
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

G. fLORIJN & G. ROLF

PGEN - A GENERAL PURPOSE PARSER GENERATOR

~
MC

IW 157/81 JANUARI

kruislaan 413 1098 SJ amsterdam

BIBL!OTHEEK MATHE'.'i'/0.T!::,CH ;:_;[l•fH·'.\J[\/l
/\!Vi ST i:.H1.";A~· .• A

PJunted a.t .the Ma.therna.uc.al Centll.e, 413 K.!U.U6laan, Amh.tvu:La.m.

The Matherna..ti.c.ai. Centlte , 6ou.nded .the 11-.th 06 F ebJr.uaJc.y 1946, -l6 a. non
.p1to6U i..n6,t,U:u,t,lon a1.mlng at .the pltomo:Uon 06 pWte. ma.therna,tlcu, a.nd U:.6
app.Uc.atlon6. 1.t -l6 .6pon601ted by .the Ne.theJri.a.nd6 GoveJtnment .thltough .the
Ne.th<Vli.and.6 01tga.n,lza;t,lon 601t .the Advanc.ernent 06 PUite Ruea.Jtc.h (Z.W.O.).

1980 ~athematics subject classification: 68B99, .68F25

ACM-Computing Reviews category: 4.12, 4.22, 4.42

PGEN - A general purpose parser generator

by

Gert Florijn :~
Geert Rolf

ABSTRACT

This paper describes the use and implementation of a parser
generator, that generates recursive descent parsers with automatic error
recovery. The input for PGEN is a LL(l) grammar written in a powerful,
BNF-like meta-language. This grammar can be augmented with user-defined
actions for building parse-trees, generating code etc. The generator
checks the correctness of the grammar, and generates a recursive descent
parser, which contains suitable error recovery operations and error
messages. The resulting parser is a SUMMER program. The user should be
familiar with SUMMER, since the actions that can be associated with parts
of a grammar, must be written in this language.

KEY WORDS & PHRASES: parser generator, error-recovery, SUMMER

*) Hogere Informatica Opleiding,
I.H.B.O. 'De Maere',
Enschede, The Netherlands.

1

INTRODUCTION AND BACKGROUND

The problem of implementing a parser-generator, which generates
parsers with automatic error-recovery came up during the SUMMER project
at the Mathematical Centre. SUMMER [l] is a string manipulation language
designed and implemented by Paul Klint and Marleen Sint.

It turned out to be difficult and error-prone to update the parser
of a language-in-development, while using an error-recovery method that
depends on information (first-symbols) related to the complete grammar.

Hence a parser generator was needed, that generates the information
for the error-recovery method automatically. The meta-language chosen is
derived from the one Paul had developed for his description of SUMMER.
It differs slightly from the well known Backus-Naur Form, but gives more
concise grammars.

The
and [3].
compiler
obeys the

generated parsers use an error-recovery scheme described in [2]
This method, which for instance has been used in the Pascal

from the ETH in Zurich (Switzerland), requires that the grammar
LL(l) restrictions.

This paper is divided into two parts, a user manual and an
implementation manual. The user manual describes all matters that are
important when using PGEN. This part includes a description of the
meta-language, a discussion of the LL(l) restrictions and a detailed
illustration of the features and limitations. The second part, i.e. the
implementation manual, gives an overall description of the parser
generator itself.

ACKNOWLEDGEMENT

This paper describes the result of our stay at the Mathematical
Centre from August '80 until January '81.

We like! to express our appreciation to Paul Klint and Marleen Sint
for supporting our project and to Paul Verhelst and Dick Grune for
testing the program. We thank Paul Klint and Dick Grune for correcting
this document. Furthermore, we like to thank all the other members of
the 'afdeling informatica' (computer science department) for their
cooperation and support.

Our project greatly benefited from the lessons in 'compiler
construction' by Theo de Ridder. He and Siep van der Wal, who supervised
our stay, showed interest in the project for which we are grateful.

2

1. USER MANUAL

1.1. Description of the syntactic meta-language

1.1.1. Introduction.

A parser-generator needs a description of the syntax of the language
for which a parser has to be created. Such a description can be given in
different ways, but two methods are widely used. The first method gives
a description by means of graphs called syntax diagrams. These diagrams
give a good picture of the syntax of the language. Unfortunately, it is
quite difficult to use diagrams as input for a program. Therefore a
meta-language is often used to describe the syntax.

A syntax-description in a meta-language consists of
symbols, non-terminals and production-rules, which define
terminals. Sometimes special constructions can be used to
optional or repeating parts of a syntax rule.

terminal
the non
describe

One of the best-known syntactic meta-languages is BNF. The meta
language used by PGEN, an extended form of BNF, was introduced in [l].
It offers some extra facilities to deal easily with repetition and
nesting.

In the following section we give a syntactic description of the
major part of the meta-language. Next we discuss some lexical and
semantic aspects and some additions to the meta-language.

1.1.2. Syntax and semantics of the meta-language

1.1.2.1. Syntax of the meta-language

The syntax of the me~a-language in its own notation is as follows.

(grammar)

(rule)

<rule-body)

(alternative)

(primary)

(option)

(list>

(compound)

: : = (rule)*.

::=<rule-name)'::=' (rule-body)

::= { <alternative> 'I'}*.

: := (primary>+ •

::= ((terminal-symbol) I <rule-name)
I (compound))
l '+' I '*' 1

I (list> I <option).

::='['(rule-body)']' •

::='{'(primary) (terminal-symbol)'}'
('+' I.'*').

::='('<rule-body)')' •

(terminal-symbol) ::= (keyword) I <string).

<rule-name) ::='('(identifier)')' •

3

This definition describes only the basic part of the meta-language. Some
extensions have been made, to deal with lexical and semantic matters.
These additions will be described in sections 1.1.3 and 1.1.4. We kept
them out of the description here, to avoid confusion. A complete syntax
of the meta-language is given in appendix I. The next section describes
the meta-language in detail.

1.1.2.2. The meaning of the syntactic constructions.

A non-terminal or rule-name is an identifier surrounded by'(' and
')'. An identifier is defined as:

(identifier)::= (l-c-1) ((l-c-1) I (digit) I ,_,)*.

where <l-c-1) means lower-case letter. Normally, every non-terminal has
to be defined, but we will make an exception to this rule in the next
section. Of all the rules in a grammar, exactly one should not be
referred to by any other rule. This specific rule is called the start
symbol of the grammar.

A terminal-symbol can have two different forms:

4

1) A <keyword). This is a sequence of upper-case letters. This form
can be used to denote keywords like IF, THEN etc. The keyword may
not be INIT, EXIT or LEXICAL, because these are reserved words for
PGEN.

2) A <string). This is a nonempty sequence of characters surrounded
by single quotes. The quote character within a string is denoted
by writing''; a backslash is denoted by'\\'. The string may not
contain a newline • This construction can be used to describe
constant character sequences in the object language, e.g.: ':='
'==', etc.

An <option) indicates that one of the enclosed alternatives may or
may not occur. It is clear that repetition of an (option) makes no sense,
and therefore this possibility has been excluded.

Before we describe the remaining forms of a (primary), it should be noted
that every (primary), except an <option), can be followed by a'*' or a
'+'. These indicators imply possible repetition of the preceding
syntactical notion. Note that a list construction must be followed by an
indicator.

A (primary) followed by '+' means that the part of the syntax
defined by the (primary) can occur several times, but must occur at least
once. A (primary) followed by '*' can occur zero or more times. For
example

<statement>*

implies zero or more occurrences of a <statement). A <compound) can be
used to group several alternatives of which exactly one must occur. It
can also be used to denote a possible repetition for a sequence of
constructions, for example:

((statement)';')*.

describes a sequence consisting of zero or more repetitions of a (stat)
followed by';'.

A (list> is used to describe an occurrence of a list of (primary)s
separated by (terminal-symbol)s. Its semantics can be described using a
<compound):

(primary) ((terminal-symbol) (primary))*.

