
AFDELING INFORMATICA 

stichting 

mathematisch 

centrum 

IW 150/80 
(DEPARTMENT OF COMPUTER SCIENCE) 

R.J .R. BACK 

PROVING TOTAL CORRECTNESS OF NONDETERMINISTIC 
PROGRAMS IN (NFINITARY LOGIC 

Preprint 

OKTOBER 

kruislaan 413 1098 SJ amsterdam 

AMS1ERDAM 



Punted at t;he Ma:thema.tlc.ai. Cent!r.e, 413 Kll.t.U.6£.aa.n, Amtdvuf.am. 

The Mathema.tic.ai. CentJr.e , f,ounded t;he 11-t;h of, FebJc.u.all.y 1946, ,l6 a. non­
pll.of,..U .ln6.:U:tv.ti1Jn a,lmlng at t;he pJLomo:tlon of, pwr.e ma:thema.tlc.-6 a.nd -lt6 
a.ppU.c.a.tlon.6. It; ,l6 .&pon6oJLed by ~e NuheJLta.nd6 GoveJLnment ~ugh ~e 
Nuhellla.nd6 0.1r.ga.vu.za.tlon f,oJL t;he Advanc.ement of, PWl.e Re.& eaJLc.h ( Z .W. 0.) • 

1980 Mathematics subject classification: 68B10 

ACM-Computing Reviews-category: 5.24, 5.21 



Proving total correctness of nondeterministic programs in infinitary 
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ABSTRACT 

It is shown how the weakest precondition approach to proving total 
correctness of nondeterministic programs can be formalized in infinitary 
logic. The weakest precondition technique is extended to hierarchically 
structured programs by adding a new primitive statement for operational 
abstraction, the nondeterministic assignment statement, to the guarded 
commands of Dijkstra. The infinitary logic Lwiw is shown to be strong 
enough to express the weakest preconditions for Dijkstra's guarded 
commands, but too weak for the extended guarded commands. Two possible 
solutions are considered: going to the essentially stronger infinitary 
logic Lw w and restricting the power of the nondeterministic assignment 
statemen! ln a way which allows the weakest preconditions to be expressed 
in Lwiw• 
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1. INTRODUCTION 

The infinitary logic L001w, which extends first-order logic by 

allowing countable disjunctions and conjunctions of formulas, has been 

proposed by ENGELER[lO,llJ as a suitable framework in which to reason 

about termination of programs. He shows how to assign to a given program 

a formula in L001w which will be satisfied if and only if the program 

terminates. SALWICKI[21J extended Engeler's approach to total 

correctness of programs. In Salwicki's system, known as algorithmic 

logic, first-order logic is extended with formulas of the form Sa, where 

Sis a program and a is a formula. The formula Sa expresses that the 

program S terminates and that upon termination a holds. Infinitary rules 

of inference are used to prove total correctness of loops, so this logic 

is also of an infinitary nature. Salwicki's approach has been carried 

further by a ntnnber of people, mostly working in Warsaw (see e.g. 

BANACHOWSKI[3J). The idea of extending first-order formulas with 

programs is also exploited in the dynamic logic by PRATT[l9J and in the 

programming logic by CONSTABLE[6J. 

Another, less formal approach to reasoning about total correctness 

has been proposed by DIJKSTRA[8J, based on the concept of weakest 

preconditions. Essentially his idea is to associate with each program a 

predicate transformer, which for any postcondition of the program gives 

the weakest precondition which guarantees that the program terminates in 

a final state satisfying the postcondition. Dijkstra's technique covers 

both deterministic and nondeterministic programs, whereas the early work 

on algorithmic logic only was concerned with deterministic programs. 

Algorithmic logic has later been extended to also cover nondeterministic 

programs (RASIOWA[2OJ). A careful analysis of nondeterminism and weakest 

preconditions in the framework of dynamic logic can be found in 

HAREL[12J. 

Our intention here is first to show how Engeler's work on proving 

termination can be extended to provide a simple formalization of 
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Dijkstra's weakest precondition technique for proving total correctness 

of guarded commands. We then go on to consider the effect of extending 

the guarded commands with a new primitive statement for expressing 

operational abstraction, the nondeterministic assignment statement. This 

construct is useful when developing programs by stepwise refinement, 

permitting a hierarchical decomposition of the correctness proof 

(BACK[l]). It turns out, however, that the weakest preconditions for the 

extended guarded commands cannot always be expressed in the logic L001w, 

because of the "unbounded" nondeterminism allowed by the nondeterministic 

assignment statement. 

Recognizing the desirability of hierarchically structured programs 

and correctness proofs, we consider two different possible solutions. 

