
AFDELING INFORMATICA

stichting

mathematisch

centrum

IW 156/80
(DEPARTMENT OF COMPUTER SCIENCE)

J.A. BERGSTRA & J.V. TUCKER

THE COMPLETENESS OF THE ALGEBRAIC SPECIFICATION
METHODS FOR DATA TYPES

Preprint

~
MC

DECEMBER

kruislaan 413 1098 SJ amsterdam

PJunted a;t :the Ma:the.matic.al CentJie., 413 Kll.l.U6£.aa.n, Am6:te.Jufam.

The Ma:the.ma.,t.foal Cen:tlte , ,6aunded :the 11-:th a-6 Feb/t/J.£1Jl.y 1946, b., a nan
p!Laoli .ln6:tltu,t,i,an ahn.lng at :the pMmo:t.lon a,6 pUJc.e ma.thematic& and -lt6
appLfoatiaru,. 1:t b.i J.ipoYll.>oJc.ed by :the Ne:the!L£.a.nd6 GoveJc.nment :thMugh :the
Ne:theJc.£.a.ndo 0Jc.ga.n.lzation ,6a!L :the Adva.nc.e.ment o,6 PuJc.e Re1.>eaJLc.h (Z.W.O.).

1980 Mathematics subject classification: 03D45, 03D80, 68B15

ACM-Computing Reviews-category: 4.34

* The completeness of the algebraic specification methods for data types

by

** J.A. Bergstra & J.V. Tucker

ABSTRACT

We prove the following fundamental theorem about the adequacy of the

algebraic specification methods for data abstractions. Let A be a data type

with n subtypes. Then A is computable if, and only if, A possesses an equa

tional specification, involving at most 3(n+1) hidden operators and 2(n+1)

axioms, which defines it under initial and final algebra semantics simul

taneously.

KEY WORDS & PHRASES: data types and data abstractions;, equational specifica

tions, initial algebra semantics, final algebra seman

tics, computable many-sorted algebras

* This paper is not for -review as it will be submitted for publication
elsewhere.

** Departme~t of Computer Science, University of Leiden, Wassenaarseweg 80,
Postbus 9512, 2300 RA LEIDEN, The Netherlands

1

INTRODUCTION

Suppose you wish to define a data abstraction as a set of primitive

operators I whose behaviour satisfies a set of algebraic axioms E. Then

initial and final algebra semantics are two different, though natural, ways

of settling on a unique meaning for the specification (I,E). As its.seman

tics, they each assign to (I,E) a many-sorted algebra, unique up to isomor

phism, from the class ALG(I,E) of all algebras of signature I satisfying

the axioms in E. Seen from the syntax of the data type, initial algebra

semantics insists that two syntactic operator expressions t,t' over I are

semantically equivalent if, and only if, t = t' can be proved from the

axioms E. While final algebra semantics assumes t,t' to be semantically

equivalent a:s long as t = t' does not contradict the requirements in E.

Here t,t' are called observationally or behaviourly equivalent as far as the

axioms of E are concerned; or - as one says in the terminology of logic -

t = t' is consistent with E.

The two choices have been discussed in the literature on data abstrac

tion with varying degrees of precision and approval. For example, equivalent

forms of initial algebra semantics are clearly explained in early articles

ZILLES [26,27], LISKOV & ZILLES [17] and ADJ [9]. But GUTTAG [11], GUTTAG

& HORNING [1:2] probably favour final algebra semantics: certainly [12] con

tains a disclaimer about initial semantics and an approximate description

of the objectives of the final algebra technique. The first rigorous account

of final algebra semantics is WAND [23] and other exact treatments of this

far less well-understood alternative can be seen in HORNUNG & RAULEFS [14],

KAMIN [15], KAPUR [16], the MUNICH GROUP [8,25], and our own articles [5,6].

Any evaluation of the methods depends on any number of specific ques

tions about data types, of course. And, regrettably, no properly researched

comparative :study is yet available. The point of this paper is to settle one

basic question about the completeness or adequacy of the two specification

methods: Can algebraic specifications under initial and/or final algebra

semantics define all the data types one wants, at least in principle?

