
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

J.A. BERGSTRA & J.V. TUCKER

IW 149/80

EXPRESSIVENESS AND THE COMPLETENESS OF HOARE 1S LOGIC

Preprint

~
MC

OKTOBER

kruislaan 413 1098 SJ amsterdam

Punted a.:t :the Ma.:themati.c.al Centll.e., 413 KIU.l..l6laan, Arr,!,:te!Uiam.

The Ma.:the.ma.:tlc.al Centlr.e , 6ou.nded :the 11-:th 06 FeblUlJl/l.y 1946, h, a. non­
pM6U .i.n6.tliu1:ion <Wni.ng a.:t :the. pMmoti.on 06 pwr.e ma.:thema.ti.C6 a.nd i.h
a.ppllc.a;Uon6. 1:t h, .6pon6oJz.ed by :the Ne:theltla.n.d6 Gove.Jz.nment :thll.ough :the
Ne:thelli.a.nd.6 OJtga.rilza.:tion 60JL. :the Adva.nc.e.ment 06 PuJz.e Re.6ea.Jz.c.h (Z.W.O.).

1980 Mathematics subject classification: 035D35, 03D75, 68B10

ACM-Computing Review-category: 5.24

*' Expressiveness and the completeness of Hoare's logic

by

*~ J.A. Bergstra & J.V. Tucker

ABSTRACT

We prove some theorems which reconsider the completeness of Hoare's

logic for the partial correctness of while-programs when equipped with a

first-order assertion language. The results are about the expressiveness of

the assertion language and the role of specifications in completeness con­

cerns for the logic: (1) expressiveness is not a necessary condition on a

structure for its Hoare logic to be complete; (2) complete number theory is

the only extension of Peano Arithmetic which yields a logically complete

Hoare logic; (3) a computable structure with enumeration is expressive if,

and only if, its Hoare logic is complete.

KEY WORDS & PHRASES: Hoare's logic for while-programs, soundness, complete­

ness, expressiveness, specifications, arithmetical

computation

*' This report is not for review as it will be submitted for publication
elsewhere.

**)Department of Computer Science, University of Leiden, Wassenaarseweg 80,
Postbus 9512, 2300 RA LEIDEN, The Netherlands

1

INTRODUCTION

With the term Hoare's logic we mean the formal system for the manipula­

tion of statements about the partial correctness of while-programs which

was first described in HOARE [10]. In this paper we shall be concerned with

the mathematical structure of this logic when it is equipped with a first­

order assertion language L, and is set to analyse computation on essentially

arithmetical structures by the members of the set of while-programs WP. We

will prove some theorems about the relationship between the expressiveness

of the assertion language, the specifications of the structures, and the

completeness of the logic itself: theorems which are technical comments on

the nature of the completeness of the formal system, but which also reflect

on two informal attitudes to data abstraction available when working with

Hoare's logic.

The starting point for any mathematical study of Hoare's ideas is the

seminal paper COOK [7] where the various syntactic and semantic components

associated with the system were carefully examined, and the soundness of

logic properly proved. Of particular interest to us is the role of the

oracle or structural specification in Hoare's logic. This is a set O of

assertions used in connection with the Rule of Consequence, and it is intend­

ed to formalise what information about data types is available to correctness

proofs for the programs the data types support (cf. HOARE [10], Section 2).

From [7], we know that if O sound for a structure A then Hoare's logic HL(O)

is sound for WP over A, too. Up to the choice of program semantics for while­

programs, Cook's analysis of Hoare's ideas is general, faithful and defini­

tive. (For information on the issues involved in the choice of semantics

consult GREIF & MEYER [9].)

Of course, in [7], Cook also considered the completeness of Hoare's

logic, but with apparently less satisfying theoretical results: under the

hypotheses that O is a complete specification for structure A and that Lis

expressive for WP over A then HL(O) is complete for WP over A. For example,

if the standard arithmetic N of the natural numbers is specified by its

first-order theory Th(N), called complete number theory, then its Hoare

logic is complete for WP over N since Lis expressive for WP over N.

