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ABSTRACT 

We prove some theorems which reconsider the completeness of Hoare's 

logic for the partial correctness of while-programs when equipped with a 

first-order assertion language. The results are about the expressiveness of 

the assertion language and the role of specifications in completeness con­

cerns for the logic: (1) expressiveness is not a necessary condition on a 

structure for its Hoare logic to be complete; (2) complete number theory is 

the only extension of Peano Arithmetic which yields a logically complete 

Hoare logic; (3) a computable structure with enumeration is expressive if, 

and only if, its Hoare logic is complete. 
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INTRODUCTION 

With the term Hoare's logic we mean the formal system for the manipula­

tion of statements about the partial correctness of while-programs which 

was first described in HOARE [10]. In this paper we shall be concerned with 

the mathematical structure of this logic when it is equipped with a first­

order assertion language L, and is set to analyse computation on essentially 

arithmetical structures by the members of the set of while-programs WP. We 

will prove some theorems about the relationship between the expressiveness 

of the assertion language, the specifications of the structures, and the 

completeness of the logic itself: theorems which are technical comments on 

the nature of the completeness of the formal system, but which also reflect 

on two informal attitudes to data abstraction available when working with 

Hoare's logic. 

The starting point for any mathematical study of Hoare's ideas is the 

seminal paper COOK [7] where the various syntactic and semantic components 

associated with the system were carefully examined, and the soundness of 

logic properly proved. Of particular interest to us is the role of the 

oracle or structural specification in Hoare's logic. This is a set O of 

assertions used in connection with the Rule of Consequence, and it is intend­

ed to formalise what information about data types is available to correctness 

proofs for the programs the data types support (cf. HOARE [10], Section 2). 

From [7], we know that if O sound for a structure A then Hoare's logic HL(O) 

is sound for WP over A, too. Up to the choice of program semantics for while­

programs, Cook's analysis of Hoare's ideas is general, faithful and defini­

tive. (For information on the issues involved in the choice of semantics 

consult GREIF & MEYER [9].) 

Of course, in [7], Cook also considered the completeness of Hoare's 

logic, but with apparently less satisfying theoretical results: under the 

hypotheses that O is a complete specification for structure A and that Lis 

expressive for WP over A then HL(O) is complete for WP over A. For example, 

if the standard arithmetic N of the natural numbers is specified by its 

first-order theory Th(N), called complete number theory, then its Hoare 

logic is complete for WP over N since Lis expressive for WP over N. 

Much theoretical effort has ·been expended in coming to terms with this 
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assumption of expressiveness and with the paucity of expressible structures; 

and, by extension, in evaluating the kind of completeness Cook was able to 

provide. The writing on this theme is quite extensive, but one can usefully 

consult the invaluable survey article APT [1] to obtain a clear picture of 

current opinion. In summary, the basic material about while-programs is 

contained in WAND [18] and our own [4] (on incompleteness); and in LIPTON 

[12] (on expressiveness). In the case of a richer programming formalism the 

situation is far more perplexing since expressiveness can fail to be a 

sufficient condition for the existence of any kind of complete Hoare logic: 

see CLARKE [6]; but there remains a common ground of complex languages with 

complete Hoare logics over expressive structures and this has been charted 

in LIPTON [12], LANGMAACK & OLDEROG [11], in the monograph DE BAKKER [2] 

and, again, in APT [1]. Let us concentrate on the simple facts of life for 

while-programs. 

Although expressiveness is not an unnatural condition from the point 

of view of computing on a structure, is it actually necessary for the 

completeness of the structure's Hoare logic? 

THEOREM 1. Expressiveness is not a necessary condition on a structure for 

the completeness of its Hoare logic. For any model A of complete number 

theory Hoare's logic is complete, but if A is not the standard model of 

arithmetic then Lis not expressive for WP over A. 

Now Theorem 1 illuminates a certain change of status for Hoare's logic 

in the passage from the Soundness Theorem to the Completeness Theorem; 

from a system of reasoning based purely upon a data type specification to 

a system of reasoning based upon a fixed data type which is appropriately 

specified. The alteration is effected by the kind of completeness sought 

for Hoare's logic: the set of valid asserted programs is defined by a single 

structure and not by the class of all models of a specification, as one 

expects to see in a "true" converse to the Soundness Theorem. The property 

of expressiveness certainly underlines this semantic emphasis, but express­

iveness does not determine it and from Theorem 1 one can deduce this other 

kind of completeness is possible for arithmetic: 

Let us say that a Hoare logic HL(O) is logically complete if any 

asserted program which is valid on all models of the specification O is 
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provable in HL(O). 

