
AFDELING INFORMATICA 

stichting 

mathematisch 

centrum 

\ . 

IW 154/80 
(DEPARTMENT OF COMPUTER SCIENCE) 

R.J .R. BACK 

CORRECTNESS OF EXPLIClTLY SPECIFIED PROCEDURES 

Preprint 

~ 
MC 

DECEMBER 

kruislaan 413 1098 SJ amsterdam 



Punted at .the Ma.thema.t-lc.al. Centlr.e, 413 Klr.Ll.l6laan, Am6.teJuiam. 

The Mathema.:Uc.al. Centlr.e, 6ou.nded .the 11-.th 06 FeblLWVLy 1946, ,lt, a. non
plto 6U .ln6:tU:u,t,i,o n a,uni_ng at .the pJtomo.tlo n o 6 pWLe mathema.t-lC!-6 and -lt6 
a.ppU.c.a.t-lon6. 1.t ,lt, t,pon601ted by .the Ne.theltla.nd6 GoveJtnment .thltou.gh .the 
Ne.theJli.a.nd6 Onga.ru,za.t-lon 601t .the Adva.nc.ement 06 Pu.Jte Ruea.1tc.h (Z.W.O.). 

1980 Mathematics subject classification: 68B10 

ACM Computing Reviews: 5.24 



Correctness of explicitly specified procedures 

by 

**) 
R.J.R. Back 

ABSTRACT 

Explicit specification of a procedure, by a program statement 
describing the effect of executing the procedure, is contrasted with the 
usual way in which a procedure is specified in program verification, by 
giving its pre- and postconditions. The explicit technique is found to 
give simpler and more readable specifications. A proof system for the 
correctness of explicitly specified procedures is described. The notion 
of correctness used is partial correctness together with absence of run
time errors. The proof rules cover both recursive procedures and 
procedures with parameters. Special attention is given to the modular 
structure of programs with procedures. An extension of the technique, 
making explicit specifications as powerful as pre- and postconditions is 
also presented. 

KEY WORDS & PHRASES: Procedure proof rules, specifications, partial 
correctness, program failure, modules, recursion, 
parameters 

*) This report will be submitted for publication elsewhere. 

**) Present address: University of Helsinki, Computing Centre, 
Tukholmankatu 2, 00250, Helsinki 25 





1 

1. INTRODUCTION 

The purpose of using procedures in programs is to ~llow the 

construction and verification of programs to be factored into a number of 

independent tasks. Successful use of procedures in program construction 

requires a careful specification of the effect of each procedure, 

independently of how the procedure is implemented. The specification 

serves as an interface between the program module implementing the 

procedure and the program modules which call the procedure. It lays down 

the properties which the calling modules may assume about the effect of a 

procedure call, and at the same time it describes what the procedure 

implementation should achieve. The specifications form the prime means 

by which we can understand the working of larger programs, built as 

collections of modules. 

The techniques for specifying procedures vary, but can essentially 

be classified into two broad categories: implicit and explicit 

specifications. In the former, the effect is described by giving 

certain properties which any call on the procedure will satisfy. In the 

latter, the effect is described by presenting another, simpler mechanism, 

which is to have essentially the same effect as the procedure specified. 

The former technique is the one usually favored in program verification, 

where procedures are specified by their pre- and postconditions. The 

latter is more common in program construction, as it is practiced in real 

life programming projects, where procedures usually are described by the 

actions an invocation will cause. 

To make things more concrete, let us consider an example procedure 

and the different ways in which it can be specified. We choose a 

procedure for computing the factorial function, with special attention 

given to the detection of overflow during the computation. An explicit, 

informal specification of this procedure could be something like the 

following: 



2 

procedure fact: 

The procedure will set the variable x 

to the factorial of n, if possible. 

If n(O this is not possible and the, 

effect of the procedure is undefined. 

If n > maxint, the biggest integer allowed, 

then this is also not possible. In this 

case the overflow indicator oflo 

(which is assumed to be O before 

calling the procedure) is set to 1. 

Such a specification is easy to understand and provides the 

programmer with all the flexibility of natural languages. However, it is 

difficult to make informal specifications precise enough (is e.g. the 

value of n changed by this procedure, what happens with oflo when 

n !~maxint, does the procedure have other side-effects). Moreover, when 

one tries to make them precise, they become verbose and difficult to 

comprehend. Also, this kind of specifications are not suitable for a 

mathematically rigorous reasoning about program correctness. 

Consider now an implicit specification of the procedure, in terms of 

pre- and postconditions. A first attempt would be: 

procedure fact: 

precondition: n > 0 & oflo = O; 

postcondition: (n ~ maxint => x = n!) & 

(n > maxint => oflo = 1). 