Much theoretical effort has ·been expended in coming to terms with this

2

assumption of expressiveness and with the paucity of expressible structures;

and, by extension, in evaluating the kind of completeness Cook was able to

provide. The writing on this theme is quite extensive, but one can usefully

consult the invaluable survey article APT [1] to obtain a clear picture of

current opinion. In summary, the basic material about while-programs is

contained in WAND [18] and our own [4] (on incompleteness); and in LIPTON

[12] (on expressiveness). In the case of a richer programming formalism the

situation is far more perplexing since expressiveness can fail to be a

sufficient condition for the existence of any kind of complete Hoare logic:

see CLARKE [6]; but there remains a common ground of complex languages with

complete Hoare logics over expressive structures and this has been charted

in LIPTON [12], LANGMAACK & OLDEROG [11], in the monograph DE BAKKER [2]

and, again, in APT [1]. Let us concentrate on the simple facts of life for

while-programs.

Although expressiveness is not an unnatural condition from the point

of view of computing on a structure, is it actually necessary for the

completeness of the structure's Hoare logic?

THEOREM 1. Expressiveness is not a necessary condition on a structure for

the completeness of its Hoare logic. For any model A of complete number

theory Hoare's logic is complete, but if A is not the standard model of

arithmetic then Lis not expressive for WP over A.

Now Theorem 1 illuminates a certain change of status for Hoare's logic

in the passage from the Soundness Theorem to the Completeness Theorem;

from a system of reasoning based purely upon a data type specification to

a system of reasoning based upon a fixed data type which is appropriately

specified. The alteration is effected by the kind of completeness sought

for Hoare's logic: the set of valid asserted programs is defined by a single

structure and not by the class of all models of a specification, as one

expects to see in a "true" converse to the Soundness Theorem. The property

of expressiveness certainly underlines this semantic emphasis, but express­

iveness does not determine it and from Theorem 1 one can deduce this other

kind of completeness is possible for arithmetic:

Let us say that a Hoare logic HL(O) is logically complete if any

asserted program which is valid on all models of the specification O is

3

provable in HL(O).

THEOREM 2. Complete number theory is the only extension T of Peano Arithmetic

for which HL(T) is logically complete.

There are two attitudes toward data abstraction to govern one's work

with Hoare's logic: given that some specification is a necessary constituent

of the proof system, one may think of the specification, and hence the logic,

as an instrument to analyse computation on a particular structure; or one

may think of the specification as an abstract characterisation of an ill­

defined class of legitimate implementations. Both ideas are commonplace in

the literature on the semantics of data types, of course.

From the point of view of computing on a given structure, the examples

in Theorem 1 can hardly qualify as interesting data types in their own

right; they are not computable for example: see [16]. (Nevertheless, non­

standard models of arithmetic are part and parcel of the concern for correct­

ness simply because, mathematically, a Hoare logic HL(O) is not a system of

reasoning about one particular structure (say, N) but about the class of all

models of the specification O (say, Th(N))).

A close reading of Hoare's work in this area suggests that he intended

his calculus to be a system of reasoning about programs running on any

legal implementation of the specification. If we interpret a legal implemen­

tation of a specification Oas simply a computable model of O then we have

a mathematically intermediate notion of completeness in which validity is

based upon all computable models of 0. In the case of arithmetic this

collapses to a particular structure where expressiveness and completeness

occur together. As it turns out this is a general phenomenon and, in partic­

ular, we have further reassurance of the usefulness of Cook's study of

completeness:

THEOREM 3. Let A be an infinite computable structure. Then A can be augmen­

ted by a computable enumeration, consisting of a distinguished constant

first and a unary injective operator next: A+ A such that A= {nextn(first):

n E w}, to make a new structure A with the result that Lis expressive for
e

WP over A if, and only if, HL(A) is complete for A.
e e

4

We have greatly prolonged this introduction to accommodate our obser­

vations on the semantic and syntactic roles of specifications; henceforth

we deal with mathematical issues only. The first two sections concern the

construction and basic properties of Hoare's logic while the next three

sections technically discuss completeness and prove the theorems announced.

Obviously, we are assuming the reader to be familiar with HOARE [10] and

COOK [7], but little other knowledge is actually necessary. This paper is

a close companion of our [4] about natural structures which possess no

complete Hoare-like logics for their while-programs; and both papers are

sequels to our [3] written with J. Tiuryn.

1. PRELIMINARIES ON ASSERTIONS AND PROGRAMS

In this and the next section we map out the technical prerequisites

for the paper. In addition to the important sources HOARE [10], COOK [7],

the reader would do well to consult the survey article APT [1].