Note that this only defines the case { ••• }+. When the '*' indicator
occurs, the whole construction is optional:

[(primary) (<terminal-symbol) (primary))*].

5

The (list) is merely a shorthand and one could expect that the parser
generator expand the (list) into one of the two forms given above, but
this is not true. The (list) is treated as a separate case, just like
(compound) and (option).

The (list) is mostly used to describe parameter-lists and similar
sequences. An example of the definition of a procedure call, where zero
or more parameters separated by commas can occur, is:

(procedure-call)::=
(procedure-name)'(' { (parameter)

A feature which is not described in the syntax is the usage of
comment in a syntax description. A comment starts and ends with a'#'.

1.1.3. Lexical considerations

The meta-language offers a lot of features to describe the syntax of
a language. It is also easy to convert a description in syntax-diagrams
into a definition in meta-language-constructions. But this does not mean
that everything should or could be defined in the syntax-definition.

In general, it is good practice to
from the definition of iexical units
constants. The reasons for keeping these
syntactical definition are threefold:

separate the syntax definition
like identifiers and integer
lexical definitions out of the

1) Separating lexical and syntactical definitions leads to a parser
with a clear structure.

2) Consecutive constructions in a syntax rule can, and sometimes must,
be separated by layout-symbols (spaces, tabs etc.). This is not the
case for the constructs occurring in a rule that describes a
lexical unit. For example, when an integer-number is defined as:

(integer-number>::= (digit)+.

what would the input-string "23 45" mean? Do we find two different
(integer-number)s, 23 and 45, or only one (integer-number) 2345,
because the layout will be skipped?

3) Recognition of lexical units can be faster, when done by a
dedicated procedure.

A feature was added to the meta-language to allow the user to
separate the lexical and syntactic definitions. Before the start of the
syntax-description the parser generator can be instructed which terminals
will be used as lexical symbols, but are not defined. The syntax of this
clause is:

6

<lexicals) ::= 'LEXICAL' {(identifier)','}+'•'

Such a "lexical identifier" can be used in the same way as the name of a
rule (i.e. surrounded by '(' and ')'), but it may not be redefined.
Lexical identifiers are, in fact, terminal symbols, and may be used as
such. This means that they can occur as separator in a (list).

Only the types of the listed lexical identifiers are known to the
generated parser. The (user-defined) lexical scanner has to find these
lexical symbols in the input and return their types to parser.

Section 1.4 describes how a user-defined lexical scanner can be
constructed.

1.1.4. Semantic considerations

A parser generator must provide some means to describe actions which
have to be performed when parts of a syntax-rule have been recognized-in
a source-language program. These actions must be put on the right places
in the generated parser, so that they are performed at the right time.
To achieve this, the user must be able to indicate the actions in the
grammar of the source-language.

The simplest method is to allow the user to put program pieces
within the syntactic rules. This scheme is used by YACC[4] • This
solution has the unpleasant consequence that it makes the grammar quite
unreadable. It is much nicer to indicate only where an action has to be
performed and to specify the action after the rule has been completely
defined.

However, not all problems can be solved with this scheme. Most of
these problems have to do with communication between parsing procedures.
It may be essential to get information from a procedure which handles
another syntax-rule. Only a return-value mechanism is provided.

To solve the communication problem we developed the following
scheme:

1) Every rule-name occurring in the right part of a production-rule
can be preceded by a tag, which is defined as:

<tag)::= (identifier) . . .
This tag specifies the name of a variable to which the return-value
of the procedure associated with the rule-name is assigned. Every
tag in a production rule corresponds with a local variable in the
procedure which handles the currently defined rule. The declaration
of the variables is automatically provided by the parser generator.
Because the tag is used to deal with return values, it is not

7

allowed to put a tag before a lexical-id.
return a value will be described later on.

How a procedure can

2) Semantic actions which have to be performed when a certain part of
a syntax-rule occurs can be indicated by placing a label after that
part. These labels must be defined when the syntax-rule is
completed (see 3). The labels are defined as follows:

<label)::='/' (identifier)'/'.

and may occur almost everywhere in the syntax-rule. There are two
restrictions:

a) Two labels may not occur after each other within the same
alternative; they must be separated by at least one <primary).

b) An empty (rule-body), whether it is a nested one or not, may
not contain a label.

The same label may be used at various points in the syntax-rule.

3) The definition of a syntax-rule can be followed by a definition of
the labels used in it. When a label is not specified, no action
will be inserted at the point where the label occurs. Labels may
be redefined, but only the last definition is used. The
specification of the labels is defined as follows:

(label-specification)::=
['INIT' ':'<program-piece>]
((label)':' <program-piece))*
['EXIT'':' (program-piece)] •

A (program-piece) is a series of SUMMER-statements. This code is
not checked for syntactical correctness. The init-part will be
executed at the start of the procedure which handles the current
production-rule. It can be used for initialization and
declarations. The exit-part will be executed when the procedure has
completed. It can be used to perform a return statement.

These tools are discussed and illustrated later on. Two questions
remain to be answered. First, how about return-values? Second, at what
moment are semantic actions associated with the labels performed by the
generated parser?

The first question can be answered quite easily, since the user
himself has to take care of returning values. We have considered some
default return-values, like the matched input or a flag indicating
whether errors occurred while executing the procedure, but we decided to
leave this matter to the user. The exit-part in the label-specification
can be used to specify a return-statement that returns an appropriate

8

value.

The moment that the actions are executed is also quite simply
defined. Every action will be performed after the preceding (primary>
has been recognized. If an action has to be performed at the start of an
(alternative> (and no preceding (primary> exists), then the action will
be performed when it is sure that this (alternative> has to be entered,
but before recognition of the first (primary) is attempted.

The only exception is a (terminal-symbol>. It was decided that the
action associated with a (terminal-symbol) (or lexical-id) will is
performed immediately after the symbol is found, and before the next
symbol is read. This implies that the action will not be performed if the
terminal-symbol is not found.

The current input symbol is available as value of the global
variable "sy". The following example illustrates this. We want a
program whic:h reads a list of identifiers separated by commas followed
by ';', and prints the number of identifiers and their names. The
following grammar defines this program, assuming that a scanning
procedure which can recognise an identifier (see 1.4) is available:

LEXICAL identifier.

(id-list> ::= { (identifier> /il/ ','}+ ';'.

INIT : var count := O; # counts the identifiers#
put(' The identifiers are :\n');

/il/ put(sy,'\n');
count:= count+ 1;

EXIT put(' Number of identifiers

1.2. The LL.(!) Restrictions.

1.2.1. The general definition

',count,'\n');

As we have mentioned in the introduction, the structure of the
generated parsers demands that the syntax of the language satisfies the
LL(l)-restrictions. These (two) restrictions imply that a parser can
determine it:s choice between alternatives in the syntax by means of the
next input symbol. LL(l) grammars are a special form of LL(k) grammars,
which need k input symbol to distinguish alternatives. This section of
the LL(l) property starts with a general definition which is based on
Wirth [3] and de Ridder [5]. As we shall see, this definition is not
very well suited for the meta-language used by PGEN. First, the general
definition is given. Next it is adjusted to the meta-language.

9

First, the two auxiliary functions 'first' and 'follow' are defined:

- first(v).
This is the set of all terminal-symbols that can appear in the
first position of a sentence derived from v. For example, when
<a> is defined as

<a>::= A <c> B.

then first(<a>) = { A } . When <a> is defined as

<a> : := A I B I C .
then first(<a>) = { A,B,C } .

- follow(v).
This is the set of all terminal symbols which can follow,
directly or indirectly, any derivation of v in a grammar. For
example, when <a> and (b) are defined as

<a>::= A (b) C.
<h> : := B •

then follow((b)) = { C }.

Now if for every rule in a grammar the following conditions hold, then
the grammar is of type LL(l).

1) For every sequence of alternatives, e.g.

alt 1 I alt 2 I ... I alt n.

the following relation must hold.

first(alt i) n first(alt j) = 0, (i I j)

This means that two alternatives may not start with the same
symbol, like in

<a> : := A I A

2) For a construction C that can produce the empty sentence, the set
of first-symbols must be disjoint from the set of follow-symbols,
e.g.

first(C) n follow(C) = 0.