However, this is probably not what we want, because it does not prevent 

certain undesired side-effects of the procedure. We would not e.g. want 

the procedure to change any other variables than x and oflo. If y,z, ••• 

are the other variables accessible to the procedure, the procedure 



specification becomes: 

procedure fact: 

precondition: n~O & oflo=O & n=n0 

& y=yo & z=zo & ·-~; 
postcondition: (nimaxint => x=n! & oflo=O) 

& (n>maxint => oflo=l) & n=n0 

& y=yo & z=zo & ... ; 

3 

The advantages of such a specification is that it is flexible and 

precise. However, it is not so easy to comprehend, as it has a similar 

tendency to become verbose as the informal explicit specification 

technique. 

A third possibility is to give an explicit and formal specification 

of the procedure. This means that we write the specification as a simple 

program. Using e.g. Dijkstra's guarded commands [7], the procedure can be 

specified as follows: 

procedure fact: 

if n > 0 and oflo = 0 -> 

fi 

if n < maxint -> x:= n! 

[] n > maxint -> oflo:=l 

fi 

This specification is much simpler than the preceeding one, yet it is as 

precise. There are two reasons for this simplicity. First, the default 

assumption about variables which are not mentioned in the specification 

is the opposite to the one used in the previous specification. There a 

variable not mentioned in the postcondition is allowed to have any value 

whatsoever upon exit from the procedure. Here the opposite is the case: 

a variable~ not mentioned in the specification remains unchanged by 

default. Actually we have an even finer control, as we know that any 



4 

variable not explicitly changed by an assignment statement will keep its 

old value (e.g. the value of n is not changed by the procedure and either 

x or oflo remains unchanged, depending on the branch taken). Another 

reason for the simplicity of this specification is the uqe of the 

conditional statement. This gives a well-needep structuring of the 

specification, clearly indicating the different possible cases that are 

covered by it. 

A disadvantage of this method is that it can lead to 

overspecification. Thus, we cannot e.g. leave the value of a variable 

unspecified. In the previous specification we left the value of x 

undefined when n)maxint, but in this specification we have to say what 

the value of xis in this case too. It is chosen to be the same as the 

initial value of x. We will show how to overcome the shortcoming of 

overspecifi.cation in 

specification technique 

section 7. Other disadvantages of this 

are a possible lack of flexibility and the 

potential for misuse. If one were to restrict the operations and tests 

allowed in such a specification to only those available as primitives in 

the programming language used, then this would severly limit the 

expressive power of the specifications (imagine writing the specification 

above without being allowed to use the factorial function). The 

possibility of misuse follows from this, when the programmer tries to 

circumvent the lack of suitable basic operations by programming them in 

the specification. This can make the complexity of the specification 

similar to the complexity of the procedure implementation, so one might 

as well use the latter directly as a specification. 

Both these disadvantages can be avoided, if we restrict the 

programming language allowed in specifications drastically, by e.g. 

disallowing the use of loops, while at the same time allowing any 

mathematically well-defined functions and predicates to be used in the 

specifications. This encourages the programmer to consider the design of 

the basic concepts needed as a task separate from writing the 

specifications themselves, thereby inducing a well-needed separation of 



5 

concerns. 

We will in this report consider explicit and formal procedure 

specifications from the point of view of program verification. We will 

design a simple programming language with explicit specification of 

procedures, and show how the correctness of such programs can be proved. 

The soundness of the proof system to be presented here will be proved in 

an accompanying report [4]. 

2. A SIMPLE PROGRAMMING LANGUAGE 

We start by describing a simple programming language in which to 

write programs with parameterless recursive procedures (later on we 

extend the languages with parameterized procedures). The language will 

be defined in three steps, by first concentrating on procedure 

specifications, then describing simple programs with procedure calls and 

finally describing the modular structure of programs with procedures. 

Procedure specifications 

Let Id be a set of identifiers, let Sig be a signature, with 

constant, function and predicate symbols, let Exp be a set of expressions 

over this signature and let Boal be the set of boolean expressions over 

the signature. The set of procedure specifications is denoted Spec and 

is defined recursively by 

S ::= skip Ix:= e I s 1 ;s2 I 

if bl-> sl [] ... [] bk ->-sk fi . 

Here xis a list of distinct identifiers in Id, e is an equally long list 

of expressions in Exp, b1 , ... , bk are boolean expressions in Boal and 

s,s1 , ... ,Sk are specifications in Spec. The last example in the previous 

section obviously conforms to this syntax, which, of course, is just a 

subset of the guarded commands of [7]. 



6 

As with the guarded commands, execution of a specification S may 

lead to an abortion, i.e. the execution fails. An abortion occurs if a 

conditional statement is reached with none of the guards true, or if an 

expression or boolean expression is evaluated with arguments for which it 

is not defJlned. Also, because of the possible pondeterminism in the 

conditional statement (the guards need not be mutually exclusive), there 

may be more than one possible execution of s. 

A procedure will satisfy a given specification S in Spec, if the 

following two conditions are met. First, the procedure is not allowed to 

fail for initial states in which S is guaranteed not to fail. for the 

procedure fact, described in the previous section, this means that the 

procedure may not fail when n~O and oflo=O. 