The first-order language L = L(E) of some signature Eis based upon a

set of variables x 1 ,x2 , ... and its constant, function and relational symbols

are those of E together with the boolean constants true, false and the equal­

ity relation. We assume L possesses the usual logical connectives and quant­

ifiers; and the set of all algebraic terms of L we denote T(E).

Using the syntax of L, the set WP= WP(E) of all while-programs over

Eis defined in the customary way.

For any structure A of signature E, the semantics of the first-order

language Lover E as determined by A has its standard definition in model

theory and this we assume to be understood. The validity of¢ EL over

structure A we write A I= ¢.

If O is a set of assertions of L then the set of all formal theorems

of O is denoted Thm(O); we write O I- ¢for¢ E Thm(O). Such a set O of

formulae is usually called a theory, but in the present context we prefer

the more suggestive term specification. Two specifications 0,0• are

logically equivalent if Thm(O) = Thm(O'). A specification O is complete

if given any assertion ¢ E L, either O I- ¢ or O I- - ¢. The set Th (A)

of all assertions true of a structure A is called the first-order theory

of A; evidently Th(A) is a complete specification. The class of all models

5

0 is denoted Mod(O); we write Mod(O) f ~ to mean that for every A E Mod(T),

A F ~. Godel' s Completeness Theorem says this about specifications:

0 I- ~ if, any only if, Mod(O) f ~-

For a proper discussion of these concepts the reader should consult CHANG -

& KEISLER [5].

For the semantics of WP as determined by a structure A, we leave the

reader free to choose any sensible account of while-program computations

which applies to an arbitrary structure: COOK [7]; the graph-theoretic

semantics in GREIBACH [8]; the denotational semantics described in DE

BAKKER [2]. What constraints must be placed on this choice are the necessi­

ties of formulating and proving certain lemmas, such as Lemma 1.1, and of

verifying the soundness of Hoare's logic (Theorem 2.2). These conditions

will be evident from the text and, for such a simple programming formula

as WP, can hardly be problematical. For definiteness, we have in mind a

naive operational semantics based upon appropriate A-register machines which

yield straightforward definitions of a state in a WP computation and of

the length of a WP computation [17]. Thus, if SE WP involves n program
n variables and computes on structure A then we use elements of A to repres-

n
ent states in the computations of S. For a EA, the length of the computa-

tion S(a) is denoted ls(a) I. The proof of the following fact is a routine

matter:

1.1. LEMMA. Let S E WP involve variables x = (x1 , ... ,xn). Then for each

l E w one can effectively find a formula COMPs,l(x,y) of L, wherein
n

y = (y1 , •.. ,yn) are new variables, such that for any A and any a,b EA,

A f COMP s,l (a,b) if, and only if, the computation s (a) terminates in

l or less steps leaving the variables with values b = (b1 , ••• ,bn).

From the syntax Land WP, we make a new kind of syntactic object

called the asserted program; this is a triple of the form {p}S{q} where

p,q EL and SE WP and the variables of p,q and Sare the same. To the

asserted programs we assign partial correctness semantics: the asserted

program {p}S{q} is valid on a structure A (in symbols: A f {p}S{q}) if

for each initial state a E An, A f p (a) implies either S (a) terminates and

6

A I= q(S(a)) or S(a) diverges. And the asserted program {p}S{q} is valid

for a specification O if it is valid on every model of O; in symbols,

0 f {p}S{q} or Mod(O) I= {p}S{q}.

The partial correctness theory of a structure A is the set

PC(A) = {{p}S{q}: Af {p}S{q}};

and the partial correctness theory of a specification O is the set

PC(O) = {{p}S{q}: Mod(O) f {p}S{q}}.

Clearly,

PC (0) = n A E Mod (0) PC (A) •

Finally, we define strongest postconditions. Let~ EL and SE WP,
both having n variables. The strongest postcondition of Sand~ on a struc­

ture A is the set

spA(~,S) = {b E An: 3a E An.[S(a) terminates in final state

b and A I= ~(a)]}

1.2 LEMMA. A f {p}S{q} <=> spA(p,S) c {b E An: A f q(b)}.

2. HOARE'S LOGIC

Hoare's logic for while-programs over I,_ with assertion language L

and specification or oracle O c L, has the following axioms and proof rules

for manipulating asserted programs: let s,s1 ,s2 E WP; p,q,p1 ,q1 ,r EL;

b EL, a quantifier-free formula.