10

This restriction is violated by (b) in the following grammar.

<a> : : = (b) ' ; '
(b) : : = [' ; ' A] •

A consequence of the combination of these two restrictions is that within
a sequence of alternatives, at most one alternative may produce the empty
sentence.

These restrictions exclude left-recursive grammars. Consider for
instance thE! production:

(b) ::= B I (b) B.

This rule is invalidated by restriction 1, because

first(B) n first((b) B) = { B} f 0.

If we attempt to rewrite it to

(b) ::= [(b) B] •

restriction 2 is violated, because

first((b)) n follow((b)) = { B} f 0.

1.2.2. Restrictions related to the meta-language

This general definition of the restrictions can also be applied to
the meta-language used by PGEN, but then it becomes clear that the
definition does not cover all the constructions allowed by the meta
language. Before we introduce a redefinition, we give some examples that
will illustrate the trouble-spots in the meta-language.

If <a> is defined as

<a> ::= B I C ('&'

then restriction 1 is violated by the compound construction.

Restriction 2 causes a bit more trouble. Consider the following
grammar:

(a) ::= A ((b) D (c))+.
(b) ::= ';' E.
<c> ::= (';' C)+.

As you may have guessed, this grammar is not LL(l). But how can we see

11

this? None of the given productions can produce the empty sentence and
there seems to be no problem. However, this grammar can produce the
following string:

A;ED;C;

Is the last semicolon the start of a new occurrence of <c>, or does it
imply a new occurrence of"((b) D <c>)+"?

The conflict is immediately clear when we rewrite <c> as:

<c> ::= ';' C (';' C)*.

Now we see that <c> contains a construction which _can produce the empty
sentence, namely (';' C)* • If we try to determine the follow-symbols
of this construction, the follow-symbols of <c> are needed. From rule
<a> it can be seen that

follow(<c>) = first((b)) = {

and now the violation can be exposed.

'•' } ' .

A far more simple example is the following one.

The terminal-symbol',' can indicate a new occurrence of the keyword A,
but it can also mean that the list is terminated. But how can we prove
the violation of the LL(l) restrictions, using first- and follow-sets?
Again, the solution can be obtained by rewriting a part of the
production. This leads to:

<a> ::= A (','A)* , .
which is clearly a violation of the second restriction.

The rewriting trick could be applied to every construction, but the
chance of not discovering a violation is rather big. Therefore, the
restrictions will now be redefined in such a way that they can easily be
applied to the meta-language.

1.2.3. Revised definition.

Since restriction 2 causes most troubles, we will concentrate on the
redefinition of that restriction, and it must be determined to which
construction in the meta-language it applies. First, every construction
must be checked that can produce the empty sentence. This amounts to
every option, and all constructions followed by a'*'· Furthermore every
construction followed by a '+' should be checked, as we have seen in the
previous examples. To deal with problems of the kind that were mentioned

12

in the second example above, we establish the convention that the
terminal-symbol in a list construction can produce the empty sentence,
and must theirefore be checked.

A second aspect which needs redefinition is the determination of the
follow-symbc►ls. A first approach leads to:

follow(C) = first(RN(C)).

where C represents a construction whose follow-symbols must be determined
and RN(C) (right neighbor) represents the construction which immediately
follows C in the production-rule. For example in

<a> ::= (c)+ '(' •

RN((c)+) == '('.

This approach must be refined on the following points.

1) RN(C) can produce the empty sequence. This implies that we must
continue visiting right-neighbors, add their first-set to the
follow-·set of C, and stop when a construction is encountered which
cannot produce the empty sentence.

2) C is the last construction within an alternative, e.g.

<a> : : = (A [' ('] I F) X •

where C is"['(']". In this case RN(C) is defined as the right
neighbor of the enclosing construction. Hence, RN(['(']) = RN((
A • • • •)) , which is the terminal-symbol X. Of course if we have
defined <a> as

<a> ::= ['('].

then the follow-set of"['(']" equals the follow-set of <a>. This
set is the union of the follow-sets of each reference to <a> in
other (or the same) productions.

3) Let <a> be defined as

<a> : : = (' ; ' C [' ; '])+ VV.

If we want to determine the follow-set of"[';']", we must add the
first-symbols of the enclosing construction to the follow-set.
Otherwlse we wouldn't be able to show the ambiguity in rules like
this. Of course this is only done when the enclosing construction
is followed by a repetition indicator ('+' or '*'). There is one
exceptlon to this rule, related to the list construction. As noted
before,, the terminal-symbol in a list is considered to produce the

13

empty sentence. This means that the follow-set must be determined.
To prevent that definitions like

<a> : := { ,,.,, }+ , ,
result in a violation, the
construction are not added
terminal-symbol.

first-symbols of the entire list
to the follow-set of the separating

These considerations lead to:

follow(C) = if RN(C) can produce the empty sentence
then first(RN(C)) U follow(RN(C))
else first(RN(C))
fi

RN(C) = if C is last construction in alternative
then D := enclosing structure of C

if D was followed by '+'or'*'
then add first(D) to follow-set

of C.
fi
return (•RN(D))

else return(construction on the right of C)
fi

Of course RN must satisfy the properties mentioned in 2) and 3) above.
Using the functions follow, first and RN, we can redefine the
restrictions as follows:

- Restriction 1
For every sequence of alternatives, e.g.

alt 1 I alt 2 I • • • . I alt n.

the following relation must be true.

first(alt i) n first(alt j) = 0. (i ~ j)

- Restriction 2
For every construction C that can produce the empty sentence or
is followed by a'+',

14

first(C) n follow(C) = 0 •

must be true.

1.3. Working with PGEN.

1.3.1. Useful variables and procedures

The generated parsers use a few global variables and procedures that
can be used in user-defined actions in the grammar. The variable ~
contains the current input-symbol. However, some caution is needed in
using it. The only way to get a value from sy that makes sense, is by
adding a semantic action to the grammar that will be executed when a
specific terminal-symbol was found in the input. This is illustrated in
the following example:

(greeting)::= (HI/al/ I BYE- /al/) JOE.

INIT:

/al/:

var word;

word:= sy;

In the action associated with /al/, sy has the value that you expect it
to have, i.e. 'hi' or 'bye'. When none of these symbols is found, the
action is not performed.

As mentioned in section 1.1.3, not all terminal-symbols have to be
fixed, but a LEXICAL-clause can be used to define classes of lexical
symbols that are treated as normal terminal symbols. For these cases, the
availability of sy can be essential. For example:

LEXICAL name,number.

(group)::= (person>+.
(person)::= NAME <name) /al/ PHONE (number> /a2/ •

INIT:

/al/:

/a2/:

EXIT:

var pname,pnumber;

pname := sy;

pnumber := sy;

if pname ~= undefined & pnumber ~= undefined
then put(' call ',pname, on number: ',pnumber,'\n');
fi;

It is important to note that sy should be used exclusively in actions
associated with a terminal-symbol. If it is used elsewhere, the value is
certainly not the one you would expect. The reason for this is that

15

actions associated with terminal-symbols are performed after the string
is matched, but before the next symbol is read in. Actions associated
with other constructions are performed when the part of the syntax
described by the construction has been recognized in the input, and when
the next input symbol has already been read in. Such a wrong usage ·is
illustrated in the following example:

(trash)::= (HI I BYE) /al/ LINDA.

INIT:

/al/:

var word;

word:= sy;

Now word does not have the value 'hi' or 'bye', as the author of this
little grammar thought.

Another useful variable is lnr which always contai~s the current
line number. This variable can for. example be used in error-messages·.
Two standard procedures are available for the production of error
messages. They are called ermsg and error and should be called like
this:

error(message, lnr);
ermsg(message , lnr); ,

Message is an error-message ·and lnr is the number of the line on which
the error occurred. Both procedures write their output on standard
output. The difference between the two routines is that error appends
the word "expected" to the message and ermsg simply prints the message.
The message need. not contain a newline-character, because it is added by
the error-procedures.