Recalling that a data type, or data abstraction, is modelled by a many-sorted

algebra, finitely generated by elements named in its signature, the following

theorem answers that in a fundamental theoretical sense one needs, and can

rely on, both:

2

THEOREM. Let-~ be an n-sorted algebra finitely generated by elements named

in its signature E. Then the following are equivalent:

1. A is computable.

2. A possesses an algebraic specification specification, involving at most

3(n+1) auxiliary operators and 2(n+1) equations, which defines A under

both it,s initial and final algebra semantics.

That (2) implies (1) is a consequence of some straightforward necessary

conditions on the specification methods while the statement that (1) implies

(2) is the hard won answer to our adequacy question.

This paper belongs to a series of articles about the relative power of

the various algebraic specification methods for data abstractions [1. 2, 3,

4, 5, 6] see also [7]. In particular, it is a companion to [6] where we

characterised a cosemicomputable data type A of signature E as a structure

possessing an algebraic specification (E0 ,E0) using final algebra semantics.

However, there we required E0 to contain conditional equations, our bounds

on the size of E0 depended on the number of operators in E, and the argu

ments involved were sufficiently complicated to authorise our working with

single-sorted structures only. The corresponding problem about semicomput

able data types and initial algebra semantics remains open, but from the

proof of the main theorem in [6] one could extract a second specification

of the same size which defines A initially as long as A is computable. Thus,

our new theorem sharpens the corollary in [6] in each of the four ways just

mentioned and, more importantly, it has its own rather elegant proof which

is significantly easier without the overheads of the main theorem in [6].

We think of our new theorem as a fundamental completeness theorem for the

algebraic specification methods.

Readers of this paper are assumed to be well versed in the informal

issues and technical foundations of the algebraic specification methods.

For this ADJ [10] is essential, and ADJ [21,22] is recommended, but know

ledge of our previous articles is not, strictly speaking, a prerequisite.

A very detaileid account of final algebra semantics and of the computability

of data abstractions is contained in [6] and so in what follows only the

proof of our theorem will receive a generous exposition.

3

1. DATA TYPES AND THEIR SPECIFICATION

Here we record notation and the technical ideas about data types and

their specification which we shall need in proving our theorem. Let us re

peat that that the reader is supposed to be familiar with the basic prin

ciples of the algebraic specification method and to be used to working with

the methods in ADJ[lO]. First we comment on the algebra needed.

Semantically, a data type or data abstraction is identified with (the

isomorphism type of) a many-sorted algebra A finitely generated by elements

named in its signature r. Such structures are called minimal algebras be

cause they contain no proper subalgebras. Typically, the many-sorted algebra

A consits of a finite family A1, •.• ,An of (data) domains or (subtype) com

ponents together with a finite collection of distinguished elements, and

operators of the form

where A,,µ E {1, ••• ,n}. The signature r of A carries names for its domains,
l.

called sorts, and notations for the constants and operators; we will use

numbers for sorts.

An algebra A is finite if each domain Ai is finite; and it is the unit

algebra if every domain A. is a singleton. We write the unit algebra as J.
l.

1.1. LEMMA. Let A and B be minimal algebras. Each homomorphism A+ Bis an

epimorphism and if A and B are homomorphic images of one another then they

are isomorphic.

If~: A+ Bis a homomorphism then the relation=~ defined in A by

a-~ b if, and only if, ~(a) = ~(b) in Bis a congruence. If~ identifies

all of A, that is the relation=~ is Ax A, then B ~ ~.

Next we turn to specifications and their semantics. A specification is

a pair (L,E) composed of a signature rand a set of algebraic axioms E.

These axioms will always be equations over r or conditional equations over

r, the latter being formulae of the kind

4

where e 1 , ••• ,ek,e are equations over I.

If A satisfies the axioms Ewe call A an E-algebra and write E f A.

A second set of axioms E' is a refinement of E if A FE' implies A FE; and

we write this symbolically as E' FE. If pis a formula provable from Ewe

write E I- p.

The starting point for an understanding of initial and final algebra

semantics is their description in terms of operator expressions over I,

stated in the introduction, rather than their category-theoretic formula

tions which give the semantics their names. In our proof, we shall use only

the proof-theoretic characterisation of initial algebra semantics and only

the category-theoretic definition of final algebra semantics. Since the

latter semantics is not well known we will look at it in relation to initial

semantics from the category theory point of view.

