitly. The fact that
scope(B) = scope(generator(B)) for each block B (Invariant B3) can then be
used to determine the scope of a block. The latter, however, makes scope
checks more complicated and less efficient. Though one can certainly argue
about it, we will let efficiency considerations prevail and choose for the
original approach. It will be elaborated below.

The first thing we need is some way to distinguish areas created by P0
from other areas. For that purpose we associate an extra entity to each

locale and block:

Each locale L is augmented with
- kind(L): constant kind.

Each block B is augmented with
- kind(B): variable kind.

A kind is an element from the set {simple, extended}.

If an area has been created by P,, its kind will be "simple'", which implies

s
that its status and generator (ig it is a block) need not be implemented.
The reverse will not hold, however. There are two reasons for that. First
of all, for areas with scope = 0, which need not be created by PO’ neither
the status nor the generator need be implemented: Their status is
invariable "alive" and their generator (for blocks) is invariably equal to

Ly The kind of these areas will therefore also be chosen to be "simple".

50

Second, we wish the following invariant to hold (why this invariant is
useful will turn out soon):

Invariants for blocks B € B

B4. kind(B) = kind(generator(B)).

This invariant may be disturbed by the operation KEEP(B, L). So it must be
possible to change the kind of a block, which is the reason that the kind
of a block is variable. The change of kind of a block, as we will see, is
only from "extended" to "simple'. If the reverse were also possible, this
would (in view of the constant size of areas) annihilate the advantages of
the distinction between simple and extended areas.

The model must be extended according to the above. First, the

following should hold in the initial situation:

Initially
kind(LO) = simple.

Note that it is now absolutely necessary that areas with scope = 0 have
~kind = simple (see Invariant B4). Next, when areas are created they should
get the proper kind. A locale should get kind = simple iff R = P0 at the
moment of its creation, while a block should assume the kind of its
generator. This amounts to the following additions to the operations

ESTABLISH(t) and GENERATE(t, L):

ESTABLISH(t):
Precondition:
t is a type. ;
Action:
Let E = environ(R).
Let L be a locale such that
-LEL,
- status(L) = alive,
- type(L) = t,
- scope(L) = scope(E) + 1,
- establisher(L) = E,
size(L) = ",
If R = P0
- kind(L) = simple.

else

l - kind(L) = extended.
ALLOCATE(L) .

L :=L U (LY.

environ(R) := L.

GENERATE(t, L):
Precondition:
t is a type,
LEL, L 2 environ(R) .
Action:
Let B be a block such that
- B € B,

status(B) = alive,

type(B) = t,
scope(B) = scope(L),

generator(B) = L,
size(B) = n,
kind(B) = kind(L).
ALLOCATE(B) .

B := B U {B}.

52

Invariant B4 is trivially satisfied initially and is not violated by
GENERATE(t, L). The only operation which might violate Invariant B4 is
KEEP(B, L). This is remedied by the following addition to KEEP(B, L):

KEEP(B, L):
Precondition:
B € B, generator(B) = environ(R),
LEL,L# LO’ L < environ(R).
Action:
generator(B) := L.
scope(B) := scope(L).
kind(B) := kind(L).

Apart from Invariant B4 the following invariants can now be proved:

Invariants for L

0
K5. kind(LO) = simple.

Invariants for PO

05. kind(environ(PO)) = simple.

—

Invariants for locales L €
L6. If kind(L) = simple
kind (establisher (L))

simple.

Invariants for processes P € P

P9. If P # PO
For each L € L with origin(P) <1 L
I kind (L) = extended.

Furthermore, if we define the set T as the set of simple areas in S:

Definition T
T={(A €S | kind(A) = simple}.

53
then the following analogues of Invariants S2 through S4 can be proved:
Invariants for S and H .

