
AFDELING INFORMATICA

stichting

mathematisch

centrum

IW 150/80
(DEPARTMENT OF COMPUTER SCIENCE)

R.J .R. BACK

PROVING TOTAL CORRECTNESS OF NONDETERMINISTIC
PROGRAMS IN (NFINITARY LOGIC

Preprint

OKTOBER

kruislaan 413 1098 SJ amsterdam

AMS1ERDAM

Punted at t;he Ma:thema.tlc.ai. Cent!r.e, 413 Kll.t.U.6£.aa.n, Amtdvuf.am.

The Mathema.tic.ai. CentJr.e , f,ounded t;he 11-t;h of, FebJc.u.all.y 1946, ,l6 a. non­
pll.of,..U .ln6.:U:tv.ti1Jn a,lmlng at t;he pJLomo:tlon of, pwr.e ma:thema.tlc.-6 a.nd -lt6
a.ppU.c.a.tlon.6. It; ,l6 .&pon6oJLed by ~e NuheJLta.nd6 GoveJLnment ~ugh ~e
Nuhellla.nd6 0.1r.ga.vu.za.tlon f,oJL t;he Advanc.ement of, PWl.e Re.& eaJLc.h (Z .W. 0.) •

1980 Mathematics subject classification: 68B10

ACM-Computing Reviews-category: 5.24, 5.21

Proving total correctness of nondeterministic programs in infinitary
logic*)

by

R.J.R.Back

ABSTRACT

It is shown how the weakest precondition approach to proving total
correctness of nondeterministic programs can be formalized in infinitary
logic. The weakest precondition technique is extended to hierarchically
structured programs by adding a new primitive statement for operational
abstraction, the nondeterministic assignment statement, to the guarded
commands of Dijkstra. The infinitary logic Lwiw is shown to be strong
enough to express the weakest preconditions for Dijkstra's guarded
commands, but too weak for the extended guarded commands. Two possible
solutions are considered: going to the essentially stronger infinitary
logic Lw w and restricting the power of the nondeterministic assignment
statemen! ln a way which allows the weakest preconditions to be expressed
in Lwiw•

KEY WORDS & PHRASES: Infinitary logic, total correctness,nondeterministic
programs, weakest preconditions, operational
abstraction, stepwise refinement, unbounded
nondeterminism, expressibility

*) This report will be submitted for publication elsewhere.

1

1. INTRODUCTION

The infinitary logic L001w, which extends first-order logic by

allowing countable disjunctions and conjunctions of formulas, has been

proposed by ENGELER[lO,llJ as a suitable framework in which to reason

about termination of programs. He shows how to assign to a given program

a formula in L001w which will be satisfied if and only if the program

terminates. SALWICKI[21J extended Engeler's approach to total

correctness of programs. In Salwicki's system, known as algorithmic

logic, first-order logic is extended with formulas of the form Sa, where

Sis a program and a is a formula. The formula Sa expresses that the

program S terminates and that upon termination a holds. Infinitary rules

of inference are used to prove total correctness of loops, so this logic

is also of an infinitary nature. Salwicki's approach has been carried

further by a ntnnber of people, mostly working in Warsaw (see e.g.

BANACHOWSKI[3J). The idea of extending first-order formulas with

programs is also exploited in the dynamic logic by PRATT[l9J and in the

programming logic by CONSTABLE[6J.

Another, less formal approach to reasoning about total correctness

has been proposed by DIJKSTRA[8J, based on the concept of weakest

preconditions. Essentially his idea is to associate with each program a

predicate transformer, which for any postcondition of the program gives

the weakest precondition which guarantees that the program terminates in

a final state satisfying the postcondition. Dijkstra's technique covers

both deterministic and nondeterministic programs, whereas the early work

on algorithmic logic only was concerned with deterministic programs.

Algorithmic logic has later been extended to also cover nondeterministic

programs (RASIOWA[2OJ). A careful analysis of nondeterminism and weakest

preconditions in the framework of dynamic logic can be found in

HAREL[12J.

Our intention here is first to show how Engeler's work on proving

termination can be extended to provide a simple formalization of

2

Dijkstra's weakest precondition technique for proving total correctness

of guarded commands. We then go on to consider the effect of extending

the guarded commands with a new primitive statement for expressing

operational abstraction, the nondeterministic assignment statement. This

construct is useful when developing programs by stepwise refinement,

permitting a hierarchical decomposition of the correctness proof

(BACK[l]). It turns out, however, that the weakest preconditions for the

extended guarded commands cannot always be expressed in the logic L001w,

because of the "unbounded" nondeterminism allowed by the nondeterministic

assignment statement.

Recognizing the desirability of hierarchically structured programs

and correctness proofs, we consider two different possible solutions.

The first one is to find a stronger logic, in which the weakest

preconditions for the extended guarded commands are expressible. The

second possibility is to restrict the nondeterministic assignment

statement in a way which keeps the weakest preconditions expressible in

Lw1w•

2. INFINITARY LOGIC

The usual first-order logic is extended to infinitary logic by

allowing infinitely long formulas like

Vx(x=O v x=l v x=2 v •••)

or

In the first case we have a disjunction over an infinite set of formulas

while in the second case we have a conjunction over an infinite set of

formulas together with an existential quantification over an infinite set

of variables.