Secondly, the effect of executing the procedure is to be essentially 

the same as that of executing s. By this we mean that if the procedure is 

started in an initial state in which S is guaranteed not to fail, any 

possible final state of the procedure must be a possible final state of S 

too. If S is deterministic, this means that the procedure must produce 

the same final state as S if it terminates (however, the procedure is 

allowed to run for ever). For procedure fact, this means that if 

initially n )0 and oflo=O and the procedure terminates, then either only 

x has been changed, with x = n! (when n! ~ maxint) or only oflo has been 

changed, with oflo = 1 (when n! > maxint). 

The motivation for this definition of satisfaction is that the 

procedure should be a correct refinement. of the specification, in the 

sense that it should be correctness preserving. This notion of correct 

refinements is described in detail in [3]. 

This specification language is rather restricted in expressive 

power, and is not as powerful as the implicit specifications with pre

and postcond:itions, when the signature is kept fixed. We will later ,in 

section 7, extend the language in a way which makes it as expressive as 

the implicit method. 



7 

Simple programs 

The signature Sig is to contain all constant, function and predicate 

symbols needed in order to give simple specifications of procedures. The 

constants, functions and predicates one is actually allowed to use in a 

program form a subset of Sig, which we denote Sig'. Let Exp' and Bool' 

be the corresponding set of expressions and boolean expressions over 

Sig'. 

The statements Stat are defined recursively by 

s : : = skip I x:= e I p I B I Sl; s2 I 
if bl -> sl [ ] [ ] b -> k Sk fi 

do bl -> Sl [ ] [ ] b -> 
k Sk od. 

Here we have added procedure calls (p), blocks (B) and iterations (do •.. 

od). The expressions in e and the boolean expressions bi are required to 

be in Exp' and Boal' respectively, while p must be in Id. The syntax of 

blocks is described below. As evident from the syntax, a statement has 

more powerful control structures than a specification but less powerful 

basic stateiments and guards. 

A declaration will be of the form 

D ::= var x I canst x I proc p: Send, 

where xis a list of distinct identifiers, pis an identifier and Sis a 

specification. For simplicity, no type information is associated with the 

variables and constants, which are assumed to be all of the same type (in 

examples the type integer is assumed). Extending the language with type 

information does not present any great difficulties, and can be done 

essentially as in [5]. 

The difference between declaring a variable by "var x" and by "canst 

x" is that in the former case the value of x may be changed by an 



8 

assignment statement and in the latter case not. The need for making such 

a distinction arises in connection with the parameter mechanism, to be 

described in section 8. However, it also simplifies the proofs of 

program correctness, by decreasing the amount of detail which needs to be 

checked. 

A procedure declaration 

proc p:S end 

associates a specification S with the procedure identifier p. (Note that 

S is not the body of the procedure, only a specification of the effect of 

the procedure.) The ],anguage thus requires each procedure to be 

associated with an explicit specification of the kind described above. 

An environment E is a (possibly empty) sequence of declarations, 

i.e. 

The set of environments is denoted Env. It is not allowed to declare an 

identifier twice in an environment E. Finally, a block consists of an 

environment E and a statement S, and is of the form 

B ··= begin E;S end. 

The set of blocks is denoted Block. 

Modular structure of programs 

The procedure bodies form the "111odules in this programming language. 

A procedure body is of the form 



9 

Here pis a procedure identifier and M1 , ••• , Mn are modules (procedure 

bodies), n ~ O. We require that each module Mi is declared in E. Let 

Mod be the set of modules. 

Notice that, because of the block construct, there may be local 
I 

variables also in the statement S of a body declared as above, in 

addition to the local variables declared in E. The latter can be seen as 

communication variables, shared between Sand the modules M1 , ••• ,M. The . n 
variables which are declared in a block in S are, on the other hand, 

strictly local, only needed as temporary variables in the computation of 

s. 

A closure of a module Mis a module of the form 

body q: E;M end, 

where E declares all identifiers used but not declared in M (i.e. global 

identifiers). In particular, E must contain a declaration of M itself. 

In the design of the modular structure of this language, we have 

followed ADA [9] and Alphard [10] in separating the specification of a 

module from its implementation. Besides having a benevolent effect on 

the clarity of the program structure, this will also simplify the design 

of proof rules for program correctness and make the structure of 

correctness proofs easier to grasp. 

An example program 

As an example of a program written in this language, we will show 

how to compute the factorial of 25, using the procedure fact specified in 

the introduction. The following closure describes this program. 



10 

body main: 

end. 

const maxint; 

var x; 

proc fact25: 

if 25!(maxint -> x:=25 fi 

end; 

body fact25: 

var n; 

var oflo; 

proc fact: 

if O<n & oflo=O -> 
if n!<maxint 

[ ] n!>maxint 

fi 

fi 

end; 

begin n:= 25; 

oflo:= O· , 

fact 

end 

end; 

-> x:=n! 

