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ABSTRACT 

We develop the basic proof theory of Hoare's logic for the partial 

correctness of while-programs whose underlying data types are defined by 

first-order axiomatic specifications. Our objective is to study the effects 

of refining data type specifications on the program correctness proofs they 

support. It :i.s shown that any finite selection of refinements is stable rel­

ative to a given asserted program, but that this stability is a strictly 

local property of families of specifications. 
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INTEODUCTION 

Consider a programming environment with a program language, and a fa­

cility to define a data type as a set of primitive operators I which satis­

fy a set of axiomatic properties E. In the construction and maintenance of 

programs in such an environment once can easily be faced with the problem 

of "matching" a data type specification (I,E) to a proof that a particular 

program S, based upon I, is correct relative to particular input-output 

conditions p,q. Implicitly or explicitly, the verification of {p}S{q} acts 

as a proof-theoretic criterion for the correctness of the axiomatisation E. 

In order to prove the asserted program, it may be necessary, or convenient, 

to refine a specification E into another specifi'cation E' because {p}S{q} 

is true in an intended semantics, but the axioms E are too general (read: 

too weak!) to prove the appropriate information about the underlying data 

types. 

For example, this activity of refining specifications to obtain cor­

rectness proofs will be part and parcel of any verification system whose 

design conforms, even superficially, to that used by Igarashi, London and 

Luckham in their pioneering work [12] on the Stanford PASCAL verifier. And, 

of course, refinement will assume prominence in systems supporting data ab­

straction. This is evident in the development of the PASCAL verifier [13], 

but in a system such as AFFIRM one finds the refinement of specifications 

and program verification placed on an equal footing [14]. 

Whatever the environment, one can enquire: To what extent are the in­

finitely many ways of refining a specification independent of the required 

program verification? Given that a selection of specifications individually 

"encode" enough information to prove an asserted program {p}S{q}, surely 

the asserted program can be verified from the information about its data 

types which is common to all members of the family? We shall formalise this 

question and give it an answer. 

For simplicity, let us assume that the assignment and control con­

structs available in the language of the environment are those of while­

programs, and that a data type is specified by a set of primitive operators 

I satisfying a collection of first-order axioms E. The partial correctness 

of a program belonging to such an environment can be naturally analysed by 
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the familiar axioms and proof rules first described in HOARE [11] providing 

one allows only assertions provable from the specification E to govern the 

Rule of Consequence. The resulting formal system, based upon the first-order 

assertion language Lover E, we term Hoare's logic for the specification E 

and we denote it HL(E). It is worth noticing that our simple environment 

and its associated Hoare logics represent precisely the theoretical foun­

dation of the Stanford VCG for the little fragment of PASCAL determined by 

the while-construct. 

A specification E' is said to refine a specification E if any assertion 

provable from Eis provable from E'. For a family of refinements 

~ = {Ei:i EI} of a specification Ewe define the core of~ by 

CORE(~) = {p E L: E. I- p, for each i E r}. 
l 

Obviously, E c CORE(RE). A rather straightforward formal interpretation of 

our question reads thus: Given an asserted program {p}S{q} and a specifica­

tion E, if for each choice E. from a family of refinements R we know 
l E 

HL (Ei) I- {p}S{q} then does this guarantee HL (CORE (RE)) I- {p}S{q}? 

Here is the answer. 

THEOREM. Let Ebe a first-order specification and {p}S{q} an asserted pro-

gram. Let¾:= {Ei:i EI} be a family of refinements of E such that 

HL (E.) 
l 

I- {p}S{q} for each i E I. If I is finite then the family is stable 

in the sense that 

HL (CORE (RE)) I- {p}S{q}. 

However, if I ~ls infinite then the family may well be unstable: there is a 

specification E and an asserted program {p}S{q}, and a countably infinite 

family R = {E. :i E I} of refinements of E such that HL(E.) I- {p}S{q} but 
E l l 

HL (CORE(~)) I-/ {p}S{q}. 

Once one has carefully thought through the basic proof theory of Hoare's 

logic, the stal>ili ty of finite families of refinements is quite easy to 

prove. But the instability of infinite families is harder to demonstrate 
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because the computation-theoretic ideas involved carry a number of exercises 

in first-order model theory as overheads. The instability result here should 

be compared with a theorem about arithmetical computation which was proved 

in our [7]: for any asserted program {p}S{q} and any infinite family 

R = {E.: i € I} of refinements of Peano Arithmetic, if HL(E.) I- {p}S{q} for 
1 1 

each i € I then HL(CORE(R)) ~ {p}S{q}. This is a particularly pleasing re-

sult since Peano Arithmetic is merely a refinement of the standard algebraic 

specification for arithmetic, designed to generate those assertions prov­

able by induction. 