3

Let L be a set of constant, function and predicate symbols and let ex

and S be two infinite cardinals (ex ~ S). The infinitary logic Las is

like the ordinary first-order logic of L, with the same logical and

nonlogical symbols, except that it allows the conjunction and

disjunction over a set of fewer than a formulas and the universal and

existential quantification on a set of fewer than f3 variables.

We will mainly be interested in Las when a and Bare either w or w1.

The cardinal ,,J is the cardinality of the set of natural numbers and is

the smalleist infinite cardinal. A set with fewer than ,_,J elements· is thus

finite. The cardinal 1Jl is the next smallest infinite cardinal; a set

with fewer than 0Jl elements is countable. L,.llw is thus the usual first­

order loglc, allowing only finite disjunctions, conjunctions and

quantification. Lw 1w extends this by allowing countable disjunctions and

conjunctions, but still only permitting finite quantification, while

Lw 1w1 also allows countable quantification. Formula (1) above is in Lw 1w

and formula (2) is in Lw 1w1 •

The first to give a completely formal treatment of infinitary logic

was KARP[lSJ. KEISLER[l6] gives an extensive survey of the model theory

of Lw 1w, while DICKMANN[?] treats the model theory of larger infinitary

languages. Brief introductory accounts are given by SCOTT[22] and by

KEISLER[l7]. We will here only be needing the most basic results of

infinitary logic, roughly to the extent of the last two references.

The logic Lw 1w is the most useful one of the infinitary logics.

The formulas of this logic are constructed like the formulas of first­

order logic, with the addition of the following formation rule:

If~ is a countable set of formulas of Lw 1w, then&~ and V~ are also

formuilas of Lw 1 w

(M is thei conjunction and V~ the disjunction of the formulas in ~). If

~ is given in the form~= hili=0,1,2, ••• }, then we write these as

4

& 'i
i=O

and V 'i •
i=O

Formula (1) above is thus

Vx(& x=i)

i=O

The order of precedence in formulas is assumed to be=,=>, V, &, V

and 3, with= binding weakest and 3 strongest.

The usual model-theoretic notions generalize in a straightforward

way to infinitary logic (see e.g. DICKMANN[7] for definitions). We write

MI= A[cr] when the formula A is satisfied in the structure M for the

value assignment a. A value assignment a is simply a function cr:Var +

IMI, where Var is the set of variable symbols and IMI is the domain of M.

We write MI= A when A holds in Mand ti= A when A holds in every model

oft (A is a logical consequence oft).

L00100 is axiomatized by giving the usual axioms and inference rules

for first-order logic, together with axioms and inference rules for

handling the infinite conjunctions and disjunctions. Thus, for Ya

countable set of formulas and A a formula in Y, we add the axiom schemes

&Y =) A and A=) VY,

We also add the following two rules of inference:

R => A, for each A e f A=> B, for each A£ f

B => & f V f =) B

These rules may require an infinite number of premises to be proved. To

make them useful, proofs in Lw 1w are allowed to be of infinite (but at

most countable) length. As usual, we write ~ I- A when A is provable

from the set of formulas~-

The logic Lw 1w is similar to first-order logic in that it is

complete, in the following sense:

COMPLETENESS THEOREM(KARP[l5]): Let A be a formula and let~ be a

countable set of sentences of Lwiw· Then

~ I= A if and only if ~ I- A.

3. EXPRESSING WEAKEST PRECONDITIONS

5

Let L be a set of constant, function and predicate symbols and let M

be a structure for L. We will be interested in computations on M, where

a computation is a (possibly infinite) sequence of states in M, a state

simply being a value assignment in M. Let us denote by 1:M the set of all

states in M. A computation will then be an element in 1:M* or in 1:'M_",

where 1:M* is the set of all finite and 1:~ the set of all infinite

sequences of states in 1:M.

Let StatL be a set of programs (or statements) of L, i.e. programs

which only use constant, function and predicate symbols in L. Let S be a

program in StatL• The interpretation of Sin M, denoted sM, will be a

function sM:1:M + P(1:M* u 1:~), i.e. sM assigns to each state in 1:M a set

of computations in M (the notation P(X) is used for the power set of X).

6

For any initial state cr t EM, sM(o) is the set of all possible

computations of S starting from the initial state cr. There may be more

than one computation of S starting from cr, as the programs in StatL are

allowed to be nondeterministic.

* For any computation c in EM, let lt(c) be the last element inc.

For C .=_ EM*, define lt(C) = {lt(c)I ct C}. Let f:EM + P(EM* u E}f') and

let E' .=.. EM. The weakest precondition off for E', denoted wp(f,E'), is

the set of all cr in EM such that

(i) f(cr) .'.:. EM* and

(ii) lt(f(cr)) c E'.

Let R be a formula of Laa and let M be a structure for L. The

interpretation of R in Mis the set RM= {cr t EM I Ml=R[cr]}. Given a

program Sin StatL, wp(SM,1\1) will then be the set of all initial states

cr in EM for which the execution of Sis guaranteed to terminate in a

final state satisfying the condition R. Thus wp(SM,~) gives the

semantical meaning of Dijkstra's weakest preconditions for programs.