THEOREM 2. Complete number theory is the only extension T of Peano Arithmetic 

for which HL(T) is logically complete. 

There are two attitudes toward data abstraction to govern one's work 

with Hoare's logic: given that some specification is a necessary constituent 

of the proof system, one may think of the specification, and hence the logic, 

as an instrument to analyse computation on a particular structure; or one 

may think of the specification as an abstract characterisation of an ill­

defined class of legitimate implementations. Both ideas are commonplace in 

the literature on the semantics of data types, of course. 

From the point of view of computing on a given structure, the examples 

in Theorem 1 can hardly qualify as interesting data types in their own 

right; they are not computable for example: see [16]. (Nevertheless, non­

standard models of arithmetic are part and parcel of the concern for correct­

ness simply because, mathematically, a Hoare logic HL(O) is not a system of 

reasoning about one particular structure (say, N) but about the class of all 

models of the specification O (say, Th(N))). 

A close reading of Hoare's work in this area suggests that he intended 

his calculus to be a system of reasoning about programs running on any 

legal implementation of the specification. If we interpret a legal implemen­

tation of a specification Oas simply a computable model of O then we have 

a mathematically intermediate notion of completeness in which validity is 

based upon all computable models of 0. In the case of arithmetic this 

collapses to a particular structure where expressiveness and completeness 

occur together. As it turns out this is a general phenomenon and, in partic­

ular, we have further reassurance of the usefulness of Cook's study of 

completeness: 

THEOREM 3. Let A be an infinite computable structure. Then A can be augmen­

ted by a computable enumeration, consisting of a distinguished constant 

first and a unary injective operator next: A+ A such that A= {nextn(first): 

n E w}, to make a new structure A with the result that Lis expressive for 
e 

WP over A if, and only if, HL(A) is complete for A. 
e e 
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We have greatly prolonged this introduction to accommodate our obser­

vations on the semantic and syntactic roles of specifications; henceforth 

we deal with mathematical issues only. The first two sections concern the 

construction and basic properties of Hoare's logic while the next three 

sections technically discuss completeness and prove the theorems announced. 

Obviously, we are assuming the reader to be familiar with HOARE [10] and 

COOK [7], but little other knowledge is actually necessary. This paper is 

a close companion of our [4] about natural structures which possess no 

complete Hoare-like logics for their while-programs; and both papers are 

sequels to our [3] written with J. Tiuryn. 

1. PRELIMINARIES ON ASSERTIONS AND PROGRAMS 

In this and the next section we map out the technical prerequisites 

for the paper. In addition to the important sources HOARE [10], COOK [7], 

the reader would do well to consult the survey article APT [1]. 

The first-order language L = L(E) of some signature Eis based upon a 

set of variables x 1 ,x2 , ... and its constant, function and relational symbols 

are those of E together with the boolean constants true, false and the equal­

ity relation. We assume L possesses the usual logical connectives and quant­

ifiers; and the set of all algebraic terms of L we denote T(E). 

Using the syntax of L, the set WP= WP(E) of all while-programs over 

Eis defined in the customary way. 

For any structure A of signature E, the semantics of the first-order 

language Lover E as determined by A has its standard definition in model 

theory and this we assume to be understood. The validity of¢ EL over 

structure A we write A I= ¢. 

If O is a set of assertions of L then the set of all formal theorems 

of O is denoted Thm(O); we write O I- ¢for¢ E Thm(O). Such a set O of 

formulae is usually called a theory, but in the present context we prefer 

the more suggestive term specification. Two specifications 0,0• are 

logically equivalent if Thm(O) = Thm(O'). A specification O is complete 

if given any assertion ¢ E L, either O I- ¢ or O I- - ¢. The set Th (A) 

of all assertions true of a structure A is called the first-order theory 

of A; evidently Th(A) is a complete specification. The class of all models 
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0 is denoted Mod(O); we write Mod(O) f ~ to mean that for every A E Mod(T), 

A F ~. Godel' s Completeness Theorem says this about specifications: 

0 I- ~ if, any only if, Mod(O) f ~-

For a proper discussion of these concepts the reader should consult CHANG -

& KEISLER [5]. 

