
AFDELING INFORMATICA 

stichting 

mathematisch 

centrum 

IW 153/80 
(DEPARTMENT OF COMPUTER SCIENCE) 

R.J.R. BACK 

ON THE NOTION OF CORRECT REFINEMENT OF PROGRAMS 

Preprint 

~ 
MC 

DECEMBER 

kruislaan 413 1098 SJ amsterdam 



Punted at .the Mathe.ma:Uc.al. Cen.tJz.e., 413 K/r.l.U6laa.n, Am6.teJLdam. 

The Mathema:Uc.al Cen.tJz.e , 6ounded .the 11-.th 06 FeblUUVl.y 1946, -l6 a. non­
pll.o 6U .ln6.tli.u,Uo n al.m.lng at .the pll.Omo.ti.o n o 6 pwr.e. mathe.ma..ti.C-6 and .lt.-6 
a.ppUcatlon6. 1.t -l6 .6pon6oll.ed by .the Ne.thvri.a.nd.6 Govell.nment .thll.ough .the 
Ne.thelli.a.nd.6 OJtga.n.lza..t.lon 6oll. .the Advancement 06 PUll.e Ruea.ll.c.h (Z.W.0.). 

1980 Mathematical subject classification: 68BIO 

ACM Computing Reviews: 5.24 



*) 
On the notion of correct refinement of programs 

by 

**) 
R.J. R. Back 

ABSTRACT 

The stepwise refinement technique is studied from a mathematical 
point of view. A relation of correct refinement between programs is 
defined, based on the principle that refinement steps should be 
correctness preserving. Refinement between programs will therefore 
depend on the criterion of program correctness used. The application of 
the refinement relation in showing the soundness of different techniques 
for refining programs is discussed. Special attention is given to the 
use of abstraction in program construction. Refinement with respect to 
partial and total correctness will be studied in more detail, both for 
deterministic and nondeterministic programs. The relationship between 
these refinement relations and the approximation relation of fixpoint 
semantics will be studied, as well as the connection with the predicate 
transformers used in program verification. 

KEY WORDS & PHRASES: Stepwise refinement, abstraction, top-down program 
construction, approximations, weakest preconditions, 
strongest postconditions, total correctness, partial 
correctness 

*) This report will be submitted for publication elsewhere. 

**) Present address: University of Helsinki, Computing Centre, 
Tukholmankatu 2, 00250 Helsinki 25 





1 

1. INTRODUCTION 

Stepwise refinement is a well-known program construction technique, 

originally proposed by DIJKSTRA [9,10,11) and WIRTH [21,22). The basic 

idea behind this technique is to develop a program trough a sequence of 

refinement steps, starting from a specification of the program and 

(hopefully) ending up with an efficient program meeting the 

specification. Our aim here is to study the correctness 
\ 

of such 

refinement steps. We take as our start inf~ point the intui Hve 

requirement that a refinement step must preserve program correctness. 

This requirement is implicit in the writings by Dijkstra and Wirth and is 

explicitly stated by GERHART [12). This means that correct refinement 

will depend on the criterion of correctness used. A refinement step 

which preserves partial correctness will e.g not necessary be correct if 

we wish to preserve total correctness. 

We will start by giving a simple example of program construction by 

stepwise refinement, in section 2. In section 3 we present a formal 

definition of correct refinement, considered as a binary relation between 

programs. Section 4 discusses the application of this notion of 

refinement in showing the soundness of certain familiar techniques for 

refining programs. This section is intended to motivate the refinement 

relation and relate it to more familiar aspects of program construction. 

Our main interest here will be in the mathematical aspects of the 

refinement relation itself. We will therefore not be concerned with 

programming language issues, nor will we consider the proof theory of 

refinement (these topics are treated quite extensively in [1]). We 

choose to identify programs with their denotations, treating programs as 

state transformation functions. .Correctness criterions will also be 

semantic entities, thus ignoring questions of provability and validity. 

In section 5 we study refinement of deterministic programs, with respect 

to partial and total correctness. We give a simple characterization of 

these relations in terms of the approximation ordering used in fixpoint 



2 

semantics. In section 6 we study refinement between nondeterministic 

programs with respect to these same correctness criterions. Also in this 

case is there a simple connection between refinement and the 

approximation ordering. In section 7 we will show how to characterize 

these refinement relations with predicate transformers, thus providing a 

basis for proving refinement between programs. Finally, in section 8, we 

return to the techniques for constructing refinements, this time 

considering them with respect to the specific refinement relations 
\ 

defined in sections 5 and 6. 

This article is a revised and considerably expanded version of a 

paper which originally appeared as [2]. It forms a semantic counterpart 

to the more syntactically and proof-theoretically oriented investigation 

of stepwise refinement described in [1]. 

2. AN EXAMPLE OF STEPWISE REFINEMENT 

Before showing how to formalize the stepwise refinement technique, 

we give a simple example of how this technique is used in program 

construction (the example is taken from [11], where it is treated in a 

somewhat different way). Consider the following programming problem. We 

are to construct a program for computing xY, where X and Y are integers, 

X )1 and Y)O. We are only allowed to use simple arithmetic operations in 

the program, the exponentiation operation is e.g. not available. 

The following is a more formal specification of the program to be 

constructed, in terms of pre- and postconditions: 

Precondition: X > 1 and Y > O. 

Postcondition: z = xY. 

Here z is a variable that is to contain the result of the computation. 

A first solution can be constructed by introducing tl.\"O auxiliary 

variables u and v and a program invariant R, 



3 

R: uv * z = xY and u)l and v>O. 

We design a program Pi in which R is established before entering its loop 

and is preserved by the loop: 

begin 

end. 

var u,v; 

u:= X; v:= Y; z:= 1; 

while v 1' 0 do 

"decrease v so that R is preserved" 

od 

A simple implementation of "decrease v so that R is preserved" is by 

v:= v-1; z:= z * x. 