Ul0. If S = <A, ..., A > with n > 0 and T +¢
| A

| €ETNL and status(A) = alive.
Ull. For each L€ T N L with status(L) = alive
and each MET N L
| L <S M=1 <A M.
Ul2. For each L € T N L with status(L) = alive
and each B € T N B with status(B) = dead

I L <S B=1 <S generator(B).
If we (re)define the "base'" of an area in T as follows:

Definition base(A)
For each A€ T
base(A) = max {LE€T N L | L.<g A, status(L) = alive}.
<
S

- then the following analogue of Invariant S5 can be derived from Invariants

Ull and Ul2:

Invariants for S and H
U13. For each A €T
status(A) = dead © scope(A) > scope(base(A)).

The proofs of Invariants U10 through Ul3 are (almost) entirely analogous to
the proofs of Invariants S2 through S5, hence they are omitted.

The status of a simple locale, the status of a block and the generator
of a simple block can now be turned into redundant variables. As in the
sequential case it suffices to show this for the determination of DEADTOP
and DEAD. Consider DEADTOP first. Invariant Ul3 implies that if S # @ and
kind(top(S)) = simple, the assertion

status(top(S)) = dead

54
is equivalent to
scope(top(S)) > scope(environ(PO)).

If kind(top(S)) = extended; two cases must be distinguished. First, if
top(S) is a locale its status can be determined directly. Second, if top(S)
is a block, its status is equal to the status of its generator G (Invariant
B2). The status of G, again, can be determined directly, because kind(G) =
extended (Invariant B4). Notice that if Invariant B4 did not hold, it were
much more difficult to determine the status of G. The above implies that

DEADTOP can be implemented as follows:

Determination of DEADTOP
If S=0
DEADTOP := false.

else A

Let T = top(S).

If kind(T) = simple

Let E = environ(PO).

DEADTOP := scope(T) > scope(E).

else
IfTEL
DEADTOP := status(T) = dead.
else
Let G = generator(T).
DEADTOP := status(G) = dead.

Invariants U10 and U13 imply that the number of dead cells in S can be

determined as follows:

55

Determination of DEAD

Lets=<A], ev oy An>o

s
k

1l
8 O

L := environ(Po).
While k > O
While k > 0 and A #L
If kind(Ak) = simple
If scope(Ak) > scope(L)
s (= s + size(Ak).
else
If Ak €L
If status(Ak) = dead
l s := 8 + size(Ak).
else
Let G = generator(Ak).
If status(G) = dead
s := s + size(Ak).

k :=k - 1.
If k >0
L := establisher(L).
=k - 1.
DEAD := s.

We have shown above, that in order to implement System 4 in the
general case of both sequential and parallel programs neither the status of
a simple area nor the status of a block nor the generator of a simple block
need be implemented. We will formally complete the design by removing these

variables from the model.

4.7 Stripping the model

The removal of redundant variables from the model starts with a

reduction of the entities associated to locales and blocks.

56

Each locale L has

type(L): constant type,
scope(L): constant integer,
establisher(L): constant locale,
size(L): constant ihteger,

kind(L): constant kind,

If kind(L) = extended

- status(L): variable status.

Each block B has

type(B): constant type,
scope(B): variable integer,
size(B): constant integer,

kind(B): variable kind,

If kind(B) = extended

- generator(B): variable locale.

The entities associated to processes remain the same. The initial state of

the model is reduced only as far as the initial conditions for L

are
0

- concerned:

Initially

type(Ly) = ",
scope(LO) =0,
establisher(LO) =L
size(LO)
kind(LO)

0’

v,

simple.

Next, the redundant variables must be removed from the operations of the

(no longer entirely) abstract machine. For the operations ESTABLISH(t),

FINISH and GENERATE(t, L) this is straightforward. These operations are

given below.

ESTABLISH(t):
Precondition:
t is a type. '
Action:
Let E = environ(R).
Let L be a locale such that
-L¢E&L,
type(L) = t,

scope(L) = scope(E) + 1,
- establisher(L) = E,

- size(L) =,

If R = P0

- kind(L) = simple.
else

- kind(L) = extended,

- status(L) = alive.
ALLOCATE(L) .
L := L U<{L}.

environ(R) := L.

