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On the operational structure of algebraic programming systems*) 

by 

P.R.J. Asveld & J.V. Tucker 

ABSTRACT 

An algebraic programming system is a language built from a fixed alge

braic data abstraction and a selection of deterministic, and non-determinis

tic, assignment and control constructs. First, we give a detailed analysis 

of the operational structure of an algebraic data type, one which is designed 

to classify programming systems in terms of the complexity of their imple

mentations. Secondly, we test our operational description by comparing the 

computations in deterministic and non-deterministic programming systems under 

certain space and time restrictions. 

KEY WORDS & PHRASES: algebraic data types, implementations of data types, 

operational semantics, complexity of implementations, 

complexity of algebraic computations 

*) This report will be submitted for publication elsewhere. 
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INTRODUCTION 

Algorithms are written in a definite, possibly high level, programming 

formalism Land are designed to compute functions on data structures belong

ing to a definite, possibly complicated, collection of data types. Here we 

consider the semantical problems involved in assessing the complexity of such 

computations in the context of small scale programming systems whose data 

types have been designed using the algebraic specification methods first 

worked out by S. ZILLES [22,31,32], J.V. GUTTAG [14,15] and, in particular, 

the ADJ GROUP [ 1, 2]. 

Typically, we shall have in mind a programming system PS possessing a 

selection of deterministic, and non-deterministic, control and assignment 

constructs and whose data types are characterised in a formal specification 

naming a set of primitive operators I:, on different kinds of data, which 

satisfy a set of axioms E. We shall devise an operational view of the seman

tics of such programming systems for the purpose of analysing the complexi

ties intrinsic to the computations they support and, especially, in order to 

make a useful classification of programming systems based upon the space and 

time resources involved in their implementation. 

Of course, the central problem is how to delimit the complexity of im

plementing the data types underlying a system PS. If one supposes PS to be 

implemented in some general purpose program language L say, by implementing 

the data types of PS as functional procedures in which the type specifica

tions have the status of comments - then one quickly sees the investigation 

sink into incidental features of the definition of L. This is even true of 

those languages which support data abstraction such as CLU, see LISKOV [21]. 

It is precisely here that the algebraic ideas about data abstraction play 

their elegant, and essential, roles. Syntactically, the data types of PS are 

described by an algebraic specification (I:,E); semantically, the data types 

of PS are grouped together and modelled by a many-sorted algebra A, unique 

up to isomorphism. Our concepts for the complexity of an implementation of 

the data types of PS are derived from general characteristics of how these

mantics of (I:,E) defines A with the result that these concepts turn out to 

be intrinsic invariants of data types. We set ourselves the goal of framing 

definitions of polynomial time, and space, implementable data types which 



2 

are as uncontentious and useful as the concepts of finite and computable data 

types. That this goal can be achieved is not accidental. It is merely a re

flection of one of the manifold advantages of using autonomous specification 

languages to deal with data types; in this case, semantically concrete im

plementations begin to assume certain normal forms and these reflect the 

abstract structure of the data types. 

After this operational view of a programming system's data types is ex

plained, in the first three sections, we test our analytical machinery by 

using it to compare programming systems PS and PS• sharing the same data 

types, but having different memory structures and deterministic and non

deterministic control constructs. For example, for general systems based upon 

what we call polynomial space enumerable data types, a class of data types 

containing all the polynomial space implementable types, we show that the 

computational abilities within polynomial space restrictions are equivalent; 

a result which rests on an extreme generalisation of Savitch's theorem [27] 

on the equivalence of deterministic and non-deterministic polynomial space 

bounded Turing machine computations. For PS and PS• built from polynomial 

time enumerable data types we can only confirm the existence of efficient 

simulations of non-deterministic control constructs by deterministic con

structs when certain conditions are placed on the memory structures avail

able in the non-deterministic system. The P=NP problem for these polynomial 

time enumerable programming systems with unrestricted memory is shown to be 

reducible to the P=NP problem for Turing machines. 

Henceforth, it is assumed that the reader is acquainted with the ideas 

and technical work in the theory of algebraic data types, at least with the 

basic paper ADJ [2] (but the more the reader knows about specification lang

uages, such as AFFIRM [12,25] or CLEAR [10], the better). Only the rudiments 

of complexity theory are required and these can be found in the book [19]. 

1. ALGEBRAIC DATA TYPES: SEMANTICS, SPECIFICATION, IMPLEMENTATION 

Syntactically, the programming systems in which we are interested are 

those modelled by a pair 

PS = [ (E,E) ,L(E) J 
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consisting of algebraic specification (E,E) for the data types of the lang

uage, and a set of program schemes L(E), based upon the operator names con

tained in the signature E, which formalise the programming constrttots avail

able for the encoding of algorithms in the language. Semantically, we may 

model such a programming system, denotationally, by a pair 

[A,L(A)] 

wherein A is a (single-sorted) algebraic structure of signature E defined by 

the specification (E,E) uniquely up to isomorphism, and L(A) is the set of 

all partial functions on A computable by the schemes of L(E) interpreted over 

A according to the rules of some "standard account" of L(E) computations. The 

only requirement on A which is worth mentioning is that it is a structure 

finitely generated by elements named in its signature. 

Let us straightaway observe that the extent to which such a programming 

system PS represents a high-level language is determined solely by the denot

ational meaning A of its data types and that this is achieved by using alge

braic isomorphism as the sharpest notion of semantical equivalence for data 

types. For example, in an algebraic manipulation language A might contain a 

ring of elementary analytic functions over the complex numbers, faithfully 

represented at a lower level by an elaborate symbolic implementation. 

Now, how the schemes of L(E) compute in A is commonly described in terms 

of the combinatorial activities of a virtual machine whose states are defined 

using A as the value set for program variables. Perhaps the reader had such 

a semantics for L(E) in mind when we spoke of L(A) a moment ago. The point 

is that an operational view of L(E) relative to the structure A is not a 

problem: in devising an operational view of the programming system PS, the 

problem lies in settling on an operational structure of the data abstraction 

A. This problem we will explore in this and the following two sections. 

Our point of departure, and technical motivation, lies in the initial 

algebra semantics for data types created by the ADJ GROUP [2]. An axiomatic 

specification (E,E) for a data type distinguishes the class ALG(E,E) of all 

structures of signature E satisfying the properties in E, and in order to 

fix a unique meaning for (E,E) one must assign an algebra M(E,E) E ALG(E,E), 

unique up to isomorphism. This done, one can then say a given data type 
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semantics A is correctly defined by a specification (E,E} if M(E,E} ~A.When 

(E,E} is an algebraic specification, M(E,E} can be defined to be the initial 

algebra I(E,E} of ALG(E,E}, necessarily unique up to isomorphism. This is a 

natural step to take because it corresponds to the decision that two terms 

t and t' over the operator signature E are made semantically identical if, 

and only if, t and t' can be proved equal from the axioms in E; in the ob

vious notation, 

(1) M(E,E} = I(E,E} F t=t' if, and only if, E ~ t=t'. 

In its turn, this initial algebra I(E,E) can be uniquely defined as a factor 

algebra of the syntactic algebra T(E} of all terms over E because T(E} is 

initial in the category of all E-algebras. Let I(E,E} ~ T(E,E} = T(E}/=E 

where =Eis the unique congruence corresponding to the provability clause of 

(1). Now if A is a data type semantics there is a unique epimorphism 

VA: T(E} +A.Therefore, we can always uniquely write A~ T(E,A} = T(E}/=A 

where =A is the congruence induced on T(E} by VA. If (E,E) specifies A then 

= and= coincide. E A 
Many of the perplexing conceptual and technical problems to do with 

data types find exact expressions through this handful of algebraic ideas, 

and can be perspiciously studied by the meticulous dissection of programming 

problems [2,3,4,5,6] or by highly theoretical work aimed at establishing gen

eral facts [8,9]; and this seems to be true of the problem of finding an 

operational structure for a data type A from which both particular and gen

eral questions about computations over A may be answered. 