The global variable errcnt indicates the number of errors found in
the input until now. Both ermsg and error increment errcnt. This
variable is useful to prevent actions from being performed when errors
have occurred.

The generated parser simply executes the actions, and is not aware
of the fact that some actions might depend on the result of other
actions. The user has to check whether a certain action can be executed
or not. Consider this simple example:

(person)::= (JOE/al/ I MICHAEL /al/) BROWN.

INIT:

/al/:

EXIT:

var firstname;

firstname := sy;

put(' The name was :',firstname,' brown\n');

16

If the generated parser for this language would be fed with the input:
"tom Jones", then the statement mentioned in the exit-clause would cause
a run-time Eirror, since the value of firstname is not defined.

It is obvious that these situations can occur in many places, and
therefore it is good practice not to rely too much on the availability of
information supplied by other parts of the syntax-rule.

In app,endix II all names of variables and constants used by the
generated parsers are listed.

1.3.2. Contents of the actions

As mentioned before, the actions in the grammar are not checked for
syntactical correctness. This means that it is not sure whether the
generated parser will be accepted by the SUMMER-compiler. Of course,
PGEN does not let you down completely, since all actions in the generated
parser are prefixed with a comment containing the line number of the
action in the syntax-file.

Even when the syntax of the actions is correct, it is not certain
that the gimerated parser is a correct SUMMER-program. Problems can
occur when variables are declared within the actions. Because SUMMER
allows declarations at the beginning of a block, declarations in actions
may only occur in the following cases:

1) The action is contained in an INIT-clause. This action will be
insertEid at the beginning of the procedure that is generated for the
whole production rule. The variables declared in this action may be
used within every action contained in this production rule.

2) The action is associated with a terminal-symbol. Declarations are
allowed, but the declared variable may only be used within this
action.

3) The action is associated with an alternative.
can bE! used for variables that are needed
associated with the syntactical constructions
alternative,

These declarations
within the actions

mentioned in the

It is always possible to declare variables by surrounding the action with
parenthesis,. This transforms the action in a block, and declarations are
possible.

The declaration of global variables and procedures can be achieved
by placing a dedicated file with the suffix '.ud'. When PGEN is called
with the '-u' option, it inserts that file in the generated parser just
after the global declarations made by PGEN (See appendix III). Again we
refer to appendix II t where all variable-names used by the generated
parsers are listed.

17

1.3.3. Return values

PGEN offers a means to create one-way communication between the
procedures that corresponds to the production-rules. This is examplified
by:

(hello) : : = HI who : <name) .
(name) : : = COR /al/ I LINDA /al/.

INI'T: var person;

/al/: person := sy;

EXIT: return(person);

The declaration of the variable 'who' is generated by PGFN. This
variable can be used in the whole procedure-body, and initially its value
is undefined.

In this example, a return-expression is part of the EXIT-clause.
This is the right place to use a return expression, since writing it
anywhere e.lse might disturb the parsing-process. Note that the
procedures do not have a default return value and that a return
expression must occur in rules that are supposed to return a value, i.e.
rules that are preceded by a (tag) in some rule.

1.3.4. Argument passing

All the production rules of a grammar are transformed into
procedures that parse the piece of the syntax defined by the production.
The production-rule for the start symbol of the grammar however, is
transformed to a program-declaration. This program-declaration has an
argument which allows the generated parser to communicate with the
outside-world. The argument is called args and can be used to set flags
in the parser, or to get the name of the input file. As usual in SUMMER,
args is an array of strings corresponding to the arguments of the
program. For example:

<start)::= (program>

INIT: if args.size = 0
then put(' No file name\n');

stop(l);
elif infile := file (args[O],'r') fails
then put(' Cannot open: 'I largs[O] I l'\n');

stop(l);
fi;

This example first checks whether any arguments were given, and then

18

checks whether the file that is passed as an argument can be opened for
read-access. The variable 'infile' is assumed to be declared in the '.ud'
file and to be known to the lexical routines.

The generated parsers also return an exit status. When errcnt is
larger than zero, the SUMMER-statement stop(l) is performed. This exit
status can be used by another process that controls the parser.

1.4. Lexical aspects:~ scanner for the generated parser

PGEN assumes the existence of a lexical scanner. Although there is
a default s,canner available, you will be forced to write one yourself in
most cases. The generated parser has only a small interface with the
scanner and no detailed knowledge about the working of the parser is
needed to create a lexical scanner. This section discusses the interface
between the parser and the scanner, and the tasks of the scanning
routine. A brief description is given of the default scanner and the
conditions it needs to function properly.

1.4.1. The parser-scanner interface

The scanner for parsers generated by PGEN must be called nextsym
without parameters. Its purpose is to recognise the lexical symbols in
the input. Two variables are ,used to pass these to the parser. The
variable sy gets the value of the symbol. The variable t sy contains the
type-value of the symbol, stored in sy. This type-value is a unique
number, used by the parser.

PGEN defines a type value for every terminal symbol in the grammar.
This information is included in the generated parser, and can be used by
the nextsym·-routine. It depends on the type of the terminal-symbol how
the type-value can be obtained. As explained in 1. 1 there are three
cases:

1) The input symbol was defined as a keyword. PGEN creates a table,
called keytab, which contains all symbols of the grammar that were
defined as keywords. The keywords are mapped to lower-case. Thus,
when the grammar contained a keyword IF, the associated type-value
can be obtained by

2)

t __ sy := keytab['if"];

The input symbol was defined as a literal constant in the grammar.
The character constants from the grammar are stored in the table
kartab.. So, if the grammar contained something like ': =', then the
scanner can access the type-value via

t __ sy := kartab[':='];

3)

19

The input symbol was defined in a LEXICAL-clause. The names that
were mentioned in the LEXICAL-clause, are entered in the table
predef. The associated type-value can be found by indexing this
table with the name of the lexical symbol. So when when the grammar
contained:

LEXICAL identifier.

and sy contains the identifier, then the type can be obtained by
writing

t __ sy := predef['identifier'].

Note that hyphens in lexical names are changed to underscores, so

LEXICAL string-const.

leads to

predef['string_const'].

Predef also contains the type-value that must be returned when the
end of the input is reached by the scanner. This type-value can be
found in the predef-table by:

t_sy := predef['EOF'];

The type-value is used by the parser to identify the symbol it is
dealing with. The type-value of a symbol must be unique, meaning that a
symbol may not have different meanings at different places. It is
obvious that lexical ambiguities should be removed from the grammar, to
prevent a lot of trouble.

PGEN dlefines a few (string) constants in the generated parser that
may be used by the scanner. The names and their meanings are listed
below.

- lower
- upper
- digit
- ASCII

All lower case letters
All upper case letters
All digits
All ascii-characters in
ascending order.

Furthermore PGEN declares the variable line that may be used to read
lines from the input file.

20

The tasks of the scanner can be formulated as follows:

1) Find in the input lexical symbols as defined in the grammar. Store
the value of the symbol in the variable sy, and store the type in
t_sy,

2) Skip layout symbols and comment.

3) Read new lines, if necessary, and increment the variable lnr.

4) When the end of the input is reached, sy must be set to 'EOF' and
t_sy must be set to the corresponding type-value.

PGEN can be instructed to use a hand-made scanner by calling it with
the '-n' option (See appendix III).

1.4.2. The default scanner.

If PGEN is not called with the '-n' option, then the scanner on ~he
file pglib.ns in the PGEN directory is used. This scanner is capable of
handling all the symbols defined in the grammar. The scanner is based on
the SUMMER-definitions for strings, numbers and identifiers. It can be
used for testing parsers, but not for production usage, since the
generality of this scanner causes some inefficiency.

Apart from literal constants and keywords in the grammar, the
standard nextsym recognises four classes of lexical symbols.

string_const

ident

The string const is a string of any characters opened and
closed by a single quote. If a ' should appear in the
string, a,, should be used. The string may not cross the
end of the line.