After some preliminaires, we define Hoare's logic for a specification 

and look at its proof theory; in Section 3 we prove the theorem. It should 

be noticed that the theorem does not concern semantical questions and that 

this gives it a certain novelty in the _theoretical literature on program 

correctness. Most theoretical investigations and applications of Hoare's­

ideas about axiomatisation have contained a strong semantic bias since 

Cook's study [8]; see, for example, DE BAKKER [2] and the invaluable survey 

APT [1]. Practice, on the other hand, seems to have been preoccupied with 

proof theory. 

This note is part of a series of articles about Hoare's logic and data 

type specifications: various incompleteness and completeness properties of 

the logic are re-examined in [4,6]; algebraic specifications are studied 

in [5]; and the proof theory of the logic over arithmetic is the subject 

of [7]. All these articles derive from [3], written in collaboration with 

J. Tiuryn, about the use of correctness formulae in defining the semantics 

of a programming system with first-order specified data types; but strict­

ly speaking, none are required reading for the present paper. 

We gratefully acknowledge conversations about verification with our 

colleagues R.J.R. Back and A. de Bruin. 

1. ASSERTIONS, SPECIFICATIONS AND PROGRAMS 

Prerequisite to any study of Hoare's logic are the primary sources 

HOARE [11] and COOK [8], but the reader would do well to consult the survey 

article APT [1]. 
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The first-order language L = L(I) of some signature I is based upon a 

set of variables x 1,x2 , ... and its constant, function and relational symbols 

are those of I together with the boolean constants true, false and the equal­

ity relation. We assume L possesses the usual logical connectives and quan­

tifiers; and the set of all algebraic expressions of L we denote T(I). 

If Eis a set of assertions of L then the set of all formal theorems 

of E is denoted Thm (E) ; we write E I- p for p E: Thm (E) • Such a set E of for­

mulae is usually called a theory, but in the present context we obviously 

need the more suggestive term specification, for L will serve as both an as­

sertion/program specification language and a data type specification lan­

guage. 

1.1. DEDUCTION THEOREM. Let Ebe a specification and let p,q be assertions. 

Then the following are equivalent: 

( 1) E u {p} I- q 

(2) E I- p ➔ q. 

where Bis the universal closure of p. 

A specification E' is a refinement of a specification E if Thm(E) c Thm(E'). 

And two specifications E,E' are (logically) equivalent if Thm(E) = Thm(E'). 

If Eis a specification and~= {Ei: i E: I} is a family of refinements of 

Ethen we define the core of RE by 

Thm(E.). 
J. 

Using the syntax of L, the set WP= WP(I) of all while-programs over 

r is defined in the customary way. 

By a specified or asserted program we mean a triple of the form {p}S{q} 

where SE: WP and p,q E: L. 

Such are the ingredients of Hoare's logic for a specification, but we 

also need their semantics in the proof of the theorem. Let us summarize the 

meanings for the various components and remark on the use of Las a data 

type specification language. 

The semantics of a signature is a structure. For any structure A of 

signature r, the semantics of the first-order language Lover r as deter­

mined by A has its standard definition in model theory and this we assume 
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to be understood. The validity of p € L over structure A we write A I= p. 

The class of all models of a specification Eis denoted Mod(E); we write 

Mod(E) I= p to mean that for every A € Mod(E), A I= p. Godel's Completeness 

Theorem says this about specifications: 

E I- p if, and only if, Mod (E) I= p. 

As far as the proof theory of a data type axiomatisation Eis concerned, 

the semantics of the specification is Mod(E). 

So consider the algebraic specification methods for data types where 

one invariably has a particular semantic model in mind for a specification. 

Following ADJ[9], it is usual to settle on the initial model I(E) of Mod(E) 

as the unique meaning for an algebraic axiomatisation E. The logic of Eis 

oblivious of this (or any other) particular choice because it yields only 

those facts true in all models of E. Refinements are a natural accessory 

of algebraic specifications: one starts with a simple algebraic specifica­

tion (E,E) to establish the correctness of the desired data type semantics 

A and then adds to E various assertions true in A as the need arises in 

program correctness proofs (say). Peano arithmetic illustrates this perfect­

ly. Refinements are also a necessary accessory of algebraic specifications 

for although the algebraic methods can define virtually any data type one 

wants, the kinds of assertion provable from algebraic formulae are rather 

restricted; see [SJ for a thorough discussion of this problem. 