-> x,oflo:= 0, 1 

The correctness of this program, i.e. that the body of fact25 has 

the effect of assigning to x the value 25! when 25!imaxint, should be 

evident from an inspection of the code. This correctness does not depend 

on the way in which the procedure fact is implemented, only the 

specification of fact is needed for the correctness argument. The 

procedure fact is implemented as follows: 



11 

body fact: 

begin var m; 

if n=O v n=l -> x:= 1 

[] n)O -> 
n:= n-1; 

fact; 

n:= n+l; 

if oflo=l -> skip 

[ ] oflo=O -> 
m:= maxint/n; 

if x<m -> x:= x*n 

[ ] x)m -> x, oflo:·=o, 1 

fi 

fi 

fi 

end 

end; 

Here the procedure fact is called recursively inside the body of fact. 

In the computation, a test is performed to check that no overflow can 

occur. If an overflow would occur, the computation of the factorial 

value is skipped and instead the overflow indicator is set to 1. This 

scheme prevents an overflow from actually occurring during the 

computation, thus giving the calling program full control of the effect 

of a procedure call. 

The closure as a whole has the following structure: 



12 

body main: 

const maxint; 

var x; El 
proc fact25: 

end; 

body fact25: 

var n; 

var oflo; Ez 
proc fact: 

end; 

begin fact ... } sz 
end; 

body fact: 

begin ... fact . .. 
} S3 

end 

end 

end 

end. 

More concisely, the modular structure can be described by 

MO = body main: 'El ;Ml end 

Ml = body fact25: Ez;Sz;M2 end 

M2 = body fact: S3 end. 

Note that here the highest module MO does not contain any statement to be 

executed (i.e. it is the closure of the module fact25), while the lowest 

module M2 does not contain any submodules. 

3. CORRECTNESS OF STATEMENTS 

The proof rules for showing correctness of programs with procedures 

are on two levels. On the lower level we have the proof rules by which 



13 

the correctness of statements is established. On the higher level there 

is a proof rule by which the correctness of the whole program, seen as a 

collection of modules, is established. In this section we present the 

proof rules: for statements. The proof rule for programs is derived in the 

following two sections. 

Let Assn be the set of assertions (first-order formulas) over the 

signature Sig. A correctness formula will be of the form 

H ::= E ]- P{S}Q, 

where P and Q are assertions in Assn, E is an environment and S is a 

statement. We require that each identifier free in P or Q must be 

declared in E, either as a variable or as a constant, that assignments in 

S are only to identifiers declared as variables in E and, as before, that 

no identifier is declared twice in E. 

The validity of a correctness formula is defined by 

E ]- P{S}Q iff if P holds initially 

then S cannot fail 

and if S terminates 

then Q holds upon termination. 

Thus correctness is here taken to mean partial correctness, together with 

absence of failure during program execution. (As the execution of Scan 

be nondeterministic, we require that none-of its possible executions can 

lead to abortion.) 

For simplicity, we assume in the sequel that expressions and 

boolean expressions are always well-defined. This means that the only 

possibility of failure comes from reaching a conditional statement with 

none of the guards true. The proof system can easily be extended to 

handle expressions and boolean expressions which are only partially 

defined, in a manner similar to the one used in [5]. 



14 

The proof rules for statements are as follows: 

O. E ]- P{S}Q, P'=)P, Q=)Q' 

----------------
E ]- P'{S}Q' 

1. E ]- P{skip}P 

2. E ]- P[e/x]{x:=e}P 

5. 

-----------------------------------

6. E;E' ]- P{S}Q 

-------------------
E ]- P{begin E';S end}Q 



15 

7. E; proc p:S end; E' ]- P{S}Q 

-------------------------
E; proc p:S end; E' ]- P{p}Q 

We use the abbreviation bb = b1v ••• v bk in proof rules 4 anrl 5. The 

following constraints on these rules are necessary to ensure that the 

restrictions on correctness formula given above are not violated: 

Rule O:All identifiers free in P' or Q' must be declared in E. 

Rule 2:Each identifier in x must be declared as a variable in E and each 

identifier occurring in e must be declared in E, either as a 

variable or as a constant. 

Rule 6 :All identifiers free in P or Q must be declared in E and E' may 

not contain declarations of identifiers already declared in E. 

The absence of failures is checked in rule 4, by the condition 

P => bb. Redeclaration of identifiers in inner blocks is disallowed, by 

the constraint on rule 6. It is, of course, always possible to rename 

identifiers in inner blocks in a way which guarantees that this condition 

is met. 

The most important rule here is rule 7 for procedure calls. It 

essentially says that whatever is true of a procedure specification will 

also be true of the procedure call. The _simplicity of this rule is the 

most valuable payoff from using statements as procedure specifications. 