1. Assignment axiom scheme: fort E T(I) and x a variable of L, the asserted

program

{p[t/x]}x := t{p}

is an axiom, where p[t/x] stands for the result of substituting t for

free occurrences of x in p.

2. Composition rule:

{p}s1{r},{r}s2{q}

{q}Sl;S2{q}

3. Conditional rule:

4. Iteration rule:

{pAb}S{p}
{p} while b do Sod {pA7b}

5. Consequence rule:

p ➔ P1,{pl}S{ql}, ql + q

{p}S{q}

And, in connection with 5,

6. Oracle axiom: Each member of Thm(O) is an axiom.

7

The set of asserted programs derivable from these axioms by the proof

rules we denote HL(O); we write HL(O) t {p}S{q} in place of {p}S{q} E HL(O).

2.1 BASIC UNIQUENESS LEMMA. For any consistent specifications O and O• which

are logically equivalent we have that HL(O) =_HL(O') and PC(O) = PC(O 1).

PROOF. The equality of Hoare logics over logically equivalent specifications

is obvious. If Thm(O) = Thm(O 1) then Mod(O) = Mod(O 1), by the soundness of

first-order logic. Therefore PC(O) = PC(O 1).

The Corollary to Theorem 1 in COOK [7] says this:

2.2 SOUNDNESS THEOREM. For any specification 0, HL(O) c PC(O).

8

The Hoare logic HL(O) is said to be logically complete if HL(O) = PC(O).

As noted in the Introduction, Cook chose to consider the completeness of

Hoare's logic relative to a fixed structure rather than its logical complete­

ness; we state Theorem 3 in [7]:

The assertion language Lis expressive for WP over structure A if for

every~ EL and every SE WP, the strongest post-condition sp (~,S) is
A

first-order definable over A.

2.3 COOK'S COMPLETENESS THEOREM. For any structure A, if O is a complete

specification for A in the sense that Thm(O) = Th(A), and if Lis expressive

for WP over A, then HL(O) = PC(A).

Hoare's logic for while-programs over a structure A is defined to be

HL(Th(A)) and is denoted HL(A). From the Soundness Theorem 2.2, we know

that

HL(A) = HL(Th(A)) c PC(Th(A)) c PC(A)

and the Completeness Theorem says that if Lis expressive for WP over A then

HL(A) = PC(A).

Let N = (w;O,x+l,x~l + ,x,~) to be standard model of arithmetic; the

Corollary to Theorem 3 in [7] says:

2.4 COROLLARY. HL(N) = PC(N).

3. COMPUTING ON A STRUCTURE

When using first-order logic to investi~ate properties of a given

structure it must be kept in mind that the logical methods see the structure

as an object unique up to elementary equivalence and not isomorphism. If

A and Bare structures of common signature then A is elementary equivalent

to B (in symbols: A= B) if Th(A) = Th(B).

3.1 UNIQUENESS LEMMA FOR STRUCTURES.

If A - B then HL(A) = HL(B) and PC(A) = PC(B).

9

PROOF. The equality of the Hoare logics over elementary equivalent structures

follows from the Uniqueness Lemma 2.1, and is obvious anyway. Consider the

second statement about correctness theories.

Suppose A I= {p}S{q} where p,q E L, and S E WP involves n program

variables. Given Sand l E w one can effectively find a while-program Sl
which applied to any input state of any I-structure A computes exactly as

S computes for l steps and then diverges if S has not terminated in that
n

time. Thus, for a EA,

{S(a)

undefined

if ls<a~ :;; l

otherwise.

It is easy to prove from Lemma 1.1 the following fact:

3.2 LEMMA. For any assertion~ of Lone can effectively find a first-order

formula SP(~,Sl) which for every I-structure A defines the strongest post­

condition spA(~,Sl).

Now define SP(~,S) :VlEwSP(~,Sl), an infinitary formula which uniformly

defines the strongest postcondition of~ and S. We calculate as follows:

A F {p}S{q} <=> A F SP (p,S) -+ q by Lemma 1.2

<=> A r= cVlEw sP<p,st>J + q

<=> A r=/\lE/SP(p,Sl) -+ q]

<=> for every l € w, A r= SP(p,Sl) -+ q

<=> for every l € w, B F SP (p,Sl) -+ q since A - B

<=> B F/\tEiSP(p,Sl) -+ q]

<=> B I= {p}S{q}.