The first one is to find a stronger logic, in which the weakest 

preconditions for the extended guarded commands are expressible. The 

second possibility is to restrict the nondeterministic assignment 

statement in a way which keeps the weakest preconditions expressible in 

Lw1w• 

2. INFINITARY LOGIC 

The usual first-order logic is extended to infinitary logic by 

allowing infinitely long formulas like 

Vx(x=O v x=l v x=2 v ••• ) 

or 

In the first case we have a disjunction over an infinite set of formulas 

while in the second case we have a conjunction over an infinite set of 

formulas together with an existential quantification over an infinite set 

of variables. 
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Let L be a set of constant, function and predicate symbols and let ex 

and S be two infinite cardinals (ex ~ S). The infinitary logic Las is 

like the ordinary first-order logic of L, with the same logical and 

nonlogical symbols, except that it allows the conjunction and 

disjunction over a set of fewer than a formulas and the universal and 

existential quantification on a set of fewer than f3 variables. 

We will mainly be interested in Las when a and Bare either w or w1. 

The cardinal ,,J is the cardinality of the set of natural numbers and is 

the smalleist infinite cardinal. A set with fewer than ,_,J elements· is thus 

finite. The cardinal 1Jl is the next smallest infinite cardinal; a set 

with fewer than 0Jl elements is countable. L,.llw is thus the usual first­

order loglc, allowing only finite disjunctions, conjunctions and 

quantification. Lw 1w extends this by allowing countable disjunctions and 

conjunctions, but still only permitting finite quantification, while 

Lw 1w1 also allows countable quantification. Formula (1) above is in Lw 1w 

and formula (2) is in Lw 1w1 • 

The first to give a completely formal treatment of infinitary logic 

was KARP[lSJ. KEISLER[l6] gives an extensive survey of the model theory 

of Lw 1w, while DICKMANN[?] treats the model theory of larger infinitary 

languages. Brief introductory accounts are given by SCOTT[22] and by 

KEISLER[l7]. We will here only be needing the most basic results of 

infinitary logic, roughly to the extent of the last two references. 

The logic Lw 1w is the most useful one of the infinitary logics. 

The formulas of this logic are constructed like the formulas of first­

order logic, with the addition of the following formation rule: 

If~ is a countable set of formulas of Lw 1w, then&~ and V~ are also 

formuilas of Lw 1 w 

( M is thei conjunction and V~ the disjunction of the formulas in ~). If 

~ is given in the form~= hili=0,1,2, ••• }, then we write these as 
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& 'i 
i=O 

and V 'i • 
i=O 

Formula (1) above is thus 

Vx( & x=i) 

i=O 

The order of precedence in formulas is assumed to be=,=>, V, &, V 

and 3, with= binding weakest and 3 strongest. 

The usual model-theoretic notions generalize in a straightforward 

way to infinitary logic (see e.g. DICKMANN[7] for definitions). We write 

MI= A[cr] when the formula A is satisfied in the structure M for the 

value assignment a. A value assignment a is simply a function cr:Var + 

IMI, where Var is the set of variable symbols and IMI is the domain of M. 

We write MI= A when A holds in Mand ti= A when A holds in every model 

oft (A is a logical consequence oft). 

L00100 is axiomatized by giving the usual axioms and inference rules 

for first-order logic, together with axioms and inference rules for 

handling the infinite conjunctions and disjunctions. Thus, for Ya 

countable set of formulas and A a formula in Y, we add the axiom schemes 

&Y =) A and A=) VY, 

We also add the following two rules of inference: 



R => A, for each A e f A=> B, for each A£ f 

B => & f V f =) B 

These rules may require an infinite number of premises to be proved. To 

make them useful, proofs in Lw 1w are allowed to be of infinite (but at 

most countable) length. As usual, we write ~ I- A when A is provable 

from the set of formulas~-

The logic Lw 1w is similar to first-order logic in that it is 

complete, in the following sense: 

COMPLETENESS THEOREM(KARP[l5]): Let A be a formula and let~ be a 

countable set of sentences of Lwiw· Then 

~ I= A if and only if ~ I- A. 

3. EXPRESSING WEAKEST PRECONDITIONS 

5 

Let L be a set of constant, function and predicate symbols and let M 

be a structure for L. We will be interested in computations on M, where 

a computation is a (possibly infinite) sequence of states in M, a state 

simply being a value assignment in M. Let us denote by 1:M the set of all 

states in M. A computation will then be an element in 1:M* or in 1:'M_", 

where 1:M* is the set of all finite and 1:~ the set of all infinite 

sequences of states in 1:M. 