A specification (I,E) for a data type distinguishes the category

* ALG (I,E) of all minimal algebras of signature I satisfying the axioms E

and all morphisms between them. And the semantics of a specification (I,E)

* is designed so as to pick out some algebra from ALG (I,E) as the unique

meaning M(I,E) where the uniqueness of H(I,E) is measured up to algebraic

isomorphism. Given a data type semantics (modelled by an algebra) A, a spec

ification (I,E) can be said to correctly define the data type when M(I,E)~A.

* Seen from the category ALG (I,E), initial algebra semantics for alge-

braic specifications assigns as the meaning of (I,E) the initial algebra

* I(I,E) in ALG (I,E); this I(I,E) always exists and is unique up to isomor-

phism. On the other hand, final algebra semantics would like to pick out

* the final object from ALG (I,E) as the meaning of (I,E), but clearly this

* final algebra is in all cases the unit algebra n E ALG (I,E). (Notice n may

* not play an initial role in ALG (I,E) because of the minimality assumption,)

* Instead, final algebra semantics turns to the category ALG0 (I,E) which is

* * simply ALG (I,E) with the unit algebra removed. Unfortunately, ALG0 (I,E)

need not always possess a final object F(I,E), but when it does this object

is unique. Because of this asymmetry, defining and using the final

algebra semantics of algebraic specifications can be a rather delicate

matter when compared with the initial technique.

The equivalence of the category theory definitions and the logical

definitions is represented by this lemma.

1.2 •. LEMMA. Let (L,E) be a specification, and let t,t' be terms over L.

Then

(1) I{L,E) I= t = t' if, and only if, E I- t = t'.
And, assuming F{L,E) exists,

(2) F{L,E) I= t = t' if, and only if, t = t' is consistent with E in the

sense that chere is some non-unit model A E ALG{L,E) where A I= t = t'.

Let T{L) be the algebra of all terms over L. Let T {L,E) denote the
I

standard syntactic copy of I{L,E), made by factoring T{I) by the least

5

E-congruence. The corresponding construction TF(L,E) for F{L,E) can be

found in [6], but we shall not be needing it. We can now record the defini

tions governing the ways a specification characterises a data abstraction.

Let Ebe a set of equations or of conditional equations over the sig

nature Land let A be an algebra of signature L.

The pair {L,E) is said to be an equational or a conditional equation

specification of the algebra A with respect to (1) initial algebra semantics

or (2) final algebra semantics if (1) T(L,E) ; A or (2) F{L,E) ~ A.

When the set of axioms Eis finite we speak of finite conditional

equation specifications with respect to these semantics.

Finally we must explain how we involve auxiliary or hidden functions

in the semantics of specifications.

Let A be an algebra of signature LA and let L be a signature L c LA.

Then we mean by

AIL the L-algebra whose domain is that of A and whose constants and

operators are those of A named in L: the L-reduct of A; and by

<A>L the L-subalgebra of A generated by the constants and operators of

A named in L viz the smallest L-subalgebra of AIL.

The following represents the two basic working definitions of speci

fication theory in this paper.

ALGEBRAIC SPECIFICATIONS WITH HIDDEN OPERATORS. The specification (L,E)

is said to be a finite equatiional or a conditional equation hidden enrich

ment specification of the algebra A with respect to (1) initial algebra

semantics or (2) final algebra semantics if LA c L, and Eis a finite set

of conditional equations over the (finite) signature L such that

6

(1)- I(Z:,E)lz: = <I(Z:,E)>Z: = A

A A
or

(2) F(Z:,E) lz: = <F (Z:,E) > z: = A.
A A

In this paper, all specifications involving hidden operators are made to

define data types as described above.

2. COMPUTABLE DATA TYPES

A many-sorted algebra A is said to be effectively presented if corre

sponding to its component data domains A1 , .•. ,An there are mutually recursive

sets s-t1 , ..• ,SJ of natural numbers and surjections a.. : Q. ➔ A. (I s i s n) n i i i

h h f h . A,µ f A h . . · sue tat or eac operation aA = aA o t ere is a recursive tracking

function a = a A,µ which commutes the
a. a. following diagram

aA
AA X X A:\

1 k
A µ

a.>.. X • • • X

"Ak f 1 r
a. µ

a a.
QA X • • • X QA

1 k
➔ Q

µ

wherein a.A 1x ••• x a.Ak(xA , .•. ,xAk) = (a.A (xA), .•. ,a.A (xA)).
I I I k k

Now A is computable {semicomputable or cosemicomputable) if, in addi-

tion, the relations -a.- defined on Qi by
i

x =a.Y if, and only if, a..(x) = a..(y) in A.
i i i i

are all recursive (r.e. or co-r.e.) for Is i Sn.