FINISH:

Precondition:
environ(R) # origin(R).

Action:
Let E = environ(R).
environ(R) := establisher(E).
If kind(E) = extended

status(E) := dead.

RELEASE.

58

GENERATE(t, L):
Precondition:
t is a type, '
LEL, L <, environ(R).
Action:
Let B be a block such that
- BB,
type(B) = t,

scope(B) = scope(L),
size(B) Ny

kind (B) kind (L),
If kind(L) = extended

- generator(B) = L.
ALLOCATE(B) .
B := B U {B}.

In removing the redundant variables.from the operation KEEP(B, L) an
interesting problem arises. The precondition of KEEP(B, L) contains a
condition on the generator of B. However, in the new model the generator of
- B need not exist (to wit, if kind(B) = simple). We can do two things now.
First, we can simply do away with the preconditions of operations. They are
not supposed to be implemented (as run-time checks) anyway. They are only
meant for the code generator, who must make sure they are satisfied
whenever an operation is used. Second, we can replace the condition on the
generator of B by an equivalent one which does not use the generator of B
if kind(B) = simple. The latter seems the more elegant solution, which we
will choose for here. It requires the proof of an additional invariant (in

the "o0ld" model):

Invariants for S and H
Ul4. For each L € T N L with status(L) = alive
and each B € T N B

generator (B) L®L <g B and scope(B) = scope(L).

This invariant can be derived from the invariants already formulated (in

59

particular from Invariant Ull1). The generator of a simple block can now
also be removed from the precondition of KEEP(B, L):
KEEP(B, L):
Precondition:
BEB, LEL, L # LO, L <, environ(R),
If kind(B) = simple
environ(R) SS B and
scope(B) = scope(environ(R)).
else
generator(B) = environ(R).
Action:
scope(B) := scope(L).
kind(B) := kind(L).
If kind(B) = extended

generator(B) := L.

The operations SPAWN(n), COMPLETE and SWITCH remain entirely the same. This
leaves only the operation JUMP(L, P). Suppose that prior to JUMP(L, P) the
- assertion R = P0 holds (i.e. the program is in ''sequential mode'"). From the

fact that P-SH PO (see the precondition of JUMP(L, P)) and P P

0 =m
(Invariant P4) we know that P = PO. Hence the actions:

R := P.

mode(R) := active.

in the definition of JUMP(L, P) reduce to dummy actions. Though this is not

so for the action:
environ(R) := L.

it also applies to the rest of the actions in the definition of JUMP(L, P)
except to RELEASE of course. First consider

60

For each M€ L with L < M

status(M) := dead.

This action can be removed because the following assertion (which is not

disturbed by "environ(R) := L") holds prior to JUMP(L, P):

For each M € L with L < M

status(M) = alive = kind(M) = simple.
Next, the action

For each B € B with L < generator (B)
status(B) := dead.

can be removed because the status of a block is a redundant variable.

Finally, the action

For each Q € P with P < Q
mode(Q) := completed.

can be removed because P (= PO) is the only process in P which is not yet
completed. If R # P0 prior to JUMP(L, P) the required changes in JUMP(L, P)

are obvious. All in all we get:

g

61

JUMP(L, P):
Precondition:
LEL, L SA environ(R),
PEP, P <1 R,
origin(P) 5A L 5A environ(P).
Action:
If R = PO
environ(R) := L.
else
R := P,
mode(R) := active.
environ(R) := L.
For each M € L with L <) M and kind(M) = extended
l status(M) := dead.

For each Q € P with P < @

I mode(Q) := completed.
RELEASE.

The only thing that remains to be done is the rewriting of the

-invariants. That is, the redundant variables must also be removed from the

invariants. This is a straightforward matter which will be omitted. The
"stripping" of the model is herewith completed. Yet, the system is still in
a rather abstract form. The final implementation of the system in "hard
code'", which is a purely technical matter, will be discussed in the next

subsectione.