Let StatL be a set of programs (or statements) of L, i.e. programs 

which only use constant, function and predicate symbols in L. Let S be a 

program in StatL• The interpretation of Sin M, denoted sM, will be a 

function sM:1:M + P(1:M* u 1:~), i.e. sM assigns to each state in 1:M a set 

of computations in M (the notation P(X) is used for the power set of X). 
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For any initial state cr t EM, sM(o) is the set of all possible 

computations of S starting from the initial state cr. There may be more 

than one computation of S starting from cr, as the programs in StatL are 

allowed to be nondeterministic. 

* For any computation c in EM, let lt(c) be the last element inc. 

For C .=_ EM*, define lt(C) = {lt(c)I ct C}. Let f:EM + P(EM* u E}f') and 

let E' .=.. EM. The weakest precondition off for E', denoted wp(f,E'), is 

the set of all cr in EM such that 

(i) f(cr) .'.:. EM* and 

(ii) lt(f(cr)) c E'. 

Let R be a formula of Laa and let M be a structure for L. The 

interpretation of R in Mis the set RM= {cr t EM I Ml=R[cr]}. Given a 

program Sin StatL, wp(SM,1\1) will then be the set of all initial states 

cr in EM for which the execution of Sis guaranteed to terminate in a 

final state satisfying the condition R. Thus wp(SM,~) gives the 

semantical meaning of Dijkstra's weakest preconditions for programs. 

DEFINITION: Let S be a statement in StatL and let Wand R be formulas of 

Laa• Wis said to express (uniformly for all structures) the weakest 

precondition of S for R, if wM = wp(SM,RM) for any structure M of L. 

We will say that the weakest preconditions of programs in StatL are 

expressible in Laa (or, more briefly, that Laa is expressible for StatL),_ 

if for any Sin StatL and any R in Laa there is a formula Win Laa which 

expresses the weakest precondition of S for R. In Harel's classification 

[12], the definition of weakest preconditions given here assumes a 

depth-first execution of nondeterministic programs without any 

backtracking. Other execution strategies are also possible, but, as 

shown by Harel, this one is assumed by Dijkstra. 

The importance of the weakest preconditions stems from the fact that 
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they can be used to express total correctness of programs. Given a 

program Sin StatL, a precondition Panda postcondition Qin Laa, Sis 

totally correct with respect to P and Qin a structure M of L, denoted M 

I= P[S]Q, if pM ~ wp(sM,qM). Termination of a program Sis again a 

special case of total correctness, i.e. Sis guaranteed to terminate for 

precondition P if MI= P[S]true, where true is an identically true 

sentence (i.e. trueM = IMI for any M). We write t I= P[S]Q, when MI= 

P[S]Q holds for any model M oft. If the logic Laa is expressible for 

StatL, then proving t I= P[S]Q can be reduced to proving t I= P => W for 

some formula W of Laa which expresses the weakest precondition of S for 

Q. We will write t I- P[S]Q when t I- P => W for some such formula w. 

We will be interested in the weakest logic Laa which is expressible 

for a specific choice of StatL• This amounts to asking for the weakest 

infinitary logic in which one can reason about total correctness of 

programs in the manner described above. 

4. WEAKEST PRECONDITIONS OF GUARDED COMMANDS 

Let us first consider the case when StatL is taken to be the guarded 

commands of DIJKSTRA[8]. That is, the statements of StatL are defined by 

S::= skip I abort I x:= t I S1;82 

if b1 + 81 [] ••• [] bn + Sn fi 

do b1 + S 1 [] • • • [ ] bn + Sn o d 

n > 1. Here xis a list of distinct variables, tis a list of terms of L 

(x and t must be of equal length), b1, ••• , bn are boolean expressions 

(quantifier free formulas) of Lands, S1, ••• ,Snare statements of L. 

The interpretation sM of a guarded command Sin a structure M of L 

can be defined in a straightforward way and will not be given here. 

Because the guards in the conditional and iteration statements are not 

required to be mutually exclusive, the guarded commands may be 

nondeterministic, i.e. sM(a) may contain more than one computation. 
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We will now show that the logic Lw 1w is the weakest infinitary logic 

Lae which is expressible for the guarded commands. As a first step, we 

show that the weakest preconditions of guarded commands cannot be 

expressed in ordinary first-order logic Lww• 

PROPOSITION 1. Lww is not expressible for the guarded commands. 

Proof: Let L be the language of groups, i.e. L consists of the 

nonlogical symbols 1 (unit element), - (inverse) and x (multiplication). 

Lett be the set of group axioms (a finite set of first-order sentences, 

see e.g. BARWISE[4]). Let Sin StatL be the statement 

x:= y; 
do x # 1 + x:= xxy od. 

If Lww would be expressible, then there would be a first-order sentence W 

expressing the weakest precondition for this program to terminate • The 

set of first-order formulas t U {W} would then characterize the class of 

torsion groups, i.e. those groups in which for any element a in the 

group, an= 1 for some n > 1. However, it is known that this class 

cannot be characterized by a finite set of first-order sentences [4]. 