These three notions are the standard formal definitions of constructive

algebraic structures and they derive from the work of M.O. RABIN [20] and,

in particular, A.I. MAL'CEV [18]. Their special feature is that they make

computability into a finiteness condition of algebra: an isomorphism invari

ant possessed of all finite structures. This lemma was proved in our [1]:

7

2.1. REPRESENTATION LEMMA. Every computable many-sorted algebra A is iso

morphic to a recursive algebra of numbers Q each of whose numerical domains

n. is the set of natural numbers w, or the set of the first m natural numbers
1

w, accordingly as the corresponding domain A. is infinite, or finite of
m 1

cardinality m.

The following proposition draws attention to the fundamental difference

between initial and final algebra semantics.

2.2. BASIC LEMMA. Let (E,E) be a specification with Ea recursively enumer

able set of conditional equations. Then I(E,E) is semicomputable and F(E,E)

is cosemicomputable, it it exists. In particular, if algebra A possesses an

r.e. conditional equation hidden enrichment specification with respect to

(1) initial algebra semantics or (2) final algebra semantics then (1) A is

semicomputable or (2) A is cosemicomputable. If A possesses such specifi~a

tions with respect to both initial and final algebra semantics then A is

computable.

The proof of Basic Lemma 2.2 is routine once the syntactic algebras

T1 (E,E) and TF(E,E) have been constructed. The theorem first appeared in our

note [5] where we used it to find a data type which could not be specified

by an r.e. set of algebraic axioms under initial algebra semantics but which

could be finitely specified under final algebra semantics. More examples can

be found in [6]. The next section is given over to proving a strong converse

of the last statement of the lemma.

3. PROOF OF THE THEOREM

Because of Basic Lemma 2.2, we have only to prove that statement (1)

implies statement (2).

Let A be a computable many-sorted algebra finitely generated by elements

named in its signature E.

By the Representation Lemma 2.1, A can be identified with a recursive

number algebra Reach of whose domains is either w or some finite initial

segment w of w. It is sufficient to build an appropriate specification for
m

Rand this task we organise into some semantical constructions followed by

some syntactical constructions.

8

First, we add enumeration operators to R to make a new algebra R with
e

the special property that any specification which defines R (and hence R)
e

under initial algebra semantics will also define R (and hence R) under final
e

algebra semantics. Next, R is augmented with arithmetical and conditional
e

operators to make a second algebra R0 • To complete the proof of the theorem

it will be sufficient to provide a concise equational specification (E 0 ,E0)

which defines R0 under initial algebra semantics: this is the objective of

the syntactical constructions.

SEMANTICAL CONSTRUCTIONS: Let D and Dl, ••• ,Dn-1 denote then domains of R

with card(D) ~ card(DA) for 1 $ A $ n-1; call D the principal domain of R

and notice that R is finite if, and only if, D is finite. To R we add the

following constant and operators to form a new algebra R of signature E e e
in which all domains can be accessed arid enumerated from D.

Principal Enumeration Operators: For the principal domain D, add to R the

element OED as a constant together with

the map succ: D + D defined by succ(x) = x+l if D = w or by succ(x) =

min(x+l,m) if D = w; and
m

the map pred: D + D defined by pred(x) = x~l.

Access Operators: For each non-principal domain DA (1 s 11. s n-1), add to R

the map foldA: DA+ D defined by foldA (x) = x; and

the map unfold/\.: D + DA defined by unfoldA(x) = x if DA= w or by

unfoldA(x) = min(x,m(A)) if D = wm(11.)"

Clearly, R possesses 1 constant and 2+2(n-1) = 2n operators more than R,
e

and Relr = <Re>E = R.

