
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

J.A. BERGSTRA & J.V. TUCKER

HOARE'S LOGIC AND PEANO'S ARITHMETIC

Preprint

~
MC

IW 160/81 FEBRUARI

kruislaan 413 1098 SJ amsterdam

P Ju..nte.d at .the. Ma.the.ma;Uc.al C e.ntJr.e., 41 3 KJr.t.u6 laa.n, Aw., .teJr..da.m.

The. Mathe.ma.Uc.al Ce.n:tlte. , 6ou.nde.d .the. 11-.th 06 Fe.bJz.uaJr.y 1946, ,u., a non­
pll.or;U hu,:tltu;Uon a,,un,lng at .the. pll.omo:uon of; pu.Jr.e. mathe.ma;UC-6 and m
app.U.c.a;Uow.,. 1.t ,u., .6pow.,01te.d by .the. Ne..the.!tland6 Gove.1tnme.nt :thlwu.gh .the.
Ne..thelri.a.nd6 01tganlza;Uon !;01t .the. Advanc.e.me.nt o O Pu.Jte. Re..6 e.aJtc.h (Z .W. 0.) •

1980 Mathematics subject classification: 03D45 03D80 68B15 03D35 03D75 68BIO
ACM Computing Review-category 4.34,5.24

Hoare's logic and Peano's arithmetic*)

by

**)
J.A. Bergstra & J.V. Tucker

ABSTRACT

We develop the proof theory of Hoare's logic for the partial correct­

ness of while-programs applied to arithmetic as it is defined by Peano's

axioms. By representing the strongest postcondition calculus in Peano

arithmetic PA, we are able to show that Hoare's logic over PA is equivalent

to PA itself.

KEY WORDS & PHRASES: Hoare 1s logic, partial correctness, while programs,

data type specifications, refinements, strongest post­

condition calculus, Peano arithmetic

This pa.per is not for review as it will be published elsewhere~

**) Departrrtent of Computer Science, University of Leiden, Wassenaarseweg 80,
Postbus 9512, 2300 RA LEIDEN, The Netherlands

INTRODUCTION

Hoare's logic is a formal system for the manipulation of statements

about the partial correctness of.while-programs; it was first described in

HOARE [13] and studied in COOK [IO]. The logic is a two-tiered axiomatic

system for in addition to the axioms and proof rules for asserted programs

th8re is an independent formal specification for the data types on which the

programs are applied. The purpose of the specification is to generate the

assertions about the data types necessary to govern the Rule of Consequence.

Hoare's logic for the set WP of all while-programs with first-order assertion

language Land first-order specification T we denote HL(T).

In this paper we consider the verification of programs computing on

arithmetic N without the privilege that N is a structure given outright,

and with the restriction that it must be axiomatically defined. Thus, what­

ever facts about arithmetic one needs in a program correctness proof must

be formally deduced from a specification and not "popped" from the oracle

Th(N), the first-order theory on N. We wish to study verification in Hoare's

logic on an entirely proof-theoretic basis, founding proofs on what can be

derived about arithmetic from what can be stated about Nin a specification.

Peano's arithmetic PA is an ideal axiomatisation for this purpose. Seen

from the point of view of a data type specification, one arrives at PA by

first axiomatising the primitive operations of arithmetic in an algebraic

way - indeed, the initial algebra semantics of these axioms picks out N as

their unique meaning. And, secondly, by augmenting the specification with

the induction scheme. The latter refinement means one can use any assertion

about N which stems from its primitive operations and can be proved by

induction. Viewed from the proof theory of Hoare's logic, the choice of PA

combines conceptual simplicity and technical strength: although Godel's

Incompleteness Theorem tells that some valid assertions about N will not

be provable from PA the fact is that meaningful assertions are decidedly

difficult to find (see PARIS & HARRINGTON [18]).