Thus W cannot be a formula of Lww•[J 

MANNA[l8] has shown that weakest preconditions of nondeterministic 

programs can be expressed in first-order logic, if one is allowed to use 

predicate variables. Our definition of expressibility prohibits the use 

of predicate variables, so this result is not in conflict with Manna's 

result. The use of predicate variables makes Manna's formulation of the 

weakest preconditions complicated and difficult to use in reasoning about 

program correctness, as compared to Dijkstra's formulation. 

In order to simplify notation, let us introduce the following 

abbreviations for the iteration and the conditional statement: DO denotes 

the iteration statement 



IF denotes the corresponding conditional statement 

and bb denotes the condition b1v ••• vbk. 

PROPOSITION 2. Lw 1w is expressible for the guarded commands. 

Proof: DIJKSTRA[8] defines for each guarded command Sand formula Q 

a formula WP(S,Q) and shows that this formula expresses the weakest 

precondition of S for Q. If Q is a formula of Lw 1w, then WP(S,Q) is 

easily seen to be a formula of Lwiw· Actually it is only necessary to 

change the definition of WP(S,Q) in the case when Sis an iteration 

statement. Dijkstra defines WP(DO,R) by 

WP(DO,R) = 3n(n>O).ffn 

where Ho, H1, Hz, ••• is a sequence of formulas defined in terms of IF. 

If we write this as 

00 

WP(DO, R) = 

The completeness of Lw 1w gives us the following result. 

PROPOSITION 3. Lett be a countable set of sentences of Lw 1w and Sa 

guarded command in Stat1• Then 

9 
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~ I= P[S]Q if and only if ~ I- P => WP(S,Q), 

for any formulas P and Q of Lwiw• 

This means that the formalization of the weakest precondition in 

Lw 1w provides a complete technique for proving total correctness of 

guarded commands, in the sense that if a guarded command is totally 

correct in a theory~, the corresponding formula is provable from~, and 

vice versa. 

The weakest precondition of the iteration statement can be expressed 

in an alternative way as 

WP(DO,R) = 

0 1 2 where DO, DO, DO, ••• is a sequence of approximations of DO, defined 

by 

DoO = abort 

and for n>o, 

Don+l = if bb + IF;Don 

[],bb + skip 

fi. 

This definition can be extended to parameterless recursive procedures as 

follows. Consider the procedure declaration 

procedure p; S[p] 
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where S[p] indicates that the body S of p contains possible recursive 

calls on p itself. The weakest precondition of the call pis easily seen 

to be 

WP(p,R) = V WP(Sn,R), 

n=O 

where gn i.s defined by 

s 0 = abort 

and for n ~ O, 

gn+l = s [Sn/p]. 

Here S[Sn/p] denotes the result of substituting sn for each call p in S. 

(This definition of the weakest precondition for parameterless recursive 

procedures is essentially due to HEHNER[13].) 

5. REASONING IN INFINITARY LOGIC 

The logic Lw 1w is an essentially stronger logic than Lww• Thus one 

can give a categorical characterization of the standard model of 

arithmetic by a single sentence of this logic. It is sufficient to take 

the sentence 4> which is the conjunction of all first-order instances of 

the Peano axioms, together with the sentence 

CJ) 

"h[ v (x=sno)] 

n=O 

Heres is the successor function and snx is defined by s 0x = x and sn+lx 

= s(snx), for n = 0,1,2, •••• This construction can in fact be 
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generalized, in that it is possible to characterize in 1u, 100 the 

isomorphism type of any countable algebra of a given signature (Scott's 

isomorphism theorem, see e.g. KEISLER[16]). 

Let L be the language and N the standard model of first-order 

arithmetic. Let S be a statement in StatL• Then the completeness result 

of the preceding section gives that 

NI= P[S]Q if and only if ti- P[S]Q, 

for any P and Qin L00100 • In other words, Sis totally correct in the 

standard model of arithmetic if and only if it can be proved to be 

correct from the axiom$. The trade-off between using L00100 and L0000 

should be evident here. On the one hand we get rid of the nonstandard 

models of arithmetic (which usually undermine the faithfulness of first­

order axioms) if we use L00100 , on the other hand we also loose the 

fini.tary nature of proofs in L0000 • 

DIJKSTRA[8, ch. 4 and 9] gives five basic properties of weakest 

preconditions for guarded commands. These properties are all valid, i.e. 

they will hold in any structure of L. By the completeness of L00100 , this 

means that they are all theorems in L00100 , and may thus be used in proofs 

in this logic. The first property e.g., 

WP(S,false) - false, 

asserts that in any structure M of L, wp(SM,0) = 0, a fact which is 

easily seen to be true by the definition of wp (false is an identically 

false sentence, i.e. falseM = 0 for any structure M). Similarly for the 

other four properties. 