3.1. LEMMA. If Bis a homomorphic image of R then either B = R or B ~ ~ e e

PROOF. Let~ : R + B be an epimorphism and suppose it is not injective; we
e

show~ is trivial. There are two cases depending upon whether~ identifies
r
distinct points in the principal domain or in some non-principal domain.

CASE 1: Suppose 1,J ED and i ~ j but ~(i) =
. . i

i = succ1 (0) and j = succJ(O). Then succ (0)
. . 1 .

(succ1 {0)) =~ pred1- (succJ(O)) because-~ is a congruence.

~(j). Let i > j and write
j i-1

=~ succ (0) implies pred

9

Thus, succ(O) -
<P

O and, in fact,

=cp succ(O)
2

0 -· succ (0) -<P cp

so all of Dis identified in B under cp. Now, for any x,y EDA (1 ~A~ n-1)

we can write x = unfoldA (x) and y = unfoldA (y). Since x =cpY in D we know

that unfoldA (x) =cp unfoldA (y) in DA: that is, x -<Py in DA. Thus, all of DA is

identified in B under cp and Bis the unit algebra.

CASE 2: Suppose i,j EDA and i ~ j but cp(i) = cp(j) for some 1 ~A~ n-1.

Since i =cpj in DA we know that foldA (i) -<P foldA (j) in D because =cp is a

congruence. Thus, two distinct elements of Dare identified and we are in

Case 1 again. D

3.2. COROLLARY. If R
e

0

is the initial object of some ALG(I ,E) ·then R is the
e e e

0

final object of ALG (I ,E), * e e
too; in fact, ALG (I ,E) is merely the iso* e e .

morphism type of R.
e

The corollary is immediately deducible from LeIIDlla 3.1. And it follows

that if R0 is an algebra of signature I 0 such that Ee c I 0 and

= R
e

then if R0 is the initial object of some ALG(I0 ,E0) then R0 is the final
0 0

object of ALG*(I0 ,E0) too; and again ALG*(I0 ,E0) contains only R0 up to iso-

morphism. This is simply because each I 0-homomorphism is necessarily a

I -homomorphism.
e

Our aim is to create such an enrichment R0 of Re and give it a concise

algebraic specification (I0 ,E0) without hidden functions. Clearly, we need

only bother about initial algebra semantics in such circumstances.

We complete the semantical foundations of the proof by adding arith

metic to the principal domain in R, and a selection of conditional operators
e

to both principal and non-principal domains in R.
e

Arithmetic Operators: For the principal domain D, add to R
e

the map add : Dx D-+ D defined by add(x,y) = x+y if D = w or by

.add(x,y) = min(x+y,m) if D = wm; and

10

the map mult: D x D + D defined by mult (x,y) = x.y if D = w or by

mult(x,y) = min(x.y,m} if D = w •
m

Conditional Operators: For the principal domain D, add to R the maps
e

c: D x D x D + D and h: D x D x D + D defined by

c(x,y,z}
= { 0 if x=y and z=0

h(x,y,z}
1 otherwise

= { z if x=y

0 otherwise.

And for each non-principal domain DA (1 ~A~ n-1} add to Re the map

hA: D x D x DA + D defined by

z if x=y
hA (x,y,z} = {

0 otherwise.

(Beware of the change of sort when dealing with hA!}

Re augmented by these 4 + (n-1) operators results in the algebra R0 of

signature E0 • Clearly, R0 possesses 1 constant and 3(n+1} operators more

than R, and RolE = <RO>E = R.

It now remains for us to build an algebraic specification (E0 ,E0} in

volving 2(n+1} equations and no hidden functions, which defines R0 under

initial algebra semantics. This task is divided into two stages: we begin by

finding an algebraic specification (~0 ,E 1} for R0 which uses conditional

equations of a special kind. The role of this (E0 ,E1} is to act as a template

for a sequence of transformations which will compress E1 into the required E0 •

SYNTACTICAL CONSTRUCTIONS: THE TEMPLATE. Remember that Ro is R augmented by

the constant and operators

0, succ, pred, add, mult, c, h on the principal domain D; and

foldA, unfoldA, hA for each other domain DA(1 ~A~ n-1}.

Let the signature r0 of R0 contain the following notations for the extra

operators~

0, SUCC, FRED, ADD, MULT, D, H, FOLDA; UNFOLDA, HA.