This would give us program P2: 

P2: begin var u,v; 

u:=X; v:= Y· 
' 

z:= 1. 
' 

while V 'f 0 do 

v:= v-1; z := z * X 

od 

end. 

A more efficient version can be obtained from Pi by noticing that 

when v is even, we can half v and square x, without destroying the 

invariant R. This gives us the refinement P3: 



4 

P3: begin var u,v; 

u:= X; v:= Y; z:= 1· 
' 

while v :f, 0 do 

while even(v) do 

u:= u * u; v:= V div 2 

od; 

v:= v-1; z:= z * X 

od 

end. 

An alternative form of this program, in which the nested loops are fused 

into one, is P4: 

P4: begin var u,v; 

u:= X; v:= Y; z:= 1· 
' 

while v :f, 0 do 

if even(v) 

then u:= u * u; v:= V div 2 

else v:= V - 1· z:= z * X ' 
fi 

od 

end. 

The main features of the stepwise refinement technique are here 

illustrated. Thus program P1 contains the abstract statement "decrease v 

so that R is preserved", which is not an executable statement but is 

found useful in developing the program. The programs Pz and P3 result 

from P1 by replacing this abstract statement by a concrete executable 

statement. This illustrates the use of top-down development, where the 

original programming problem is decomposed 

problems with the help of abstract statements. 

into simpler programming 

The last version P4 could 

again have been constructed from P3 by applying a general program 



5 

transformation rule to the iteration part of P3. This would be a rule 

allowing nested loops to be fused into one loop, provided certain 

conditions are met. 

Looking at these refinement steps, it is not at all evident whether 

they are in fact correct, or even what the criterion of correctness for 

refinements should be. The obvious choice of correctness criterion, 

requiring that the refined and refining program have exactly the same 
\ 

input-output behaviour, is clearly too restrictive in many cases. We 

would like to find the weakest possible criterion of correctness which 

still guarantees that the stepwise refinement technique is sound. This is 

the problem to be treated in the next section. 

3. REFINEMENT BETWEEN PROGRAMS 

Assume that a set Prag of programs is given (Prag can be seen as a 

programming language or as the set of possible meanings of programs). A 

correctness criterion for Prag is a tuple C = (Spec, sat), where Spec is 

a set of spiecifications (a specification language or a set of meanings of 

specifications) and sat is a relation of satisfaction, sat~ Spec x Prag, 

S sat P holding if and only if specification S is satisfied by program P. 

A refinement step, leading from program P to program P', is intuitively 

correct if P' preserves the correctness of P. More precisely, P' should 

satisfy any specification which P satisfies. This gives us the following 

definition of correct refinement: 

DEFINITION 1: Let C = (Spec,sat) be a correctness criterion for Prog and 

let P and P' be programs in Prog. Then Pis said to be (correctly) 

refined by P' with respect to .C, denoted P refc P', if 

VS e Spec(S sat P • S sat P'). 

This definition provides the basis for our study of the stepwise 

refinement technique. The first observation about this relation is that 

it is both reflexive and transitive, i.e. it is a preorder (the proof of 



6 

this is trivial and is therefor~ omitted): 

PROPOSITION 1: Refinement with respect to .C is a preorder in Prog. 

The program construction problem, relative to 

criterion ~ = (Spec,sat), can be formulated as 

a correctness 

follows: Given a 

specification Sin Spec and a set A of acceptable programs in Prog, find 

a program P in A such that S sat P. With stepwise refinement, this 

problem is solved in the following way. First one coastructs a program 

P1 which satisfies specification S. Then we constructs a sequenc~ of 

programs P2,•••,Pn such that each Pi+l is a refinement of Pi, i = 

1, ••• ,n-1 and Pn is in A. This gives us 

This technique is sound, in the sense that the final program Pn will 

indeed be a solution to the programming problem. Thus, by transitivity, 

the above implies that 

S sat P1 ref Pn EA 

Using the definition of refinement we have that S' sat P => S' sat P for 
I n 

any S' in Spec • .Choosing S' = S gives us 

S sat Pn EA, 

i.e. Pn is a solution to the program construction problem. 

As the above discussion shows, stepwise refinement can also be seen 

as a constructive technique for proving program correctness. This is in 

fact the original motivation for the stepwise refinement technique given 

by DIJKSTRA [9] (see [8] for another exposition of this idea). The 

refinement relation induces an equivalence relation between programs in 

the obvious way: 



7 

DEFINITION 2. Let C = (Spec, sat~' be a correctness criterion for Prog and 

let P and P' be tloiO programs in Prog. Then P and P' are equivalent with 

respect to .C, denoted P eqc P', if 

VS E Spec(S sat P•S sat P'). 

We obviously have that P ecic P' if and only if P refc P' and P' refc 

P. Essentially P eqc P' says that P and P' are indistinguishable, as far 

as the correctness criterion C goes, i.e. one will be correct whenever 

the other is correct. An immediate consequence of the definition is the 

following fact: 

PROPOSITION 2: Equivalence with respect to C is an equivalence relation 

in Prog. 

4 •. CONSTRUCTING PROGRAM REFINEMENTS 

The previous section introduced 

relation between programs, but did 

actually is to find a refinement of a 

the notion of refinement as a 

not give any hints as to how one 

given program. Here we will 

briefly discuss some techniques employed to this end, commenting on their 

soundness in light of the definition of correct refinement adopted above. 

Soundness will here mean that when a refinement P' of a program Pis 

constructed with such a technique, P re~c P' will hold, for the chosen 

correctness criterion .C. 