DEFINITION: Let S be a statement in StatL and let Wand R be formulas of

Laa• Wis said to express (uniformly for all structures) the weakest

precondition of S for R, if wM = wp(SM,RM) for any structure M of L.

We will say that the weakest preconditions of programs in StatL are

expressible in Laa (or, more briefly, that Laa is expressible for StatL),_

if for any Sin StatL and any R in Laa there is a formula Win Laa which

expresses the weakest precondition of S for R. In Harel's classification

[12], the definition of weakest preconditions given here assumes a

depth-first execution of nondeterministic programs without any

backtracking. Other execution strategies are also possible, but, as

shown by Harel, this one is assumed by Dijkstra.

The importance of the weakest preconditions stems from the fact that

7

they can be used to express total correctness of programs. Given a

program Sin StatL, a precondition Panda postcondition Qin Laa, Sis

totally correct with respect to P and Qin a structure M of L, denoted M

I= P[S]Q, if pM ~ wp(sM,qM). Termination of a program Sis again a

special case of total correctness, i.e. Sis guaranteed to terminate for

precondition P if MI= P[S]true, where true is an identically true

sentence (i.e. trueM = IMI for any M). We write t I= P[S]Q, when MI=

P[S]Q holds for any model M oft. If the logic Laa is expressible for

StatL, then proving t I= P[S]Q can be reduced to proving t I= P => W for

some formula W of Laa which expresses the weakest precondition of S for

Q. We will write t I- P[S]Q when t I- P => W for some such formula w.

We will be interested in the weakest logic Laa which is expressible

for a specific choice of StatL• This amounts to asking for the weakest

infinitary logic in which one can reason about total correctness of

programs in the manner described above.

4. WEAKEST PRECONDITIONS OF GUARDED COMMANDS

Let us first consider the case when StatL is taken to be the guarded

commands of DIJKSTRA[8]. That is, the statements of StatL are defined by

S::= skip I abort I x:= t I S1;82

if b1 + 81 [] ••• [] bn + Sn fi

do b1 + S 1 [] • • • [] bn + Sn o d

n > 1. Here xis a list of distinct variables, tis a list of terms of L

(x and t must be of equal length), b1, ••• , bn are boolean expressions

(quantifier free formulas) of Lands, S1, ••• ,Snare statements of L.

The interpretation sM of a guarded command Sin a structure M of L

can be defined in a straightforward way and will not be given here.

Because the guards in the conditional and iteration statements are not

required to be mutually exclusive, the guarded commands may be

nondeterministic, i.e. sM(a) may contain more than one computation.

8

We will now show that the logic Lw 1w is the weakest infinitary logic

Lae which is expressible for the guarded commands. As a first step, we

show that the weakest preconditions of guarded commands cannot be

expressed in ordinary first-order logic Lww•

PROPOSITION 1. Lww is not expressible for the guarded commands.

Proof: Let L be the language of groups, i.e. L consists of the

nonlogical symbols 1 (unit element), - (inverse) and x (multiplication).

Lett be the set of group axioms (a finite set of first-order sentences,

see e.g. BARWISE[4]). Let Sin StatL be the statement

x:= y;
do x # 1 + x:= xxy od.

If Lww would be expressible, then there would be a first-order sentence W

expressing the weakest precondition for this program to terminate • The

set of first-order formulas t U {W} would then characterize the class of

torsion groups, i.e. those groups in which for any element a in the

group, an= 1 for some n > 1. However, it is known that this class

cannot be characterized by a finite set of first-order sentences [4].

Thus W cannot be a formula of Lww•[J

MANNA[l8] has shown that weakest preconditions of nondeterministic

programs can be expressed in first-order logic, if one is allowed to use

predicate variables. Our definition of expressibility prohibits the use

of predicate variables, so this result is not in conflict with Manna's

result. The use of predicate variables makes Manna's formulation of the

weakest preconditions complicated and difficult to use in reasoning about

program correctness, as compared to Dijkstra's formulation.

In order to simplify notation, let us introduce the following

abbreviations for the iteration and the conditional statement: DO denotes

the iteration statement

IF denotes the corresponding conditional statement

and bb denotes the condition b1v ••• vbk.

PROPOSITION 2. Lw 1w is expressible for the guarded commands.

Proof: DIJKSTRA[8] defines for each guarded command Sand formula Q

a formula WP(S,Q) and shows that this formula expresses the weakest

precondition of S for Q. If Q is a formula of Lw 1w, then WP(S,Q) is

easily seen to be a formula of Lwiw· Actually it is only necessary to

change the definition of WP(S,Q) in the case when Sis an iteration

statement. Dijkstra defines WP(DO,R) by

WP(DO,R) = 3n(n>O).ffn

where Ho, H1, Hz, ••• is a sequence of formulas defined in terms of IF.

If we write this as

00

WP(DO, R) =

The completeness of Lw 1w gives us the following result.