3.3. LEMMA. There is a finite algebraic specification (E0 ,E1} involving

equations, and conditional equations of the form

11

t = t' ~ r = s,

where the premiss t = t' is an equation over the principal sort in r0 , which

defines R0 under initial algebra semantics.

PROOF. If R0 is a finite algebra then it is straightforward to make a speci

fication by enumerating the graphs of the operations of RO and translating

these relations into formal syntactictical identities. Such a specification

will satisfy the requirements of the lemma. (We had occasion to write out

this observation in our study [4].)

Assume R0 is an infinite algebra so that, in particular, Dis infinite.

Here are the equations making up E 1 . For enumerations and arithmetic on D

we take

PRED(O) = 0

ADD(X,O) = X

MULT(X,O) = 0

PRED(SUCC(X)) = X

ADD(X,SUCC(Y)) = SUCC(ADD(X,Y))

MULT(X,SUCC(Y)) = ADD(X,MULT(X,Y)).

For the access operators we take

for each A (1 ~A~ n-1); and for each unfolding of D into a finite domain

DA= wm(A) we use these special equations

The various conditional operators c, hand hA and the original operators

of R can all be treated in the same way.

Let FEE u {c,H,HA} name function f: Da(l)x ••• x Da(k) ~ De where

a(1), ... ,a(k), BE {0,1, ... ,n-1} and o0 = D. For convenience in notations,

let us introduce unfold0 : D ~ D, defined by unfold0 (x) = x, and give it the

syntactic name UNFOLD0 ; now we can write

k+1
graph(f) = {(x1 , ••• ,~,y) € D : f(unfolda(l) (x 1) , ... ,un:f:olda(k) (xk)) =

= unfolds (y) } •

Remember that D =wand notice that graph(f) is a recursively enumerable set.

12

V
Using Matijacevic's Diophantine Theorem - see MANIN [19] - one can find

polynomials pf and qf in variables X = (x1, ••• ,Xk),Y and z = cz1 , ••• ,Zl)

such -s,hat

graph(f) = {(x,y) E k
W X W

2
: 3z E w .[pf(x,y,z) = qf(x,y,z)]}.

Let Pf and Qf be formal translations of pf and qf to polynomials over the

enumeration and arithmetic operator names {O,SUCC, PRED, ADD, MULT}. Now we

take the following conditional equation to govern F:

To complete the construction of E1 it remains to consider the constants

of E. If c EE is a constant of the principal sort naming element c ED then

take

C = SUCCC (0).

If c EE is a constant of a non-principal sort naming c EDA then take

Clearly R0 F E1 and by initiality there us an epimorphism TI(E0 ,E1) ~ R0 ,

but one needs to give the reverse map R0 ~ TI(E0 ,E1) in order to prove

TI(EO,El) ~ ~o (Lemma 1.1). The inverse~ : Ro~ TI(EO,El) is the family of

maps (~,~ 1, ••• ,~n-l) defined by

~(x) = [suc~(o)J for XE D

~A (x) = [UNFOLDA(SUCCx(O))]

where 1 ~A~ n-1 and [t] denotes the equivalence class of terms determined

by t E T(E0) under the congruence =El· The proof that this~ is a homomorphism

is a lengthy exercise which is entirely routine for any reader with some

experience in many-sorted algebra: we take the liberty of omitting it, leaving

the reader to consult some of our earlier articles such as [1, 2, 3] if

necessary. D

SYNTACTICAL CONSTRUCTIONS: COMPRESSION. The specification (E0 ,E1) is not

particularly concise: if R0 is finite then the number IE1 1 of algebraic

13

ax~oms in E1 is comparable with the cardinality IR0 l of R0 ; and if RO is

infinite then IE 1 1 is a function of II0 1 and, hence, of III. The compression

of E1 is based upon this simple, but important, tool:

3.4.

type

tion

(i)

and

(ii)

Then

REFINEMIENT LEMMA. Let

A and assume I (I, E) ~ =
such that

E' t= E:

A F E'.
~ I(I,E') = A.