The fifth property, continuity, can be formulated as follows: Let 

Co, C1, Cz, ••• be formulas of L00100 and let C be the set 
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C = {Ci =) Ci+l I i = 0,1,2, ... }. 

Then 

... ... 
C l=WP(S, V Ci) - V WP(S,Ci)• 

i=O i=O 

The continuity property rests on the assumption of bounded 

nondeterminism. The nondeterminism of a statement Sin StatL is bounded 

in a structure M of L, if for any cr £ EM, 

The nondeterminism of the guarded commands is easily seen to be bounded 

in any structure M, so the continuity property holds for the weakest 

preconditions of guarded commands. 

Weakest precondition are used by Dijkstra both as a tool for 

developing programs and as a framework in which to establish the 

soundness of more practical proof techniques for program correctness. 

The formalization of weakest preconditions in infinitary logic, as 

described here, is primarily intended to support this second goal. As an 

example of this, we show how to prove a theorem which establishes the 

correctness of the invariant assertion technique for proving partial 

correctness of loops. A proof of this theorem is given by DIJKSTRA[8], 

who refers to it as the "fundamental invariance theorem". Our purpose 

here is to show how Dijkstra's proof is translated into a proof in Lw 1w• 

The theorem to be proved is the following. Let DO be the iteration 

statement, as defined in the previous section, and let IF be the 

corresponding conditional statement. The fundamental invariance theorem 
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states that 

{P & bb => WP(IF,P)} I-

P & WP(DO,true) => WP(DO, P & , bb). 

First one has to show that 

P & WP(Don,true) => WP(Don,p & ,bb) 

is provable under the given hypothesis, for n>O. This part of the proof 

requires no infinitary reasoning and is therefore omitted here. We may 

then infer that 

p & WP(Don,true) => V WP(Doi,p & ;bb) 

~o 

for n ~ 0, by the axiom of infinite disjunction and the transitivity of 

implication. This is again equivalent to 

P => [WP(Don,true) => V WP(Doi,p & ,bb)]. 

i=O 

Let us assume P. By modus ponens, we then have that 

WP(Don,true) => v WP(noi,p & ,bb) 

~o 

for n > O. We may now use the inference rule for infinite disjunctions, 

giving 



00 

V WP(Doi,true) => 

i=O 

00 

V WP(ooi,p & ,bb) 

i=O 

Applying the deduction theorem (which holds in Lw 1w), we then get 

00 00 

P => [ v WP(ooi,true) => v WP(ooi,p & ,bb)]. 

i=O i=O 

Using the definition of WP for loops, this is finally equivalent to 

P & WP(DO,true) => WP(DO, P & , bb), 

which is the required result. 

6. NONDETERMINISTIC ASSIGNMENT STATEMENTS 

15 

Let us now replace the assignment statement x:=t in Stat1 by a more 

general construct, called a nondeterministic assignment statement. This 

has the form 

x:= y.Q, 

where x and y are lists of distinct variables (of equal length) and Q is 

a formula of Lww• The effect of this statement is to assign to x some 

new value y such that the condition Q is satisfied (Q will usually 

contain free occurrences of the variables in x and y). If no such y 

exists, then the effect of the statement is considered to be undefined. 

If there is more than one possible choice of-y making Q true, one of 

these is chosen nondeterministically and assigned to x. (The 

nondeterministic assignment statement can be seen as a more sophisticated 

and usable version of the "random assignment" in HAREL[l2]). 
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The assignment statement can be expressed by this new construct. 

The effect of 

is the same as the effect of 

Thus e.g. u:= utl is equivalent to u:=v.(v = utl). 

The weakest precondition for the nondeterministic assignment 

statement is given by 

WP(x:=y.Q, R) = 3y.Q & Vy.(Q => R[y/x]). 

The first conjunct expresses the requirement that there must exist any 

satisfying the condition Q, otherwise the effect is undefined. The 

second conjunct expresses the requirement that any choice of y satisfying 

Q must result in a new state in which R holds. The second conjunct here 

is very simi.lar to the corresponding conjunct occurring in the rule of 

adaptation i.n HOARE[l4]. 

Let us exemplify this rule by computing the weakest precondition of 

the assignme!nt statement. We have 

WP(x:=t, R) = WP(x:=y.(y=t), R) 

= 3y.(y=t) & Vy.(y=t => R[y/x]) 

- true & (R[y/x])[t/y] 

- R[t/x], 

as was to bei expected. 