PROPOSITION 3. Lett be a countable set of sentences of Lw 1w and Sa

guarded command in Stat1• Then

9

10

~ I= P[S]Q if and only if ~ I- P => WP(S,Q),

for any formulas P and Q of Lwiw•

This means that the formalization of the weakest precondition in

Lw 1w provides a complete technique for proving total correctness of

guarded commands, in the sense that if a guarded command is totally

correct in a theory~, the corresponding formula is provable from~, and

vice versa.

The weakest precondition of the iteration statement can be expressed

in an alternative way as

WP(DO,R) =

0 1 2 where DO, DO, DO, ••• is a sequence of approximations of DO, defined

by

DoO = abort

and for n>o,

Don+l = if bb + IF;Don

[],bb + skip

fi.

This definition can be extended to parameterless recursive procedures as

follows. Consider the procedure declaration

procedure p; S[p]

11

where S[p] indicates that the body S of p contains possible recursive

calls on p itself. The weakest precondition of the call pis easily seen

to be

WP(p,R) = V WP(Sn,R),

n=O

where gn i.s defined by

s 0 = abort

and for n ~ O,

gn+l = s [Sn/p].

Here S[Sn/p] denotes the result of substituting sn for each call p in S.

(This definition of the weakest precondition for parameterless recursive

procedures is essentially due to HEHNER[13].)

5. REASONING IN INFINITARY LOGIC

The logic Lw 1w is an essentially stronger logic than Lww• Thus one

can give a categorical characterization of the standard model of

arithmetic by a single sentence of this logic. It is sufficient to take

the sentence 4> which is the conjunction of all first-order instances of

the Peano axioms, together with the sentence

CJ)

"h[v (x=sno)]

n=O

Heres is the successor function and snx is defined by s 0x = x and sn+lx

= s(snx), for n = 0,1,2, •••• This construction can in fact be

12

generalized, in that it is possible to characterize in 1u, 100 the

isomorphism type of any countable algebra of a given signature (Scott's

isomorphism theorem, see e.g. KEISLER[16]).

Let L be the language and N the standard model of first-order

arithmetic. Let S be a statement in StatL• Then the completeness result

of the preceding section gives that

NI= P[S]Q if and only if ti- P[S]Q,

for any P and Qin L00100 • In other words, Sis totally correct in the

standard model of arithmetic if and only if it can be proved to be

correct from the axiom$. The trade-off between using L00100 and L0000

should be evident here. On the one hand we get rid of the nonstandard

models of arithmetic (which usually undermine the faithfulness of first­

order axioms) if we use L00100 , on the other hand we also loose the

fini.tary nature of proofs in L0000 •

DIJKSTRA[8, ch. 4 and 9] gives five basic properties of weakest

preconditions for guarded commands. These properties are all valid, i.e.

they will hold in any structure of L. By the completeness of L00100 , this

means that they are all theorems in L00100 , and may thus be used in proofs

in this logic. The first property e.g.,

WP(S,false) - false,

asserts that in any structure M of L, wp(SM,0) = 0, a fact which is

easily seen to be true by the definition of wp (false is an identically

false sentence, i.e. falseM = 0 for any structure M). Similarly for the

other four properties.

The fifth property, continuity, can be formulated as follows: Let

Co, C1, Cz, ••• be formulas of L00100 and let C be the set

13

C = {Ci =) Ci+l I i = 0,1,2, ... }.

Then

... ...
C l=WP(S, V Ci) - V WP(S,Ci)•

i=O i=O

The continuity property rests on the assumption of bounded

nondeterminism. The nondeterminism of a statement Sin StatL is bounded

in a structure M of L, if for any cr £ EM,

The nondeterminism of the guarded commands is easily seen to be bounded

in any structure M, so the continuity property holds for the weakest

preconditions of guarded commands.

Weakest precondition are used by Dijkstra both as a tool for

developing programs and as a framework in which to establish the

soundness of more practical proof techniques for program correctness.

The formalization of weakest preconditions in infinitary logic, as

described here, is primarily intended to support this second goal. As an

example of this, we show how to prove a theorem which establishes the

correctness of the invariant assertion technique for proving partial

correctness of loops. A proof of this theorem is given by DIJKSTRA[8],

who refers to it as the "fundamental invariance theorem". Our purpose

here is to show how Dijkstra's proof is translated into a proof in Lw 1w•

The theorem to be proved is the following. Let DO be the iteration

statement, as defined in the previous section, and let IF be the

corresponding conditional statement. The fundamental invariance theorem

14

states that

{P & bb => WP(IF,P)} I-

P & WP(DO,true) => WP(DO, P & , bb).

First one has to show that

P & WP(Don,true) => WP(Don,p & ,bb)

is provable under the given hypothesis, for n>O. This part of the proof

requires no infinitary reasoning and is therefore omitted here. We may

then infer that

p & WP(Don,true) => V WP(Doi,p & ;bb)

~o

for n ~ 0, by the axiom of infinite disjunction and the transitivity of

implication. This is again equivalent to

P => [WP(Don,true) => V WP(Doi,p & ,bb)].

i=O

Let us assume P. By modus ponens, we then have that

WP(Don,true) => v WP(noi,p & ,bb)

~o

for n > O. We may now use the inference rule for infinite disjunctions,

giving

00

V WP(Doi,true) =>

i=O

00

V WP(ooi,p & ,bb)

i=O

Applying the deduction theorem (which holds in Lw 1w), we then get

00 00

P => [v WP(ooi,true) => v WP(ooi,p & ,bb)].

i=O i=O

Using the definition of WP for loops, this is finally equivalent to

P & WP(DO,true) => WP(DO, P & , bb),

which is the required result.