For the semantics of WP as determined by a structure A, we leave the 

reader free to choose any sensible account of while-program computations 

which applies to an arbitrary structure: COOK [7]; the graph-theoretic 

semantics in GREIBACH [8]; the denotational semantics described in DE 

BAKKER [2]. What constraints must be placed on this choice are the necessi­

ties of formulating and proving certain lemmas, such as Lemma 1.1, and of 

verifying the soundness of Hoare's logic (Theorem 2.2). These conditions 

will be evident from the text and, for such a simple programming formula 

as WP, can hardly be problematical. For definiteness, we have in mind a 

naive operational semantics based upon appropriate A-register machines which 

yield straightforward definitions of a state in a WP computation and of 

the length of a WP computation [17]. Thus, if SE WP involves n program 
n variables and computes on structure A then we use elements of A to repres-

n 
ent states in the computations of S. For a EA, the length of the computa-

tion S(a) is denoted ls(a) I. The proof of the following fact is a routine 

matter: 

1.1. LEMMA. Let S E WP involve variables x = (x1 , ... ,xn). Then for each 

l E w one can effectively find a formula COMPs,l(x,y) of L, wherein 
n 

y = (y1 , •.. ,yn) are new variables, such that for any A and any a,b EA, 

A f COMP s,l (a,b) if, and only if, the computation s (a) terminates in 

l or less steps leaving the variables with values b = (b1 , ••• ,bn). 

From the syntax Land WP, we make a new kind of syntactic object 

called the asserted program; this is a triple of the form {p}S{q} where 

p,q EL and SE WP and the variables of p,q and Sare the same. To the 

asserted programs we assign partial correctness semantics: the asserted 

program {p}S{q} is valid on a structure A (in symbols: A f {p}S{q}) if 

for each initial state a E An, A f p (a) implies either S (a) terminates and 
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A I= q(S(a)) or S(a) diverges. And the asserted program {p}S{q} is valid 

for a specification O if it is valid on every model of O; in symbols, 

0 f {p}S{q} or Mod(O) I= {p}S{q}. 

The partial correctness theory of a structure A is the set 

PC(A) = {{p}S{q}: Af {p}S{q}}; 

and the partial correctness theory of a specification O is the set 

PC(O) = {{p}S{q}: Mod(O) f {p}S{q}}. 

Clearly, 

PC ( 0) = n A E Mod ( 0) PC (A) • 

Finally, we define strongest postconditions. Let~ EL and SE WP, 
both having n variables. The strongest postcondition of Sand~ on a struc­

ture A is the set 

spA(~,S) = {b E An: 3a E An.[S(a) terminates in final state 

b and A I= ~(a)]} 

1.2 LEMMA. A f {p}S{q} <=> spA(p,S) c {b E An: A f q(b)}. 

2. HOARE'S LOGIC 

Hoare's logic for while-programs over I,_ with assertion language L 

and specification or oracle O c L, has the following axioms and proof rules 

for manipulating asserted programs: let s,s1 ,s2 E WP; p,q,p1 ,q1 ,r EL; 

b EL, a quantifier-free formula. 

1. Assignment axiom scheme: fort E T(I) and x a variable of L, the asserted 

program 

{p[t/x]}x := t{p} 



is an axiom, where p[t/x] stands for the result of substituting t for 

free occurrences of x in p. 

2. Composition rule: 

{p}s1{r},{r}s2{q} 

{q}Sl;S2{q} 

3. Conditional rule: 

4. Iteration rule: 

{pAb}S{p} 
{p} while b do Sod {pA7b} 

5. Consequence rule: 

p ➔ P1,{pl}S{ql}, ql + q 

{p}S{q} 

And, in connection with 5, 

6. Oracle axiom: Each member of Thm(O) is an axiom. 

7 

The set of asserted programs derivable from these axioms by the proof 

rules we denote HL(O); we write HL(O) t {p}S{q} in place of {p}S{q} E HL(O). 

2.1 BASIC UNIQUENESS LEMMA. For any consistent specifications O and O• which 

are logically equivalent we have that HL(O) =_HL(O') and PC(O) = PC(O 1 ). 

PROOF. The equality of Hoare logics over logically equivalent specifications 

is obvious. If Thm(O) = Thm(O 1 ) then Mod(O) = Mod(O 1 ), by the soundness of 

first-order logic. Therefore PC(O) = PC(O 1 ). 