Now there are two operational parameters for A which are obvious and 

fundamental: a chosen data representation and~ chosen mechanism for evaluat

ing basic operations which together make an implementation of the type. To 

treat these parameters, and their complexity, in a general and uniform way, 

we focus attention on transversals for =A· 

A transversal for -A is a set of terms n ~ T(E} such that for each 

t E T(E} there is some t' En for which t =At' and if t,t' En and t ~ t' 

then t 1A t'. For any given resource characteristic of syntax, a transversal 

is meant to fix the complexity of data representation and operations in some 

implementation of T(E,A). 
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The idea of a transversal originates in an algebraic implementation 

technique for data types defined by algebraic specifications using initial 

algebra semantics. Given a specification (E,E), the semantic and proof theo

retical equivalence (1) determines an operational meaning for (E,E) in the 

shape of a deductive term rewriting system ➔Eon T(E) defined by E. A trans

versal for =Ethen represents a complete set of normal forms for the reduc

tion rules making up ➔E. Thus, for an account of the complexity of an imple

mentation of A defined by a specification (E,E) it seems reasonable to analyse 

the complexities involved in operating the reduction relation ➔E. Actually, 

the semantics of algebraic specifications in the AFFIRM specification and 

verification language is defined, in this operational way, as a rewrite sys

tem: see MUSSER [25]. (For an introduction and survey of research into equa

tional replacement systems, including results on their complexity, see HUET 

and OPPEN [20].) We will not need to bring in as a new parameter the speci

fication of a data type A in order to deal with its implementation. In what 

follows we make no hypctheses about the concept of implementation save that 

whatever its mathematical model may be it will produce some distinguished 

transversal for =A· And that the complexity properties of the type according 

to such a model will be faithfully represented in properties of that trans

versal. With this understanding, we make statements about implementations of 

data types and their complexity, and think of the semantical complexity of 

the type through properties of the class of all implementations, all trans

versals. 

How transversals for T(E,A) can be made to characterise the operational 

structure of a data type A will be explained by using them to support a clas

sification of the intrinsic complexity of a data type semantics. Just as one 

can presently speak of finite or computable data types [8,9] one wants to 

be able to speak of polynomial time or space implementable data types be

cause these latter concepts would determine a resource based classification 

of the algebraic programming systems, for example. Framing reliable defini

tions for such notions is a delicate matter and we shall divide the task be

tween two sections. First, we consider the complexity of data representation 

and then, in Section 3, the complexity of the primitive operators of a type. 

All the results we subsequently prove about the complexity of computations 

on abstract data types are meant to test analytic value and reliability of 

our operational description of data types. 
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2. NORMED DATA TYPES 

Measuring the complexity of computations on a data type A rests primar

ily on an assessment of the complexity of data from A which we invest in the 

concept of a norm on A, being a function NA: A+ w specially tailored to the 

algebra of A. Secondly, it rests on the charges made for applying the opera

tions of A which we formalise as charge functions associated to the norm. If 

a is a program which computes on A then we might say a runs in polynomially 

many steps over A with respect to norm NA if there is a polynomial pa: wn+w 

such that for each input a 1 , .•• ,an EA, the number of steps involved in com

puting a(a1 , ••• ,an) is bounded by pa(NA(a1), •.• ,NA(an)). But to speak realis

tically about time in this way we must take into account the dictates of some 

charge function. 

The starting point for norming a data type A is some decision on charg

ing the syntax involved in its specification represented in a norm N: T(I:) +w. 

From an implementation of T(I:,A), inducing a transversal n, there arises a 

canonical implementation norm Nn: T(I:,A) + w which in turn induces the final 

norm NA on A. So in this way, NA(a) will represent the charge made on a EA 

as this is determined by an implementation of T(I:,A) and measured by N. Along 

similar lines the charge functions on A are created. 

First, we will develop a bit of theory about norms; despite their sim

plicity and generality, these definitions will support quite complicated 

conceptual and technical discussions later on and should be mastered here 

and now. 

A norm on an algebra A is a map N: A+ wand is intended to structure 

the data in A by giving A a prewellorder, 

a$ b if, and only if, N(a) $ N(b) 

(cf. Figure 2.1). Given such a norm N, to each k-ary operation o of A is 
k 

associated a resource_ charge· function with respect to N, c0 : A + w, de-
k 

fined from a numerical function r : w + w, so that 
0 

is the cost of applying o to a 1 , ••• ,~ EA in terms of norm N. The resource 
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may be time or space, for example. 

Being interested in asymptotic behaviour in infinite, but finitely gen

erated, algebras prompts us to make these definitions. Let N-1 (n) = 
{a EA: N(a) ~ n}. 

-1 
A norm N: A+ w is tr~vial if there exists some n for which A~ N (n). 

A norm N: A+ w is finite if for each n, N-1 (n) is a finite set. 

Notice that finite norms on infinite algebras are never trivial. We will 

often abbreviate N(a) by JalN or simply Jal. 

w 

A 

Figure 2.1 

EXAMPLES: 

STRIN:;S 2.1. The semigroup of words over an alphabet Xis normed by string 
+ length: if w = x 1 ••• ~ EX then Jwl = k. The charge function with respect 

to either time or space for concatenation is defined C(w1 ,w2) = lw1 1 + lw2 1. 

And 1•1 is a finite norm iff Xis finite. 

ARITHMETIC 2. 2. The semi ring of natural numbers if finitely normed by In I = n 

and by lnl = 1 + 1log2 (n)7 where the second norm measures complexity in terms 

of the binary representation of natural numbers. For example, for this second 

norm the obvious charge functions for space satisfy C+ (n,m) ~ 1 + max{ lnl, 1ml} 

and Cx(n,m) ~ In! + 1ml. 

POLYNOMIALS 2.3. Let R be a ring and R[X] = R[X1 , ... ,Xn] a polynomial ring 

over R. Then the degree function deg: R[X] + w is a norm and it is a finite 

norm iff R is finite. As a norm it is biased towards multiplication for its 
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charge function for space satisfies Cx(p,q) ~ deg(p) + deg(q) while addition 

satisfies C+(p,q) ~ max{deg(p),deg(q)} where p,q E R[X]. 

POLYNOMIALS AGAIN 2.4. In a programming system for algebraic manipulation, 

polynomial degree is a rather pointless measure of the complexity of data 

in its computations because the number and size of the coefficients defining 

a polynomial are ignored. Assume the ring R is already defined and normed 

by N: R + w. An obvious way of representing R[X] = R[x1 , ... ,Xn] is to use 

arrays of elements of R so that if p E R[X] has degreed then the length of 

the array representing pis 

d 

t 
l=O 

<n+l-1>. 
n-1 

A sensible norm N: R[X] + w would be to take N(p) as the sum of the norms of 

the coefficients appearing in p. Clearly, if N is a finite norm then N is 

too. 

Notice that if N(r) = 1 for all r ER then with this trivial norm on R 

we have 

d 
N(p) = l. 

l=O 

Only when n = 1 do we "recover" polynomial degree. 

For the moment, we concentrate on norms and say nothing of their charge 

functions, postponing that subject to the next section and, in particular, 

Section 5. 