A similar rule for procedure calls appears in many proof systems (see 

e.g. [l]), with S standing for the body of the procedure, which, 

moreover, is assumed not to contain any recursive calls. The rule given 

here differs from these in that S is the specification of the procedure 

and not the body. A separate proof rule will be given for handling the 

procedure body, which is allowed to contain recursive calls on itself. 



16 

4. PREDICATE TRANSFORMERS 

Before we can present the proof rule for modular programs, we need 

to define the weakest precondition and strongest postcondition of a 

specification with respect to a given condition. The weakest 

precondition WP(S,R) of the specification ~ for the condition R, S in 

Spec and R in Assn, is defined exactly as in [7]. For completeness, we 

repeat the definition here: 

(1) WP(skip, R) = R 

(2) WP(x:=e, R) = R[e/x] 

k 

= bb & & (bi=> WP(Si, R) 

i=l 

Thus WP(S,R) is the weakest precondition which guarantees that execution 

of S cannot lead to abortion and that any execution terminates in a final 

state satisfying R. 

The strongest postcondition SP(R,S) of a specification S and an 

assertion R is again defined by: 



(1) SP(R, skip)= R 

k 

V SP(R & bi, Si) 

i=l 

17 

Thus SP(R,S) is the strongest postcondition which holds when S terminates 

normally (i.e. without failure), if R was true initially. 

The formula SP(R,S) can be simplified if we assume that R is of the 

form P & v=t, where P is an assertion, vis a list of distinct variables 

v 1 , ••• , v n and t is a list of terms, of the same length as v, such that 

each variable assigned to in S occurs in v, and no variable in v occurs 

in any term in t or occurs free in P. In this case the strongest 

postcondition for the assignment statement becomes: 

(2') SP(P & v=t, x:=e) = P & v=u, 

where xis the list x1 , ••• ,x and for i = l, ••• ,n we have 
m -

vi is xj for some j, 1 i j i m, and otherwise ui = ti. 

than the previous formulation, in that the existential 

been eliminated from the strongest postcondition. 

ui = ej[t/v] if 

This is simpler 

quantifier has 

Rules (1), (2') and (3) preserve the appropriate form of the 

precondition P & v=t. Rule (4), however, violates the condition that no 

variable in v may occur in P. We change it to the equivalent rule 



18 

k 

= V SP(P & bi[t/v] & v=t, Si) 

i=l 

In addition, we need the following general result about SP(R,S): 

k 

SP( V Ri, S) = 
i=l 

k 

V SP(Ri, S) 

i=l 

This allows us to compute the strongest postcondition of a specification 

of the form s1 ;s2 , where s1 is a conditional statement. In such a case 

we compute 

With these changes, the operator SP will always be applied to a 

precondition which satisfies the given restrictions, thus allowing us to 

use the simpler rule for assignments in computing strongest 

postconditions. 



19 

5. CORRECTNESS OF MODULAR PROGRAMS 

We need the predicate transformers in order to prove that an 

implementation of a procedure satisfies the specification given for it. 

Consider the environment 

and the body of p defined as 

M = body p: Bend, 

i.e. there are no local modules in M. Proving that the body of p 

satisfies the specification will then amount to proving that 

E; const v0 ]- P{B}Q 

holds, where vis the list of identifiers declared as variables in E, v0 
is an equally long list of distinct identifiers not occurring in E or B, 

P = WP(S,true) & v=v0 and 

This expresses the requirement on a correct implementation laid down 

earlier: The implementation must not fail for initial states in which S 

is guaranteed not to fail (i.e. 'B may not fail when P holds), and any 

possible final state of the implementation for such an initial state must 

be a possible final state of S (any final state of B must then satisfy 

Q). 

We are now ready to present the proof rule by which the correctness 

of modular programs is established. We introduce another kind of 

correctness formula for this purpose, of the form: 



20 

H ::• E ]- M, 

where Eis an environment and Mis a module (i.e. a procedure body), of 

the form 

E = E1 ; proc p:S end; E2 and 

M = body p:E';S';M1 ; ••• ;Mn end. 

We will assume that no identifier is redeclared in the closure "body 

E;M end", Le. for each identifier there is only one declaration in the 

closure. The reason for this restriction is that we want static scope 

for procedures. The proof rule for procedure calls together with the 

proof rule for procedure implementations to be given below, however, give 

dynamic scope instead of static scope. With the restriction on 

redeclaration we avoid this problem, as dynamic and static scope will 

then agree. It is always possible to transform a program into an 

equivqalealent one which satisfies this restriction, by a suitable 

renaming of identifiers. 

The proof rule for modules will be as follows: 

7. E;E' ]- M., i=l, ••• ,n 
1 

E; const v0 ]- P{begin E';S' end}Q 

where v0 , P and Qare as above. 

Thus, to prove that E ]- M is correct, one has to prove that the 

effect of the block "begin E'; S' end" is the same as the effect of S and 

one has to prove that each local module of M satisfies its 

specification. Note that this proof rule does not require that each 

procedure specification is implemented by a module, so it is also 



21 

applicable to the correctness of of programs which are being developed 

and where therefore not all modules have been written yet. 