For the semantics of WP as determined by a structure A, we leave the 

reader free to choose any sensible account of while-program computations 

which applies to an arbitrary structure: COOK [8]; the graph-theoretic se­

mantics in GREIBACH [10]; the denotational semantics described in DE BAKKER 

[2]. What constraint must be placed on this choice is merely the necessity 

of verifying the soundness of Hoare's logic (Theorem 2.9). 

To the asserted programs we assign partial correctness semantics: the 

asserted program {p}S{q} is valid on a structure A (in symbols: A I= {p}S{q}) 

if for each initial state a€ states(A), A~ p(a) implies either S(a) 

terminates and A I= q (S (a)) or S (a) diverges. And ~1e asserted program 

_{p}S{q}is valid for a specification E if it is valid on every model of E; 



6 

in symbols, E I= {p}S{q} or Mod(E) I= {p}S{q}. 

The partial correctness theory of a structure A is the set 

PC (A) = { {p}S{q}: A I= {p}S{q}}; 

and the partia.I correctness theory of a specification Eis the set 

PC(E) { {p}S{q}: Mod (E) I= {p}S{q}}. 

Clearly, 

PC(E) = nAEMod(E) PC(A). 

2. HOARE'S LOGIC 

Hoare's logic for WP= WP(E) with assertion language L = L(E) and spe­

cification E c L, has the following axioms and proof rules for manipulating 

asserted programs: let s,s 1 ,s2 E WP; p,q,p1 ,q 1 ,r E L; b E L, a quantifier­

free formula. 

1. Assignment axiom scheme: fore E T(E) and x a variable of L, the asserted 

program 

{p[e/x]}x := e{p} 

is an axiom,, where p[e/x] stands for the result of substituting e for free 

occurrences of x in p. 

2. Composition rule: 

{p}s 1{r},{r}s 2{q} 

{q}S1;S2{q} 

3. Conditional rule: 



4. Iteration rule: 

{pAb}S{p} 
{p} while b do s od {pA b} 

5. Consequence rule: 

p~l '{pl }S{ql} ,q(~-q 

{p}S{q} 

And, in connection with 5, 

6. Specification axiom: Each member of Thm(E) is an axiom. 

7 

The set of asserted programs derivable from these axioms by the proof 

rules we denote HL(E), but if E = {t} for some t EL then we use HL(t). As 

usual we write HL(E) I- {p}S{q} in place of {p}S{q} E HL(E). 

2 .1. REFINEMENT LEMMA. Let E and E' be specifications. If E' .is a refinement 

of Ethen HL(E) c HL(E'). Thus, if E and E' are equivalent specifications 

then HL(E) = HL(E'). 

Actually, it is this first lemma which authorises our use of the term 

refinement in the present context for our interest in the logic of specifi­

cations and assertions is shaped by the logic of partial correctness it must 

support. Lemma 2.1 is obviously true as, indeed, are the next two proof­

theoretical facts: 

2.2. FINITENESS LEMMA. Let Ebe a specification and {p}S{q} an asserted 

program. If HL(E) I- {p}S{q} then there is a finite set F = {t.: i E I} of 
l. 

assertions such that E I- t. for each i E I and HL (F) I- {p}S{q}; in par-
1. 

ticular, there is a single assertion t = A. I t. such that E I- t and 
1.E l. 

HL (t) I- {p}S{q}. 

2.3. PROOF DECOMPOSITION LEMMA. Let Ebe a specification and let p,q be 

assertions. Then 
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(1) Assignment: HL(E) I- {p}x := e{q} if, and only if, E I- p ➔ q[e/x] 

(2) Composition: HL(E) I- {p}s1 ;s 2{q} if, and only if, for some assertion r, 

HL(E) I- {p}Sl{r} and HL(E) I- {r}s2{q} 

(3) Conditional: HL (E) I- {p} if b then s 1 else s 2 fi{q} if, and only if, 

HL (E) I- {pAb}s 1 {q} and HL (E) I- {pA-Jb}s2 {q} 

(4) Iteration:: HL (E) I- {p} while b do s 0 od {q} if, and only if, for 

some assertion r, 

E f-- p ➔ r, HL(E) f-- {rAb}S{r}, and E f-- r A--rb ➔ q. 