Q.E.D.

3.3 COROLLARY. If HL(A) is complete and A= B then HL(B) is complete.

PROOF. Assume HL(A) = PC(A). By Lennna 3.1, HL(A) = HL(B) and PC(A) = PC(B)

so HL(B) = PC(B). Q.E.D.

Here is the first theorem of the Introduction.

10

3.4 THEOREM. For every model A of complete number theory Th(N), HL(A) is

complete; but if A is non-standard then Lis not expressive for WP over A.

PROOF. Any model A of complete number theory is elementary equivalent to the

standard model N; thus, HL(A) is complete by Corollary 3.3 and Corollary

2.4. We show Lis not expressive for A.

Let S be the following arithmetic program,

x:=y; while x ~ 0 do x:=x~l od; x:=y.

On the structure A, S attempts to count down from the value of y to O: given

initial state (a,b) E A2 if S terminates then its final state is (b,b) and

bis a standard number in A; if bis non-standard then S diverges from

initial state (a,b) for any .a EA.

Consider the set sp (true,S). Inspecting its definition we find that
2 A--

for (a,b) EA,

(a,b) E spA(true,S) <=>a= band a is standard.

Thus, X = {a EA: (a,a) Esp (true,S)} is precisely the set of all standard
A--

numbers in A. If spA(true,S) were first-order definable then, from the axioms

of Peano Arithmetic, we could prove the existence of a least element of

7 X. But A has no smallest non-standard element because each non-zero element

has a predecessor. Q.E.D.

4. COMPUTING WITH A SPECIFICATION

Let us begin by establishing a general connection between the logical

completeness of Hoare's logic based upon a specification and the completeness

of the logic as it is determined by a particular structure.

4.1 THEOREM. Let O be a consistent specification which is complete. Then for

each A E Mod(O) it is the case that HL(O) = HL(A) and PC(O) = PC(A). In

particular, the following three statements are equivalent:

11

1. HL(O) = PC(O).

2. For each A E Mod(O), HL(A) = PC(A).

3. For some A E Mod(O), HL(A) = PC(A).

PROOF. If A E Mod(O) then Thm(O) = Th(A) because O is complete. On inspecting

the appropriate definitions one sees that HL(O) = HL(A). Consider the correct­

ness theories. The completenss of O implies PC(O) = PC(Th(A)) and we must

show that PC(Th(A)) = PC(A). Now,

Since all models of Th(A) are elementary equivalent to A, the Uniqueness

Lemma 3.1 reduces the intersection to PC(Th(A)) = PC(A).

The equivalence in the theorem are easy corollaries of the first

conclusions. Q.E.D.

From Cook's Completeness Theorem 2.3 we can deduce this next theorem.

4.2 THEOREM. Let O be a consistent specification which is complete. Then if

Mod(O) contains an element A for which Lis expressive for WP over A then

HL(O) is logically complete.

Here is the second theorem stated in the Introduction.

4.3 THEOREM. Complete number theory Th(N) is the only extension T of Peano

arithmetic for which HL(T) is logically complete.

PROOF. Hoare's logic based on complete number theory is logically complete

by Theorem 4.1 and Corollary 2.4. We prove that for any extension T of

Peano Arithmetic, if HL(T) is complete for Mod(T) then T satisfies the

following w-Rule: let~ be any formula of Land let n denote the numeral in

L corresponding ton E w.

T I- ~ (E._) for each n E w

T I- 'v'x~ (x)

With this (ti-Rule it is a routine matter to show that Thm (T) = Th (N) • First,

12

one proves that Th(N) c Thm(T) by induction on the complexity of formulae

and using thew-Rule. This done, the equality Th(N) = Thm(T) follows

immediately from the completeness of Th(N).

Let us prove the w-Rule. Let </> be a formula and suppose T I- </> (~) for

all n E w. Let S denote the following program

y::= O; while x -I- y do y:= y+l od

and consider the asserted program

h q,(x)}S{false}

First, we claim that Mod (T) I= { 7 </> (x) }s{ false}. For if M E Mod (T) ,

m EM and MI= 7 <f,(m) then mis a non-standard element of M because we are

assuming</> provable on all the standard numbers. Thus, the precondition

7 q,(x) guarantees that the program diverges and so the asserted program

is valid.