The soundness of the proof system presented above will be shown in 

an accompanying report [4]. However, it is worth noting that this proof 
I 

system would not be sound if we did not require absence of failure in 

E ]- P{S}Q, i.e. if we would use the following alternative definition of 

validity: 

E ]- P{S}Q iff if P holds initially 

and S terminates without failure 

then Q holds upon termination. 

This would allow S to fail for initial states in which P holds. A simple 

example suffices to show that the proof rules are not sound with respect 

to this definition of validity: 

Consider the specification 

proc p: if x>O -> x:= x-1 fiend. 

Computing weakest preconditions and strongest postconditions of this 

specification (call it S), gives 

WP(S,true) 

SP(x=x0 ,s) 

= 

= 

x>O 

xo>O & x = xo-1· 

Let the implementation of p be 

body p: if x)O -> x:= x-1 

[] x=O -> x:= -10 

fi 

end. 



22 

Call the implementation S'. Let for the moment E ]- P{S}Q be interpreted 

with the alternative definition of validity. We then have that 

so the procedure is correctly implemented. Also, 

E ]- x ~ 0 {S} x) 0 

holds. By rule 7, we may then deduce that 

E ]- X ~ 0 { p } X ~ 0, 

which, however, is not valid for the alternative interpretation of E ]

P{S}Q. 

6. PROOF OF THE EXAMPLE PROGRAM 

We will illustrate the use of these proof rules by showing how to 

establish the correctness of the example program of section 2. The 

example program is of the form 

MO = body main: El;Ml end 

Ml = body fact25: E2;S2;M2 end 

M2 = body fact: S3 end, 

with E1 , E,2 , s2 and s3 as indicated in section 2. 

correctness of the closure, we have to prove that 

0 ]- M 
0 

To prove the 

holds, where 0 stands for the empty environment. TJsing proof rule 8, 

this means that we have to prove 



23 

(there is no statement in M0 to consider). This again requires us to 

prove 

E1; canst v0 ]- P1{begin E2 ;s2 end}Q1 and 

Ell ;E2 )- M2' 

(1) 

with v 0 , P1 and Q1 appropriately chosen. The latter reduces to proving 

(2) 

with w0 , P2 and Q2 again appropriately chosen. Thus, all in all, use of 

proof rul,e 8 will generate all correctness formula for statements which 

need to be proved in order to establish that the program as whole is 

correct. In this case we have to prove that (1) and (2) hold. 

Consider first (1). We have that 

canst maxint; 

var x; 

proc fact25: 

if 25!(maxint -> x:= 25! fi 

end. 

Thus only xis variable in E1 • We now have that 

WP(fact25, true)= 25! < maxint and 

SP(x=x0 , fact25) = 25! < maxint & x = 25! 

Proving (1) thus amounts to proving 



24 

E ]-
1 25! < maxint 

{begin E2;s2 end} 

X = 25 ! . 

The conjunct 25 ! i maxint can be omitted from the postcondition as it 

does not involve any variables which are changed in the statement. 

Consider now (2). We have 

const maxint; 

var x; . 

proc fact25: ••• end; 

var n; 

var oflo; 

proc fact: 

if O<n & oflo=O -> 

fi 

end. 

if n!(maxint -> x:= n! 

[] n!>maxint -> x,oflo:= 0,1 

fi 

This environment contains the variables x, n and oflo. We compute 



25 

WP(fact, true)= O(n & oflo=O and 

Oino & oflo=O & 

This means that we have to prove that 

{begin s3 end} 

Consider proving the correctness of this last formula. Knowing that the 

procedure call rule simply amounts to a macro substitution of the 

specification for the call, we can perform this substitution in advance, 

i.e. we substitute in s3 the specification of fact for the call on fact. 

This then gives us the following correctness formula: 



26 

O(n & oflo=O & x,n,oflo = x0 ,n0 ,oflo0 
{begin 

var m; 

if n=O v n=l -> x:= 1 

[] n)O -> 
n:= n-1; 

if O(n & oflo=O -> 
if n!(maxint -> 

x:=n! 

[ ] n!>maxint -> 
x,oflo:= 0,1 

fi 

fi; 

n:= n+l; 

if oflo=l -> skip 

[] oflo=O -> 
m:= maxint/n; 

if x<m -> x:=x*n 

[ 1 x)m -> x, oflo: = 0,1 

fi 

fi 

fi 

end} 

(n~maxint & x,n,oflo = n0 ! , n0 , oflo0) V 

(n0)maxint & x, n, oflo = O,n0 ,1). 

The correctness of this is easily seen by analyzing the program text and 

the different cases which can arise. A formal proof can be given using 

the proof rules of section 3. 