6. NONDETERMINISTIC ASSIGNMENT STATEMENTS

15

Let us now replace the assignment statement x:=t in Stat1 by a more

general construct, called a nondeterministic assignment statement. This

has the form

x:= y.Q,

where x and y are lists of distinct variables (of equal length) and Q is

a formula of Lww• The effect of this statement is to assign to x some

new value y such that the condition Q is satisfied (Q will usually

contain free occurrences of the variables in x and y). If no such y

exists, then the effect of the statement is considered to be undefined.

If there is more than one possible choice of-y making Q true, one of

these is chosen nondeterministically and assigned to x. (The

nondeterministic assignment statement can be seen as a more sophisticated

and usable version of the "random assignment" in HAREL[l2]).

16

The assignment statement can be expressed by this new construct.

The effect of

is the same as the effect of

Thus e.g. u:= utl is equivalent to u:=v.(v = utl).

The weakest precondition for the nondeterministic assignment

statement is given by

WP(x:=y.Q, R) = 3y.Q & Vy.(Q => R[y/x]).

The first conjunct expresses the requirement that there must exist any

satisfying the condition Q, otherwise the effect is undefined. The

second conjunct expresses the requirement that any choice of y satisfying

Q must result in a new state in which R holds. The second conjunct here

is very simi.lar to the corresponding conjunct occurring in the rule of

adaptation i.n HOARE[l4].

Let us exemplify this rule by computing the weakest precondition of

the assignme!nt statement. We have

WP(x:=t, R) = WP(x:=y.(y=t), R)

= 3y.(y=t) & Vy.(y=t => R[y/x])

- true & (R[y/x])[t/y]

- R[t/x],

as was to bei expected.

The purpose of the nondeterministic assignment statement is to

17

extend the weakest precondition technique to hierarchically structured

programs. Consider a statement S containing a call on the parameterless

procedure p. Assume that only the entry condition P and the exit

condition Q for pis known, together with the fact that p only can change

the variables x. This information should be sufficient to enable one to

prove the correctness of the statement S, i.e. knowledge of how pis

actually implemented should not be required.

We can achieve this by replacing each call on pin S by the

nondeterministic assignment statement

x:= y.(P & Q),

where we assume that x in P and Q refer to the initial value of x, while

yin Q refers to the value of x after the call. We assume here that the

pre- and postconditions are consistent, i.e. that P => 3y.Q. The

correctness of S with respect to some given specification can then be

established, as we know how to compute the weakest preconditions of s.

The correctness of an implementation S' of p can then be proved as a

separate step, by proving that P => WP(S',Q), at the same time checking

that only variables in x are updated in S' (this can be guaranteed by

syntactic restrictions on S'). In general, S' will be a correct

implementation of x:= y.Q, if

3y.Q => (WP(S', Q[z/x,x/y]))[x/z]

holds, where z is a list of fresh variables, not used in S' or Q before.

A more thorough discussion of correctness of implementations along these

lines is presented in BACK[l].

7. STRONG AND WEAK TERMINATION

The previous discussion should be sufficient to indicate that the

nondeterministic assignment statement would be very convenient to have,

18

allowing correctness proofs of hierarchical programs (e.g. developed by

stepwise refinement) using the weakest precondition technique. However,

simply extending the guarded commands with a construct like this does not

work, as observed by DIJKSTRA[8]. To see this, consider the following

statement S:

do x 1 0 + if x > 0 + x:= x-1 (1)

[] X (0 + x:= y.(y) 0)

fi

od.

We assume that this program works on the standard model of integers.

Computing the weakest precondition for S to terminate gives

WP(S,true) = x ~ 0,

i.e. the loop is only guaranteed to terminate for non-negative initial

values of x. On the other hand, any possible execution of S for negative

initial values of x must obviously also terminate, so we would expect

WP(S,true) = true.

The problem here is that the weakest precondition for the iteration

statement, as it is defined in section 4, formalizes a stronger notion of

termination of loops than the ordinary one, which requires that any

possible execution of the loop must eventually terminate. A loop is said

to terminate strongly if for any initial state a there is an integer Na

such that the loop is guaranteed to terminate in less than Na iterations.

Termination which is not strong is called weak termination. (The notion

of strong and weak termination is due to DIJKSTRA[9]). The

nondeterministic assignment statement in S has the effect that no upper

bound can be given for the number of iterations required for the loop to

terminate when xis initially negative, although the loop is guaranteed

to terminate for such initial values also.