An identifier must start with a lower or upper case letter
and may continue with zero or more underscores, letters or
digits.

simple_integer A simple_integer is defined as a sequence of digits.

simple_real A simple_real is a simple integer containing a dot
somewhere. It may be followed by an 'e' and
simple_integer.

, , .
a

These lexical symbols have to be declared in the grammar. The
"declaration" looks like:

LEXICAL string-const, ident, simple-integer, simple-real.

Other lexical symbols may not occur in the LEXICAL-clause, unless you
write your own scanner. It is also important to list all of the symbols

21

that the scanner can recognise, since otherwise some of the symbol-types
returned by the scanner will not be known to the parser.

The global operations performed by the default scanner procedures
are described first, followed by a complete listing of those procedures·.

After skipping blanks and tabs, nextsym tries to read one symbol.
Five different cases exist:

1 The character read was a lower- or upper-case letter. Nextsym tries
to readl as many characters as possible, without violating the
definition of an identifier. If this identifier does not occur in the
table ,. symtab', it is assumed to be an identifier and the
identifier_type is returned as value of t_sy. If the identifier did
occur in symtab, it is a keyword defined in the grammar and its type
is returned.

2 If the character is not a letter, then kartab is searched in reverse
alphabetic order for character_strings that might appear at the cursor
position. This reverse order is necessary, because the longest string
should be preferred over smaller ones. If, for instance, ':=' occurs
in the input and the symbols : , ':=' and '=' are contained in
kartab, then a':=' should be read instead of':' followed by'='.

3 If the character is a single quote, the procedure get_str is invoked
and a string constant is returned.

4 If the character is a digit, the procedure get_number is called which
tries to read a simple_integer or a simple_real. Get_number will read
as many digits as possible and return the type of the symbol.

5 The end of the input line is reached. Now a new line is read in from
standard-input, and the process is started again, unless end of file
is reached, and sy and t_sy are set to the correct values.

When the grammar doesn't contain keywords or literal-constants, this
scanner falls short, because keytab and kartab will not declared. These
deficiences restrict the usefulness of the default scanners and in most
cases a user-defined scanner will have to be provided.

A complete listing of the procedure "nextsym" and related procedures
follows:

22

const TRUE := 1,
OKE := 1;

var karar := kartab.index,
karsize := kartab.size;

proc get_str()
(const quote:=

) ;

scan line
for vars := cursor-1;

while break(quote) & lit(quote I I quote) do od;
if ~ut(quote)
then ermsg('newline not allowed in string', lnr);

rtab(O)
fi;
if errcnt = 0
then
else
fi

rof

s := cursor-s;
sy :=

sy := move(-s); move(s)

proc get_number()
assert scan line

for [sy,. t sy] := [sy 11 (span(digit) I empty),

rof;

- predef['simple integer']] &
if try sy := sy II lit(',') II span(digit) yrt
then t_sy := predef['simple_real']
fi &
if sy := sy I I lit('e') I I

(lit('+') I lit('-') I '') I I span(digit)
then t_sy := predef['simple_real']
fi

proc nextsym()
(

var i;

while TRUE do
line.span(' \t')IOKE;

if sy := line,any(upper I I lower)
then (sy := syl lline.span(lowerl I$

upper! ldigitl l'_'))IOKE;
t_sy := if keytab[sy] ~= undefined

then keytab[sy];

od;
) ;

return;
fi;

else predef['ident']
fi;

for i in interval(karsize - 1, 0, -1)
do

od;

sy := karar[i];
if line,lit(sy) succeeds
then

fi;

t_sy := kartab[sy];
return;

if line.lit('''')
then

get str();
t_sy := predef['string_const'];
return;

elif sy := line.any(digit)
then

get_number;
return;

elif line.rpos(O)
then

line:= scan string(get()) & lnr := lnr + 1 I
(sy:='EOF' & t_sy := predef['EOF'] & return;)

elsei
sy := line.move(l);
ermsg('illegal character: ' I I sy,lnr);

fi;

1.5. Error messages from the parser generator

23

Several errors can occur while generating a parser. First, the
syntax of the meta-language may be violated and PGEN will complain about
this.

Second,, the grammar must contain just one start symbol. PGEN checks
that there is just one rule that is not called elsewhere. For instance,
the grammar:

<a> : : = , &'.
 : : = '%'.

24

causes the error message:

More than one start symbol found.
Start symbols: <a> (b)

Third, a left recursion may be discovered in the grammar. An error
message with a list of involved rules will be printed. For instance:

<s> : := <a>.
<a> : : = <a> ' & ' •

is a simple case of left-recursion. It causes the error message:

First sets of the following rules cannot be determined
a
** s **

The left recursion causes trouble for PGEN when it tries to determine the
first-sets. Note that the first-set of rule <a> depends on itself.

Fourth, a rule may be redefined or simply undefined. Both cases
cause an error message.

Fifth, an LL(l) error may occur. As explained in chapter 1.2, there
are two LL(l) restrictions. Restriction 1 says that it must be possible
to distinguish two alternatives by their first-symbols. Restriction 2
says that an option, or any optional construction in general, and the
succeeding constructions must be distinguishable by their first-sets. In
both cases the first-sets of the involved constructions must be disjoint.

A few examples will show some typical violations of the LL(l)
restrictions and PGEN's diagnosis. In the rule

(a) ::='%'*KEY.

the first-set for the whole rule is { '%', KEY } , since the '%'*
construction may be empty. This means that the production of rule (a)
may start with a '%' or a KEY symbol. As the '%'* can be empty its
follow-set has to be calculated. This turns out to be {KEY}. In the
next rule:

a two-fold restriction 1 error occurs. The first and second alternative
violate by the symbol'%', the second and third by the'@'. The rule

obviously violates restriction 2, but it can be easily rewritten to:

<a> : := '%'+.

A less trivial example is:

<s> : := <a> '%'.
<a> ::=('%'<a>)*.

which causes the following error messages:

Restriction 2, rule: a
In: <a>
Symbols : %
Restriction 2, rule a
In : { • •)*
Symbols : %
Restriction 2, rule s
In: <a>'%'
Symbols : %

25

Here two errors occurred. It is obvious that rule (a) may be empty.
Hence, the '%' character is part of the first-set of rule <a>. As the
('%' <a>)* construction may repeat, the second restriction is violated by
the fact that the '%' in the compound can be followed by a'%' of the
nonterminal <a> or by a'%' of the repeating compound itself. The second
error is caused by the fact that the whole compound may be empty and its
follow-symbols are determined by the follow-symbols of the non-terminal
<a> in the compound, in fact a'%'.

The following example is a more or less hidden case of a restriction
2 error

<a> : := <c> '@'.
(b) ::= '@'*·
(c) ::= (b) '&'*•

Two restriction 2 errors occur:

Restriction 2, rule: a
In: <c> '@'
Symbols: @
Restriction 2, rule b
In: '@'*
Symbols : @

Note that rule (c) is empty, because (b) is empty. In rule <a>
restriction 2 is violated, because '@' is a first-symbol of the rule <c>
and <c> might be followed by a'@' in rule (a). The second error has the
same hidden cause. Rule (b) is empty, so its follow-symbols have to be
determined. As (b) is called in <c> and <c> is empty the follow-symbols

26

of <c> are involved in the follow-set of (b). Finally, the'@' in rule
<a> causes this same error.

Here we see that the parser generator finds the same error twice, by
looking from different points.

1.6. Example of PGEN usage

In this section we give an example of the usage of PGEN: a
translator for a very simple language, henceforth called SL. The SL
compiler has to translate to an assembly language for a virtual machine
(VIRMA)[5].

An SL-program consist of variable declarations followed by
statements. There are only two kinds of statements in SL: assignment and
conditional statement. SL only knows integers.

A SL-program is converted directly to an assembler-program for a
stack-oriented virtual machine.

The parser uses a few global variables, that are declared in the
'.ud' file:

- infile
- outfile:
- label cnt
- symboltab

The input-file.
The output-file.
Used to create unique label-names.
Used to check undeclared variables.