27 

7. STRENGTHENING THE SPECIFICATION LANGUAGE 

We observed in the introduction that explicit specifications, as 

defined there, are not as powerful as implicit specifications using pre-
' and postconditions, on a given signature Sig. The reason for this is 

that one with the latter specifications can describe any first-order 

definable relation in Sig between input and output, while explicit 

specifications clearly are not capable of this. To remedy this 

shortcoming, we introduce a nondeterministic assignment into the 

specification language, by adding the following production to the syntax 

definition of Spec: 

S ::= x:= y.Q. 

Here x and y are lists of distinct identifiers, of the same length, and Q 

is a first-order formula on Sig. 

The effect of this statement is to assign to the variables in x the 

corresponding values y, where the values y are chosen so that condition Q 

is satisfied (Q may contain free occurrences of variables in x and y). 

The choice of values for y is nondeterministic if there is more than one 

value combination which satisfies Q. The statement is considered to fail 

if there is no values for y which satisfy Q. 

As an example, consider the following procedure specification: 

proc sqroot: 
2 2 if u)O -> u:= v.((v-1) < u iv) fi. 

end. 

The effect of this procedure is to compute the integer square root of u. 

As another example, consider the following alternative specification 

of fact: 



28 

proc fact: 

if O(n & oflo=O -> 

if n!(maxint -> x:= nl 

[ ] nl>maxint -> oflo:= l;' 

x:= y.true 

fi 

fi 

end. 

This specification allows the procedure to terminate with any _value of x 

in case an overflow would occur during the computation of the factorial. 

In addition to allowing nondeterministic assignments in 

specifications, we also allow the guards in conditional statements to be 

arbitrary first-order formula. With these e~tensions, any pre- and 

postcondition can be expressed as an explicit specification. Thus, 

assume that we have a procedure p specified by a precondition, P & v=vO 
and a postcondition Q, where P contains no occurrences of vO and Q may 

contain free occurrences of v and vO, v being the variables in the 

environment where p is declared. This specification can be expressed in 

the strengthened specification language by 

To make use of the extended specification language, we need to give 

a proof rule (or rather an axiom) for the nondeterministic assignment. 

We also need to give rules for computing the weakest preconditions and 

strongest postconditions of these. 

The axiom for nondeterministic assignment is 

E ]- 3y.Q & Vy(Q => R[y/x]) {x:= y.Q} R. 



29 

Notice the similarity with the rule of adaptation in HOARE [8]. The first 

conjunct in the precondition checks that the statement cannot fail, while 

the second checks that it has the required effect. 

The weakest precondition is defined by 

WP(x:= y.Q,R) = 3y.Q & Vy(Q => R[y/x]), 

i.e. it is the same as the precondition in the proof rule. 

The strongest postcondition is as follows: 

In the case that R is of the form P & v=t, with P, v and t as in section 

3, we get the following form for the strongest postcondition. 

SP(P & v,x = t',t", x:= y.Q) 

= P & v = t' & Q[t"/x,x/y] 

= 3x'.(P & Q[t"/x,x'/y] & v,x = t',x'), 

where x' is a list of distinct fresh identifiers. This formula is in the 

required form, except for the preceding ~xistential quantifier. We can, 

however, use this definition in conjunction with the following fact about 

strongest postconditions: 

when none of the variables in x0 occur ins. This allows us to compute 

strongest postconditions using the simpler rules also in the case when 



30 

the specification is of the form x:= y.Q; S. In this case we get 

SP.(P & v=t, x:=y.Q;S) 

= SP(SP(P & v=t, x:=y.Q), S) 

We cannot get rid of the existential quantifiers, but they will not 

prevent computing with the simpler rules for strongest postconditions. 

8. PROCEDURES WITH PARAMETERS 

We now show how to handle procedures with parameters. First, we 

have to extend the syntax in an appropriate way. We add to the definition 

of declarations the production 

D ::= proc p(E):S end, 

where E is an environment which may only contain variable and constant 

declarations. The statements are extended by the production 

S ::= p(a), 

where a is a list of expressions corresponding to the formal parameters 

declared in p. Finally, we also add the production 

to the definition of modules. 



31 

The parameter mechanism assumed here is call by constant and call by 

variable. In the first case the parameter is declared as a constant. The 

actual parameter may be any expression, and is evaluated upon entry to 

the procedure. The parameter may not be assigned to in the specification 

or body of the procedure (Le. it is a constant 'in the body). In the 

second case the parameter is declared as a variable. The actual parameter 

must then be a variable identifier. We will require that the actual 

parameters cannot give rise to aliasing. This means that all actual 

variable parameters must be distinct, and none of them may be used as 

global variables inside the specification or the body. 

Let E contain the declaration 

proc p{const c; var x): Send, 

where c and x are identifier lists. 

procedures with parameters is then 

The proof rule for calls on 

9. E ]- P{S'}Q 

E ]- P{p(e,z)}Q 

where 

S' = begin var w; w:=e; S[w/c,z/x] end. 