Program transformation rules 

One of the important approaches to constructing a refinement of a 

program consists in using a predefined set of program transformation 

rules. This 

introduction 

approach has gained considerable success since its 

by Burstall and Darlington [7] and is treated in e.g. (4,14 

and 20], just to mention a few. A program transformation rule can be 

· considered as a function 



8 

t:Prog + Prog, 

which assigns to each program Pin Prog a suitably 

t(P). For the correctness of such a rule, we 

definition: 

transformed program 

give the following 

DEFINITION 3. The program transformation rule t:Prog + Prog is correct 
\ 

with respect to the correctness criterion .C, if 

VP E Prog(P re~c t(P)). 

A program transformation rule t would usually not be defined for 

every possible program P in Prog, but only for a subset of programs 

satisfying certain conditions. We can model this by defining t(P) = P 

for programs P which do not satisfy the conditions associated with t. As 

refc is reflexive, P re~c t(P) will always hold for such programs P, so 

correctness is determined only by the value oft on programs which do 

satisfy the given conditions. 

If t and t' are tt\U correct program transformation rules, then their 

composition tot' is also a correct program transformation rule. This 

follows immediately from the definition of correctness for such rules and 

the transitivity of refinement. Therefore, any program derived from an 

initial program by a sequence of 

will be a refinement of the 

transformation rules is thus 

refinements of given programs. 

Selective refinement 

correct program transformation rules 

initial program. Use of correct program 

a sound technique for constructing 

Program transformation rules would no•t be very useful if we only 

were to apply them to a program as a whole. To make efficient use of 

these rules, one needs to apply a rule selectively to some specific 



9 

component oif a program. .Consider a program P which contains a component 

Pi, i.e. P = P[P1]· Applying a transformation t to this component 

yields P' = P[t(P1)], i.e. P' is constructed from P by replacing Pi in P 

by t(P1). We obviously want this way of selectively refining a part of a 

program to be sound, i.e. P refc P' should hold. Mo re generally, we 

require that 

holds whenever Pi refc Pz holds. 

Programs are usually built up from basic constructs such as 

assignment statements using different kinds of program constructors, such 

as composition, conditional statements, iteration and/or recursion. More 

abstractly, this means that Prog is not just a set but an algebra, 

generated by the constructors from the basic constructs (the constants of 

the algebra) in Prag. A program constructor g can be considered as a 

function 

g:Progn + Prog, 

yielding a new program g(P1, ••• ,Pn) from given programs Pi, •.• ,Pn. (More 

generally, Prog could be one of the sorts in a many-sorted algebra, which 

also would include other sorts necessary for the construction of 

programs. Also, a distinction between syntax and semantics should be made 

in this context. We take the simplistic view above in order not to be 

deflected from our main topic, the study of the refinement relation 

itself. We refer to [13] for more details on the algebraic approach to 

programs and to [l] for a precise tredtment of selective refinement.) 

A sufficient condition for the refinement step above to be sound is 

that each program constructor is monotone with respect to refc, i.e. if 

Pi refc Pr' for i=l, •.. ,n, then 



10 

for any Pi, P'i in Prog, i = 1, ••• ,n. 

DEFINITION 4. Let Prog be the set of programs generated by the 

constructors G from a set of basic constructs. Then Prog is said to 

admit selective refinement with respect to the correctness criterion C if 

each constructor in G is monotone with respect to refc. 

Abstraction 

The use of abstraction, in the form of abstract statements, is a 

characteristic feature of the stepwise refinement technique. Its use is 

emphasized in [1] and is also central to some of the work done on 

designing program developnent languages [4,15). In section 2 we saw that 

using the abstract statement "decrease v so that R is preserved" in 

program P1 makes it easier to find an initial solution to the programming 

problem. The use of this abstraction reduces the original problem to a 

simpler one, that of finding a program satisfying a specification 

corresponding to the abstract statement. The corresponding specification 

could e.g. be expressed as 

precondition: R & v > 0 

postcondition: R & v < v' 

where R is the assertion defined in section 2 and v' refers to the 

initial value of v. In general, abstraction is used to decompose a given 

problem into a number of independent subproblems, with abstract 

statements serving as specifications of these subproblems. 

Let C = (Spec, sat) be a correctness criterion for Prog. Abstract 

statements can be seen as a subset Spec* of Prog, such that there is a 

one-to-one correspondence between elements of Spec and Spec*. For a 

specification S in Spec, let S* denote the corresponding program in 



11 

Spec*. The satisfaction re_lation. sat induces a corresponding relation 

sat* between Spec* and Prog, by 

S* sat* P iff S sat P, 

for every Sin Spec and P in Prog. Let .C* = (Spec*,sat*) be the 

corresponding correctness criterion. Then it is easy to see that 

P refc P' iff P re~c* P', 

for every P and P' in Prog. 

This construction gives us a correctness criterion .. C* = (Spec*, 

sat*) for Prog, where Spec* c Prog. Satisfaction is now a relation 

between programs, in the same way as refinement, so we may ask for the 

relationship between these tw:> relations. This is clarified by the 

following tw simple observations. First, assume that sat* is transitive 

in Prog. Then 

S sat* P => S refc* P 

for any S E Spec* and P E Prog. To see this, assume that S sat* P and 

let S' be an arbitrary specification such that S' sat* s. By 

transitivity, this means that S' sat* P, i.e. S refc* P holds, as S' was 

arbitrarily chosen. 

Next, assume that sat* is reflexive in Spec, i.e. S sat* S holds for 

any SE Spec*. Then 

S refc* P => S sat* P, 

for any S E Spec* and P E Prog. This is also easy to see. Thus, assume 

that S refc* P holds. By reflexivity, S sat* S holds, and by the 

definition of refinement this means that S sat* P also holds. .Combining 



12 

these two observations gives us the following result: 

PROPOSITION 3: Let .C = (Spec,sat) be a correctness criterion for Prog, 

where Spec.=.. Prog. Then 

VS E Spec VP E Prog.(S sat P # S re~c P) 

if and only if sat is reflexive in Spec and transitive in Prog. 