The question we ask is simple enough: How much of the semantical

machinery which underlies partial correctness can be faithfully represented

in the proof theoretical machinery of PA and HL(PA)? We prove the following

theorem in which we say that a specification T' refines a specification T

2

if T I- p implies T' I- p for any assertion p E L.

THEOREM. Given an assertion p E L and program S E WP one can effecti.'vely

calculate an assertion SP(p,S) EL such that

1. SP(p,S) defines the strongest postcondition of S relative top on

the set of states over N.

2. HL(PA) I- {p}S{SP(p,S)}.

And, for any refinement T of Peano arithmetic, including PA itself,

3. HL(T) I- {p}S{q} if and only if, T I- SP(p,S) -+ q.

Strictly speaking, statement (1) is not of proof-theoretical interest:

statements (2) and (3) establish the significance of the formula. Peano

arithmetic provides a useful proof theory for partial correctness and (3)

says that PA and HL(PA) are, in a very strong sense, equivalent systems.

The corresponding theorem about weakest preconditions may also be proved,

and the formalised pre- and postcondition calculus introduced can be used

to deduce other pleasant results about HL(PA). A simple example of interest

to us is the following stability theorem about refinements of Peano arith­

metic.

Let R be a family of refinements of a data type specification T. Define

the core of R by

CORE(R) = {p EL: T' f- p for each T' E R}.

Clearly, Tc CORE(R).

COROLLARY. Let {p}S{q} be an asserted while-program and let R be a family

of refinements of PA such that HL(T) I- {p}S{q} for each TE R. Then R is

stable with respect to {p}S{q} in the sense that HL(CORE(R)) I- {p}S{q}.

In particular, if Rp,S,q is the family of all refinements of PA which are

capable of proving {p}S{q} then CORE(Rq,S,q) proves {p}S{q} too.

The stability of refinement families is one of a number of questions

which arise in the theoretical study of verification systems [14] especially

those supporting data abstractions [16,17], where one is interested in the

ways program correctness proofs depend upon specifications. Finite families

3

of refinements are always stable, but stability remains a local property

in general [8]. We shall prove this corollary here, since it is almost an

immediate consequence of the theorem. Another application of the theorem

appears in [9] where we prove a new kind of general completeness theorem for

Hoare's logic, one which holds for arbitrary specifications rather than those

which are semantically complete in the sense of COOK [10].

Sections 1 and 2 cover specifications and Hoare's logic. In Sections 3

and 4 we prove the theorem and its corollary. An acquaintance with HOARE

[13] and COOK [10] is presumed, and the survey paper APT [l] is recommended.

Some experience with proving formal theorems in a first-order logical theory

is essential for the reader who wants to properly understand the vital

calculations inside Peano arithmetic (these are confined to Section 3).

Another relevant reference for the article is ZUCKER [20] where a careful

proof of the expressiveness of L for recursive procedures on N can be found.

An obvious problem is to turn Zucker's theorems about definability into

proof-theoretical facts which generalise the main theorem here.

This paper belongs to a series of articles about Hoare's logic and

specifications: various incompleteness and completeness properties of the

logic are re·-examined in [5, 7 ,9]; algebraic specifications are studied in

[6]; families of refinements are the subject of [8]. All these articles

derive from [4], written with J. Tiuryn, and contain results pertinent to

arithmetic computations, but none are prerequisite to understanding the

mathematical contents of this paper.

Finally, we thank W. Hodges for useful information on the literature on

Peano arithmetic.

1. ASSERTIONS, SPECIFICATIONS AND PROGRAMS

SYNTAX. First we summarise the syntactic ingredients of Hoare's logic.

The first-order language L = L(I) of some signature I is based upon a

set of variables x 1,x2, ••• and its constant, function and relational symbols

are those of I together with the boolean constants true, false and the equal­

ity relation. We assume L possesses the usual logical connectives and quant­

ifiers; and the set of all algebraic expressions of L we denote T(I).