Here follows a list of the grammar and the actions, then the '.ud' file,
and afterwards the nextsym-routine for this language.

contents of the example.ud file #

var label cnt := O,
symboltab := table(S,undefined),
infile,outfile;

contents of the example.syn file #

LEXICAL ident,integer.

<program>::= [<declarations>] <statement-list)

INIT: # Try to open the input and outputfile #
if args[O].size = 0
then put(' No arguments.\n'); stop(l)
elif infile := file(args[O],'r') fails
then put(' Cannot open ',args[O],'.\n'); stop(l)
elif outfile := file(args[O]I l'.imc','r') fails
then put(' Cannot open intermediate file.\n'); stop(l)
fi

EXIT: outfile.put('\tEXIT\n');

<declarations)::= VAR { <ident) /place/

/place/: symboltab[sy] := 1;

<statement-list>::= (<statement>';')+.

<statement)::= <if-statement) I <assignment).

(if) ::= IF <expression>
THEN /al/ <statement-list)
[ELSE /a2/ <statement-list>]
FI.

INIT # Generate a unique labelname.$

}+

This labelname is used to jump over the THEN-branch.

/al/

/a2/

EXIT

var 11 := lab cnt,12;
lab cnt := lab cnt + 1;
outfile.put('\tJZER LAB',11,'\n');
jump over then branch when top of stack
Generate a jump over the else branch.
12 := lab cnt;
lab cnt :-;; lab cnt + 1;
imc-:-put('\tJMP-LAB',12,'\n');
imc.put('LAB',11,' :\n');
if 12 = undefined
then imc.put('LAB',11,' :\n')
else imc.put('LAB',12,' :\n')
fi;

is false#
#$

<assignment) ::= <ident) /check/':=' <expression).

INIT: var idname;

27

28

/check/:if symboltab[sy] = undefined
then ermsg{syl I' undeclared.',lnr)
else idname := sy;
fi;

EXIT if idname -. undefined
then outfile.put(' POP ',idname,'O);
fi;

(expression> ::= (term> (adop: (adding-operator> (term> /add/)*.

/add/: if adop -= undefined
the·n outfile.put('\t' ,adop, '\n')
fi;

(term> ::= (factor> (muop: (multiplying-operator) (factor> /mul/)*.

/mul/: if muop -= undefined
then outfile.put('\t',muop,~\n')
fi;

(factor> ::='('(expression>')' (variable>.

(variable) ::= (ident) /check/ I (integer> /pushc/.

/check/:if symboltab[sy] -= undefined
then outfile.put('\tPUSH ',sy,'\n')
else ermsg(syl I' undeclared.',lnr)
fi;

/pushc/:outfile.put('\tPUSHC ',sy,'\n');

(adding-operator> : := '+' /add/ I

INIT:
/add/:
/sub/:
EXIT:

var sign;
sign:= 'ADD';
sign:= 'SUB';
return(sign);

/sub/

(multiplying-operator>::='*' /mul/ I '/'/div/.

INIT:
/mul/:
/div/:
EXIT:

var sign;
sign:= 'MUL';
sign:= 'DIV';
return(sign);

The scanner for the SL-language. It resides
on the file example.ns

proc nextsym()
(

const TRUE := 1;

while TRUE
do

od;
);

line.span(' \t') I TRUE;

if sy := line.any(lowerl lupper)
then sy := sy I I line.span(lowerl lupperll' ')

t sy := if keytab[sy] -= undefined -
- then keytab[sy]

else predef['ident'J
fi;

return;

elif sy := line.any(digit)
then sy := sy I I line.span(digit)

t_sy := predef["iinteger');
return;

''• ,

elif sy := line.lit(':=') I sy := line.any(',;*/-+')
then t_sy := kartab[sy];

return;

elif line.rtab(O)
then (line:=scan string(infile.get()) & lnr:=lnr+l) I

(sy := 'EOF' & t_sy := predef['EOF') & return);

else ermsg('Illegal character:'! lline.move(l),lnr);
fi;

29

30

31

2. IMPLEMENTATION MANUAL

2.1. Introduction

SUMMER-statements in actions are not checked for syntactical
correctness. They are simply read in one line after another, and
remembered (see next section). The procedure that performs this task only
stops when a new input line starts with the keyword 'EXIT', a new label
specification (a'/'), the beginning of a new production (a '(') or end
of-file. This procedure is only called when the label (or 'INIT' or
'EXIT') is followed by a colon. When this colon is not found, the
statements are assumed to be a part of the grammar.

2.2. Internal representation.

In PGEN, every production-rule is represented by a doubly threaded
tree-structure, The nodes of the tree represent the constructions used
in the definition part of the rule. The trees are created in such a w~y,
that nesting is reflected in a clear and simple manner. This is done by
distinguishing two layers within one level. This is illustrated in fig.
1 and 2.

The trees are constructed, during the parsing of the input. All
nodes (excE~pt root-nodes) also establish a link with the father-nodes.

PGEN uses five kinds of nodes: alt, term, nont, body and rule-root.
These have the following properties.

alt

term

nont

body

This node represents an alternative. The subtrees represent the
constructions of which the alternative is composed.

Represents a terminal-symbol.

Represents a call of a nonterminal.

Represents those constructions that can contain a sequence of
alternatives, e.g. the compound and optional construction. As
can be seen in fig. 2, the list is also represented by a body
node. To make this work, the list is supposed to consist of
one alternative. Some advantages of this will be encountered
later on.

rule-root This node represents the complete right part of a production.
It is used as root node of the tree, and has the same
properties as a body-node, except a link with a parent-node.

Every node contains some information concerning the syntactic
construction it represents. Some pieces of information are stored more
than once i.n the tree to avoid a certain amount of tree-walking.

32

fig. 1 Tree representation of a production.
The leaves of the tree represent terminal
symbols and calls of nonterminals.

fig 2. Tree representation for

<a) : := B (C I D) I F { <x> }+.

33

Every node contains a field which indicates whether the represented
construction can produce the empty sentence. This field, called state,
can have three values: EMPTY, indicating that the represented
construction can produce the empty sentence, NONEMPTY, indicating that it
can not, and UNDECIDED, when it is not known yet.

The first-symbols of a construction are stored in the node that
represents it. First-symbols are not stored in nodes that refer to a
non-terminal (nont-nodes).

Every node, except "alt" nodes, has a field containing print
information of the represented construction.

Besides these fields, every node contains links to subtrees
(children-nodes) and a link back to the parent-node. Every node also
contains a field in which the semantic action related to the represented
construction can be stored.

2.2.1. Relations between nodes.

Relations must be specified that define the flow of information
through the tree. This information has to do with the state and first
symbols of a node. Other fields, such as a description of exterior
aspects, can be derived direct•ly from the input, and do not depend on
subtrees.

The state of some nodes does not depend on subtrees. The state of a
node which represents an option or a construction that may be repeated
zero or more times, is always EMPTY. The state of a terminal-symbol that
is used as separ~tor in a list construction, is also EMPTY (see section
1.2). Normally, the state of a terminal-node is NONEMPTY.

The state of a body-node, depends on the states of its alternatives.
If one alternative can produce the empty sentence, then the state of the
node is EMPTY, otherwise it is NONEMPTY. *) In an alternative the state
is EMPTY if the state of every subtree is EMPTY. If the state can not
yet be determined, the state is UNDECIDED.

The rules for the propagation of first-set information are also
straightforward. In an alternative the first-set is determined from the
first-sets of the first X subtrees if the state of the X-th subtree is
NONEMPTY and the state of all preceding subtrees is EMPTY. If the state
of the alternative is EMPTY, the first-set is determined from the first
sets of all subtrees. For a body-node, the first-set equals the union of
the first-sets of the alternatives (see fig. II).

*) Note that the representation chosen for list constructions allows this
general formulation of these relations.