Since HL(T) is complete for Mod(T) we know that

HL(T) I- h <f,(x) }S{false}.

We now unpick a formal proof of the asserted program in HL(T) and from its

intermediate assertions put together a proof for TI- Vx.q,(x). Starting

from the conclusion of the Hoare logic proof we step backward 3 times

always seeking theorems of T.

STEP I. By the Composition Rule, there must be a formula o = o(x,y) con-

taining free variables x,y, but also other unnamed variables, such that

(a) HL(T) I- h <f,(x)} y:= 0 {o (x,y)}

(b) HL(T) I- {o(x,y)} while x -I- y do y:= y+l od {false}

Clearly, (a) implies that

(c) TI- 7 q,(x) A y = 0 ➔ o(x,O).

STEP II. Consider I(b). By the while-Rule and the Rule of Consequence, an

intermediate assertion 0 = 0(x,y) must exist to satisfy

(a) T I- o -+ 0

(b) HL(T) I- {0 A x =/- y} y := y+l{0}

(c) T I- 0 A x = y -+ false

And this latter statement we rewrite

(d) T I- 0 -+ x =/- y.

13

STEP III. Consider II(b). This statement is derived via the Rule of Conse­

quence from an appeal to an assignment axiom: there exists y = y(x,y) such

that

(a) T I- 0 A x =/- y-+ y[y/y+l]

(b) HL(T) I- {y[y/y+l]} y:= y+l{y}

(c) T I- y -+ 0

Now we can show that T I- Vx. cf> (x). This involves a little logical

calculation with the 6 formal theorems of T which we organize around the

following lemma

4.4 LEMMA. T I- -, cf>(x) -+ Vy.0(x,y) A x =I- y.

Given this lemma, the remainder of the proof is simply a formal deduction:

T I- .., cf>(x) -+ [Vy.0(x,y) A x =/= y]

T I- [Vy.0(x,y) A x =/= y] -+ Vy.x =/= y

T I- [Vy.x =/= y] -+ false

By transitivity of implication,

T I- 7 <I> (x) -+ false

T I- cf> (x)

this is Lemma 4.4;

Reinstating the universal quantifier we have Tr Vx.cf>(x).

PROOF OF LEMMA 4.4. We use the axiom scheme of induction belonging to

Peano Arithmetic and which is available for T. It is enough to derive a

14

basis theorem and an induction step theorem

Basis: T I- -r <I> (x) + [0 (x,O) /\ X -:/- .Q_]

T I- 7 <I> (x) + o (x,.Q_) from I (c) ;

T I- o(x,O) + 0(x,O) from II (a) ;

T I- -r cp (x) + 0(x,O) by transitivity.

T I- 7 <I> (x) + X -:/- 2. since T I- <I> (.Q_) •

Whence the basis theorem is obtained by conjoining these last two statements.

Induction step: T I- [0 (x,y) /\ X -:/- y] + [0(x,y+1) /\ x -:/- y+l]

T I- [0 (x,y) /\ x-:/- y] + y(x,y+l) this is III (a) ;

T I- y(x,y+l) + 0(x,y+1) from III (c) ;

T ~ [0 (x,y) /\ X-:/- y] + 0(x,y+1) by transitivity.

T I- 0(x,y+1) + x-:/- y+l from II(d).

Whence the induction theorem is obtained from these last two statements.

Q.E.D.

5. EXPRESSIBILITY AND COMPLETENESS FOR COMPUTABLE STRUCTURES

If Hoare's intentions are not quite faithfully represented by the

mathematics of Sections 3 and 4 then at least it adequately supports the

suggestion, made in the Introduction, of defining a third kind of complete­

ness from the class of computable models of a specification. Let CPC(O) be

the set of all asserted programs valid on all computable models of 0. Then

Theorem 4.1 allows us to reduce completeness considerations of HL(O) with

respect to CPC(O) to the case of an individual structure: if O is complete

and possesses a computable model then for any A E Mod(O), PC(A) = CPC(O) =

PC(O). So it is, we are led, to take an interest in Hoare's logic over

particular computable structures.

By an enumeration for a structure A we mean a distinguished element
. n

first of A and an injective operator next: A+ A such that A={~ (first):

n E w}. By a structure with enumeration we mean a structure with such an

enumeration named in its signature. In this last section we will prove

15

this theorem.