Although a norm on an algebra A is meant to express, locally, the com

plexity of data in A it also expresses something, globally, about the com

plexity of construction of algebras: 

Let A be an algebra and N: A+ w a finite norm. The growth function of 
-1 

A with respect to N is the map gN: w + w defined by gN(n) = card[N (n)]. 

The algebra A is said to be of polynomial growth with respect to norm 

N: A+ w if there is a polynomial p: w + w such that for all n E w, gN(n) ~ 

p(n). And A is of exponential growth with respect to norm N: A+ w if there 

is an exponential function e: w + w such that for all n E w, gN(n) ~ e(n). 
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-EXJ\M.PLE 2.5. Consider the norm N: R[x1 , ••• ,Xn] ➔ w derived from the given 

norm N: R ➔ was defined in Example 2.4. Assume N is a finite norm with 

growth function g: w ➔ wand let g: w ➔ w denote the growth function of N. 
Then a formula for g is 

k 
g(k) = l l 

l=1 z 1+ ••• +zk=l 

k 
. TT1 G (z.) 
i= l. 

wherein G (z) = card{r E R: N(r) = z}. Clearly, g is not bounded by a poly-

nomial even if g is. 

It is easy to construct finite norms, say on the natural numbers, with 

non-exponential growth. 

In order to pin down the extent to which the complexities of data re

presentation are semantic invariants of data types we at least need to esta

blish a criterion for the equivalence of two norms. We make the following 

natural choice. 

Let N and M be norms on A. Then N is linearly reducible to M (in symbols: 

N::;; M) if there is A E w such that for all a EA, N(a) ::;; AM(a). And N is 

linearly equi-1,.alent to M (in symbols: N = M) if N s M and M s N. As usual, 

two functions f,g: w ➔ ware linearly reducible f::;; g if there is some A E w 

so that f(n) ::;; g(An) for all n E w; and they are linearly equivalent if 

f::;; g and g::;; f. 

LEMMA 2.6. Let N and M be finite norms on A. If N ::;; M then gM ::;; gN and if 

N = M then gN = gM. 

PROOF. Clearly, N $ M implies {a EA: M(a) Sn} c {a EA: N(a) $ An} for 

each n E w. Thus gM(n) ::;; gN(An). D 

Now we can shape our measures of the complexity of the data belonging 

to a data type A derived from its syntactic implementations. 

NORMS ON SYNTAX 2.7. Observe that the common definitions of "term height" 

are important norms on the syntax T(E). Consider norms N1 and N2 which take 

the value 1 on the constants of E and are elsewhere defined inductively by 

N 1 ( a ( s 1 , ••• , sk) ) = 1 + max { N 1 ( s i) : 1 ::;; i ::;; k } 
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k 
N2 (cr(s1 , ••• ,sk)) = 1 + l N2 (si). 

i=1 

When one parses a term one obtains a tree and N1 (t) calculates (one plus) 

the height of this tree (the supremum of the heights of all paths in the 

tree) while N2 (t) calculates the number of nodes in this tree. For example, 

if E contains the binary operation cr and constants x, y, z then fort= 

cr(cr(cr(x,y),y),cr(x,z)), whose tree is that in Figure 2.2, we have N1 (t) = 4 

and N2 (t) = 9. 

cr 

cr 

z 

X y 

Figure 2.2 

N1(t)-1 Quite generally, for any term t E T(E), N2 (t) ~ M where Mis the maxi-

mum arity of the operation symbols int. N1 and N2 are finite' iff Eis finite. 

Mathematically, the essential property of norms for syntax is this. 

A norm N: T(E) + w is said to be inductive if for all t = cr(s 1, ••• ,sk) E 

T (E), 

N(t) ~ 1 + max{N(s.): 1 ~ i ~ k} 
1 

or, quite simply, N(t) ~ N1 (t). The connection between inductiveness and 

non-trivial syntactic norms is obvious, as indeed is the following fact: 

LEM1A 2.8. Let N: T(E) ➔ w be an inductive norm. Then N1 is linearly reduc

ible to N. If g is the growth function of N and g 1 is the growth function of 

N1 then g1 ~ g. In particular, the growth function g of N is bounded by an 

exponential function. , 
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And so now we are able to explain our measures for data in A as they 

are determined by a measure of term complexity and a term model implementa

tions of A. 

DATA TYPE NORMS AND IMPLEMENTATIONS 2.9. Let N: T(I:)-+ w be any syntactic 

norm. Let A be a data type isomorphic with T(E,A) by the unique map 

~=A-+ T(I:,A). Let Q be a transversal for an implementation of T(I:,A). An 

implementation now uniquely defines a norm N: T(I:,A)-+ w by 

So let NA = NA,Q = NQ 0 ~: A-+ w be the norm on A determined by implementation 

Q from norm N: T(I:)-+ w. The situation is illustrated in this commutative 

diagram, 

A 

~i- NA=NA,Q 

VA T (I: ,A) 

Iv 
T (I:) 

N 

LEMMA 2.10. Let N: T(I:) -+ w be an inductive norm and let NA,Q A-+ w be a 

norm determined by implementation Q fr.om N. Then the growth function g = gA,Q 

of NA,Q is rounded by an exponential function. 

Thus, it is fair to say that most naturally occurring norms for data 

types are finite norms of exponential growth. 

Each norm NA= N is uniquely determined on A by an implementation A,Q 
transversal Q; moreover, it is uniquely determined by Q up to algebraic iso-

morphism •. To obtain norms on A which are full isomorphism invariants we have 

only distinguish special implementations: 

A transversal Q for T(I:,A) is said to be minimal or optimal with respect 

to norm N: T(I:)-+ w if for each t E Q there does not exist a term t' E T(I:) 

such that t' =At and N(t') < N(t). 
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A norm NA derived from such an optimal transversal n represents the most 

economical data representation available to any implementation of the type A 

as this is judged by the underlying syntactic norm N. Thus, in case N = N1 

we are taking a tree representation as compact as possible from the point of 

view of its height; in case N,= N2 we are taking a tree representation with 

a minimal number of nodes. Clearly, any two optimal transversals for a given 

syntactic norm define precisely the same norm on A, and this type of norm is 

a general isomorphism invariance. 

For a fixed measure of syntactic complexity, how do the derived data 

representations differ between different choices of initial values for the 

data type? The norms on an algebra A determined by the standard norms N1 and 

N2 on T(E) enjoy a rather special invariance property in this respect which 

we shall formulate in Lelllllla 2.11. 

A function h: wk ➔ w is semi.linear if it can be written in the form 

h(x) = c + f(x) for c e: w and with f satisfying this linearity condition: for 

all X11••·•¾ E wand all A E w, f(AX1•···•A¾) = Af(x1•····¾>-

A norm N: T(E) + w is semi.linear if it is inductively defined by semi

linear mappings: for each k-ary operation symbol cr EE there is a k argument 

semilinear map c + f (x) such that if t = cr(s 1, ••• ,sk) E T(E) then 
cr cr . 

Clearly, the norms N1 and N2 are semilinear. 

Let A be an algebra of signature E and assume A is generated by two sets of 

generators {a1, ••• ,an} and {b1, ••• ,bm} not yet named in E. Let T(E,X) be the 

algebra of polynomials over E in the symbols of X which we shall use to name 

the a. and b .• T(E,X) is merely T(E u X), of course. 
l. l. 

UNICITY LEMMA 2. 11. Let N be a semi.linear nonn on T (E, X) • Let A be a I-alge

bra finitely generated by {a1 , ••• ,an} and {b1, ••• ,bm}. Then the correspond

ing norms on A induced by these generating sets and any pair of implementa

tions are linearly equivalent and their growth functions are linearly equi

valent. 