The only if part of the proposition is a result of refc being 

reflexive and transitive in Prog. In the special case when Spec= Prog, 

we have that sat= refc if and only if sat is a preorder in Prog. This 

result shows that satisfaction, which is a relation between 

specifications and programs, is a special case of the more general 

relation of refinement between programs, when the asstnnptions stated 

above are fulfilled. 

The above analysis leads up to the following definition. 

DEFINITION 5. The set of programs Prog admits abstraction with respect to 

the correctness criterion C = (Spec,sat), if there is a one-to-one 

correspondence between Spec and a subset Spec* of Prog, such that the 

induced satisfaction relation sat* is reflexive in Spec* and transitive 

in Prog. 

When a programming language admits abstraction, there is only one 

kind of objects to consider, (abstract) programs, and only one relation 

to consider, the refinement relation. The specifications form a subset 

of the programs and the satisfaction relation is a restriction of the 

refinement relation. The stepwise refinement technique then simplifies 

to: Given an abstract program Po and a set A of acceptable programs find 

a sequence of programs P1,•••,Pn such that 

Po ref P1 ref ••• ref Pn EA. 



13 

Top-down development 

The top-down program development technique derives its strength from 

the use of abstraction in combination with selective refinement. Let P 

~ea program of the form P = P[S1,•••,Snl, i.e. P contains the abstract 

statements S1,•••,Sn as components. With top-down development, we try to 

construct programs P1,•••,Pn such that Si sat Pi, for i = l, ••• ,n. These 

new programs may contain abstract statements as components in their turn. 

The abstract statements in Pare then replaced with these new program~, 

giving a program P' = P[P1,•••,Pn1• Obviously P re~c P' will then hold, 

provided Prog admits selective refinement and abstraction, i.e. the top­

down method is sound. 

The above discussion should be sufficient to indicate some of the 

necessary conditions for a successful use of stepwise refinement in 

program construction. Essentially the programming language should admit 

selective refinement and abstraction, and the program transformation 

rules used should be correct in the sense defined above. 

5. REFINEMENT OF DETERMINISTIC PROGRAMS 

The previous sections discussed the refinement relation in 

abstracto, without any specific commitments to the choice of programs 

studied or to the correctness criterion used. From now on we will be 

more specific, studying the refinement relation for certain important 

choices of values for the parameters Prog, Spec and sat. In this section 

we consider deterministic programs with respect to the criterions of 

total and partial correctness. In the next section we extend the study 

to nondeterministic programs with respect to these same correctness 

criterions. 

As already remarked in the introduction, we want to treat refinement 

independently of any specific choice of programming language. We achieve 

this by taking a semantic point of view, regarding programs as state 

transformations. For this purpose, let Eo be a set of proper states, and 



14 

let i be a special element not occurring in Io (the undefined state ). 

The set of states is I= Io u {i}. A state tr~nsformation on I is a 

function f:I+ I such that f(i) = i. 

transformations on I • 

Let FI be the set of state 

. Consider a program interpreted as a state transformation f in FI. 

Then f(o) = o', a and a' in I, means that the program, started in initial 

state o will either terminate in the final state o' ( when o' ~ i) or not 
\ 

terminate (when o' = i). The association of a ~tate transformation with 

a program described in a specific programming language is determined by a 

meaning function, giving the semantics of the programming language used 

(see e.g. DE BAKKER [3] or TENNENT [19) for details). 

Total and partial correctness of a program is usually defined with 

respect to an entry and an exit condition. The entry condition describes 

the set of initial states for which the program is required to ~rk 

properly, while the exit condition describes for each such initial states 

the set of final states allowed for the program. An entry - exit pair is 

thus a specification for a program. Partial and total correctness differ 

only in the way satisfaction of such a specification is defined. A 

specification will thus be a pair (D,R), where D.::. Io is the entry 

condition (the specified domain) and R:D + P(Io) is the exit condition 

(the specified result). The set of all such (D,R) pairs is denoted HI• 

Let f be a state transformation in FI and let (D,R) be a 

specification in HI. Then f is said to be totally correct with respect 

to (D ,R), denoted (D ,R) tot f, if 

Yo E D • f( a ) E R ( o ) • 

As ii R(o), this implies that f(o) ~ i for each o ED. We say that f is 

partially correct with respect to (D,R), denoted (D,R) par f, if 

Yo E D. f(o) E R(o) u {i}. 



15 

We now choose Prog = Ft, Spec= HI and consider the two choices for 

sat, sat= tot and sat= par. This gives us two correctness criterions, 

total correctness T = (Ht,tot) and partial correctness P = (Ht,par). 

These correctness criterions determine t-wo different notions of 

·refinement between state transformations in Ft• By definition 1, f refT 

f' if 

\l(D,R) E Ht·[(D,R) tot f .. (D,R) tot f'] 

and similarly for f refp f'. The relation refT will be called total 

refinement and the relation refp partial refinement. 

To find a simpler characterization of these relations, we need the 

approximation ordering of fixpoint semantics, defined as follows. Let a 

and a' bet~ states int. Then a approximates a', denoted a~ a', if 

a = .1 or a = a'. 

Let f and f' be t-wo state transformations in Ft• Then f approximates f', 

denoted f ~ f', if 

\la Et. f(a) ~ f(a'). 

Obviously we have that f ~ f' if and only if f(a) = i or f(a) = f'(a) for 

every a int. We now have the following characterizations of total and 

partial refinement. 

PROPOSITION 4. Let f and f' be elements in Ft• Then 

f refT f' if and only if f ~ f'. 