The ease with which one can calculate in a formal system is decided by 

its derived rules. Hoare's logic enjoys many derived rules which turn nat­

ural semantical properties into formal proof-theoretical laws with few syn­

tactical concessions. We shall list a few of these rules, but we will prove 

only the first. 

2.4. LEMMA. Let Ebe a specification and {{p.}S{q.}: i EI} a finite set of 
1. 1. 

asserted programs. Then the following is a derived rule of HL(E) 

{p,}S{q.} for each i EI 
J.. 1. 

PROOF. This is: proved by induction on the structure of S for which the 

basis is the assignment statement. 

Assignment: S ::= x := e. Assume HL(E) I- {p. }x := e{q.} for each i E I. Then 
1. 1. 

by Lemma 2.3, E 1-- p. ➔ q. [e/x] for each i E I. We can now calculate formal-
1. 1. 

ly as follows: 

E ~- A. 1 (p. ➔q,[e/x]) 
l.E 1. 1. 

E ~- AiEI(pi➔viEI qi[e/x]) 

E ~- 'W. Ip,) ➔ 1/ I q.[e/x]). 
l.E 1. 1.E 1. 

Whence HL(E) 1-- 'tJ. Ip. }x := e0/ I q,} by Lemma 2.3. 
1.E 1. l.E 1. 

The induction step divides into 3 cases. 

Composition: S EI. Then 
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by Lemma 2.3, there exist assertions {r.: i EI} such that for each i EI, 
l. 

HL(E) I- {p.}sl{r,} and HL(E) I- {r.}S2{q.}. 
l. l. l. l. 

By the induction hypothesis, 

HL(E) I- N. I p. }s1rJ. I r.} and HL(E) I- {V I r. }s2rf I q.} 
l.€ l. l.€ l. l.€ l. l.€ l. 

and by Lemma 2.3, we deduce 

HL (E) I- {V. I p, }sl ;S2{v I q,}. 
l.€ l. l.€ l. 

Conditional: S : := if b then s 1 else s 2 fi. Assume HL(E) I-· {pi}S{qi} for 

each i EI. Then by Lemma 2.3, we know that for each i EI, 

HL(E) I- {p,Ab}S1{q.} and HL(E) I- {p,/V-1b}s2{q. }. 
l. l. l. l. 

By the induction hypothesis, 

Since A distributes over v, we can rewrite these formal theorems as 

HL(E) I- { cV Ip.) Ab}s10/ Iq.} and HL(E) I- { 1/. Ip.) A"'lb}s2Y Iq.} 
l.€ l. l.€ l. l.€ l. l.€ l. 

and thanks to Lemma 2.3 we are done. 

Iteration: S : := while b do s 0 od. Assume HL(E) I- {p. }S{q.} for each i E I. 
l. l. 

Then by Lemma 2.3, there exist assertions {r.: i EI} such that for each 
l. 

i EI, 

E I- p ➔ r. HL (E) ~ {r. Ab}So{r.} and E I- r. A -rb ➔ q,. 
i l. l. l. l. l. 

Obviously, we can obtain by simple logical calculations the theorems 
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and as the induction hypothesis applied to s0 yields 

(with the help of the distribution law for A over V) we are done by Lemma 2.3. 

Q.E.D. 

2.5. LEMMA. Let Ebe a specification and {{p,}S{q.}: i EI} be a finite set 
l. l. 

of asserted programs. Then the following is a derived rule of HL(E) 

{p.}S{q.} for each i EI 
l. l. 

2.6. LEMMA. Let Ebe a specification and {p}S{q} an asserted program. Then 

the following is a derived rule of HL(E) 

{p}S{q} 
{3y.p}S{q} 

where y is not a variable of Sand not a free variable of q. 

The following theorem is quite fundamental for any reasoning about 

Hoare's logic for a specification. 

2.7. DEDUCTION LEMMA. Let Ebe a specification, let t be (the universal 

closure of) an assertion and let {p}S{q} be an asserted program. Then the 

following are equivalent 

(1) HL(Eu{t}) I- {p}S{q} 

(2) HL(E) J- {tAp}S{q}. 