PROOF. First we derive a lemma about semilinear norms on syntax. 
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k 
Recall that a map f: w + w is extensive if for every x 1 , •.. ,~ E w, 

f(x 1 , ... ,xk) ~ xi, 1 sis k. 

COMPOSITION LEMMA 2.12. Let !. I: T(E,X) + w be a semilinear norm. Then for 

each t 0 (x1 , ••• ,Xn) and ti (X 1 , ... ,Xm) E T(E,X), for 1 sis n, we have 

where c ~ max{c : cr EE} and q is any extensive map. 
cr 

PROOF. This is done by induction on the structure of t O. The basis is obvious 

so we consider only the induction step. Let t O = cr(s 1 , ... ,sk) and t = (t1 , ... 

. . . , tn) . Assume that lemma holds for all terms of lower complexity than t O. 

The calculation runs as follows: 

The proof of the Unicity Lemma 2.11 now proceeds as follows. We 

N s Nb. Let w = t(a1, ••• ,an ) E A and let a, = t. (b) = t. (b 1 , ••• , b ) , 
a ]. ]. i m 

1 s i s n, wherein the terms chosen are from respective transversals 

~- Thus we have lwla = N(t) and lailb = N(ti), 1 sis n. Now lwlb = 

lt(t1 (b) , ..• ,tn(b)) lb and by the Composition Lemma 2.12, 

show 

Q and 
a 
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substituting we get 

~ l· lwl • 
a 

So for given generating sets {a1, ••• ,an}, {b1, ••• ,bm} there exists a constant 

l to linearly reduce l•lb to l•la· The converse reduction follows mutatis 

mutandis. D 

We conclude this section on data representation with a sophisticated 

mathematical example. 

GROUPS WITH POLYNOMIAL GROWTH 2.13. Consider a finitely generated group as 

a data type. Let E = {•,-1 ,1,x1, ••• ,xm} be the signature of a group with m 

names for generators adjoined. The equational laws which define group struc

tures E taken over E can be used to define G(m) the class of all m generator 

groups whose initial object T(E,E) is F(m), the free group of rank m. 

In group theory , T ( E) is identified as the set of all finite strings 
-1 -1 

over the alphabet X = {x1, ••• ,xm,Xl , ••• ,xm} and is implicitly normed by 

string length just as in Example 2.1. The Normal Form Theorem proved for F(m) 

is a result which eff~ctively assigns to each string of T(E) (= x*) a word 

in reduced normal form. The set of all reduced normal forms is a transversal 

Q for T(E,E) !:::!F(m) and indeed it is optimal with respect to the norm 

N: T(E) + w. The induced norm NQ: T(E,E} + w is what a group theorist means 

by word length; notice that T (E ,E) does not have polynomial growth with re

spect to NQ. 

Repeating these constructions for AG(m), the class of all m generator 

abelian groups, leads to an initial object which does have polynomial growth. 

Which groups in general have polynomial growth with respect to an opti

mal transversal's norm? 

According to J. WOLF [30], if G has a nilpotent subgroup of finite index 

(meaning: a nilpotent subgroup N < G such that G/N is finite) then G has this 

polynomial growth property. Thus, if G is nilpotent then G has polynomial 

growth; nilpotence is a generalisation of abelianness. Amazingly, if G is 

soluable - a generalisation of nilpotence! - and has polynomial growth then G 

has a nilpotent subgroup of finite index. This result is obtained by Wolf's 
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paper together with J. MILNOR [24]. 

From Tits' theorem, which classifies those finitely generated groups 

which are (isomorphic to) matrix groups, a similar algebraic characterisa

tion of linear groups with polynomial growth is possible, see J. TITS [28]. 

It is presently an open problem of group theory as to whether or not a 

finitely generated group has polynomial growth, if, and only if, it has a 

nilpotent subgroup of finite index. 

3. POLYNOMIAL TIME AND SPACE IMPLEMENTABLE DATA TYPES 

What is left for us to do, to complete our operational classification 

of data types and, by extension, programming systems is to consider the 

charge functions determined by an implementation with respect to a norm on 

syntax. It is here that automata-based complexity theory enters in an essen

tial way to analyse the complexity of transversals and the operations which 

must be performed on them in implementing a type T(E,A). This is quite easy 

to do and naturally leads us to the important kinds of data type whose names 

are given to this section. 

T(E) is a subset of the set of all strings over the finite alphabet 

Eu{(,), ,} and as such is context-free considered as a formal language. The 

complexity of a transversal n we will identify with the complexity of n as a 

formal language within T(E): it might be a regular language or an r.e. set, 

for example. (Indeed it need not be computable at all: if =A is r.e. and n 
is r.e. then= is recursive and this means T(E,A) has soluable word or term 

A 

problem. Many data types with finite, equational specifications have =A as 

r.e., but nor recursive. See [8,9] for further information on this point; 

obviously here we wish to stay well within the world of the computable data 

types.) 

In modelling implementations of A it is, of course, essential to consi

der the complexities involved in manipulating data representations because 

it is these which determine the charge functions for the primitive operators 

of A. Let A be a data type and n a transversal for T(E,A). Define the func-
~ tion COMPOSE: Ex Q + n, where Mis the maximum arity of operations in E, 

by 
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COMPOSE(cr,s1 , ••• ,sk) = t 0 for that unique t 0 En such that 

COMPOSE implements the operations of T(I,A). If N: T(I) + w is a norm then 

the complexity of computing COMPOSE with respect to N, by means of some 
cr 

automaton, we define to be the charge function Ca of T(I,A) with respect to 

Nn. 

We give the following basic definition assuming the reader is acquainted 

with the idea of (deterministic) polynomial time computation, see for example 

HOPCROFT and ULLMAN [ 19]. 

Let N: T(I) + w be a norm and let A be a data type semantics. Then A is 

said to be a polynomial time implementable data type with respect to N if 

there exists a transversal n.for T(I,A) for which 

1) The set n may be recognised in polynomial time within T(I); and moreover 

the set n may be enumerated in polynomial time without repetitions in in

creasing order with respect to N. More precisely, given some norm on w, 

there exists a polynomial time bounded Turing machine e: w + n satisfying 

(i) e is surjective; 

(ii) if m f n, then e(m) f e(n); and 

(iii) if m < n, then N(e(m)) ~ N(e(n)). 
~ 

2) The function COMPOSE: Ix n + n is computable in polynomial time over 

T (I) • 

3) The function gn(n) = card[{t En: N(t) ~ n}] is bounded by a polynomial. 

Condition (3) is equivalent to saying T(I,A) has polynomial growth with re

spect to Nn, of course. 

Of course, there are other functions which have a bearing on the notion 

of an implementation, and consequently on its efficiency, but which we have 

not mentioned. For example, we could define the inverse to COMPOSE, DECOM
~ POSE: n + L X n 

DECOMPOSE(t) = (cr,s1,·••1Sk) where s1•·••1Sk En 

and t =A cr(s 1 , ••• ,sk) 
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and assume that the transversals considered in connection with norms 

N: T(L) ➔ w have the property that if COMPOSE(cr,s1,·••1Sk) = t then N(t) > 

N(si) for 1 :5: i :5: k and if DECOMPOSE(t) = (cr,s1,·••1Sk) then N(t) > N(si) 

for 1 :5: i :5: k. But we prefer to let the definition stand on what we consider 

to be its three essential conditions. 

EXAMPLE 3.1. ABELIAN SEMIGROUPS. 