Proof: Assune first that f refT f'. Choose an arbitrary a E t such that 

f(a) = a' =I= 1.. Then (D,R) tot f, where D = {a} and R = h ED. {a'}. By 



16 

the definition of refinement, this gives (D,R) tot f', i.e. f'(o) E R(o) 

= {o'}. Thus f(o) = f'(o), so we may conclude that f ~ f'. 

For the converse, assume that f ~ f'. Let (D,R) be a specification 

such that (D,R) tot f. Then f(o) ¥ .1 for a ED, so f(o) = f'(o). Thus 

f'(o) E R(o) for a ED, i.e. (D,R) tot f'. We may thus conclude that f 

refT f'. [] 

PROPOSITION 5. Let f and f' be elements in Fr• Then 

f refp f' if and only if f' ~ f. 

Proof: Assum,e first that f refp f'. Let (D ,R) be a specification, where 

D = {o} and R =ATE D.({f(o)} - {.1}). Then (D,R) par f. By assumption, 

this gives (D,R) par f', i.e. f'(o) E R(o) u {.1}, so f'(o) = f(o) or 

f'(o) = .1. We thus conclude that f' ~ f. 

For the converse, assume that f' ~ f. Let (D,R) be a specification 

such that (D,R) par f. This means that f(o) E R(o) u {.1} for each a ED. 

Now f'(o) = f(o) or f'(o) = .1 by assumption. In both cases do we have 

that f'(o) E R(o) u {.1} for o ED, i.e. (D,R) par f'. We may thus 

conclude that f refp f' holds. []. 

These characterizations show a nice and somewhat surprising 

connection between the proof theoretically motivated refinement relations 

and the information increasing approximation relation used in Scott-like 

definitions of programming language semantics. 

Some immediate consequences of the two propositions are worth 

mentioning. ll<'irst, total and partial refinement are each others inverses, 

i.e. f refT f' if and only if f' refp f. Intuitively, total refinement 

only allows the domain of termination to be increased while partial 

refinement only allows this domain to be decreased. Another consequence 

is that equivalence with respect to total and partial correctness ( total 



17 

and partial equivalence) coincide, both being reduced to functional 

equality, i.e. 

f eqT f' iff f eqp f' iff f = f'. 

We could also have made some other choices for the set of 

specifications. One possible choice would be to take as specifications 
\ 

all pairs (D,R), where D and R would both be subsets of to. However, an 

inspection of the proofs above show that this choice of specifications 

would yield the same characterization of total and partial refinement 

(this observation is due to G. Plotkin). Another possibility would be to 

choose only deterministic specifications, i.e. pairs (D,R) where R(o) is 

a singleton for each a E D. This would also yield the same 

characterization of refinement (in the case of partial refinement, we 

would need to assume that there are at least tlllO elements in to.) 

A more serious change would be to choose Spec to be a subset of Ht 

rather than Rt itself. This choice would be more realistic in some sense, 

as it would correspond to a situation in which a fixed specification 

language is given and Spec is the set of meanings of specifications in 

this language. Not all pairs (D,R) would then necessarily be expressible 

in the language, so Spec would be a proper subset of Rt• In this case we 

would not usually get the same characterizations of total and partial 

refinement (this would depend on the subsets of Rt chosen). However, 

total and partial refinement, as we define it above, would still be 

unique, in that they would be the strongest refinement relation for the 

respective correctness criterions. In other words, for any C = 
(Spec,tot), with Spec a subset of Rt, we would have that 

f refT f' => f refc f' 

for every f and f' in Fr (similarly for partial refinement). With 

respect to equivalence, this means that total (partial) equivalence gives 



18 

the finest possible partitioni~g of the state transformations with 

respect to total (partial) correctness. 

6. REFINEMENT OF NONDETERMINISTIC PROGRAMS 

Let us now turn to nondeterministic state transformations. These 

are functions of the form f: r + P(r), where f(a) f 0 for each a E rand 

f( .L) = { .L}. We denote the set of all nondeterministic state 

transformations by Gr• If f r: Gr is the interpretation of a 

nondeterministic program, then f(a) = W, W a subset of r, means that if 

the program is started in the initial state a, each state in W will be a 

possible final state of the program. If W contains .L, then it is also 

possible that the program will not terminate for this initial state. 

Total and partial correctness will again be specified with respect 

to an entry and an exit condition. We use the same set Hr for 

specifications as we used . in the deterministic case. However, the 

satisfaction relations have to be redefined. Let f be an element in Gr 

and let (D,R) be a specification in Hr• Then f is said to be totally 

correct with respect to (D,R), denoted (D,R) tot f, if 

Va E D. f(a) .=_ R(a) 

As.Li R(a), this implies that.LI f(a), for each a ED. We say that f 

is partially correct with respect to (D,R), denoted (D,R) par f, if 

Va E D. f(a)-=- R(a) u {.L}. 

This gives us the total correctness criterion T = (Hr, tot) and the 

partial correctness criterion P = (Hr, p~r) for Gr· We use the same 

notations here as in the previous section, because in the deterministic 

case, when f(a) is a singleton for each a Er, the relations tot and par 

agree with the previously defined sa tisf action relations. The 

correctness criterions T and P determine corresponding refinement 



19 

relations refT and ref~, by definition 1. To find simpler 

characterizations of these, we again turn to the approximation ordering. 

The approximation ordering used between nondeterministic state 

transformations is the so-called Egli-Milner ordering [16). Let the 

approximation ordering between elements of Ebe defined as before. We 

define the following two relations between nonempty subsets Wand W' of 

E: 

W ~1 W' iff Va E W 3a' E W'. a~ a' and 

W =2 W' iff Va' E W' 3a E w. a~ a'. 

An alternative characterization of these relations is 

W =1 W' iff W c W' u {.1} and 

W =2 W' iff .1 E W or W ::, W'. 

The Egli-Milner approximation ordering is then defined by 

W = W' iff W =1 W' and W =2 W'. 