The Corollary to Theorem 1 in COOK [7] says this: 

2.2 SOUNDNESS THEOREM. For any specification 0, HL(O) c PC(O). 
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The Hoare logic HL(O) is said to be logically complete if HL(O) = PC(O). 

As noted in the Introduction, Cook chose to consider the completeness of 

Hoare's logic relative to a fixed structure rather than its logical complete­

ness; we state Theorem 3 in [7]: 

The assertion language Lis expressive for WP over structure A if for 

every~ EL and every SE WP, the strongest post-condition sp (~,S) is 
A 

first-order definable over A. 

2.3 COOK'S COMPLETENESS THEOREM. For any structure A, if O is a complete 

specification for A in the sense that Thm(O) = Th(A), and if Lis expressive 

for WP over A, then HL(O) = PC(A). 

Hoare's logic for while-programs over a structure A is defined to be 

HL(Th(A)) and is denoted HL(A). From the Soundness Theorem 2.2, we know 

that 

HL(A) = HL(Th(A)) c PC(Th(A)) c PC(A) 

and the Completeness Theorem says that if Lis expressive for WP over A then 

HL(A) = PC(A). 

Let N = (w;O,x+l,x~l + ,x,~) to be standard model of arithmetic; the 

Corollary to Theorem 3 in [7] says: 

2.4 COROLLARY. HL(N) = PC(N). 

3. COMPUTING ON A STRUCTURE 

When using first-order logic to investi~ate properties of a given 

structure it must be kept in mind that the logical methods see the structure 

as an object unique up to elementary equivalence and not isomorphism. If 

A and Bare structures of common signature then A is elementary equivalent 

to B (in symbols: A= B) if Th(A) = Th(B). 

3.1 UNIQUENESS LEMMA FOR STRUCTURES. 

If A - B then HL(A) = HL(B) and PC(A) = PC(B). 
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PROOF. The equality of the Hoare logics over elementary equivalent structures 

follows from the Uniqueness Lemma 2.1, and is obvious anyway. Consider the 

second statement about correctness theories. 

Suppose A I= {p}S{q} where p,q E L, and S E WP involves n program 

variables. Given Sand l E w one can effectively find a while-program Sl 
which applied to any input state of any I-structure A computes exactly as 

S computes for l steps and then diverges if S has not terminated in that 
n 

time. Thus, for a EA, 

{S(a) 

undefined 

if ls<a~ :;; l 

otherwise. 

It is easy to prove from Lemma 1.1 the following fact: 

3.2 LEMMA. For any assertion~ of Lone can effectively find a first-order 

formula SP(~,Sl) which for every I-structure A defines the strongest post­

condition spA(~,Sl). 

Now define SP(~,S) :VlEwSP(~,Sl), an infinitary formula which uniformly 

defines the strongest postcondition of~ and S. We calculate as follows: 

A F {p}S{q} <=> A F SP (p,S) -+ q by Lemma 1.2 

<=> A r= cVlEw sP<p,st>J + q 

<=> A r=/\lE/SP(p,Sl) -+ q] 

<=> for every l € w, A r= SP(p,Sl) -+ q 

<=> for every l € w, B F SP (p,Sl) -+ q since A - B 

<=> B F/\tEiSP(p,Sl) -+ q] 

<=> B I= {p}S{q}. 

Q.E.D. 

3.3 COROLLARY. If HL(A) is complete and A= B then HL(B) is complete. 

PROOF. Assume HL(A) = PC(A). By Lennna 3.1, HL(A) = HL(B) and PC(A) = PC(B) 

so HL(B) = PC(B). Q.E.D. 

Here is the first theorem of the Introduction. 
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3.4 THEOREM. For every model A of complete number theory Th(N), HL(A) is 

complete; but if A is non-standard then Lis not expressive for WP over A. 

PROOF. Any model A of complete number theory is elementary equivalent to the 

standard model N; thus, HL(A) is complete by Corollary 3.3 and Corollary 

2.4. We show Lis not expressive for A. 

Let S be the following arithmetic program, 

x:=y; while x ~ 0 do x:=x~l od; x:=y. 

On the structure A, S attempts to count down from the value of y to O: given 

initial state (a,b) E A2 if S terminates then its final state is (b,b) and 

bis a standard number in A; if bis non-standard then S diverges from 

initial state (a,b) for any .a EA. 