The purpose of the nondeterministic assignment statement is to 
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extend the weakest precondition technique to hierarchically structured 

programs. Consider a statement S containing a call on the parameterless 

procedure p. Assume that only the entry condition P and the exit 

condition Q for pis known, together with the fact that p only can change 

the variables x. This information should be sufficient to enable one to 

prove the correctness of the statement S, i.e. knowledge of how pis 

actually implemented should not be required. 

We can achieve this by replacing each call on pin S by the 

nondeterministic assignment statement 

x:= y.(P & Q), 

where we assume that x in P and Q refer to the initial value of x, while 

yin Q refers to the value of x after the call. We assume here that the 

pre- and postconditions are consistent, i.e. that P => 3y.Q. The 

correctness of S with respect to some given specification can then be 

established, as we know how to compute the weakest preconditions of s. 

The correctness of an implementation S' of p can then be proved as a 

separate step, by proving that P => WP(S',Q), at the same time checking 

that only variables in x are updated in S' (this can be guaranteed by 

syntactic restrictions on S'). In general, S' will be a correct 

implementation of x:= y.Q, if 

3y.Q => (WP(S', Q[z/x,x/y]))[x/z] 

holds, where z is a list of fresh variables, not used in S' or Q before. 

A more thorough discussion of correctness of implementations along these 

lines is presented in BACK[l]. 

7. STRONG AND WEAK TERMINATION 

The previous discussion should be sufficient to indicate that the 

nondeterministic assignment statement would be very convenient to have, 
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allowing correctness proofs of hierarchical programs (e.g. developed by 

stepwise refinement) using the weakest precondition technique. However, 

simply extending the guarded commands with a construct like this does not 

work, as observed by DIJKSTRA[8]. To see this, consider the following 

statement S: 

do x 1 0 + if x > 0 + x:= x-1 (1) 

[] X ( 0 + x:= y.(y) 0) 

fi 

od. 

We assume that this program works on the standard model of integers. 

Computing the weakest precondition for S to terminate gives 

WP(S,true) = x ~ 0, 

i.e. the loop is only guaranteed to terminate for non-negative initial 

values of x. On the other hand, any possible execution of S for negative 

initial values of x must obviously also terminate, so we would expect 

WP(S,true) = true. 

The problem here is that the weakest precondition for the iteration 

statement, as it is defined in section 4, formalizes a stronger notion of 

termination of loops than the ordinary one, which requires that any 

possible execution of the loop must eventually terminate. A loop is said 

to terminate strongly if for any initial state a there is an integer Na 

such that the loop is guaranteed to terminate in less than Na iterations. 

Termination which is not strong is called weak termination. (The notion 

of strong and weak termination is due to DIJKSTRA[9]). The 

nondeterministic assignment statement in S has the effect that no upper 

bound can be given for the number of iterations required for the loop to 

terminate when xis initially negative, although the loop is guaranteed 

to terminate for such initial values also. 
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Without nondeterministic assignment statements, termination of 

guarded commands is always strong. The reason for this is that the 

nondeterministic choices which arise during execution of a guarded 

command are always made from a finite number of alternatives. Thus, if 

each execution of such a command terminates for a given initial state, 

there can only be a finite number of possible different executions (this 

follows by Konig's lemma), and consequently there must be an execution 

requiring the greatest number of iterations. If we allow 

nondeterministic assignment statements in guarded commands, the 

nondeterministic choice can be made from an infinite number of 

alternatives. Konig's lemma does not then apply any more and the 

existence of a maximum number of iterations is therefore not guaranteed. 

Let us refer to the guarded commands of Lin which nondeterministic 

assignment statements are allowed, together with arbitrary first-order 

formulas of Las guards, as extended guarded commands of L. We then have 

the following result. 

PROPOSITION 4. Lw 1w is not expressible for the extended guarded commands 

of L. 

Proof: Choose L = {P}, where Pis a binary predicate symbol and let 

S be the extended guarded command 

do 3y.P(x,y) + x:= y.P(x,y) od. (2) 

Let M be a structure for Land let o E EM• Swill be guaranteed to 

terminate in M for the initial state o if and only if there does not 

exist an infinite sequence do,d1,d2,••· of elements in IMI such that o(x) 

= do and 

where> is the interpretation of the predicate Pin the structure M. If 
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there was a formula Win Lw 1w expressing the weakest precondition of S to 

terminate, then the formula Vx.W would also be a formula of Lw 1w, and 

would hold in M if and only if> is a well-founded relation in M. Thus 

the formula Vx.W would characterize well-foundedness. However, well­

foundedness cannot be characterized by a formula of Lw 1w (see e.g. 