An alternative characterization is 

W = W' iff either .1 E Wand W c W' u {.1} 

or .1 l Wand W = W'. 

These relations are extended to nondet:?rministic state transformations in 
-

the usual way, i.e. for f and f' elements of Gt, we define 

f « f' iff Va EI. f(a) « f'(a), 

where« is any one of the relations ~1, =2 or~-



20 

A denotational semantics for nondeterministic programming languages 

can now be defined using the Egli-Milner ordering. (Actually the 

relation 2 alone can be used in defining such a semantics, as shown by 

SMYTH [18)). We are now able to characterize the refinement relations 

introduced above in terms of these approximation relations. We have the 

following results. 

PROPOSITION 6. Let f and f' be elements of Gr• Then 

f refT f' iff f '=2 f'. 

Proof: Assume first that f refT f'. Let a E r be such that 1. i f(cr). 

Let D = {a} and R =ATE D. f(cr). Then (D,R) tot f. The assumption 

gives us that (D,R) tot f', i.e. f'(cr) .'.:,_ f(cr). Thus we may conclude 

that f '= 2 f'. 

For the converse, assume that f '=2 f'. Let (D,R) be a specification 

such that (D,R) tot f. Thus J. i f(cr) for a E D. This means that f'(cr) .'.:.. 

f(cr) ~ R(cr), by the assumption, so (D,R) tot f'. Thus f refT f' holds. [] 

PROPOSITION 7. Let f and f' be elements of Gr• Then 

f refp f' iff f' '= 1 f. 

Proof: Assume first that f refp f' holds. Let a be an element of r. Let 

D = {a} and R = h E D.(f(cr) - {J.}). Then (D,R) par f. Using the 

assumption we get (D,R) par f', i.e. f'(cr) ~ R(cr) u {J.} = f(cr) u {J.}. 

Thus f' '= 1 f. 

For the converse, assume that f' '= f. Assume that (D,R) par f. 

Then f(cr) <:__R(cr) u {1.}, for every a ED. This means that f(cr) u {1.},::. 

R(cr) u {1.} and as by assumption f'(cr).::. f(cr) u {1.}, we have that (D,R) 

par f', i.e. f refp f'. [J 



21 

Combining these t,-,.u observ~tions also gives us a characterization of 

the Egli-Milner ordering in terms refinement relations: 

PROPOSITION 8. Let f and f' be elements in Gt• Then 

f ~ f' iff f refT f' and f' refp f. 

This again shows 

theoretically motivated 

the close 

refinement 

ordering of fixpoint semantics. 

connection 

relations 

between 

and the 

the proof 

approximation 

Both relations ~1 and ~2 are preorders, but neither one is a partial 

order, i.e. neither one is antisymmetric. The equivalence relations 

induced by these can be characterized as follows. Let Wand W' be t,-,.u 

nonempty subsets of I. Then 

W =1 W' iff Wu {i} = W' u {i} and 

W =2 W' iff i E W n W' or W = W'. 

Equivalence between state transformations is defined in the same way as 

approximation, taking « above to be =1 or =2• These relations are also 

the equivalence relations with respect to total and partial correctness. 

Thus 

f eqT f' iff f =2 f' and 

f eqp f' iff f =1 f'. 

There are also other relations which can be defined between 

nondeterministic state transformations (see e.g. [5)). The relations refp 

and eqp are actually included in the list of interesting relations 

between programs presented in [6), although refT and eqT seem to be 



22 

missing. 

7. REFINEMENT AND PREDICATE TRANSFORMERS 

In order to give proof rules by which refinement between programs 

can be shown, we need to connect the refinement relation to more familiar 

concepts in program correctness. We will therefore show here how to 

characterize total and partial refinement in terms of predicate 

transformers. The characterization of total refin~ment in terms of 

weakest preconditions forms the basis for a general proof rule for total 

refinement, studied in detail in [l]. A similar proof rule can also be 

given for partial refinement. 

Let Q be a subset of ro and let f be an element of Gr. The weakest 

precondition off for Q, denoted wp(f,Q), is defined as 

wp(f,Q) = {a E ro I f(a)::.. Q}. 

The definition implies that f(a) does not contain J. when a E wp(f,Q). A 

characterization of total refinement can be given in terms of weakest 

preconditions, as follows: 

PROPOSITION 9. Let f and f' be elements of Gr. Then 

f refT f' iff VQ c ro. wp(f,Q)::.. wp(f' ,Q) 

Proof: Assume first that f refT f' holds. 

wp(f,Q). This means that J. r/. f(a) so 

proposition 6 we have that f'(a) c f(a) '.:.. Q. 

Let Q c rO and let 

using the assumption 

Thus a E wp( f' ,Q). 

a E 

and 

For the converse, assume that wp(f,Q) c wp(f' ,Q) for any Q c ro. 
Let a be an element of ro such that J. r/. f(a). Choose Q = f(cr). Then a 

E wp(f,Q), so by the assumption, a E wp(f' ,Q), i.e. f'(cr) c Q = f(cr). 

This means that f '=2 f' and so, by proposition 6, that f refT f'. [] 



23 

This connection between the weakest preconditions and the Smyth 

ordering (relation ~2 or refT) was independently found by Plotkin. A 

detailed discussion of the consequences of this, in showing the 

isomorphism between a predicate transformer semantics and a semantic 

based on nondeterministic state transformations is given in [17]. 

Let f again be an element of GE and let Q .::.. Eo. 

postcondition off for Q, denoted sp(f,Q), is defined,as 

The strongest 

s p( f , Q) = { a ,. E E o I a,. E f ( a ) for so me a E Q} • 

This gives us the following characterization of partial refinement: 

PROPOSITION 10. Let f and f' be elements of GE• Then 

f refp f' iff 'v'Q .::.. Eo. sp( f' ,Q) c sp( f ,Q). 