Consider a finitely generated abelian semigroup as a data type. Let 

E = {•,x1 , ••• ,xm} be the signature of a semigroup with m names for generators 

adjoined. The equational laws which define abelian semigroups E taken over 

E can be used to define AS(m) the class of all m generator commutative semi

groups whose initial object T(E,E) is the free-abelian semigroup of rank m. 

The algebra T(E,E) is invariably thought of as the set of all strings 

{ A1 Am Q = x 1 , ••• ,Xm : Ai E w, 1 :5: i :5: m} with a commutative concatenation: 

Remembering that T(E) is the free groupoid over E - no associativity, no 

commutativity - one realises this Q is the obvious transversal for T(E,E). 

Since abbreviations in complexity arguments are misleading, write• as the 
A1 Am binary function symbol c and by x 1 ••• xm mean 

••• (c(X ,X )) ••• ) 
ID mt j 

Under the usual norm N2 : T(E) ➔ wit is easy to check that Q is poly

nomial time computable, since it is a context-free language, and has poly-
m 

nomial growth as in condition (3), because gQ(n) :5: n. Explicit analysis with 

Turing machine will demonstrate that DECOMPOSE is real time computable (see 

[26]) while CCMPOSE is quadratic time computable. Thus T(E,E) is a polynomial

time implementable data type. 

Revising these calculations for the class S(m) of all m generator semi

groups yields its obvious transversal, that usually, and informally, written 
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to be a context-free language with real-time computable DECOMPOSE, linear 

time computable COMPOSE, but of exponential growth. Thus the initial object 

of S(m) is not such a data type. 

The definition of a polynomial-space implementable data type derives 

from that of polynomial-time implementable data type mutate nomine; it is 

clearly a broader concept. 

This concludes our discussion of data types in isolation. 

4. PROGRAMMIN:; CONSTRUCTS 

The assignment and control constructs of our algebraic programming sys

tems are modelled by various sets of deterministic and non-deterministic 

program schemes L = L(E) based upon operator signatures E. Assignments in 

Lare of three kinds and are defined by 

1) X := Y; 

2) X := c for a constant c EE; 

3) X := cr(Y1 , ••• ,Yk) for an operation symbol cr EE. 

The simplest programming system with which we deal is based upon a set 

or program schemes obtained by closing assignments (1), (2) and (3) under com

position and the control structures if B then* else* fi and while B do* od. 

Here Bis any test of the form Y1 = Y2 , Y1 ~ Y2 or R(Y 1 , ... ,Yk) where R is 

a basic relation from E. This set of schemes will be denoted by F, the lan

guage of well-structured flow chart programs. This basic formalism F will be 

extended with constructs like: 

arrays; 

counters, i.e. special variables of auxiliary sort natural number which one 
' can increase, decrease and test a counter variable for being zero 

or equal to another counter; 

recursion. 

Thus, we obtain the sets of schemes FA, FC and FR respectively. And,),by com

bining these new facilities, we obtain languages such as FAC. We intend to 

compute membership in sets X ~ An so assume our programming languages contain 
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the halting statements accept and reject. 

The semantics of any set of program schemes L must be operationally de

fined over each data type A. We do this informally by assigning to any pro

gram a of Lover A an A-register machine which we imagine to be able to pro

cess the instructions Cl), (2) and (3) deterministically as they Occur in the 

program a (cf. [29]). The operational semantics of those languages including 

arrays or counters is defined in the usual way, while each recursive proce

dure is considered to be an abbreviaticn of the (possibly infinite) program 

obtained by procedure body replacement. We must also assume the reader to be 

familiar with the comparative power of these programming constructs. See 

GREIBACH [13], MANNA [23], TUCKER [29] and the references there cited. 

Introducing non-determinism into programming languages is possible in 

many different ways. Here we add a non-deterministic analogue of the control 

structure if B then* else *.fi. This construct is choose* or* ro, and the 

operational semantics of this non-deterministic choice between two statements 

is informally defined as follows. 

In a computation, when we encounter a choose s 1 or s 2 ro we follow both 

branches determined by s 1 and s 2 in parallel. Meeting an acceot statement in 

some branch terminates the computation with an acceptance of the input. But 

meeting a reject statement signals only the end of the branch in which it 

occurs and not the end of the computation. Thus a is in the set X of all 
a 

n 
elements of A accepted by the (non-deterministic) program a if, and only if, 

a computation a(a) includes some accept statement. This non-determinism is 

that known as breadth first with ignoring in the studies of non-determinism 

of D. HAREL and V.R. PRATT; see [17,18] for details. Adding the or-statement 

to the definitions of sets of schemes, such as F and FAC, makes their non

deterministic counter-parts NF and NFAC, and so on. 

Unless it is stated otherwise, L always denotes a set of non-determini

stic program schemes. The computations of a program a in Lover A are de

scribed in terms of states, transformations of states, and of computation 

trees. 
n 

A state of a computation of a on an input (a1 , ••• ,an) EA consists of 

an instruction from a (viz. the next ·instruction to be executed) together 

with a list of those variables occurring in a and their actual values in A 

used so far in the computation of a on (a1 , ••• ,an). 
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The initial state of a computation a(a1 , ••• ,an) consists of the first 

instruction of a and then input variables to which the inputs a 1 , ••• ,an 

are assigned. A state is final if its first entry is either an accept or a 

reject statement. A states is transformed in the obvious way to a new state 

s' by executing the instruction in the first entry of s, ands' is called a 

direct successor of s. Note that a states has two direct successors when 

the first entry ins is a choose* or* ro instruction. This "direct succes

sor" relation gives rise to the computation tree of a(a1 , ••• ,an), the root 

of which is the initial state, and the sons of a node are its direct succes

sors. A path from the root in this tree is finite if a final state occurs in 

this path (which will be the last state of that path). Whenever a happens to 

be deterministic, the computation tree is a chain. Obviously this chain is 

finite if, and only if, a terminates on (a 1 , •.• ,an). 

5. COMPLEXITY MEASURES AND COMPLEXITY CLASSES 

We may now turn to complexity considerations involving time and space 

in our programming systems. Typically, we are com9uting over A with a pro

gram a in Land we want to measure the complexity of a computation a(a) for 

a E An as a function of the norm of the input N(a). For example, in Section 

2 we spoke of the unit cost criterion for time: the shortest distance from 

the root of the computation tree to a final accepting state. The unit cost 

criterion for space counts the number of data locations (corresponding to 

variables or counters) accessed in the computation a(a) as a function of 

N(a). But neither of these are particularly refined and, indeed, that for 

space is trivial in programming systems which fix bounds to the number of 

variables appearing in computations by their programs, such as those using 

F of the previous section, but not FA. Thus we work with respect to the so

called weighted cost criterion and it is for precisely this reason we have 

carried the charge functions in Sections 2 and 3, of course. 

Under a weighted cost criterion each step is charged for the "work in

volved in that step". In the case of time we take the sum over all steps of 

a computation. The cost for a single step depends on the instruction applied 

and is represented in Table 5.1 for all programming constructs we use. (By 

N(Y) we mean the norm for the element from A contained in the location named 
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by Y.) 