4.8 Final implementation

In the introduction we stated that the storage management system
should be written in a subset of the code of the abstract machine. Up till
now we only have a description in terms of algorithms which operate on the
abstract variables of the (enhanced) machine model. In order to obtain a
storage management system written in abstract machine code the entire model

must be mapped back to the abstract machine. There are two aspects to this

62

mapping.

First of all there is the data structure aspect. A layout for the data
structures of the model must designed. This layout specifies how the
entities associated to locales, blocks and processes are implemented as
subfields of the fields océupied by these data structures in the store of
the abstract machine. Note that in reality there are more entities
associated to locales, blocks and processes than we discussed here. We
discussed only those entities which were of interest to the storage
management problem. The design of such a layout is not difficult.
Optimizations are often possible by combining different entities in the
same subfield. Having defined a layout, the referencing or changing of an
entity associated to a locale, block or process can directly be translated
into an instruction of the abstract machine which accesses the
corresponding subfield (using a "pointer" and an "offset").

Second, there is the control structure aspect. Most of the control
structures used in the algorithms (such as while-loops) can directly be
translated into abstract machine code. The only two control structures the
translation of which is not entirely trivial are the two for-loops in
JUMP(L, P). Using the (rewritten) invariants one can transform the
- definition of JUMP(L, P) into the following more readily translatable form,

however:

63

JUMP(L, P):
Precondition:
LEL, L <, environ(R),
PEP, PR,
origin(P) 2 L SA environ(P).
Action:
If R = PO
environ(R) := L.
else
Let E = environ(P).
R :=P.
mode(R) := active.
environ(R) := L.
If P # P,
M := E.
While M # L
status(M) := dead..
M := establisher(M).
Q :={S € P | spawner(S) = P, mode(S) # completed}.
While Q # @
Let Q € 2.
Q2 := 2\ {q}.
mode(Q) := completed.
M := environ(Q)-.
While M # origin(Q)
status(M) := dead.
M := establisher(M).

Q :=0QU{S € P | spawner(S) = Q, mode(S) # completed}.
RELEASE.

In the other algorithms several optimizations are possible too.

The translation of the algorithms into abstract machine code will thus
not pose any serious problems. The only operations which cannot directly be
translated are COLLECT GARBAGE and COMPACTS. The design of efficient

algorithms for these operations (based on the specifications given in the

64

foregoing) will be treated in a separate paper [7].

5. CONCLUSION

The implementation of a programming language is a highly complex
process. In order to keep this process under control a "divide and rule"
approach is absolutely mandatory. The job should be divided in clearly
interfaced sub-tasks, which should be as independent from each other as
possible. The division should be done with great care in order to keep the
implementation as efficient as possible. One of the sub-tasks is the
construction of a storage management system. In this paper it was
demonstrated through an example that indeed the design of a storage
management system can be viewed as a relatively independent part of the
language implementation effort. The interface with the other parts of the
implementation consisted of an abstract model, which contained exactly the
information relevant to the storage management problem and no more than
that. It allowed us to approach the problem in a systematic and rigorous
-way, up to a level of formality which allowed proofs of correctness. Since
all irrelevant details were discarded, the design process remained
transparent and things could be kept relatively simple. The final result of
the design process was an efficient storage management system. The majority
of the techniques used in this system are certainly not novel. The primary
goal of this paper was not to demonstrate some fancy storage management
technique. Its main purpose was to demonstrate a technique to design a
storage management system in a systematic way.