(I,E) be an algebraic specification for some data

A. Suppose (I,E') is another algebraic specifica-

PROOF. By hypothesis (ii), A is an E'-algebra and so there is an epimorphism

I(I,E') _.A.On the other hand, hypothesis (i) implies I(I,E') is an

E-algebra and so initiality again implies there is an epimorphism A= I(I,E)

_. I(I,E'). By Lemma 1.1, I(I,E') ~ A. D

Starting with E1, we shall generate a sequence of refined specifications

for R,
0

by replacing one axiomatisation by another and checking conditions (i) and

(ii) of the Refinement Lemma 3.4.

FIRST STEP. For purely technical reasons, the first refinement of E1 leads

to a set of equations E2 . If R0 is finite then set E2 = E1 . If R0 is infinite

then let E2 contain all the equations in E1 together with then new equations

H(X,X,Z) = Z
. A A

I\ (X,X,Z) = Z

where ZA is a variable of sort A and 1 ~A~ n-1. And now replace each condi

tional equation of the form

t = t' _. r = s or
A A

t = t' _. r = s

14

in_E1 by the equation

H(t,t',r) = H(t,t',s) or

respectively. This is all of E2 , and clearly E2 I= E1 and R0 I= E2 •

SECOND STEP. From E2 we make a new axiomati.gation E3 with the special feature

that most formulae are equations which govern the behavior of the principal

domain and those formulae which remain are the simple conditional equations

The set E3 contains all those equations in E2 over the principal sort; and

each equation rA = sA in E2 over sort A(l A n-1) is replaced by the

equation
A = FOLD)._ (s) •

Adding the n-1 simple conditional equations completes E3 and it is clear that

E3 I= E2 and R0 I= E3•

THIRD STEP. From E3 we make a concise axiomati.sation E4 which involves 1

equation and n+l conditional equations. The set E4 contains the n-1 simple

conditional equations of E3 and, in addition, these two new conditionals

C(X,Y,Z) = 0 - X = Y

C(X,Y,Z) = 0 - Z = O.

Thus to complete E4 it remains for us to construct one master equation.

Let {t. = t.' : 1 $ i $ l} be an enumeration of all the equations in
l. l.

E3; as we know, these are equations over the principal sort. Inductively

define a master polynomial M by

for O $ i $ l-1 and set M = Ml.

15

The master equation is simply

M = 0. (me)

Now to verify that E4 F E3 and R0 I= E4 one checks with induction that for

each i

t. = t'.·
l. l.

and that R0 I= Mi = o.

LAST STEP: The last refinement step turns E4 into a set of 2(n+1) equations

and this set E5 is the axiomatisation E0 required in the theorem. The set E5
contains the master equation (me) of E4 , but the pair of conditional equa

tions

C(X,Y,Z) = 0 __. X = Y

C(X,Y,Z) = 0 -+ Z = 0

is replaced by the triple of equations

H(X,X,Z) = Z

H(C(X,Y,Z),O,X) = H(C(X,Y,Z),O,Y)

H(C(X,Y,Z) ,O,Z) = H(C(X,Y,Z),o,o).

And, instead of the n-1 conditional equations,

in E4 , the set E5 contains the 2(n-1) equations

H:>.. (X,X,Z:>..) = Z:>..

:>.. :>.. :>..
H:>..(FOLD:>..(X),FOLD:>..(Y),X) =

Clearly, IE5 1 = 4+ 2(n-1) = 2(n+1) and it is straightforward to check that

E5 I= E4 and R0 I= E5 • Thus, taking E0 = E5 we have the concise initial and

final semantics specification (I0 ,E0) of R0 which is a hidden function spec

ification of R under both initial and final algebra semantics. D

16

REFERENCES

[1] BERGSTRA, J.A. & J.V. TUCKER, Algebraic specifications of computable

and semicomputable data structures, Mathematical Centre, Depart

ment of Computer Science Research Report IW 115, Amsterdam, 1979.

[2]

[3]

[4]

[5]

[6]

, A characterisation of computable data types by means of a

finite, equational specification method, in: J.W. de Bakker &

J. van Leeuwen (eds.) Automata, languages and programming,

Seventh Colloquium, Noordwijkerhout, 1980, Springer-Verlag,

Berlin, 1980, 76-90.

----, Equational specifications for computable data types: six

hidden functions suffice and other sufficiency bounds, Mathemat

ical Centre, Department of Computer Science Research Report

IW 128, Amsterdam, 1980.