19

Without nondeterministic assignment statements, termination of

guarded commands is always strong. The reason for this is that the

nondeterministic choices which arise during execution of a guarded

command are always made from a finite number of alternatives. Thus, if

each execution of such a command terminates for a given initial state,

there can only be a finite number of possible different executions (this

follows by Konig's lemma), and consequently there must be an execution

requiring the greatest number of iterations. If we allow

nondeterministic assignment statements in guarded commands, the

nondeterministic choice can be made from an infinite number of

alternatives. Konig's lemma does not then apply any more and the

existence of a maximum number of iterations is therefore not guaranteed.

Let us refer to the guarded commands of Lin which nondeterministic

assignment statements are allowed, together with arbitrary first-order

formulas of Las guards, as extended guarded commands of L. We then have

the following result.

PROPOSITION 4. Lw 1w is not expressible for the extended guarded commands

of L.

Proof: Choose L = {P}, where Pis a binary predicate symbol and let

S be the extended guarded command

do 3y.P(x,y) + x:= y.P(x,y) od. (2)

Let M be a structure for Land let o E EM• Swill be guaranteed to

terminate in M for the initial state o if and only if there does not

exist an infinite sequence do,d1,d2,••· of elements in IMI such that o(x)

= do and

where> is the interpretation of the predicate Pin the structure M. If

20

there was a formula Win Lw 1w expressing the weakest precondition of S to

terminate, then the formula Vx.W would also be a formula of Lw 1w, and

would hold in M if and only if> is a well-founded relation in M. Thus

the formula Vx.W would characterize well-foundedness. However, well­

foundedness cannot be characterized by a formula of Lw 1w (see e.g.

KEISLER[l6]). Consequently, no such formula W exists in Lw 1w, i.e. this

logic is not expressible for the extended guarded commands. []

In fact, well-foundedness cannot be expressed in Law for any

infinite cardinal a, nor can it be expressed in the logic Lc..w, which is

the union of all these logics Law• Thus none of these logics is

expressible for the extended guarded commands. (If one would allow

disjunctions over the class of all ordinals, then the weakest

precondition of loops with nondeterministic assignments could be

expressed in a manner similar to the one Dijkstra uses, as shown by

BOOM[S]. Such a formula is not, however, a formula of any infinitary

logic Laa)•

It should be remarked that the use of arbitrary first-order formulas

as guards in the extended guarded commands is not essential. If we allow

boolean values in our programs, then program (2) above can also be

expressed in the form

set b;

do b + x:= y.P(x,y); set bod

where "set b" is the statement

b:= c.(3y.P(x,y) & c=true v

,3y.P(x,y) & c=false)

which has the same effect.

Allowing nondeterministic assignment statements in guarded commands

also affects the proof rule for total correctness of loops given in

DIJKSTRA[B]. According to this rule, to prove

P => WP(DO, P & ,bb),

it is sufficient to show that the following three conditions are

satisfied for some suitably chosen integer valued function ton the

program variables:

(1) P & bb => WP(IF ,P),

(2) P & b b = > t > 0 and

(3) p & bb & t i to+l => WP(IF' t i to).

21

The first condition guarantees that Pis preserved by the body of the

loop, the second condition guarantees that the value oft is bounded from

below, while the third condition guarantees that each iteration of the

loop decreases the value oft with at least one.

A suitable integer function t can always be found for a loop

containing no nondeterministic assignment statements, provided the loop

does in fact terminate. It is sufficient to choose t such that in any

initial state cr for which the loop is guaranteed to terminate, t(cr) is

the maximum number of iterations required for termination. This choice

oft is easily seen to satisfy both condition (2) and (3).

If we allow nondeterministic assignment statements within a loop,

the existence of a suitable integer function tis not guaranteed any

more. Program (1) above provides an example of this. Assume that there

is an integer valued function ton the program variables which satisfies

condition (2) and (3). Suppose t(xo) = n for some XO < O, and the

program, given the input xo, happens to compute x:= m with m > n. Then

there are m further iterations, in each of which tis decreased, so m < n

must hold. This is a contradiction, hence there can be no integer

function t which satisfies both (2) and (3).

22

The unbounded nondeterminism of the nondeterministic assignment

statement also causes problems with the semantics of programs. In BACK[2]

it is shown that the simple Egli-Milner ordering on the power set domain

is not sufficient for defining the denotational semantics of such

programs, but that one is forced into a much more complicated,

essentially operational semantics.

The fact that Lw 1w is not expressible for the extended guarded

commands puts us into something of a dilemma. On the one hand the logic

Lw 1w is a very convenient one to reason in, on the other hand we also

would like to be able to prove the total correctness of programs in a

hierarchical fashion. There are essentially two different ways in which

this dilemma can be resolved. We can either try to use a logic more

powerful than Lw 1w, or we can restrict the power of the nondeterministic

assignment statement in a way which restores the expressiveness of Lwiw•

We will consider both possibilities in turn, the first one in the next

section and the second one in the section after.

8. STRENGTHENING THE LOGIC

As shown in the preceding section, none of the logics Law is

expressible for the extended guarded commands, because well-foundedness

cannot be characterized in them. The logic Lw 1cll 1 is again essentially

stronger than these logics, in that well-foundedness of a binary

predicate P can be characterized in it, by the formula

CD

,3xox1x2•••< & P(xi,xi+1)).

i=O

The proof of proposition 4 does therefore not apply to this logic. In

fact, we can show that this logic is expressible for the extended guarded

commands.