PROOF. That (2) implies (1) is obvious: clearly, E 1- t ➔ (p➔tAp) and so 

by the Deduction Theorem 1 .1 for first-order logic E u { t} I- p ➔ t A p. 

From (2) and the Refinement Lemma 2.1 we know that HL(Eu{t}) I- {tAp}S{q}; 
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thus by the Rule of Consequence it follows that HL(Eu{t}) ~{p}S{q}. The 

reverse implication is proved by induction on the structure of S for which 

the basis is the assignment statement. 

Assignment: S : := x := e. Assume HL(Eu{t}) I- {p}x := e{q}. Then 

E u { t} I- p ➔ q[e/x] by Lemma 2 .3 and E I- t ➔ (p+q[e/x]) by the Deduction 

Theorem 1.1 for first-order logic. But E I- t /\ p + q[e/x] and so 

HL(E) ~ {tAp}x := e{q} by Lemma 2.3. 

The induction step divides into 3 cases. 

Composition: S : := s 1 ;s2 • Assume HL(EU{t}) I- {p}s 1 ;S2{q}. By Lemma 2.3, 

there is some assertion r such that 

HL(Eu{t}) ~ {p}s1 {r} and HL(Eu{t}) I- {r}s2{q}. 

Now Eu {t} I- r ➔ (t/\r) and so HL(Eu{t}) I- {p}s 1{tAr} by the Rule of Con­

sequence. By the induction hypothesis, 

and hence HL(E) I- {tAp}s1 ;s2{q} by the Composition Rule. 

Conditional: s : := if b then s 1 else s 2 fi. Assume HL(Eu{t}) 1- {p}S{q}. By 

Lemma 2 • 3 , we know that 

HL(Eu{t}) ~ {p/\b}s 1{q} and HL(Eu{t}) I- {p/\"'fb}s 2{q}. 

By the induction hypothesis, 

HL (E) I- { {tAp) Ab}s 1 {q} and HL (E) I- { (t/\p) /\"lb}s 2 {q} 

and hence HL(E) I- {tAp}S{q} by the Conditional Rule. 

Iteration: S ::= while b do s 0 od. Assume HL(EU{t}) I- {p}S{q}. By Lemma 

2.3, there :is some assertion r such that 
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E u {t} I- p + r HL (Eu{ t}) I- {r/\b}s0 {r} and E u { t} I-• r A-rb + q. 

Now E u { t} I- r + t A r so applying the Rule of Consequence to the assert­

ed program, and the Deduction Theorem 1.1 for first-order logic to the log­

ical theorems, we obtain 

E I- t + (p+r) HL(Eu{t}) I- {rAb}s0{tAr} and H I- t + (rA"1'~) 

and with some further logical rewriting and the induction hypothesis applied 

to s 0 we get 

E I- t A p + t Ar HL(E) I- { (tAr)Ab}s0{tAr} and E I- (tAr} A--,b + q. 

By the iteration clause of Lemma 2.3, HL(E) I- {tAp}S{q}. 

Q.E.D. 

The following fact has an essential role to play in the proof of our 

theorem. 

2.8. LEMMA. Let Ebe a specification and let {t.:i EI} be a finite set of 
1. 

assertions. If HL(Eu{t. }) I- {p}S{q} for each i E I then HL(Eu{Y. It.}) l-
1. 1.E 1. 

{p}S{q}. 

PROOF. Assume HL(EU{t.}) 1-{p}S{q} for each i EI. Then by the Deduction 
1. 

Lemma 2.7, HL(E) I- {t.Ap}S{q} for each i EI. By the derived rule Lemma 2.4, 
1. 

we have HL(E) I- { cYiE:Iti) }s{q} and so the result follows by the Deduction 

Lemma 2.7. 

Q.E.D. 

And finally we record this well known theorem which will be needed for 

technical reasons in the next section. 

2.9. SOUNDNESS -THEOREM. Let Ebe a specification. Then HL(E) c PC(E). 

This is what is said in the corollary to Theorem 1 in COOK [8]. 
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3. PROOF OF·THE THEOREM 

Let RE= {Ei: i EI} be a finite family of refinements of the specifi­

cation E and assume that HL(E.) f-- {p}S{q} for each i EI. By the Finiteness 
l. 

Lemma 2.2, we can choose assertions t. such that E. I- t. and 

HL(t.) f-- {p}S{q} for 
.l. 

l. l. l. 

each i E I. By Lemma 2.8, we know HL(V. t.) f-- {p}S{q}, 
1.EI l. 

but YiEiti E CORE(~) and so we are done. 