In the case of space the situation is slightly more involved. Again the 

cost of a single step depends on the instruction; the assumptions we make in 

Table 5.1 reflect the idea of bit-wise information transport in implementa

tions. For assignment statements we have to store the result which requires 

additional space (locations corresponding to variables X. will be charged 
1 

for N(X.) units). So the space consumed in a single step consists of the space 
1 

X:=Y 

X:=c 

instruction 

X: =cr (Y 1 ' .•• , yk) , cr E I 

accept 

reject 

if B then * else * fi 

while B do * od 

choose * or * ro 

test: 

B::Y1=Y2 

B=YlY2 

B=R(Y1, ••• ,Yk), RE I 

TABLE 5.1. Charge Functions 

charge (time) 

N(Y) 

N(c), cEI is a constant 

tcr (N(Y l), ••• ,N(Yk)) 

1 

1 

tB =N (Y l) +N (Y 2) 

tB=N(Y1)+N(Y2) 

tR (N (Y l) , ••• , N (Yk) ) 

charge (space) 

log N(Y) 

log N(c) 

s cr (N (Y l) , ••• , N (Yk) ) 

0 

0 

sB=log(N(Yl)+N(Y2)) 

sB=log(N(Y 1)+N(Y2)) 

sR(N(Y1), ••. ,N(Yk)) 

COUNTERS: Assuming a given norm on w they are treated similarly. 

RECURSION: We consider the corresponding (possibly infinite) program obtained 

by procedure body replacement, and we charge each call and return 

instruction for 1 with respect to time and for O with respect to 

space. 

required to perform the instruction (this space is reusable!) and the sum 

of the norms of the element stored in all locations. Finally, we take the 
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maximum over all states in the computation tree up to the first accept state

ment. 

Since we are unable to reduce in general a resource bound by a constant 

factor (i.e. "linear speed up", "linear space compression") as in Turing ma

chine based complexity theory, we define complexity classes in terms of 

O(f(n)) for some resource bound f(n) rather than in terms of f(n) itself. 

Let f: w + w be a monotonic function. Let A be a data type normed by 

N: A+ wand let L be a set of program schemes over A. The class of all sub

sets of Am, for all m, which are accepted by determinsitic L programs within 

time O(f(n)) with respect to N we denote DTIMEt(f(n)). Similarly, we let 

DSPACEt(f(n)) designate the class of all subsets of Am, for all m, which are 

accepted by deterministic L programs within space O(f(n)) with respect to N. 

The full classes of sets recognized by L, allowing its non-determinstic fea

tures, but still under resources bounded by f(n), we denote NTIMEt(f(n)) and 
A 

NSPACEL(f(n)), respectively. As usual we define 

A k 
PSPACE(A,L) = k~l DSPACEL(n ), 

for each Lover A. 

6. TIME AND SPACE BOUNDED COMPUTATIONS 

In this section, we try to test t.~e reliability of our definitions 

for polynomial time and space implementable data types by comparing the com

plexity classes determined by the high-level p~ogramming systems these data 

types support. What sort of theorems ought to be expected? It must be remem

bered that our data types are not polynomial time, or space, implementable 

in any generalised complexity-theortic sense. Rather, the data types are com

plicated general structures which can be constructed and operated in poly

nomial time, or space, in the ordinary sense. Thus, whatever results about 

complexity classes are obtained they must be consistent with the basic facts 

of life for automaton based complexity theory. 

We organise the comparison theorems for the complexity classes by 
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proving them from conditions on a general programming system which are weak

er than implementability whenever this is possible. It should be emphasised 

that establishing other results, known in the Turing-machine based theory, 

might well require stronger hypotheses on the data types, but the comparisons 

between determinism and non-determinism do not. 

To begin with, let [A,L] be a programming system wherein Lis some set 

of deterministic or non-deterministic program schemes and A is a data type 

with some given finite norm N: A+ w. We denote the growth function of A 

with respect to N by g: w + w. And henceforth f: w + w is always a monotonic 

function satisfying f(n) ~ n for each n E w. 

The first condition we must enforce throughout the section is one which 

concerns the complexity measures on a data type; it requires the charge func

tions to behave "properly": 

ASSUMPTION 6.1. For each k-ary operation or relation symlx>l ~ in the signa

ture I of A (k~O), the corresponding time 
k 

k 
charge function t~: w +wand 

space charge functions~: w + w satisfy: 

y~ ~ 2 such that 

k 
for all arguments (x1 , ... ,~) E w . 

there exists a natural number 

The following fact is now immediate from this assumption and Table 5.1. 

OBSERVATION 6.2. For each instruction i, the corresponding time charge func

tion t. and space charge function si satisfy: there is a y, ~ 2 such that 
1 1 

( ) < ( ) < si (x1 , ••• , xk) f, si x 1 , ... ,~ -kti x 1, ... ,~ - yi or all arguments 

(x1 , ••• ,~) E w when ti and si are k-ary. D 

From Observation 6.2 and the fact that one cannot "visit" more space 

than there is time available we obtain our first expected comparison: 

PROPOSITION 6.3. For each programming system [A,L], 
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and 

A 
NTIMEL (f (n)) D 

Clearly, for any programming system we known that 

(1) P(A,L) C PSPACE(A,L) 

and 

(2) P(A,L) S NP(A,L) S NPSPACE(A,L). 

Our next task is to show that under certain assumptions on the data type 

and schemes of a programming system it is indeed the case that 

NPSPACE(A,L) s PSPACE(A,L) 

(Corollary 6.5); thus, for such a system 

P(A,L) S NP(A,L) S PSPACE(A,L) = NPSPACE(A,L) 

which is a situation familiar in Turing machine complexity. This we prove 

from a generalisation of Savitch's theorem to programming systems with so

called f (n) - space enumerable data types. 

Let A be a data type with norm N: A+ w. Assume the basic operators of 

A are augmented by a constant FIRST and a unary operator NEXT which together 

enumerate A by satisfying these axioms: (i) A= {NEXTn(FIRST): n E w}; (ii) 

NEXT is injective; and (iii) N(a) ~ N(NEXT(a)) for each a EA. 

Now A is called f(n)-space enumerable if the charge functions Cs with 
(J 

respect to space for all its operators, including NEXT, satisfy 

A is called polynomial space enumerable if A is f(n)-space enumerable 

for some polynomial function f. 
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Clearly, any polynomial space implementable data type is polynomial 

space enumerable; although this latter concept is quite weak it can carry an 

efficient deterministic simulation of non-deterministic computations: 

THEOREM 6.4. Let A be a data type which is f(n)-space enumerable with respect 

to norm N, and let L be a set of program schemes over A which allow counters 
A 

and recursion. If XE NSPACEL(f(n)), then there exists a constant c depending 

on X such that XE DSPACEt(f2 (n)•log g(cf(n))), where g is the growth func

tion of A. In particular XE DSPACEt(f3 (n)) whenever A has exponential growth 

with respect to N. 

PROOF. Let a be an f(n)-space bounded non-deterministic L-program over A 

which accepts X. We may assume that before a enters an accepting state it 

first erases deterministically all the registers used during the computation. 

This modification gives rise to a finite number of accepting states. 

The maximal number of different states encountered during a computation 

of a on an input of norm n is roughly bounded by lal•(g(c.f(n)))f(n) for some 

constant c depending on a and hence on X, where lal is the number of instruc

tions in a, and g is the growth function of A. 

We will show that a modification of Savitch's original argument [27] as 

described in [7,19] enables us to simulate a deterministically within space 

0(f2 (n)•log(g(cf(n)))). 

For each accepting state Cf we determine whether it can be achieved from 

the initial state c0 • This is done by the recursive procedure TEST(C 1,c2 ,i) 

as given in [7, p. 370]. In this procedure there are two space comsuming 

statements, viz., the test whether either c1 = c2 or c2 is a direct successor 

of c1, and the for-loop that enumerates all possible intermediate states. 

Now checking the equality c1 = c2 can be performed in space f(n). And in 

determining whether c2 is a direct successor of c1 we need no more space than 

a already consumed since exactly the same (space) charge functions are in

volved. 