KEISLER[l6]). Consequently, no such formula W exists in Lw 1w, i.e. this 

logic is not expressible for the extended guarded commands. [] 

In fact, well-foundedness cannot be expressed in Law for any 

infinite cardinal a, nor can it be expressed in the logic Lc..w, which is 

the union of all these logics Law• Thus none of these logics is 

expressible for the extended guarded commands. (If one would allow 

disjunctions over the class of all ordinals, then the weakest 

precondition of loops with nondeterministic assignments could be 

expressed in a manner similar to the one Dijkstra uses, as shown by 

BOOM[S]. Such a formula is not, however, a formula of any infinitary 

logic Laa)• 

It should be remarked that the use of arbitrary first-order formulas 

as guards in the extended guarded commands is not essential. If we allow 

boolean values in our programs, then program (2) above can also be 

expressed in the form 

set b; 

do b + x:= y.P(x,y); set bod 

where "set b" is the statement 

b:= c.(3y.P(x,y) & c=true v 

,3y.P(x,y) & c=false) 

which has the same effect. 

Allowing nondeterministic assignment statements in guarded commands 



also affects the proof rule for total correctness of loops given in 

DIJKSTRA[B]. According to this rule, to prove 

P => WP(DO, P & ,bb), 

it is sufficient to show that the following three conditions are 

satisfied for some suitably chosen integer valued function ton the 

program variables: 

(1) P & bb => WP(IF ,P), 

( 2 ) P & b b = > t > 0 and 

(3) p & bb & t i to+l => WP(IF' t i to). 
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The first condition guarantees that Pis preserved by the body of the 

loop, the second condition guarantees that the value oft is bounded from 

below, while the third condition guarantees that each iteration of the 

loop decreases the value oft with at least one. 

A suitable integer function t can always be found for a loop 

containing no nondeterministic assignment statements, provided the loop 

does in fact terminate. It is sufficient to choose t such that in any 

initial state cr for which the loop is guaranteed to terminate, t(cr) is 

the maximum number of iterations required for termination. This choice 

oft is easily seen to satisfy both condition (2) and (3). 

If we allow nondeterministic assignment statements within a loop, 

the existence of a suitable integer function tis not guaranteed any 

more. Program (1) above provides an example of this. Assume that there 

is an integer valued function ton the program variables which satisfies 

condition (2) and (3). Suppose t(xo) = n for some XO < O, and the 

program, given the input xo, happens to compute x:= m with m > n. Then 

there are m further iterations, in each of which tis decreased, so m < n 

must hold. This is a contradiction, hence there can be no integer 

function t which satisfies both (2) and (3). 
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The unbounded nondeterminism of the nondeterministic assignment 

statement also causes problems with the semantics of programs. In BACK[2] 

it is shown that the simple Egli-Milner ordering on the power set domain 

is not sufficient for defining the denotational semantics of such 

programs, but that one is forced into a much more complicated, 

essentially operational semantics. 

The fact that Lw 1w is not expressible for the extended guarded 

commands puts us into something of a dilemma. On the one hand the logic 

Lw 1w is a very convenient one to reason in, on the other hand we also 

would like to be able to prove the total correctness of programs in a 

hierarchical fashion. There are essentially two different ways in which 

this dilemma can be resolved. We can either try to use a logic more 

powerful than Lw 1w, or we can restrict the power of the nondeterministic 

assignment statement in a way which restores the expressiveness of Lwiw• 

We will consider both possibilities in turn, the first one in the next 

section and the second one in the section after. 

8. STRENGTHENING THE LOGIC 

As shown in the preceding section, none of the logics Law is 

expressible for the extended guarded commands, because well-foundedness 

cannot be characterized in them. The logic Lw 1cll 1 is again essentially 

stronger than these logics, in that well-foundedness of a binary 

predicate P can be characterized in it, by the formula 

CD 

,3xox1x2•••< & P(xi,xi+1)). 

i=O 

The proof of proposition 4 does therefore not apply to this logic. In 

fact, we can show that this logic is expressible for the extended guarded 

commands. 

To show the expressibility of Lw 1w1, it is sufficient to show that 
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the weakest precondition for the iteration statement DO is expressible in 

L001w1• The construction of a formula WP(DO,R) which expresses the 

weakest precondition of Db for the formula R in L001w1 proceeds as 

follows. 

Asstnne that we already know how to express WP(IF,P) for any P. 

Consider the formula, WP(IF,, P). For a given structure Mand a given 

state cr E EM, 

MI=, WP(IF,, P)[cr] 

if and only if there is a nonterminating computation of IF in M starting 

from cr, or there is a terminating computation which ends in a final state 

cr' satisfying P. In other words, if IF is guaranteed to terminate for 

initial state cr, then one of the possible final states must satisfy P. 