Proof: Assume first that f refp f'. Let Q.::.. Eo and let a' E sp( f'. ,Q), 

i.e. for some a E Q, a' E f' (a). By proposition 7, we then have that 

f'(a) .=. f(a) u {.L} and as a 1' .L, a 
... 

E f( a)• Thus a' E sp( f ,Q) • 

For the converse, assume that sp( f' ,Q) .=. sp(f,Q), for any Q C Eo• 

Let Q = {a} and assume that a' E f'(a). If a' 1' .L, this means that a' E 

sp(f',Q), so by the assumption, a' E sp(f,Q), i.e. a' E f(a). Thus a' E 

f(a) u {.L}. Using proposition 7, this gives that f refp f'. [] 

The importance of these results rests on the fact that the weakest 

preconditions and strongest postconditions can be computed syntactically 

for given programs, at least in the ca9e of simple iterative programs. 

This gives us a syntactic characterization of refinement, on which a 

proof theory can be built. 

8. PROGRAM CONSTRUCTION WITH TOTAL AND PARTIAL REFINEMENT 

In this final section we will study the techniques for constructing 



24 

refinements of programs described in section 4, with respect to the total 

and partial refinement relations defined in the previous sections. We 

consider first total and partial refinement in the case of deterministic 

programs. 

There will be two kinds of correctness preserving transformation 

rules, depending on whether we wish to preserve total or partial 

correctness. In the first case, a transformation rule t: Ft+ Ft will be 

correct if 

Vf E Ft • f '= t( f) 

while in the second case we require that 

In other words, in the first case a transformation rule is only allowed 

to increase the domain of termination, while in the second case it only 

is allowed to decrease the domain of termination. 

These criterions for correctness of program transformation rules are 

not really new. The first criterion has e.g. been formulated by WEGBREIT 

[20], while the second criterion can be found in e.g. Burstall's and 

Darlington's article [7]. 

The requirement that Prog admits selective refinement boils down to 

requiring that the program constructors used in defining the denotational 

semantics of programming languages with composition, conditionals and 

iteration are monotone with respect to the approximation relation. As 

this is one of the basic requirements of this approach to semantics, 

simple programming languages of this kind will admit selective 

refinement, both with respect to total and partial correctness. 

To analyze abstraction, 

deterministic specifications, 

let us denote by Ht' the set of 

i.e. specifications of the form (D ,R), 



25 

where R(a) is a singleton for each a E D. Let tot' (par') be the 

restriction of tot (par) to deterministic specifications. Let T' = (Hr', 

tot') and P' =(Hr', par'). As remarked in section 5, the refinement 

relation determined by T' and P' are the same as those determined by T 

and P. We now have the following t\\U results. 

PROPOSITION 11. Fr admits abstraction with respect to T'. 

Proof: For each deterministic specification (D,R), define a corresponding 

state transformation (D ,R)* in Fr, by 

(D,,R)*(a) { 

a' when a E D and R(a) 

= .1 otherwise 

= {a'} 

This giv«:?s a one-to-one correspondence between deterministic 

specificat:Lons and deterministic state transformations. The induced 

satisfaction relation tot* is defined by 

(D,R)* tot* f iff (D,R) tot' f. 

The relation tot* is easily shown to be both reflexive and transitive. 

Thus F1: admits abstraction with respect to T'. [] 

Thus, if we restrict ourselves to deterministic programs and 

deterministic specifications only, the approximation relation serves both 

as the relation of satisfaction and as the relation of refinement in 

program construction, provided we are interested in establishing and 

preserving total correctness of programs. 

The s:ltuation with respect to partial correctness of deterministic 

programs :is quite different. With the same embedding of deterministic 

specificat:ions into Fr, the induced satisfaction relation par* turns out 

not to b«:! transitive. In fact, the following proposition shows that, 

except for trivial cases, partial correctness and abstraction cannot be 



26 

combined. 

PROPOSITION 12. Fi; does not admit abstraction with respect 

there are at least two elements in Eo· 
to P' , if 

Proof: Assume that there was an embedding of Hi;' into Fi; such that the 

induced satisfaction relation par*, defined by 

(D,R)* par* f iff (D,R) par' f, 

was reflexive in the image of Hi;' and transitive in Fi;• Let us chose D = 

(/J and let R be the empty function. Then (D ,R) par' f holds for any f in 

Fi;• Consequently, (D,R)* par* f must hold for any f in Fi; too. Now 

choose f and f' in Fi; such that f(cr) , f'(cr) #.land also f(cr) # f'(cr) 

( this is possible, as Eo is assumed to have at least two elements). 

There can obviously be no element f" in Fi; such that f '= f" and f' '= f". 

However, by asstnnption (D ,R)* par* f and (D ,R)* par* f'. Using 

proposition 3, this gives us that f '= (D,R)* and f' '= (D,R)*. This is a 

contradiction, so there can be no element (D,R)* in Fi; which corresponds 

to the chosen specification (D,R), i.e. Fi; does not admit abstraction 

with respect to P'. [] 

Next we consider the nondeterministic case. As with deterministic 

programs, we have two different notions of correctness of program 

transformation rules, depending on whether we wish to preserve total or 

partial correctness of programs. In the first case, we require that a 

program transformation rule t:Fi; -+- Fi; satisfies 

Vf E FE. f '= 2 t(f) 

while in thei second case we require 

Vf E Fi;• t(f) '=1 f. 



27 

The requirement that Prog admits decomposition means in the 

nondeterministic case that the usual program constructors, such as 

composition, conditionals and iteration should be monotone with respect 

to the preorders =1 and =2• That this in fact is the case for the 

preorder =2 follows from results proved in BACK [1]. These program 

constructors can also be shown to be monotone with respect to the 

preo rder =1. 