Consider the set sp (true,S). Inspecting its definition we find that 
2 A--

for (a,b) EA, 

(a,b) E spA(true,S) <=>a= band a is standard. 

Thus, X = {a EA: (a,a) Esp (true,S)} is precisely the set of all standard 
A--

numbers in A. If spA(true,S) were first-order definable then, from the axioms 

of Peano Arithmetic, we could prove the existence of a least element of 

7 X. But A has no smallest non-standard element because each non-zero element 

has a predecessor. Q.E.D. 

4. COMPUTING WITH A SPECIFICATION 

Let us begin by establishing a general connection between the logical 

completeness of Hoare's logic based upon a specification and the completeness 

of the logic as it is determined by a particular structure. 

4.1 THEOREM. Let O be a consistent specification which is complete. Then for 

each A E Mod(O) it is the case that HL(O) = HL(A) and PC(O) = PC(A). In 

particular, the following three statements are equivalent: 
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1. HL(O) = PC(O). 

2. For each A E Mod(O), HL(A) = PC(A). 

3. For some A E Mod(O), HL(A) = PC(A). 

PROOF. If A E Mod(O) then Thm(O) = Th(A) because O is complete. On inspecting 

the appropriate definitions one sees that HL(O) = HL(A). Consider the correct­

ness theories. The completenss of O implies PC(O) = PC(Th(A)) and we must 

show that PC(Th(A)) = PC(A). Now, 

Since all models of Th(A) are elementary equivalent to A, the Uniqueness 

Lemma 3.1 reduces the intersection to PC(Th(A)) = PC(A). 

The equivalence in the theorem are easy corollaries of the first 

conclusions. Q.E.D. 

From Cook's Completeness Theorem 2.3 we can deduce this next theorem. 

4.2 THEOREM. Let O be a consistent specification which is complete. Then if 

Mod(O) contains an element A for which Lis expressive for WP over A then 

HL(O) is logically complete. 

Here is the second theorem stated in the Introduction. 

4.3 THEOREM. Complete number theory Th(N) is the only extension T of Peano 

arithmetic for which HL(T) is logically complete. 

PROOF. Hoare's logic based on complete number theory is logically complete 

by Theorem 4.1 and Corollary 2.4. We prove that for any extension T of 

Peano Arithmetic, if HL(T) is complete for Mod(T) then T satisfies the 

following w-Rule: let~ be any formula of Land let n denote the numeral in 

L corresponding ton E w. 

T I- ~ (E._) for each n E w 

T I- 'v'x~ (x) 

With this (ti-Rule it is a routine matter to show that Thm (T) = Th (N) • First, 
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one proves that Th(N) c Thm(T) by induction on the complexity of formulae 

and using thew-Rule. This done, the equality Th(N) = Thm(T) follows 

immediately from the completeness of Th(N). 

Let us prove the w-Rule. Let </> be a formula and suppose T I- </> (~) for 

all n E w. Let S denote the following program 

y::= O; while x -I- y do y:= y+l od 

and consider the asserted program 

h q,(x)}S{false} 

First, we claim that Mod (T) I= { 7 </> (x) }s{ false}. For if M E Mod (T) , 

m EM and MI= 7 <f,(m) then mis a non-standard element of M because we are 

assuming</> provable on all the standard numbers. Thus, the precondition 

7 q,(x) guarantees that the program diverges and so the asserted program 

is valid. 

Since HL(T) is complete for Mod(T) we know that 

HL(T) I- h <f,(x) }S{false}. 

We now unpick a formal proof of the asserted program in HL(T) and from its 

intermediate assertions put together a proof for TI- Vx.q,(x). Starting 

from the conclusion of the Hoare logic proof we step backward 3 times 

always seeking theorems of T. 

STEP I. By the Composition Rule, there must be a formula o = o(x,y) con-

taining free variables x,y, but also other unnamed variables, such that 

(a) HL(T) I- h <f,(x)} y:= 0 {o (x,y)} 

(b) HL(T) I- {o(x,y)} while x -I- y do y:= y+l od {false} 

Clearly, (a) implies that 

(c) TI- 7 q,(x) A y = 0 ➔ o(x,O). 

STEP II. Consider I(b). By the while-Rule and the Rule of Consequence, an 

intermediate assertion 0 = 0(x,y) must exist to satisfy 



(a) T I- o -+ 0 

(b) HL(T) I- {0 A x =/- y} y := y+l{0} 

(c) T I- 0 A x = y -+ false 

And this latter statement we rewrite 

(d) T I- 0 -+ x =/- y. 