5.1 THEOREM. Each infinite computable structure possesses a computable enum­

eration. If A is a computable structure with enumeration then Lis expressive

for WP over A if, and only if, HL(A) = PC(A).

Finite structures are computable, of course, and as Lis always express­

ive for them their Hoare logics are always complete. Presburger Arithmetic

is the simplest computable structure with enumeration; Lis not expressive

for it and its Hoare logic is incomplete. For the standard model of arithme­

tic N, the ring of integers, and the field of rational numbers, Lis

expressive and Hoare's logic is complete. But for the fields of real alge­

braic numbers and algebraic numbers, Lis again not expressive and Hoare's

logic is incomplete, [4].

Of course, before proving Theorem 5.1 we are obliged to say something

about computable structures. Our definition is the standard formal definition

of the concept of a computable structure and it derives from RABIN [15] and

MAL'CEV [13].

A structure A is computable if there exists a recursive subset Q of the

set of natural numbers wand a surjection a:S}+A such that (1) the relation

= defined on Q by n= m ~ an = am in A is recursive; and (2) for each k-ary a a
operation a and each k-ary relation R of A there exist recursive functions

a and R which commute the following diagrams

wherein ak(x1 , ••• ,xk) = (ax1 , ••• ,axk) and R is identified with its character­

istic function.

Let A be a computable structure with coding a. A set Sc An is said to

be (a-)computable or (a-)semicomputable accordingly as

is recursive or r.e.

16

5.2 LEMMA. Every infinite computable structure A is isomorphic to a recur­

sive number al.gebra R whose domain is the set of natural numbers wand in

which the r.e. subsets of w correspond with the semicomputable subsets of

A. The zero and successor on w induce a computable enumeration of A; more­

over, if A is a computable structure with enumeration then the isomorphism

and algebra R can be chosen so as to allow zero and successor on w to

correspond to the given enumeration of A.

The lemma is not difficult to formally prove; the reader may care to

consult MAL'CEV [13].

PROOF OF THEOREM 5.1. One implication is Cook's Completeness Theorem 2.3.

Let A be a computable structure with enumeration and assume HL(A) is complete;

we show that for¢ EL and SE WP, the strongest postcondition spA(¢,S)

is first-order definable over A. Let¢ and S involve n variables and define

GRAPHA(S) S(a) terminates in final state b}.

Then

and so it is :sufficient to prove that GRAPHA(S) is first-order definable.

The following lemma we leave as an exercise:

5.3 LEMMA. For any computable structure A and any SE WP, the set GRAPHA(S)

is semicomputable.

Whence the theorem follows from this proposition.

5.4 PROPOSITION. Let A be an algebraic with enumeration having signature E.
n

Assume A is computable and that HL(A) is complete for WP over A. If X c A

is semicomputabl~ then Xis first-order definable over E.

PROOF. By the normalising Lemma 5.2 we can assume A to be isomorphic to a

recursive nurr~er algebra R with domain wand whose enumeration is given

by first element O and~ operator, succ(x) = x+l. Moreover, the semi­

computability of X can be identified with the recursive enumerability of

17

-1
a X where a:R + A is the isomorphism. Thus, technically, the matter reduces

to proving that any recursively enumerable set Y c wn is first-order over the

signature E in any numerical structure R which is a recursive expansion of

Presburger Arithmetic P = (w;O,succ) and for which HL(R) is complete for

WP over R.
V

By Matijacevic's Diophantine Theorem [14], it is clear that it is

sufficient to prove that ordinary addition and multiplication on w is first­

order over E. Using the completeness of HL(R) for WP over R we shall show

that

plus= {(x,y,z) 3
E W x+y = z}

is first-order over E; we carry out the argument in detail and leave the

case of

mult = {(x,y,z)

as an exercise.

3
E W XX y = z}

Consider the following composite program S - s 1 ;s2 E WP having variables

x,y,z1,z2 ,u and defined by these programs

s1 - zl := x; u := O;

while u '/: y do u := succ(u); zl := succ(z1) od;

u := O; z2 := 0

s2 - z2 := x; u := O;

while u '/: y do u := succ(u); z2 := succ(z2) .2£.i -

Both programs add the values of x and y; but program s 1 tidies up the values

of its auxiliary variables so that from state (a,b,c,d,e) it computes and

terminates in state (a,b,a+b,O,O).