Apart from a number of advantages already mentioned in the
introduction, the major advantage of the method demonstrated in this paper
over the more usual ("classical") approach to the design of storage
management systems (such as described in e.g. [1, 4, 5, 8]) is considered
to be the fact that it forces one to a separation of concerns. In the
process of designing a storage management system for an implementation of a
programming language L on a machine M a number of concerns can be

distinguished, which were clearly separated in the foregoing:

65

1. The programming language L.

2. The machine M.

3. The definition of the problem.
4. The design of the algorithms.

5. The implementation of the system.

Concerns 1 and 2 are often not well separated. In any but a purely
interpretive implementation a storage management system should not be
designed for (the machine corresponding to) the programming language L, but
for the machine M into code of which programs in L are translated. The
operation KEEP(B, L), which does not correspond to any ALGOL 68 construct,
demonstrates this clearly. Of course, if the abstract machine approach is
pursued, there will usually be a certain correspondence between L and M
(the more abstract the machine is, the closer this correspondence will
generally be). Good abstract machines (or better, their definitions) should
be such that they can be implemented without using information on the
programming language L or the way programs in L are translated into code
for M, however. Admittedly with the MIAM [9] we were in a rather fortunate
position in this respect. During the design process we only seldom needed a
. reference to ALGOL 68.

The third concern, the definition of the problem, is usually either
omitted or taken for granted. Lacking a simple model free of irrelevant
detail it is indeed not easy to define precisely what the storage
management problem amounts to. Yet an unambiguous statement of the problem
is essential to the reliability of the system to be developed. E.g., should
we not have glearly defined what operations on the allocation function were
allowed, we might have erroneously deallocated living areas.

Concerns 4 and 5 are most often confused. It is generally accepted
that in designing an algorithm (or a program) one should keep the algorithm
(or the program) free from implementation detail as long as possible. It
enables one to keep a clear view at the algorithm under development. Thus
possible improvements of the algorithm are more easily discovered. An
example of this was the discovery of Invariant S5, which enabled a
substantial improvement of the efficiency of the storage management system.

It is questionable whether this invariant would ever have been discovered

66

(let alone that it could have been proved) if we had not kept the system as
abstract as we did. The separation of concerns 4 and 5 also helps in
keeping the presentation of the algorithms digestible. Interspersing an
algorithm with implementation details can make the algorithm utterly
unreadable. '

A sixth concern could be added to the above list of separated
concerns: the design of the garbage collector. This concern was separated
because it constitutes a problem so different from the rest of the design
that it justifies a separate treatment. The fact that this concern could be

separated shows the power of the technique.

REFERENCES

[1] BRANQUART, P. & J. LEWI, A scheme of storage allocation and garbage
collection for ALGOL 68, In: ALGOL 68 Implementation, Ed. J.E.L.
Peck, North Holland Publishing Company, Amsterdam (1971).

[2] DIJKSTRA, E.W., Cooperating sequential processes, In: Programming
Languages, Ed. F. Genuys, Academic Press, London (1968).

[3] ELSWORTH, E.F., Compilation via an intermediate language, Computer
Journal 22 (1979), 226-233.

[4] GRIES, D., Compiler Construction for Digital Computers, Jchn Wiley &
Sons, New York (1971).

[5] HILL, U., Special run-time organization techniques for ALGOL 68, In:
Compiler Construction, Ed. F.L. Bauer & J. Eickel, Springer-
Verlag, New York (1974).

[6] JONKERS, H.B.M., Deriving algorithms by adding and removing variables,
Mathematical Centre Report IW 134/80, Amsterdam (1980).

[7]

(8]

[9]

[10]

(1]

67

JONKERS, H.B.M., Designing a garbage collector, To appear,
Mathematical Centre, Amsterdam.

KNUTH, D.E., The Art of Computer Programming, Vol. 1: Fundamental
Algorithms, Addison-Wesley, Reading, Mass. (1968).

MEERTENS, L.G.L.T., Definition of an abstract ALGOL 68 machine,

Working document, Mathematical Centre, Amsterdam.

TERASHIMA, M. & E. GOTO, Genetic order and compactifying garbage

collectors, Information Processing Letters 7 (1978), 27-32.

WIJNGAARDEN, A. VAN, B.J. MATLLOUX, J.E.L. PECK, C.H.A. KOSTER, M.
SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER (Eds.),
Revised Report on the Algorithmic Language ALGOL 68, Springer-
Verlag, New York (1976).