34

2.2.2. Propagation.

These relations must be applied to every node in every tree. Our
only task is to provide an algorithm which visits every node in the tree,
applying these relations. In other terms, the algorithm must store ~he
information we need in every node of every tree.

The simplest method seems to be the following. The process starts
by visiting the root of the tree representing the start symbol of the
grammar, and visits every subtree in prefix order. When a call of
another nonterminal is encountered, the corresponding tree is visited
using the same process. When returning to a node all necessary
information can be obtained, by referring to the subtrees.

This method provides a simple manner to discover left-recursion.
Every time a new tree is entered, the name of the tree is stored, and if
the name was already stored, a set of left-recursive rules has been
discovered.

Unfortunately, it is possible (and easy) to construct grammars for
which this method does not work, since the information of nonterminals is
mutually dependent. We therefore decided to use another method. The
algorithm used by PGEN is divided in two parts, each performed in a
separate phase of the program. ,

The first part works in tune with the reading of the input and the
construction of the trees. All nodes whose state and first-set are
determined (i.e. 'determined nodes'), pass this information to their
parent node, obeying the relations specified in the previous section.
During this phase, state and first-set can be determined for every
construction that consists only of terminal-symbols (see fig. 3). This
process is described in algorithm 1.

if state and first-set of current node are determined
then

fi

pass-on the information to the parent-node,
using the relations specified in 2.2.1.

Algorithm 1. First phase of the retrieval algorithm.

This first phase leaves us with a set of trees, containing 'holes',
where the state and first-set of a node are not yet determined. The
information needed by these nodes depends on nonterminals (see also fig.
3).

fig. 3 Tree representing the production

<a>::= B ('&' I '%') I (c) C.

after the completion of the first phase
of the algorithm. Nodes marked with 'II'
are determined.

35

The second phase attempts to determine the information in every
tree, by passing on the information of already determined productions to
the places where they are used in other productions. In order to find
these places a table of uses is associated with each production-rule.

This process is based on the following property of context-free
grammars: after the first phase at least one production exists whose
state and first-set are determined. When this information is passed-on to
every point of use, and is propagated to higher levels, again the state
and first-set of at least one production must become determined. When no
new productions are determined and not all rules have been determined,
then the remaining set of rules contains a subset of productions that
have a left-recursive relationship (see algorithm 2).

We shall not prove this property here, but only give a short
motivation. When a production cannot be determined, the information
which is needed depends on at least one other nonterminal. This implies
that the specific nonterminal cannot be determined. When we have a set
of rules that can not be determined, all these rules depend on
nonterminals which are not determined either. But this means that the

36

nonterminals they depend on are in the set too. Hence, one or more of
these rules are defined in a left-recursive way.

while not all productions are determined
do

od

count:= 0
for i in productions
do

if production determined and not yet
filled-in

then

fi
od
if count= 0

for j in references[!]
do fill-in(j,i)
od
count:= count+ 1

then no rules found in this pass
(partial) left recursion in
remaining rules.

fi

Algorithm 2. Second phase; filling in the points of
use.
Note that the procedure fill-in passes
the information on to the points of
use. From there it can be 'rolled-up'
to higher levels, using the relations
specified in 2.2.1.

We shall now give two examples of this method. As first example we
use the following part of a grammar for which the originally proposed
method does not work.

(prog)
(decl>
(proc>
<var)
<stat>

::= (decl) BEGIN (stat) END.
::= (proc> I <var>.
::= PROC (!dent>'(' ((decl) I <stat))')'.
::= VAR (ident).
: : = •••

After phase one, productions (proc) and <var> are determined. In the
first pass of the second phase, we can fill in the information of these
productions in rule (decl), which becomes determined now. This allows us
to fill in (decl). Assuming that <stat> is determined too, there are no
problems to determine the compound in (proc).

The second example illustrates how left-recursion is found. We
define <a> as follows:

37

<a> : : = (b) I ,. ,. . .
 : : = [(c)] (d) I B .
(c) : : = C ['&') .
(d) : : = [(b)] D .

After phase one, production <c> is determined. The state is NONEMPTY and
the first-sE~t consists of the symbol 'C'. Passing this information to the
point of usei in (b) does not determine any other production. This means
that <a>, (b) and (d) can not be determined.

The various kinds of nodes contain some auxiliary fields to
facilitate the above information retrieval process. Every alt-node
contains a field called 'point' which at any time indicates the first
subtree whose state is NONEMPTY, and whose first-symbols have been
assembled. This field is modified when new information becomes available.
When the state of the alternative itself is EMPTY, the 'point' is set to
the number of subtrees. For example, if <a> is defined as:

<a>::=<c>cl
,. . ,.
'

then the tree representation after the first phase is:

The point of the first alternative is 2 (caused by the terminal-symbol
'C'), and 1the point of the second one is 1. If <c> appears to be
NONEMPTY, then the point of the first alternative must be modified.

Second,, every nont-, alternative and body-node contains a field
called 'first UND' (first UNDECIDED). This field indicates the number of
subtrees whlch (partially) determine the first-set of the node, but whose
own first-symbols are not yet determined. If we consider the example
given above, then 'first UND' of the first alternative is 1, which is
caused by the reference of <c>, and first UND of <a> is also 1, which is
caused by alternative 1.

38

2.3. LL(!_)-check

The representation of production-rules allows a straightforward
implementation of the check of the LL(l)-restrictions. The process is
split up into two procedures; the first procedure checks restriction· 1
for body-type nodes; the second procedure checks restriction 2 for all
subtrees of an alternative node that satisfy the specified conditions,
i.e. nodes whose state is EMPTY or that were followed by a'+'. The two
procedures call each other recursively when nesting occurs.

The first procedure uses a short-cut to improve the speed of the
checker. When the first-symbols of a body-node are assembled, the
occurrences of each symbol are counted. If any symbol occurs more than
once, then we have found a violation. An error-message is also given
when two or more alternatives can produce the empty sentence.

The second procedure uses the same short-cut as the first one.
Again the occurrences of the first-symbols are counted. A violation of
restriction 2 within the subtrees that determine the first-set of t,he
alternative can now be found immediately. For example, when <a> is
defined as:

<a> ::= [B] B.

then the symbol B will be found twice and this violates restriction 2.

Subtrees that do not determine the first-set of an alternative must
also be checked. Furthermore we must call the first procedure for all
body-nodes that are subtrees of the alternative. For the subtrees that
do not determine the first-set of an alternative, a follow-set must be
assembled. This is only done for the nodes with state EMPTY, or with
suffix '+' in the grammar. For these nodes, the follow-set and the
first-set must be disjoint.

The procedure get-follow() reflects the relations concerning the
assembly of the follow-symbols, as they were specified in section 1. 2.
The scheme is adapted at two points. First, the follow-symbols of a
production are only assembled once, and stored in the root-node of the
corresponding tree. This avoids a time-consuming search. Second, a
modification was added to prevent endless searches.

2.4. Code generation

The last part of the program PGEN generates a parser. Declarations
for parsing procedures and various sets are generated simultaneously on a
number of intermediate files. The following intermediate files are
created by the generator.

file.co This file contains the generated parsing procedures.
procedure is generated for each production rule.

file.fs Declarations of first-sets.

file.rs This file contains remainder-sets and miscellaneous sets.

file.tb All tables for the symbol-to-set representation.

39

One

By combining these intermediate files with the standard procedures
in "pglib" and "pglib.ns", a complete parser is constructed, which can be
compiled by the SUMMER compiler.

2.4.1. Generation of parser procedures

The generation of the parser is performed by scanning the tree
representation of the grammar in a recursive way and generating one
procedure for every rule. This is mainly done by the procedure
'gencode', which is assisted by a few other procedures to perform actions
like generating the user-defined SUMMER statements, generation of error
messages, declaration of several kinds of symbol-sets and generation of
sufficient calls of the error-recovery procedure 'testsym'. The
procedures 'gencode' and 'body_code' generate the parser-procedures.

We will discuss the mos.t typical skeletons that are generated for
the different types of nodes ·in the tree representing the grammar.