Here w is a list of distinct identifiers not occurring in E. The proof 

rule for procedure bodies with parameters becomes: 

10. E;E';E" ]- Mi, i=l, ••• ,n 

E;E';const v0 ]- P{begin E";S" end}Q 

E ]- body p{E') :E"; S";M1; •.• ;Mn end 



32 

where v is the list of variables declared in E;E-, v0 is a corresponding 

list of fresh distinct identifiers and 

p = WP(S,true) & v=v0 , 

The proof rule for procedure calls is modeled after the syntactic 

substitution method for handling procedures with parameters described by 

DE BAKKER[ 6]. However, the syntactic substitution is here performed on 

the specification and not the body as is done by de Bakker. This 

necessitates the no aliasing restriction. Without this restriction, the 

usual anomalies, arising in connection with implicit specifications due 

to aliasing, can be shown to arise with explicit specifications too, 

9. AN EXAMPLE WITH PARAMETERS 

The example program of section 6 is here written using procedures 

with parameters. The closure main is as follows. 

body main: 

canst maxint; 

var x; 

proc fact25: 

end; 



33 

bodly fact25: 

var oflo; 

proc fact(const n; var y): 

if O<n & oflo=O -> 
if n!<maxint -> y:=n! 

[ ] n ! .maxint -> oflo:=1; 

y:=z.true 

fi 

fi 

end; 

begin oflo:= O· 
' 

•fact(25,x) 

end; 

body fact ... 
end 

end 

end. 

The body of fact is as follows: 



34 

body fact: 

begin var m; 

if n=O v n=l -> y:= 1 

[ ] n)l -> 
fact (n-1,y); 

if oflo=l -> skip 

[ ] oflo=O -> 
m:= maxint/n; 

if Yim-) y:= n*y 

[ 1 y)m -> oflo:=1 

fi 

fi 

fi 

end 

end. 

Note that the value of y is not set to O in case of an overflow. This is 

allowed by the specification of fact, in which y is assigned an arbitrary 

value in case of overflow. 

Proving the correctness of this program is done analogously with the 

proof in sec ti on 6. The main difference concerns the proof rule for 

procedure calls. Thus, proving the correctness of the implementation of 

fact amounts to proving the following correctness formula, for 

appropriate choices of E, P and Q. We have here substituted the expanded 

specification of fact for the call fact(n-1,y) in the body. 



35 

E ]- P{begin var m; 

if n=O v n=l -> y:= 1 

[ ] n>l -> 

begin var w· 
' 

w:= n-1; 

if O<w & oflo=O -> 

if w!(maxint -> 

y:= w! 

[ ] w!>maxint -> 

oflo:= 1; 

y:= z.true 

fi 

fi; 

end; 

if oflo=l -> skip 

[ ] oflo=O -> 

m:= maxint/n; 

if Yim-> y:= n*y 

[ ] y)m -> oflo:= 1 

fi 

fi 

fi 

end} Q . 

REFERENCES 

[1] APT,K.R., Ten years of Hoare's logic, a survey. In Proc. 5th 

Scandinavian Logic Symposium (F.V. Jensen, B.H.Mayoh, K.K. Moller, 

eds.), pp. 1-44, Aalborg University Press, 1979 (to appear in 

TOPLAS). 



36 

[2] BACK, R.J. R., Correctness preserving program refinements: 

theory and applications~ Mathematical Center Tracts 

Mathematisch Centrum, Amsterdam 1980. 

Proof 

I 31 , 

[3] BACK,R.J .R., On the notion of correct refinement of programs. In 
I 

Proc. 5th Scandinavian Logic Symposium (F. V. Jensen, B .!I. Mayoh, 

K.K. Moller, eds.), Aalborg University Press, 1979 (to appear in the 

Journal of Computer and System Sciences). 

[4] BACK,R •. J.R., Soundness of a proof system for explicitly specified 

procedures (to appear). 

[ 5] BACK, R.J .R., Checking whether programs are correct or incorrect. 

Report IW 144/80, Mathematisch Centrum, Amsterdam, 1980. 

[6] DE BA.."l{KER, J.w;, Mathematical Theory of Program Correctness. 

Prentice-Hall, 1980. 

[7] DIJKSTRA, E.W. A Discipline of Programming. Prentice-Hall, 1976. 

[8] HOARE, c.A.R., Procedures and parameters: An axiomatic approach. In 

Symposium on Semantics of Algorithmic Languages (E. Engeler, ed.), 

pp. 102-116, Lecture Notes in Mathematics 188, Springer-Verlag, 

1971. 

[9] ICHBIAH,J.D. & al, Preliminary ADA reference manual. ACM Sigplan 

Notices 14,6A, June 1979. 

[10] WULF, W.A., R.L. LONDON & M. SHAW, An introduction to the 

construction and verification of Alphard programs. IEEE Trans. on 

Software Engineering SE-2, 4, pp.253-265, 1976. 





' 