Enumerating all states (in the for-loop) that occupy no more space than 

f(n) can easily be programmed. Using the fact that A is f(n)-space enumera

ble, it follows that this enumeration requires at most O(f(n))-space. 

It is now a routine matter to verify that the space bound on the deter

ministic simulation of a is f 2 (n) .log g(cf(n)). Clearly, log g(cf(n)) is of 
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order at most f(n) if g is bounded by an exponential function. D 

COROLLARY 6.5. Let A be a polynomial space enumerable data type of exponen

tial growth and let L be a set of program schemes which allow counters and 

recursion. Then in the programming system [A,L], 

NPSPACE(A,L) = PSPACE(A,L). 0 

Actually, for polynomial space enumerable data types with exponential 

growth we can improve on Theorem 6.4. 

THEOREM 6.6. Let A be an f(n)-space enumerable data type of exponential grow

th and let L be a set of program schemes which allow counters and recursion. 

Then in the programming system [A, L] , 

NSPACEt (f (n)) □ 

PROOF. In essence the argument is the same as in establishing the previous 

theorem except that now we are able to obtain a tighter estimate on the num

ber of states. 

We will show that the number of different states does not exceed 

I I 2f(n)-1 f(n) f a. c or some constant c. (The combinatorial background material 

used in proving this bound can be found in e.g. [16, Chapter 4].) This in 

turn implies a deterministic simulation in space O(f2 (n)). 

The number of different states equals the product of the size !al of a, 
and the number C(f(n);g) of different ways we can fill at most f(n) registers 

such that the total amount of space does not exceed f(n). For sake of sim

plicity we write K for f(n). Moreover, we consider for a while the growth 

function g being a parameter of C (although for a given A provided with a 

norm, g is fixed). Then 

K 
C(K;g) = l l 

k=1 i 1+ •• • +ik=K 

k 
.n1 g(i.). 
J= J 

The innerproduct equals the number of ways we can fill k registers such that 

the total space does not exceed i 1+ ... +ik. Then we bound i 1+ ... +ik by K, and 

finally we take all possible values of k. 



27 

Since the growth function g(n) satisfies b s g(n) sen for some con-

stants b ~ 1 and c ~ 2, for all n ~ 1, we now have 

n 
C(K;b) $ C(K;g(n)) $ C(K;c ). 

For the lower bound we obtain 

C(K;b) = 

while for the upper bound we have similarly, 

n 
C(K;c) = 

= 

Summarising, we 

K 

I I 
k=l i 1 + ••• +ik =K 

obtain with b = 

f(n)-1 
2 s C(f(n);g(n)) 

k 
exp c I 

C , 1 J= 

CK( K 
C = 

1, 

i.) 
J 

K 

I 
k=l 

(K-1) ) K-1 K 
= 2 C • 

k-1 

1 f (n) 
Thus C(f(n);g(n)) is bounded by 2 (2c) , in which c depends on g(n), and 

therefore on A and its norm. D 

From the proof of Theorem 6.6 it follows that even for "slowly" growing 

data types (i.e. g(n) < en for some c ~ 2) the number of configurations is 

still exponential in f(n). So an improvement of the f 2 (n)-space bound in the 

simulation requires - even for those slowly growing data types - essentially 

more powerful techniques than Savitch's divide-and-conquer argument. 

We shall now begin to involve time in our discussion. 

THEOREM 6.7. Let A be an f(n)-space enumerable data type and let L be a set 

of program schemes. If XE DSPAcEf(f(n)), then there exist constants c ~ 1 
A 

and d ~ 2 depending on X such that X E DTIMEL (expif(n) log g(cf(n)) ]) , where 
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g is the growth function of A. 

PROOF. Let a be a deterministic L-program which accepts X within space f(n). 

A rough bound on the number of different states occurring in an accepting 

computation of a on an input of norm n is lal.[g(cf(n))]f(n) for some c ~ 1, 

which is of order exp d, [ f (n) log g ( cf (n) ) ] for some suitable d' ~ 2. 

Going from one of these states to another by means of any instruction i 

in a takes time at most 

:S [max Yi l(n) 
i 

(cf. Observation 6.2 and the f(n)-space enumerability of A). 

Let d be the maximum of d' and they. 's. Then after consuming an amount 
]. 

of time greater than exp if (n) log g (cf (n))], a will enter the same state 
A twice, and therefore a will never halt. So X E DTIMEL (expif(n) log g(cf(n)) ]) • 

□ 

COROLLARY 6.8. Let A be an f(n)-space enumerable data type of exponential 

growth, and let L be a set of program schemes over A. Then in the programming 

system [A,L], 

DSPACE1(f(n)) c 

PROOF. Due to the assumption on the norm on A, we can - as in the proof of 

Theorem 6.6 - bound the number of different states by lal.2f(n)-lcf(n) for 

some c ~ 2. From this the statement easily follows in a way similar to the 

proof of the previous theorem. D 

Using Proposition 6.3, Theorem 6.4 and Theorem 6. 7 (in that order) it is 

possible to simulate non-deterministic time-bounded computations determinis

tically. However, for those programming languages that are in NFAC a direct 

simulation turns out to be more efficient. 

We take the definitions of f(n)-time enumerable and polynomial time enu

merable data types mutatis nomine from the corresponding ideas about space 

resources. 
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THEOREM 6.9. Let A be an f(n)-time enumerable data type, and let L be a set 
A of program schemes which is included in NFAC. Then for each X E NTIME L ( f (n) ) , 

there exist constants c ~ 1 and d ~ 2 depending on X, such that 
A 

XE DTIMEFAC(expif(n) logg(cf(n))]), where g is the growth function of A. 

PROOF. The argument consists of a straightforward simulation which for a given 

non-deterministic program a enumerates for each input (a1, ••• ,an) E An all 

possible states in the computation tree of a(a1 , ••• ,an)' and searches for 

the shortest accepting path in that tree. To do this, the deterministic 

simulating language must involve counters and arrays, because there is no a 

priori bound on the number of different states in a computation correspond

ing a(a1, ••• ,an). 

The deterministic simulating algorithm a determines for each state in 

the computation tree of a (af' ••• , an) its successor states. Each successor 

states is stored temporary, after which it is compared with all previously 

computed (and definitely stored) different states of a(a1, ••• ,an). Whens 

happens to be "new", it is also stored definitely. As soon as an accepting 

state is encountered, a halts and accepts the input. 

For storing the different states of a(a1 , ••• ,an), a uses a doubly index

ed array. The first index refers to a number provided by a in order to dis

tinguish different states; the latter index corresponds to the variable (or 

array-entry) as it occurs in the original program a. · 

The number of different states is again bounded by lalg(cf(n))f(n). Com

puting and storing a successor state takes time at most f(n). And determin

ing whether this successor state is "new" requires no more time than 

lalf2 (n).[g(cf(n))]f(n). So the total time a needs for an input of norm n is 

la I [g (cf (n)) l (n) (f (n) + la I f 2 (n) [g (cf (n)) ]f (n) _). Using the facts that f (n) ~ 1 

and that g is monotonically non-decreasing, and by increasing c appropriate

ly, it is easy to show that this is of order expd[f(n) logg(cf(n)}] for some 

d ~ 2. 0 

In a way similar to Theorem 6.6 and Corollary 6.8 we obtain the follow-

ing: 

COROLLARY 6.10. Let A be an f(n}-time enumerable data type with exponential 

growth and let L be a set of program schemes which is included in HFAC. Then 

in the programming system [A,L], 
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NTIMEt (f (n)) D 

For the program constructs represented by F and FC there is for each 

program a a fixed bound M = M on the number of variables and counters occur
a 

ring in a. Consequently, the number of computation states for such programs 

is bounded by lal[g(cf(n))]M. Therefore we have: 

COROLLARY 6.11. Let A be an f(n)-time enumerable data type with exponential 

growth and let L be a set of program schemes included in NFC. Then in the 

programming system [A,L], 

NTIMEt(f(n)) 
A M 

s M~l DTIMEFAC([g(cf(n))] ). D 

c~l 

COROLLARY 6.12. Let A be a polynomial time enumerable data type and let L be 

a set of program schemes which is included in NFC. If A has polynomial growth 

then 

NP(A,L) ~ P(A,FAC). □ 

We shall now prove that the full abstract P = NP problem for program

ming systems, with polynomial time enumerable data types and allowing pro

grams which do not have restrictions on the size of memory they may access, 

reduces to the P = NP problem for Turing machine computation. The argument 

is a rather straightforward adaptation of the argument for COOK's Theorem 

[11] which says that the satisfiability problem for formulae of the Proposi

tional Calculus is NP-complete. 