If Tis a set of assertions of L then the set of all formal theorems of

4

T is denoted Thm(T): we write T r- p for p E Thm(T). Such a set T of form­

ulae is usually called a theory, but in the present context we obviously

prefer the more suggestive term specification. Here L serves as both an

assertion/program specification language and a data type specification lan­

guage.

A specification T' is a refinement of a specification T if Thm(T) c

Thm(T'). And two specifications T, T' are (logically) equivalent if Thm(T) =

Thm(T'). If Tis a specification and R = {T.:i EI} is a family of refine-
1.

ments of T then the core of R by

CORE(R) = n . I Thm(T.)
l.E l.

Using the syntax of L, the set WP= WP(E) of all while-programs over E
is defined in the customary way.

By a specified or asserted program we mean a triple of the form {p}S{q}

where SE WP and p,q EL.

SEMANTICS. Although semantics has no genuine role to play in this paper,

some description of the meanings of the various components must be included

because of statement (I) in the theorem, and in order to appreciate the use

of Peano arithmetic as a data type specification.

For any structure A of signature E, the semantics of the first-order

language Lover E as determined by A has its standard definition in model

theory and this we assume to be understood. The validity of p EL over

structure A we write AF p. The class of all models of a specification T

is denoted Mod(T); we write Mod(T) F p to mean that for every A E Mod(T),

A F p. Godel' s Completeness Theorem says this about specifications:

T r- p if, and only if, Mod(T) F p.

As far as the proof theory of a data type axiomatisation Tis concerned, the

semantics of the specification is Mod(T). Before looking at Peano arithmetic

and the special problems at hand, consider the algebraic specification meth­

ods for data types where one invariably has a particular semantic model in

mind for a specification. Following ADJ [11], it is usual to settle on the

initial model I(T) of Mod(T) as the unique meaning for an algebraic axiom­

atisation T. The logic of Tis oblivious of this (or any other) particular

choice because it yields only those facts true in all models of T. Refine­

ments are a natural accessory of algebraic specifications: one starts with

a simple alge:braic specification (I, T) to establish the correctness of the

desired data type semantics A and then adds to T various assertions true

5

in A as the need arises in program correctness proofs (say). But refinements

are an essential accessory of algebraic specifications for although the

algebraic methods can define virtually any data type one wants, the kinds

of assertion provable from algebraic formulae are rather restricted (see

[8] for a thorough discussion of this problem.)

So consider Peano arithmetic in the light of these remarks. The desired

data type semantics is the standard model of arithmetic N. The domain of N

is the set w of natural numbers and its primitive operations are the successor

function x+l, addition x+y and rrrultiplication x,y; 0 E w is a distinguished

element. We shall use these notations for the functions and the function

symbols of its signature. Peano arithmetic PA is built up as follows:

Operator a,xioms: (1) 0 f x+l

(2) x+l = y+l + x=y

(3) x+O = X

(4) x+ (y+ l) = (x+y)+l

(5) x.O = 0

(6) x. (y+l) = x.y + X

Induction scheme: for each assertion p EL, containing free variable x, the

following is an axiom [p(O) A Vx.(p(x) + p(x+l))] + Vx.p(x).

Thus, we may observe that equations (3)-(6) alone define N under initial

algebra semantics and so we may consider (1) and (2) as additions, making

a first refinement of the standard algebraic specification for arithmetic,

designed to rule out finite models. The theoretical objective of adding the

induction scheme is self-evident and was alluded to in our introduction: one

wants to generate all assertions which make statements about N which can be

based on its simple arithmetical operators and which can be proved by the

principle of induction. For example, one can obtain facts about the ordering

x s y of natural numbers by using the formula 3z.x+z = y.