13 

STEP III. Consider II(b). This statement is derived via the Rule of Conse­

quence from an appeal to an assignment axiom: there exists y = y(x,y) such 

that 

(a) T I- 0 A x =/- y-+ y[y/y+l] 

(b) HL(T) I- {y[y/y+l]} y:= y+l{y} 

(c) T I- y -+ 0 

Now we can show that T I- Vx. cf> (x). This involves a little logical 

calculation with the 6 formal theorems of T which we organize around the 

following lemma 

4.4 LEMMA. T I- -, cf>(x) -+ Vy.0(x,y) A x =I- y. 

Given this lemma, the remainder of the proof is simply a formal deduction: 

T I- .., cf>(x) -+ [Vy.0(x,y) A x =/= y] 

T I- [Vy.0(x,y) A x =/= y] -+ Vy.x =/= y 

T I- [Vy.x =/= y] -+ false 

By transitivity of implication, 

T I- 7 <I> (x) -+ false 

T I- cf> (x) 

this is Lemma 4.4; 

Reinstating the universal quantifier we have Tr Vx.cf>(x). 

PROOF OF LEMMA 4.4. We use the axiom scheme of induction belonging to 

Peano Arithmetic and which is available for T. It is enough to derive a 
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basis theorem and an induction step theorem 

Basis: T I- -r <I> (x) + [0 (x,O) /\ X -:/- .Q_] 

T I- 7 <I> (x) + o (x,.Q_) from I (c) ; 

T I- o(x,O) + 0(x,O) from II (a) ; 

T I- -r cp (x) + 0(x,O) by transitivity. 

T I- 7 <I> (x) + X -:/- 2. since T I- <I> (.Q_) • 

Whence the basis theorem is obtained by conjoining these last two statements. 

Induction step: T I- [0 (x,y) /\ X -:/- y] + [0(x,y+1) /\ x -:/- y+l] 

T I- [0 (x,y) /\ x-:/- y] + y(x,y+l) this is III (a) ; 

T I- y(x,y+l) + 0(x,y+1) from III (c) ; 

T ~ [0 (x,y) /\ X-:/- y] + 0(x,y+1) by transitivity. 

T I- 0(x,y+1) + x-:/- y+l from II(d). 

Whence the induction theorem is obtained from these last two statements. 

Q.E.D. 

5. EXPRESSIBILITY AND COMPLETENESS FOR COMPUTABLE STRUCTURES 

If Hoare's intentions are not quite faithfully represented by the 

mathematics of Sections 3 and 4 then at least it adequately supports the 

suggestion, made in the Introduction, of defining a third kind of complete­

ness from the class of computable models of a specification. Let CPC(O) be 

the set of all asserted programs valid on all computable models of 0. Then 

Theorem 4.1 allows us to reduce completeness considerations of HL(O) with 

respect to CPC(O) to the case of an individual structure: if O is complete 

and possesses a computable model then for any A E Mod(O), PC(A) = CPC(O) = 

PC(O). So it is, we are led, to take an interest in Hoare's logic over 

particular computable structures. 

By an enumeration for a structure A we mean a distinguished element 
. n 

first of A and an injective operator next: A+ A such that A={~ (first): 

n E w}. By a structure with enumeration we mean a structure with such an 

enumeration named in its signature. In this last section we will prove 
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this theorem. 

5.1 THEOREM. Each infinite computable structure possesses a computable enum­

eration. If A is a computable structure with enumeration then Lis expressive 

for WP over A if, and only if, HL(A) = PC(A). 

Finite structures are computable, of course, and as Lis always express­

ive for them their Hoare logics are always complete. Presburger Arithmetic 

is the simplest computable structure with enumeration; Lis not expressive 

for it and its Hoare logic is incomplete. For the standard model of arithme­

tic N, the ring of integers, and the field of rational numbers, Lis 

expressive and Hoare's logic is complete. But for the fields of real alge­

braic numbers and algebraic numbers, Lis again not expressive and Hoare's 

logic is incomplete, [4]. 

Of course, before proving Theorem 5.1 we are obliged to say something 

about computable structures. Our definition is the standard formal definition 

of the concept of a computable structure and it derives from RABIN [15] and 

MAL'CEV [13]. 