Now consider the case of an infinite family of refinements. Our coun­

ter-example is combinatorially related to two-way unbounded lists and arrays 

and it could be descrited exlcusively in terms of such structures. For tech­

nical clarity, however, we have found that our argument is better served by 

the example's looser relationship with arithmetic. 

The basic specification is (E,E) where E = {a,b,N,L} and a,b are con­

stants and N,L are unary operator symbols; and E contains two algebraic 

axioms 

NL(X) = X and LN(X) = X. 

The models of E are precisely those structures composed of a set equipped 

with a permutation, its inverse and two distinguished points. But for the 

moment one may think of N,L as the next and last operators on two lists 

with roots a,b. For example, the initial algebra of Mod(E) picks out the 

model depicted in Figure 3.1 which we identify with.two copies of integer 

arithmetic ~ A z;; • 

a_2 a_l ao a1 a.2 ak ak+l . . . . . N . 
L N L 

L N 
N 

. . . . . . L • 
b_2 b -1 bO bl b2 bk bk+l 

Figure 3.1 

The asserted program {p}S{q} we shall study is defined by 
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S ::=whilex:/:-bdox :=N(x) od 

p = x = a and q = false • 

If {p}S{q} were provable then this would guarantee that a,b are the roots 

of distinct lists, or arithmetics, as one can neither move, or count, up 

from a to b nor down from b to a. Notice that {p}S{q} is valid on the initial 

model 7l: A 7l: because S (a0) di verges, but it is not provable in HL (E) be­

cause it is not valid in a model of E such as 

k-:ll:= ({. •• ,-2,-1,0,1,2, ••• }; 0,k,x+l,x-1) 

where a names 0, and b names k and k ~ 0 (by the Soundness Theorem 2.9). 

Let E. =Eu {Nj(a) :/:- b: 0 ~ j <- i}u{Ni(a) = a} for i E w. The axioms 
l. 

of E. are intended to force S to diverge on any input named by a because 
l. 

they introduce a cycle of length i generated by N applied to a from which b 

is procl uded. Notice E. is not valid in 7l: A 7l: but it is valid in 7l: A 7l: 
l. i 

where Zl:. is integer arithmetic modulo i. 
l. 

3.1. LEMMA. For each i E w, HL(E.) I- {p}S{q}. 
l. 

PROOF. Now s : := while X 'F b do X := N(x) od so consider the body X := N(x). 

By the Assignment Axiom Scheme, we know that for j < i 

·+1 ·+1 
HL (E.) 1- { (x=NJ (a)) [N(x) /x]} x := N(x) {x=NJ (a)}. 

l. 

·+1 
But the precondition is just N(x) = NJ (a) and trivially 

. . . 1 
E. I- x = NJ (a) -+ N (x) = NJ+ (a) • By the Rule of Consequence, we know that 

l. 

for j < i 

HL(E.) I- {x = Nj (a)} X := N(x) {x = Nj+l (a)} 
l. 

and by Lemma 2.4 

I- ·yi-1 j 
HL(Ei) { j=0 x = N (a)} x := 

I\ ,i-1 
N (x) t ~ j =0 x = 



B!,:!cause E. I- Ni (a) = a and E. I- v~-01 x 
1 1 J= 

apply the Rule of Consequence to obtain 

HL ( E . ) I- { r A X ~ a} X : = N (x ){ r} 
1 

-- yi-1 j wherein r x = N (a). By the Iteration Rule, we derive - j=O 

HL(E.) I- {r} while x ~ado x := N(x) od {r A-,(x~a)} 
1 
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we can 

and since E. I- p -+ r and E. I- (rA...,(x~a)) -+ q, the Rule of Consequence 
1 1 

yields 

HL(E.) I- {p}S{q} 
1 

Q.E.D. 

To complete the proof of the theorem we have to demonstrate this next 

fact: 

3.2. LEMMA. If~= {Ei:i E w} then HL(CORE(RE)) V {p}S{q}. 

PROOF. Assume for a contradiction that HL (CORE (RE)) I- {p}S{q}. Then by the 

Finiteness Lemma 2.2 we may choose an assertion t E CORE(~) such that 

(1) HL(t) f- {p}S{q}. 

For this statement (1) we shall find a contradiction. 