To show the expressibility of Lw 1w1, it is sufficient to show that

23

the weakest precondition for the iteration statement DO is expressible in

L001w1• The construction of a formula WP(DO,R) which expresses the

weakest precondition of Db for the formula R in L001w1 proceeds as

follows.

Asstnne that we already know how to express WP(IF,P) for any P.

Consider the formula, WP(IF,, P). For a given structure Mand a given

state cr E EM,

MI=, WP(IF,, P)[cr]

if and only if there is a nonterminating computation of IF in M starting

from cr, or there is a terminating computation which ends in a final state

cr' satisfying P. In other words, if IF is guaranteed to terminate for

initial state cr, then one of the possible final states must satisfy P.

Let now x be the list of all variables occurring in DO. Define the

formula

K(x,y) =, WP(IF, x 1 y),

which says that if IF is guaranteed to terminate, then y is one of the

possible final values of x. We then define a sequence Ho, Hi, H2,

of formulas by

Ho= true

and

for n = 0,1,2, ••••

Let A1(xD) be the formula

24

Vx1xzx3•••f & (Hn & bh(xn) => T(xn))],

~o

where T(x) = WP(IF,true). A1(xD) will be true in a structure if and only

if execution of DO from initial state xO cannot lead to nontermination of

IF after a finite nun.her of iterations. Let Az(xD) be the formula

m

'vxlx2x3 ••• [& (Hn & -bb(xn) => R(xn))].

~o

This again says that if an execution of DO ever terminates, R will hold

for the final state. Finally, define A3(x0) to be the formula

~ 3x1x2x3 ... [& Hn1•

n=O

This formula says that it is not possible to have an infinite nun.her of

iterations of DO, when initially x = xO• Obviously we now have that

This gives us the following result:

PROPOSITION 5. L001001 is expressible for the extended guarded commands.

The result of this section thus shows that admitting unrestricted

nondeterministic assignment statements forces us into a stronger logic,

with a resulting essentially operational definition of the weakest

precondition for loops.

25

9. FINITE ASSIGNMENT STATEMENTS

We now consider the other·possibility left open, that of

restricting the power of the nondeterministic assignment statement. The

problems with weak termination only turn up when the nondeterministic

choice is made from an infinite number of different alternatives. An

obvious solution is therefore to restrict the nondeterministic assignment

to finite choices only.

Consider the assignment x:= y.Q, where x and y are simple variables.

Given a specific structure M, the nondeterministic choice in executing

this statement for initial state cr e EM will be finite, if the set

{d I Ml= Q[cr(d/y)]}

is finite, where cr(d/y) denotes a state which agrees with cr e EM on all

other variables except on y, where it has valued e IMI. If this is the

case for each cr e EM, then this assignment statement is said to be finite

in M.

Let us define the formula

n

For any structure M, MI= w(Q,y) if and only if x:= y.Q is finite in M.

An extended guarded command Sis said to be finitary in~,~ a set of

sentences, if each nondeterministic assignment statement x:= y.Q in Sis

finite in any model of~. A sufficient condition which guarantees that S

is finitary in~ is that ~I= w(Q,y) holds for any assignment x:= y.Q in

s.

The notion of expressiveness can be relativized to a set of

sentences~ as follows. We say that the logic Lae is expressive in~ for

26

the set of statements StatL, if for any R in Las and any Sin StatL there

is a formula Win Las such that wM = wp(SM,RM) for any model M oft. If

we assume that tis an axiomatization of the theory which we are working

in, then we can restrict ourselves to extended guarded commands which are

finitary in <~. We then have the following result, as an immediate

consequence of the observations above:

PROPOSITION 6. Lw 1w is expressive int for the set of extended guarded

commands which are finitary int.

In practice it would be better to have a standard collection of

formulas B for which ~(B,y) is known to hold in the underlying theory t.

Any nondeterministic assignment statement used would then have to be of

the form x:= y.(B & Q), where O can be any first-order formula of L.

This will guarantee that all statements constructed are finitary int.

A special notation might be introduced for such assignments, e.g.

writing the above assignment in the form x:= y[B].Q. If we are working

with the integers, it would be natural to choose the finite intervals as

the finiteness conditions. We would then only allow assignments of the

form x:= y[~6_yin] .Q(x,y), m and n integers.

10. CONCLUSIONS

We have tried to show that the infinitary logic Lw 1w is a natural

one in which to formalize Dijkstra's weakest precondition technique. We

have shown that this logic is sufficiently strong when one is interested

in proving the total correctness of guarded commands, but that it cannot

handle nondeiterministic assignment statements. These would permit a

hierarchical decomposition of the correctness proofs, and would also be

quite handy when developing programs by stepwise refinement. One would

therefore llke to allow this kind of constructs in guarded commands.

Two solutions were offered to this problem. The first one consisted

in going to the essentially stronger logic Lw 1w1, while the other was to

27

restrict the nondeterministic assignment statement so that the

nondeterministic choice is always made from a finite set of alternatives.