, On bounds for the specification of finite data types by means

of equations and conditional equations, Mathematical Centre, De

partment of Computer Science Research Report IW 131, Amsterdam,

1980.

---- , A natural data type with a finite equational final semantics

specification but no effective equational initial semantics

specification, Bulletin European Association for Theoretical

Computer Science.!.!_ (1980) 23-33.

, Initial and final algebra semantics for data type specifica

tions: two characterisation theorems, Mathematical Centre Depart

ment of Computer Science, Research Report IW 142, Amsterdam, 1980.

[7] ----, On the adequacy of finite equational methods for data type

specification, ACM-SIGPLAN Notices.!_! (11) (1979) 13-18.

[8] BROY, M., w. DOSCH, H. PARTSCH, P. PEPPER & M. WIRSING, Existential

quantifiers in abstract data types, in: H. Maurer (ed.) Automata

languages and programming, Sixth Colloquium, Graz, 1980, Springer

Verlag, Berlin, 1979, 72-87.

17

[9] GOGUEN, J.A., J.W. THATCHER, E.G. WAGNER & J.B. WRIGHT, Abstract data

types as initial algebras and correctness of data representations,

in Proceedings ACM Conference on Computer Graphics, Pattern Recog

nition and Data Structure, ACM, New York, 1975, 89-93.

[10] GOGUEN, J.A., J.W. THA:TCHER & E.G. WAGNER, An initial algebra approach

to the specification, correctness and implementation of abstract

data types, in: R.T. Yeh (ed) Current trends in programming meth

odology IV, Data Structuring, Prentice-Hall, Engelwood Cliffs,

New Jersey, 1978, 80-149.

[11] GUTTAG, J.V., The specification and application to programming of

abstract data types, Ph.D Thesis, University of Toronto, Depart

ment of Computer Science, Toronto, 1975.

[12] GUTTAG, J.V. & J.J. HORNING, The algebraic specification of abstract

data types, Acta Informatica .!Q_ (1978) 27-52.

[13] HOARE, C.A.R., An axiomatic basis for computer programming, Communica

tions Association Computing Machinery g (1969) 576-580.

[14] HORNUNG, G. & P. RAULEFS, Terminal algebra semantics and retractions

for abstract data types, in: J.W. de Bakker & J. van Leeuwen,

Automata, languages and programming, Seventh Colloquium,

Noordwijkerhout 1980, Springer-Verlag, Berlin, 1980, 310-325.

[15] KAMIN, S., Final data type specifications:a new data type specification

method, in: Seventh ACM Principles of Programming Languages

Conference, Las Vegas, ACM, 1980, 131-138.

[16] KAPUR, D., Towards a theory for abstract data types, MIT/LCS/TR - 237,

Cambridge, 1980.

[17] LISKOV, B. & s. ZILLES, Specification techniques for data abstractions,

IEEE Transactions on Software Engineering 1 (1975) 7-19.

[18] MAL'CEV, A.I., Constructive algebras, I., Russian Mathematical Surveys,

~' (1961) 77-129.

[19] MANIN, Y., A course in mathematical logic, Springer-Verlag, New York,

1977.

18

[20] RJU3IN, M.O., Computable algebra, general theory and the theory of

computable fields, Transactions American Mathematical Society 95

(1960) 341-360.

[21] THATCHER, J.W., E.G. WAGNER & J.B. WRIGHT, Specification of abstract

data types using conditional axioms, IBM Research Report RC 6214,

Yorktown Heights, 1979.

[22] , Data type specification:parametrization and the power of

specification techniques, IBM Research Report RC 7757, Yorktown

Heights, 1979.

[23] WAND, M., Final algebra semantics and data type extensions, J. Computer

and Systems Sciences~ (1979) 27-44.

[24] WIJNGAARDEN, A. VAN, Numerical analysis as an independent science,

BIT§_ (1966) 66-81

[25] WIRSING, M. & M. BROY, Abstract data types as lattices of finitely

generated models, Mathematical foundations of computer science,

Eighth Symposium Rydzyna 1980, Springer-Verlag, Berlin, 1980.

[26] ZILLES, s., Algebraic specification of data types, Project MAC Progress

Report 11, M.I.T., Cambridge, 1974.

[27] , An introduction to data algebras, working paper, IBM Research

Laboratory, San Jose, California, 1975.