Let D be the following set of assertions which are intended to rule 

out finite cycles in the operator N and to ensure a and bare mutually in­

accessible: 

For example, D is valid in 72: A 72: , but we wish to show that the specifi­

cation Eu {t} u D has a model in order to guarantee the consistency of (1) 

with the special requirements on the operator N. 
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3 .• 3. LEMMA. The specification E u {t} u D has a model. 

PROOF. We use the Compactness Theorem. Any finite subset of T =Eu {t} u D 

is included in a finite initial segment TK =Eu {t} u DK where 

and K is sufficiently large. Consider the structure Zl A Zl made from two 
K K 

copies of integer arithmetic mod Kand depicted in Figure 3.2 

Figure 3.2 

Clearly, A F DK but, in addition, A F EK and hence A F E u { t}. Thus TK 

has a model. Since every finite subset of T has a model, T has a model by 

the Compactness Theorem. Q.E.D. 

We now need a technical fact about the relationship between t and Eu D. 

3.4. LEMMA. The specification Eu D admits quantifier elimination: for each 

* assertion r EL there is a quantifier-free assertion r such that 

* EuDl-r~r. 

PROOF. Let T == E u D. Now T is a universally axiomatised first-order theory 

so, by a theorem of Robinson, if Tis model-complete then T admits quanti­

fier elimination (see SACKS [15, p.67]). Another theorem of Robinson says 

that Tis model complete if, and only if, for each model A of T, Tu DIA­

GRAM(A) is complete (SACKS [15, p.36]). It is a routine matter to prove 

that for any model A of T, the set of formulae Tu DIAGRAM(A) is w -cate-
1 

gorical. Thus., by the J:.os-Vaught Test (SACKS [15, p.34]) this set of asser­

tions is complete. Q.E.D. 

* Using Lerrnna 3 .4 we can choose a quantifier-free assertion t such that 



* * Eu D ~ t +-+ t and then choose a finite subset D of D such that 

* * EUD f-t+-+t. 

* * We shall construct a structure A which is a model for Eu {t} u D 
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and in which for some Jl E w, A I= NJl (a) = b. Assuming this is done, the con-

tradiction to statement (1) is soon found: 

Clearly A bi {p}S{q} because S can terminate in Jl steps from X = a 

* f- * I= * I= * A. Since Eu D t +-+ t I we have that A t +-+ t and A t and so 

A I= t. Thus, {p}S{q} is invalid on a model of E u { t}. By the Soundness 

Theorem 2.9 

HL(Eu{t}) If {p}S{q} 

and so obviously HL (t) If {p}S{q} which is the required contradiction. 

in 

* * 3.5. LEMMA. The specification Eu {t} u D has a model in which for some 

Jl E w,FJl (a) = b. 

* PROOF. By Lemma 3.3, E u {t} u D has a model B and since E u D f- t +-+ t we 

* know Eu {t} u Dis valid in B. Now it is straightforward to check that the 

substructuice of B generated by the constants a, b is isomorphic to 2Z A 2Z 

* and since Eu {t} u D consists of universal axioms only it is the case 

that 

* 2Z A 2Z F E U {t } U D. 

* (Here we need the simplification oft tot, of course.) 

Consider the map <Pk: 2Z A 2Z + 2Z A 2Z defined by 

Each <Pk is an endomorphism of 2Z A 2Z and obviously 

By inspection, we can choose some k sufficiently large to guarantee that 
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* * </>k (?ZA ?Z) I= E U { t } u D . 

To see that these extra axioms can be satisfied we consider each of the 3 

sets in turn. First, </>k(?L:A2Z) I= E for any k because E contains only equa­

tions and q>k is a homomorphism. Next, consider the quantifier-free asser-

* * * tion t. If one chooses k > L = llt 11, the length oft, then <pk cannot iden-

* tify any of the 

that fork> L, 

inequalities making up t. It is easy to see in this case 

* * <pk (?L:A ?L:) I= t . Thirdly, since D is finite it is included 

in some finite segment DK of D as defined in the proof of Lemma 3.3. If one 

I= * chooses k > K then <pk (2ZA 2Z) D because no loops are introduced "below" k 

in the sense that 

q>k(2ZA ?Z) I= {Fi (a) # b, Fi (b) :/- a: 0 :::; i < k}. 

Therefore, choosing some JI, > max (L,K) leads to a model A = <P JI, (?ZA ?Z) such 

that 

* * JI, A f= E U { t } U D U {F (a) b}. 

Q.E.D. 
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