We do not want to take any definite stand on which of these solutions is

to be chosen, as this depends on the objectives one tries to achieve by

the formalization. The second solution, restricting the power of the

nondeterministic assignment statement, fits best into the framework of

Dijkstra's book. It preserves the simplicity of the underlying logic,

yet does not restrict the applicability of the nondeterministic

assignment statement too much. On the other hand, from a theoretical

point of view, the need to restrict oneself to finite choices only seems

somewhat artificial, so this would again favor the first solution.

ACKNOWLEDGEMENT: I would like to thank J.W. de Bakker, E.W. Dijkstra, M.

Karttunen and D. Park for the very helpful discussions I had with them on

the topics treated here during the early stages of this work, and J.V.

Tucker for his keen interest and help during the later stages of this

work.

REFERENCES

1. BACK,R.J.R.: On the correctness of refinement steps in program

development. Mathematical Center Tracts (to appear). Amsterdam:

Mathematisch Centrum 1980.

2. BACK,R.J.R.: Semantics of unbounded nondeterminism. In: Proc. 7th

Coll. Automata, Languages and Programming (J.W. de Bakker & J. van

Leeuwen, eds), Lecture Notes in Computer Science, Vol. 85, pp.51-63.

Berlin-Heidelberg-New York:Springer 1980.

3. BANACHOWSKI,L., A. KRECZMAR, G. MIRKOWSKA, H. RASIOWA & A. SALWICKI:

An introduction to algorithmic logic; metamathematical

investigations in the theory of programs-. In: Mathematical

Foundations of Computer Science (A. Mazurkiewicz & z. Pawlak, eds.),

Banach Center Publications, Vol. 2, pp. 7-99. Warsaw: PWN-Polish

Scientific Publishers 1977.

28

4. BARWISE,J.: An introduction to first-order logic. In: Handbook of

Mathematical Logic (J.Barwise,ed.), pp. 5-46. Amsterdam: North­

Holland 1977.

5. BOOM, H .. J.: A weaker precondition for loops. Mathematisch Centrum

Amsterdam, report IW 104/78, 1978.

6. CONSTABLE,R.L.: On the theory of programming logic. In: 9th ACM

Symposi1.nn on Theory of Computing, Boulder, Colorado 1977, pp. 269-

285.· New York: ACM 1977.

7. DICKMANN,M,A.: Large Infinitary Languages. Amsterdam: North-Holland

1975.

8. DIJKST&~, E.W.: A Discipline of Programming. Engelwood-Cliffs:

Prentice-Hall 1976.

9. DIJKSTRA, E.W.: Private communication,1978.

10. ENGELER, E.: Remarks on the theory of geometrical constructions.

In: The Syntax and Semantics of Infinitary Languages (J. Barwise,

ed.), Lecture Notes in Mathematics 72. Berlin-Heidelberg-New York:

Springer 1968.

11. ENGELER, E.: Algorithmic logic. In: Foundations of Computer Science

(J.W. de Bakker, ed.), Mathematical Center Tracts 63, pp. 57-85.

Amsterdam: Mathematisch Centrum 1975.

12. HAREL, D.: First-Order Dynamic Logic. Lecture Notes in Computer

Sciencei 68. Berlin-Heidelberg-New York: Springer 1979.

13. HEHNER,E.: Do considered od: a contribution to the programming

calculus. Acta Informatica 11, 287-304 (1979).

29

14. HOARE, C.A.R.: Procedures and parameters: An axiomatic approach.

In: Sympositnn on Semantics of Algorithmic Languages (E. Engeler,

ed.), Lecture Notes in Mathematics, Vol. 188, pp. 102-116. Berlin­

Heidelberg-New York: Springer 1971.

15. KARP, C.R.: Languages with Expressions of Infinite Length.

Amsterdam: North-Holland 1964.

16. KEISLER, H.J.: Model Theory for Infinitary Logic. Amsterdam: North­

Holland 1971.

17. KEISLER,H.J.: Fundamentals of model theory. In: Handbook of

Mathematical Logic (J.Barwise,ed.), pp.47-104. Amsterdam: North­

Holland 1977.

18. MANNA, z.: Mathematical Theory of Computing. New York: MGraw-Hill

1974.

19. PRATT~ V.R.: Semantic considerations of Floyd-Hoare logic. In:

Proc. 17th IEEE Symp. on Foundations of Computer Science, Houston,

Texas 1976, PP• 109-121. Long Beach: IEEE 1976.

20. RASIOWA,H.: Algorithmic logic and its extensions, a survey. In: 5th

Scandinavian Logic Symposium, Aalborg 1979, pp. 163-174. Aalborg

University Press 1979.

21. SALWICKI, A.: Formalized algorithmic languages. Bull. Acad. Polan.

Sci., Ser. Math. Vol. 18, 227-232 (1970).

22. SCOTT, D.: Logic with dentnnerably long formulas and finite strings

of quantifiers. In: Symp. on the Theory of Models (J. Addison, L.

Henkin & A. Tarski, eds.), pp.329-341. Amsterdam: North-Holland

1965.