\ 

To study abstraction, let H1;" be the set of! specifications which are 

satisfiable with respect to total correctness. This is the set of all 

pairs (D,R) such that R(o) 1' (/J for each a E D. Let tot" be the 

restriction of tot to this set of specifications, and let T" = (H1;", 

tot"). The refinement relation determined by T" is the same as the 

refinement relation determined by T, as unsatisfiable specifications 

cannot affect the refinement relation. We have the following result. 

PROPOSITION 13. G1; admits abstraction with respect to T". 

Proof: Let the embedding of the satisfiable specifications into G1; be 

given as follows. For each (D,R) in H1;", define 

__ { R(o) 
(D,R)*(o) 

{.i} 

when a ED 

otherwise 

The induced satisfaction relation tot*, defined by 

(D ,R)* tot* f iff (D ,R) tot" f 

is then easily shown to be reflexive in the :t.mage of H1;" and transitive 

in G1;, thus proving the proposition.[] 

Abstraction can be combined with partial correctness in the 

nondeterministic case, as shown by the following result. 



28 

PROPOSITION 14. G1: admits abstr~ction with respect to P. 

Proof: In this case we choose the embedding as follows. Let (D,R) be a 

specification in H1;• Define the corresponding state transformation in G1; 

by 

(D ,R)*(a) 
= { R(a) u {.L}, if 

1: otherwise 

a E D 

Also in this case is the induced satisfaction relation par* easily shown 

to be reflexive in in the image of H1: and transitive in G1;, thus proving 

the proposition. [] 

ACKNOWLEDGEMENTS. I would like to thank Gordon Plotkin for his careful 

reading of a previous version of this paper and for the many important 

connnents he made, and Lambert Meertens for clarifying discussions on the 

topics treated here. 

REFERENCES 

[1] BACK, R.J.R., 

theory and 

.Correctness preserving program refinements: 

applications. Mathematical Center Tracts 

Mathematisch.Centrun, Amsterdam, 1980. 

Proof 

131 , 

[2] BACK,R.J.R., On the notion of correct refinement of programs. In 

Proc. 5th Scandinavian Logic Symposium (F.V. Jensen, B.H. Mayoh, 

K.K. Moller, eds.), Aalborg University Press, 1979 

[3] DE BAKKER, J.W., Mathematical Theory of Program Correctness. 

Prentice-Hall, 1980. 

[4] BAUER, F.L., M. BROY, H. PARTSCH, P. PEPPER & H. WOSSNER, 

Systematics of transformation rules. In Program .Construction (F.L. 

Bauer & M. Broy, eds.), pp.273-289, Lecture Notes in ·.computer 

Science 69, Springer-Verlag, 1979. 



29 

[SJ BROY, M., R. GNATZ &.M. WIRSING, Semantics of nondeterministic and 

noncontinuous constructs. In Program Construction (F.L. Bauer & M. 

Broy, eds.), pp. 553-592, Lecture Notes in Computer Science 69, 

Springer-Verlag, 1979. 

[6] BROY, M., P. PEPPER & M. WIRSING, On relations between programs. In 

International Symposium on Programming (B. Robinet, ed.), pp. 59-78, 

Lecture Notes in Computer Science 83, Springer-Verlag 1980. 
\ 

[7] BURSTALL,R.M. & J.DARLINGTON, Some transformations for developing 

recursive programs. Journal of ACM 24, 1, pp. 44 -67, 1977. 

[8] CORRELL, C.H., Proving programs correct trough refinement. Acta 

Informatica 9, pp. 121-132, 1978. 

[9] DIJKSTRA, E.W., A constructive approach to the problem of program 

correctness. BIT 8, pp. 174-186, 1968. 

[10] DIJKSTRA, E.W., Notes on structured programming. In Dahl, O.J., E.W. 

Dijkstra & C.A.R. Hoare: Structured Programming, Academic Press, 

1971. 

[11] DIJKSTRA, E.W. A Discipline of Programming. Prentice-Hall, 1976. 

[12] GERHART, S.L., .Correctness preserving program transformations. In 

Proc. Second ACM Conference on Principles of Programming Languages, 

pp. 54-66, 1975. 

[13] GOGUEN, J.A., J.W. THATCHER, E.G. WAGNER & J.B. WRIGHT, Initial 

algebra semantics and continuous algebras. Journal of ACM 24 (1977) 

6 8-9 5. 

[ 14 ] LOVEMAN, D.B., Program improvement by source-to-source 

transformations. Journal of ACM 24, 1, pp.121-145, 1977. 



30 

[15] MEERTENS, I..C.L.T., .i\hstracto 84: The next generation. Report TW 

120/79, Mathematfsch Centrum, 1979. 

[ 16 l PLOTKIN, r..o., A power domain construction. STAM .Jo urn a 1 of 

Computing 5, 3, PP· 452-487, l 976. 

[ l 7 l PLOTKIN, G.D. , Dijkstra-s weakest preconditions and Smyth-s power 

domains. In Abstract Software Specifications (D. Rjorner, ed. ) , 

Lecture Notes on Computer Science 86, Springer-V'erlag 19 79. 

[18] SMYTH, M.B., Power domains. Journal of Computer & System Sciences 

16, pp. 23-36, 1978. 

[19] TENNENT, R.D., The denotational semantics of programming languages. 

Comm. ACM, vol. 19, no. 8, 1976, pp. 437-452. 

[20] WEGBREIT, B., Goal directed program transformations. IEEE Trans. on 

Software Engineering SE-2, 2, pp. 69-80, 1976. 

[21] WIRTH, N., Program develoµnent by stepwise refinement. Comm. ACM 14, 

4, pp.221-227, 1971. 

[22] WIRTH, N., Systematic Programming. Prentice-Hall, 1973. 





8 