Let now x be the list of all variables occurring in DO. Define the 

formula 

K(x,y) =, WP(IF, x 1 y), 

which says that if IF is guaranteed to terminate, then y is one of the 

possible final values of x. We then define a sequence Ho, Hi, H2, 

of formulas by 

Ho= true 

and 

for n = 0,1,2, •••• 

Let A1(xD) be the formula 
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Vx1xzx3•••f & (Hn & bh(xn) => T(xn))], 

~o 

where T(x) = WP(IF,true). A1(xD) will be true in a structure if and only 

if execution of DO from initial state xO cannot lead to nontermination of 

IF after a finite nun.her of iterations. Let Az(xD) be the formula 

m 

'vxlx2x3 ••• [ & (Hn & -bb(xn) => R(xn))]. 

~o 

This again says that if an execution of DO ever terminates, R will hold 

for the final state. Finally, define A3(x0 ) to be the formula 

~ 3x1x2x3 ... [ & Hn1• 

n=O 

This formula says that it is not possible to have an infinite nun.her of 

iterations of DO, when initially x = xO• Obviously we now have that 

This gives us the following result: 

PROPOSITION 5. L001001 is expressible for the extended guarded commands. 

The result of this section thus shows that admitting unrestricted 

nondeterministic assignment statements forces us into a stronger logic, 

with a resulting essentially operational definition of the weakest 

precondition for loops. 
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9. FINITE ASSIGNMENT STATEMENTS 

We now consider the other·possibility left open, that of 

restricting the power of the nondeterministic assignment statement. The 

problems with weak termination only turn up when the nondeterministic 

choice is made from an infinite number of different alternatives. An 

obvious solution is therefore to restrict the nondeterministic assignment 

to finite choices only. 

Consider the assignment x:= y.Q, where x and y are simple variables. 

Given a specific structure M, the nondeterministic choice in executing 

this statement for initial state cr e EM will be finite, if the set 

{d I Ml= Q[cr(d/y)]} 

is finite, where cr(d/y) denotes a state which agrees with cr e EM on all 

other variables except on y, where it has valued e IMI. If this is the 

case for each cr e EM, then this assignment statement is said to be finite 

in M. 

Let us define the formula 

n 

For any structure M, MI= w(Q,y) if and only if x:= y.Q is finite in M. 

An extended guarded command Sis said to be finitary in~,~ a set of 

sentences, if each nondeterministic assignment statement x:= y.Q in Sis 

finite in any model of~. A sufficient condition which guarantees that S 

is finitary in~ is that ~I= w(Q,y) holds for any assignment x:= y.Q in 

s. 

The notion of expressiveness can be relativized to a set of 

sentences~ as follows. We say that the logic Lae is expressive in~ for 
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the set of statements StatL, if for any R in Las and any Sin StatL there 

is a formula Win Las such that wM = wp(SM,RM) for any model M oft. If 

we assume that tis an axiomatization of the theory which we are working 

in, then we can restrict ourselves to extended guarded commands which are 

finitary in <~. We then have the following result, as an immediate 

consequence of the observations above: 

PROPOSITION 6. Lw 1w is expressive int for the set of extended guarded 

commands which are finitary int. 

In practice it would be better to have a standard collection of 

formulas B for which ~(B,y) is known to hold in the underlying theory t. 

Any nondeterministic assignment statement used would then have to be of 

the form x:= y.(B & Q), where O can be any first-order formula of L. 

This will guarantee that all statements constructed are finitary int. 

A special notation might be introduced for such assignments, e.g. 

writing the above assignment in the form x:= y[B].Q. If we are working 

with the integers, it would be natural to choose the finite intervals as 

the finiteness conditions. We would then only allow assignments of the 

form x:= y[~6_yin] .Q(x,y), m and n integers. 

10. CONCLUSIONS 

We have tried to show that the infinitary logic Lw 1w is a natural 

one in which to formalize Dijkstra's weakest precondition technique. We 

have shown that this logic is sufficiently strong when one is interested 

in proving the total correctness of guarded commands, but that it cannot 

handle nondeiterministic assignment statements. These would permit a 

hierarchical decomposition of the correctness proofs, and would also be 

quite handy when developing programs by stepwise refinement. One would 

therefore llke to allow this kind of constructs in guarded commands. 

Two solutions were offered to this problem. The first one consisted 

in going to the essentially stronger logic Lw 1w1, while the other was to 
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restrict the nondeterministic assignment statement so that the 

nondeterministic choice is always made from a finite set of alternatives. 

We do not want to take any definite stand on which of these solutions is 

to be chosen, as this depends on the objectives one tries to achieve by 

the formalization. The second solution, restricting the power of the 

nondeterministic assignment statement, fits best into the framework of 

Dijkstra's book. It preserves the simplicity of the underlying logic, 

yet does not restrict the applicability of the nondeterministic 

assignment statement too much. On the other hand, from a theoretical 

point of view, the need to restrict oneself to finite choices only seems 

somewhat artificial, so this would again favor the first solution. 
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