Let nPF denote the set of all proposition~! formulae of the Proposition

al Calculus in propositional variables P1, ••• ,Pn and let O and 1 denote true 

and false respectively. Then the satisfaction relation for nPF is the predi

cate nsat ~ nPF x {O,l}n defined by 

Whence the satisfiability predicate is defined by 



31 

Now nsat is a relation which is decidable in polynomial time with respect to 

formula length and uniformly so inn. Clearly, for fixed n, nSAT is polyno

mial time diecidable with respect to formula length. It is the "exponential 

search" as .n varies which gives rise to the NP-completeness of satisfiabil-

ity: Cook's theorem says that SAT= U nSAT is NP-complete on 
nEW 

PF = U nPF. 
nEW 

THEOREM 6.13. Let A be a polynomial time enumerable data type and let L be 

a set of program schemes which is included in NFAC. Assume A has polynomial 

growth. Then for each non-deterministic a EL which recognises the set 

Xa ~Amin time bounded by polynomial pa there is a reduction function ra 

which maps each input a E Am to a propositional formula 

r (a) = F 
a a,a 

inf (a) propositional variables such that 
a 

f (a) 
a E X <==> a. SAT(F ) 

a a,a 

and these nEps r and f are polynomial time computable with respect to the 
a a 

norm on A and formula length. Moreover, the reductions are uniform in the 

program a and the polynomial bounding function for its computations over A, 

being polynomial time computable in program length and polynomial degree. 

PROOF. Let a be a non-deterministic L-program over A which accepts X in time 

bounded by polynomial p. Let N(a) = n and suppose that a EX. Then a is 

accepted within p(n) time and there exists a sequence of computation states 

C = c 1 , .•• ,cq with c 1 an initial state, cq a final state and for 1 ~ t ~ q ~ 

p(n), Ct~ Ct+l meaning Ct+l is an direct successor of ct. Clearly, each 

Ct involves no more than p(n) data locations; and not more than g(n+p(n)) =k 

distinct elements of the type A may appear in the computation C. 

The formula F is made along the same lines as in the Turing machine 
a,a 

reduction except that our propositional variables are chosen as follows: 

D(i,j,t) represents "the i-th data lo~ation contains the j-th element 
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of A at time t" where 1 :,; i :,; p (n) , 1 :,; j :,; k, 1 :,; t :,; p (n) • 

S(l,t) represents "the l-th instruction of a. is to be processed at time 

t" where 1 :,; l :,; I a. I and 1 :,; t :,; p (n) • 

Thus we have p(n).k.p(n) + la.l.p(n) = p(n).(kp(n) + la.I) propositional 

variables at our disposal from which we can make propositional formulae 

<1> 1 , ••• ,<1>6 , corresponding to the 6 statements about C given below, such that 

F =<1>1A ••• A<l>6. a., a 

1) Each Ct has one and only one element in each location. 

2) Each Ct has one and only one instruction. 

3) At most one location is altered in the passage from Ct to ct+l· 

4) The transition ofct to ct+l is legal according to the instruction of Ct. 

5) c1 is initial. 

6) C is final and marks acceptance. 
q 

Clearly, we then have 

a E X ~ there exist c 1 , ••• ,cq satisfying statements (1) - (6). 

~ 3x € {O,l}B_Bsat(F ,x) 
a.' a 

where B = p(n).(k.p(n) + la.I). 

The construction of these formulae is straightforward because it follows 

Cook's proof so closely. For example, statements (1) and (2) are based upon 

the fact that the mutually exclusive disjunction U(P 1, ••• ,Pr) of proposition 

variables which when written out is a formula of length O(r2), see [7]. We 

consider (3) as an illustration. 

Define ~(i,j,t) = D(i,j,t+l) ++ D(i,j,t) and notice the length of this 

formula is constant. Its interpretation is "the j-th element of A is in loca

tion i at time t+l iff it was there at time t". The formula <1> 3 is defined by 

p(n) 
<1>3 - . V 1 

1.0= 

k 

J\1 J= 

p(n) 
A 

t.=1 

and the order of its length is given by 

p(n). (p(n)-1) .k.p(n). 

~(i,j,t) 
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On completing such formalisations, the reader will find that the length 

of the formula F is of order bounded by a.,a 

3 M p (n). [g(p(n))] ' 

where Mis the maximum arity of the operations of the data type, a parameter 

which creeps into case (4). 

We have only to check the complexity of this construction as the uni
n 

formity R: L0 x A + PF where L0 is the set of pairs of L-programs and their 

bounding functions. Most of the computation R(a.,a) = F is work for a 
a,a 

Turing machine on PF such as in Cook's proof, but it depends on the number 

n, which is obtained by the enumeration function; the bound p, which is given 

data; and the number k, which is given by the growth function, an invariant 

determined by the data type A and its norm. The hypotheses of polynomial time 

enumerability clearly entail that all this information is available so that 

R(a.,a) is polynomial time computable in la.I and N(a). D 

COROLLARY 6.14. Let A be a polynomial time enumerable data type with poly

nomial growth and let L be a set of program schemes which is included in 

NFAC. Then all non-deterministic computations in the programming system [A,L] 

are reducible to the satisfiability problem for propositional formulae. D 

CONCLUDING REMARKS 

From the point of view of the general theory of program semantics, we 

have tried to think seriously, and in a precise mathematical way, about the 

algebraic semantics of high-level computations: specifically by thinking 

operationally of the simple minded equations, 

Data Types= Specifications+ Implementation 

Programs =Assignments+ Control Structures 

and fusing them together by the equation 

Algorithms= Data Types+ Programs. 



34 

From this point of view the complexity theory is meant as a stiff test of the 

semantical theory. 

From the point of view of complexity theory, we have simply tried to 

lift all the conceptual equipment for conducting analyses of computational 

resources into a general algebraic setting, but without loosing sight of the 

fact that it is only in computations on the hard ground of syntax that any 

realistic measure of complexity must set down its root. Certainly most of 

the arguments used in Section 6 are routine generalisations of known techni

ques once one has the conceptual equipment at hand; perhaps Theorem 6.6 and 

its corollaries may be claimed to be novel. And it may be of interest to re

alise that such familiar ideas as those used in proving Savitch's theorem 

are in no sense specific to Turing machines. 

In any case, it seems to us that, whatever the shortcomings in our own 

work reported here, it is only through the organizing framework of the ADJ 

Group's initial algebra methodology that some mathematical unity between 

models of high and low level computations can be achieved. 
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