A structure A is computable if there exists a recursive subset Q of the 

set of natural numbers wand a surjection a:S}+A such that (1) the relation 

= defined on Q by n= m ~ an = am in A is recursive; and ( 2) for each k-ary a a 
operation a and each k-ary relation R of A there exist recursive functions 

a and R which commute the following diagrams 

wherein ak(x1 , ••• ,xk) = (ax1 , ••• ,axk) and R is identified with its character­

istic function. 

Let A be a computable structure with coding a. A set Sc An is said to 

be (a-)computable or (a-)semicomputable accordingly as 

is recursive or r.e. 
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5.2 LEMMA. Every infinite computable structure A is isomorphic to a recur­

sive number al.gebra R whose domain is the set of natural numbers wand in 

which the r.e. subsets of w correspond with the semicomputable subsets of 

A. The zero and successor on w induce a computable enumeration of A; more­

over, if A is a computable structure with enumeration then the isomorphism 

and algebra R can be chosen so as to allow zero and successor on w to 

correspond to the given enumeration of A. 

The lemma is not difficult to formally prove; the reader may care to 

consult MAL'CEV [13]. 

PROOF OF THEOREM 5.1. One implication is Cook's Completeness Theorem 2.3. 

Let A be a computable structure with enumeration and assume HL(A) is complete; 

we show that for¢ EL and SE WP, the strongest postcondition spA(¢,S) 

is first-order definable over A. Let¢ and S involve n variables and define 

GRAPHA(S) S(a) terminates in final state b}. 

Then 

and so it is :sufficient to prove that GRAPHA(S) is first-order definable. 

The following lemma we leave as an exercise: 

5.3 LEMMA. For any computable structure A and any SE WP, the set GRAPHA(S) 

is semicomputable. 

Whence the theorem follows from this proposition. 

5.4 PROPOSITION. Let A be an algebraic with enumeration having signature E. 
n 

Assume A is computable and that HL(A) is complete for WP over A. If X c A 

is semicomputabl~ then Xis first-order definable over E. 

PROOF. By the normalising Lemma 5.2 we can assume A to be isomorphic to a 

recursive nurr~er algebra R with domain wand whose enumeration is given 



by first element O and~ operator, succ(x) = x+l. Moreover, the semi­

computability of X can be identified with the recursive enumerability of 
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-1 
a X where a:R + A is the isomorphism. Thus, technically, the matter reduces 

to proving that any recursively enumerable set Y c wn is first-order over the 

signature E in any numerical structure R which is a recursive expansion of 

Presburger Arithmetic P = (w;O,succ) and for which HL(R) is complete for 

WP over R. 
V 

By Matijacevic's Diophantine Theorem [14], it is clear that it is 

sufficient to prove that ordinary addition and multiplication on w is first­

order over E. Using the completeness of HL(R) for WP over R we shall show 

that 

plus= {(x,y,z) 3 
E W x+y = z} 

is first-order over E; we carry out the argument in detail and leave the 

case of 

mult = {(x,y,z) 

as an exercise. 

3 
E W XX y = z} 

Consider the following composite program S - s 1 ;s2 E WP having variables 

x,y,z1,z2 ,u and defined by these programs 

s1 - zl := x; u := O; 

while u '/: y do u := succ(u); zl := succ(z1) od; 

u := O; z2 := 0 

s2 - z2 := x; u := O; 

while u '/: y do u := succ(u); z2 := succ(z2) .2£.i -

Both programs add the values of x and y; but program s 1 tidies up the values 

of its auxiliary variables so that from state (a,b,c,d,e) it computes and 

terminates in state (a,b,a+b,O,O). 

Clearly, R I= {true}S{z1=z2 } and by the completeness of HL(R) we know 

that 
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By the Composition Rule, there must exist a first-order intermediate 

assertion o such that 

HL(R) I- {true}S1 {o} 

and so, by thE~ Soundness Theorem, 

Given the form of the final states of s1 we know that 

for all a,b E w , R F o (a,b,a+b,O,O) 

and, thereforie, that 

(a,b,c) E plus ==> R f o (a,b,c,O,O) 

Contrapositively assume (a,b,c) i plus. Then a+ b # c implies that for any 

initial state (a,b,c,d,e) the program s2 will terminate but R fl z 1 = z 2 . 

The validity of the asserted program {o}s2{z 1=z2 } immediately implies 

(a,b,c) i plus ==> R f , o (a,b,c,O,O) 

and that plus is first order. Q.E.D. 
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