The procedure 'body code' closely cooperates with the procedure
'gencode'. Body_codes handles the body_construction. One of the
alternatives in a body may be empty. As the alternatives are selected by
their first_symbols in the parsing method, this is only possible when the
empty alternative is the last one. This is achieved by deferring the
empty alternative to the end of the body. It is included in the else
clause in the if-then-elif • • • else-fi construction that has to be
generated for this body. Only one empty alternative may occur. Its
position in the body is not important. The following skeleton is
generated for a body-construction:

if symbol_in_first-set_altl
then code for altl
elif symbol in first-set alt2
then code for alt2 -
else code_for_empty_alt
fi

For the list construction the following skeleton is used:

40

while first-set_of_list[t_sy] = 1
do

od;

actions for the main part
of the-list construction-- -

code_for_the_main_part_
generated by a recursive
call_of_gencode -

if t_sy = list_separator
then

nextsym;
testsym_for_the_main

part of the list
elif main part[t sy]-;;;- 1
then error(separator missing)
fi

actions for the whole list

If the list is NONEMPTY (e.g. followed by a'+') then the generated
code will be preceded by a call• of the procedure 'testsym', which demands
that the list consist of at ieast one element.

There are two possibilities for the 'term' construction. When the
term-node is nonempty then the code looks like:

if t_sy = term_symbol
then action

nextsym;
testsym(•••);

else error(•••);
fi

If the construction is followed by a'*' a while-loop is generated:

while t_sy = term_symbol
do

od

action
nextsym;
testsym(•••):

Note that the while-construction appears in the then-clause of the scheme
for terms, in case the term was followed by a'+'.

The next case handles the 'nont' construction. For a nonterminal a
procedure call has to be generated. Now there are three possibilities:

41

the'*' repetition, for which a single while loop is generated, the'+'
repetition which causes an extra call before the while-loop, and the
non-repeating one, for which a simple call is generated. Depending on
the existence of a tag in the syntax rule, the call is generated as a
function (var:= •••) or as a plain procedure call.

The last case is the rule root. It looks like:

proc p_name (dont_skip)
(

);

declarations and init code

testsym(•••);
code_generated_by_body_code

exit code

Auto-declared variables (assignment vars for the nont_calls) are part _of
init code.

2.5. Example of~ generated parser

This paragraph shows an example of a generated procedure. The
example from chapter 1.1.4 is extended to:

LEXICAL identifier.

<input)::= ids: (id-list).

EXIT: put('number of identifiers:',ids,'\n');

(id-list)::= { (identifier) /il/ ','}+ ';'.

INIT

EXIT

var count:= O; # counts the identifiers#
put(' The identifiers are :\n');
put(sy,'\n');
count:= count+ 1;
return(count);

The generated procedures for these two production rules are displayed on
the next page.

As can be seen in the generated procedures, some of
messages are generated from the names of the production rules.
chosen name of a rule will give an unclear error message.

the error
A badly

42

proc p id list(dont skip)
(#line: 9# -

);

var count := O; # counts the identifiers#
put(' The identifiers are :\n');
testsym(s_2,dont_skip,'(id_list)');
if t_sy = 2
then

whiles 2[t sy] = 1
do# line: 1111

put(sy,'\n');
count :=count+ 1;
nextsym;
testsym(UN2(dont skip,r_id_list_O_O_O_O),EMPTY,");
if t_sy = 1 -
then

nextsym;
testsym(s 2,UN2(dont skip,

r id_list_O_O_O_l), "'identifier'");
elif s 2[t sy] = 1
then error('Separating ","',lnr);
fi;

od;
if t_sy = 0
then

nextsym;
testsym(dont_skip,EMPTY,");

else error('";"',lnr);
fi;

fi;
line: 13#
return(count);

program p input(args)
(var dont skip:= s_3;

) ;

var ids ;
nextsym;
testsym(s 2,dont skip,'(input)');
if t_sy =-2 -
then

ids:= p_id_list(dont_skip);
fi;
II line: 5(1
put('number of identifiers:',ids,'\n');
if errcnt > 0
then stop{l)
fi;

APPENDIX I.

The syntax of the meta-language.

LEXICAL keyword,string,ident,prog.

(grammar>

<lexicals)

<rule>

<code-spec>

<rule-def>

<rule-body>

<alternative>

(primary>

<option>

<list>

<compound)

<terminal-symbol>

<name>

<rule-call)

<label>

::= [(lexicals>] <rule)*.

: : = 'LEXICAL' { (ident> ',' }+

::= <rule-def> [<code-spec>]

: :=
['INIT' ':' (prog)]
(<label>':' (prog>)*
['EXIT'':' (prog)] •

::=<name>'::=' <rule-body)''

::= { <alternative> 'I'}*.

::= [<label>] (primary>+.

: := ((<terminal-symbol> I
<rule-call) I (compound)

['+' I '*']
I (list> I (option)

) [<label)] .
::='['<rule-body)')' •

::= '{' [(label>] <primary>

)

(<terminal-symbol) I <name))
[<label>]

'}' < '+' I '*' >·
::='('<rule-body)')' •

::= (keyword) I <string>.

::= '(' (ident> ')' •

::= [(ident> ':'] <name).

::= '/' (ident> '/'.

43

44

APPENDIX II

Table of variables and procedures, used by the generated parser.
These names should not be redefined. Names marked with '*)' may be
useful to the user.

line *)
lnr *)
errcnt *)
sy *)
t_sy
lower *)
upper *)
ASCII *)
digit *)
predef *)
kartab *)
keytab *)
SETSIZE
empty
args *)
f ...
r •••
s ...
ermsg *)
error *)
nextsym
testsym
get_str
conv str
get_number
dont_skip
SET
UN2
UN3

can be used in nextsym
current line number
number of errors
current input symbol
type of sy
can be used in scanner

' ,
, '
, '

table with symbol types
, ,
' ,

used for set manipulation

, '
call arguments of generator
symbol sets

, '
' ' proc for error messages

' ,
scanner procedure
recovery procedure
procedure used in default nextsym

' ' ' ,
symbol set
set handling procedure

, ,
, ,

APPENDIX III

PGEN(l) UNIX Programmer's Manual PGEN(l)

NAME
pgen - generate a parser with error recovery.

SYNOPSIS
pgen [-n] [-i] [-u] file.syn

DESCRIPTION
~ is a parser generator that reads a syntax description
from 'file.syn'. After checking the correctness of the
given grammar, it generates a parser written in SUMMER for
the given grammar.

FILES

The filename 'file' is meant to be the basename of the used
'.syn' file.

pgen has three options:

-i ~ will not remove the intermediate files of the gen
erator. ·

-n ~ inserts the file 'file.us' in order to enable the
user to write his own lexical procedures. By default
~ would insert 'pglib.ns', which contains the
default scanner procedures.

-u ~ inserts user-supplied declarations of global pro
cedures, classes and variables from the file 'file.ud'.

The generated parser is left on the file 'file.sm' and can
be translated by sumc

file.syn
file.sm
file.us
file.ud

file.syn.er
file.syn.th
file.syn.fs
file.syn.rs
file.syn.co

syntax definition
generated parser
user defined nextsym procedure
user defined declarations

error messages from the generator.
generated tables
generated first-sets
generated remainder-sets
generated code

45

46

REFERENCES

[1] P. Klint, SUMMER reference manual, Mathematisch Centrum, Amsterdam
(1981).

[2] U. Ammann, "Error recovery in recursive descent parsers," Berichte
des Instituts fur Informatik Vol. 25 (1978).

[3] N. Wirth, Algorithms + Datastructures = Programs, Prentice Hall,
Englewood Cliffs, N.J., U.S.A. (1973).

[4] S. C. Johnson, "Yacc - Yet Another Compiler-Compiler," Comp. Sci.
Tech. Rep. No. 32, Bell Laboratories, Murray Hill, New Jersey
(July 1975).

[5] Th. F .. de Ridder, Dictaat vertalerbouw, I.H.B.O. "De Maere" afd.
H.r.o. , Enschede (1979).