Clearly, R I= {true}S{z1=z2 } and by the completeness of HL(R) we know

that

18

By the Composition Rule, there must exist a first-order intermediate

assertion o such that

HL(R) I- {true}S1 {o}

and so, by thE~ Soundness Theorem,

Given the form of the final states of s1 we know that

for all a,b E w , R F o (a,b,a+b,O,O)

and, thereforie, that

(a,b,c) E plus ==> R f o (a,b,c,O,O)

Contrapositively assume (a,b,c) i plus. Then a+ b # c implies that for any

initial state (a,b,c,d,e) the program s2 will terminate but R fl z 1 = z 2 .

The validity of the asserted program {o}s2{z 1=z2 } immediately implies

(a,b,c) i plus ==> R f , o (a,b,c,O,O)

and that plus is first order. Q.E.D.

REFERENCES

[1] APT, K.R., Ten years of Hoare's logic, a survey in F.V. JENSEN, B.H.

MlWOH & K.K. M¢LLER (eds.) Proceedings from 5th Scandinavian

Logic Symposium, Aalborg University Press, Aalborg, 1979, 1-44.

[2] DE BAKKER, J.W., Mathematical theory of program correctness, Prentice­

Hall International, London, 1980.

[3] BERGSTRA, J.A., J. TIURYN & J.V. TUCKER, Floyd's principle,correctness

theories and program equivalence, Mathematical Centre, Department

Qf Computer Science Research Report IW 145, Amsterdam, 1980.

19

[4] BERGSTRA, J.A. & J.V. TUCKER, The field of algebraic numbers fails to

possess even a nice sound, if relatively incomplete, Hoare-like

logic for its while-programs, Mathematical Centre, Department of

Computer Science Research Report IW 136, Amsterdam, 1980.

[5] CHANG, C.C. & H.J. KEISLER, Model theory, North-Holland, Amsterdam,

1973.

[6] CLARKE, E.M., Programming language constructs for which it is impossible

to obtain good Hoare-like axioms, J. Association Computing Ma­

chinery 26 (1979) 129-147.

[7] COOK, S.A., Soundness and completeness of an axiom system for program

verification, SIAM J. Computing 2_ (1978) 70-90.

[8] GREIBACH, S.A., Theory of program structures: schemes, semantics, veri­

fication, Springer-Verlag, Berlin, 1975.

[9] GREIF, I, & A.R. MEYER, Specifying program language semantics: a tutor­

ial and critique of a paper by Hoare and Lauer, Proceedings

Sixth ACM Symposium on Principles of Progrannning Languages,

ACM, New York, 1979, 180-189.

[10] HOARE, C.A.R., An axiomatic basis for computer programming, Communica­

tions Association Computing Machinery g (1969) 576-580.

[11] LANGMAACK, H. & E.-R. OLDEROG, Present-day Hoare-like systems for

programming languages with procedures: power, limits and most

likely extensions, in: J.W. de Bakker & J. van Leeuwen (eds.)

Automata, languages and programming, Seventh Colloquium, Noord­

wijkerhout, July 1980, Springer-Verlag, Berlin, 1980, 363-373.

[12] LIPTON, R.J., A necessary and sufficient condition for the existence of

Hoare logics, 18th IEEE Symposium on Foundations of Computer

Science, Providence, R.I., 1977, 1-6.

[13] MAL'CEV, A.I., Constructive algebras, I., Russian Mathematical Surveys,

.!.§. (1961) 77-129.

[14] MANIN, Y., A course in mathematical logic, Springer-Verlag, New York,

1977.

20

[15] RABIN, M.O., Computable algebra, general theory and the theory of

computable fields, Transactions American Mathematical Society,

95 (1960) 341-360.

[16] TENNENBAUM, S., Non-archimedean models for arithmetic, American Math.

Soc:. Notices 6 (1959) 270.

[17] TUCKER, J.V., Computing in algebraic systems, in F.R. DRAKE & S.S,

WAINER, (eds.) Recursion theory, its generalisations and applica­

tions, Cambridge University Press, Cambridge 1980.

[18] WAND, M.,, A new incompleteness result for Hoare's system, J.' Associa­

tion Computing Machinery, 25 (1978) 168-175.

ONTVANGEN 2 8 MDV. 1980