For the semantics of WP as determined by a structure A, we leave the

6

reader free to choose any sensible account of while-program computations

which applies to an arbitrary structure: COOK [10]; the graph-theoretic

semantics in GREIBACH [12]; the denotational semantics described in DE

BAKKER [2]. To the asserted programs we assign pa.Ptial correctness semantics:

the asserted program {p}S{q} is valid on a stPU.ctu.Pe A (in symbols:

A F {p}S{q}) if for each initial state a E States(A), A F p(a) implies

either S(a) terminates and AF q(S(a)) or S(a) diverges. And the asserted

program {p}S{q} is valid for a specification T if it is valid on every

model of T; in symbols, T F {p}S{q} or Mod(T) F {p}S{q}.

The pa.Ptial correctness theory of a stPU.cture A is the set

PC(A) = {{p}S{q}: AF {p}S{q}};

and the pa.Ptial correctness theory of a specification Tis the set

PC (T) = { { p} S{ q} : Mod (T) F { p} S{ q} }.

Clearly,

PC(T) = n A E Mod(TlC(A).

Finally, we define strongest postconditions. Let p EL and SE WP, both

having n variables. The strongest postcondition of Sand p on a structure A

is the set

1. 1 LEMMA.

spA(p,S) = {b E An: 3a E An.[S(a) terminates in final state

b and A F p (a)]}

n A F {p}S{q} ~ spA(p,S) c {b EA: A F q(b)}.

2. HOARE'S LOGIC

Hoare's logic for WP= WP(E) with assertion language L = L(E) and

specification Tc L, has the following axioms and proof rules for manipulat­

ing asserted programs: let s,s 1,s2 E WP; p,q,p 1,q 1,r EL; b EL, a quantifier-

7

free formula.

1. Assignment axiom scheme: fore E T(E) and x a variable of L, the asserted

program

{p[e/x]]x := e{p}

is an axiom, where p[e/x] stands for the result of substituting e for

free occurrences of x in p.

2. Composition rule:

{p}S 1{r},{r}S2{q}

{q}S1 ;S2{q}

3. Conditional rule:

4. Iteration rule:

{pAb}S{p}
{p} while b do Sod {pA~b}

5. Consequence rule:

p + P1,{pl}S{ql}, qi+ q

{p}S{q}

And, in connection with 5,

6. Specification axiom: Each member of Thm(T) is an axiom.

The set of asserted programs derivable from these axioms by the proof

rules we denote HL(T) and we write HL(T) ~ {p}S{q} in place of {p}S{q} E

' HL(T).

2.1. REFINEMENT LEMMA. Let T and T' be specifications. If T' is a refinement

of T then HL(T) c HL(T'). Thus, if T and T' are equivalent specifications

8

then HL(T) = HL(T').

We shall need one derived rule of Hoare's logic.

2.2. DISJUNCTION LEMMA. Let T be a speaifiaation. Then the foZZOuJing is a

derived rule of HL(T)

{pl}S{ql}, ••• ,{pn}S{qn}

{p 1 v • • • vpn}S{ql v • • • vqn}

The corollary to Theorem I in COOK [10] says this:

2.3 SOUNDNESS THEOREM. For any speaifiaation T, HL(T) c PC(T).

3. PROOF OF THE THEOREM: THE STRONGEST POSTCONDITION AND PEANO ARITHEMTIC

This section is devoted to making the foT'171aZ first-order strongest post­

aondition SP(p,S) for a given assertion p and program S, and to proving some

of its fundamental properties as a formula in Peano arithmetic. These

fundamental properties are the Implication Law 3.4, the Existential law

3.5, and the Conjuction Law 3.6, and they are of proof-theoretical interest

in their own right because they shape a formal calculus for the strongest

postcondition within PA. Here they are needed to prove two theorems about

invariant assertions for the while-construct: using Invariant Laws 3.7 and

3.8, the proofs of statements (2) and (3) of our theorem can be given as

quite direct calculations in Section 4. However this section requires quite

some time to digest. The reader may care to obtain an overview of the results

of the section and then go on to consider the way the strongest postcondition

calculus is used in Hoare's logic (Section 4). What makes difficulties in

a proof of this theorem - and in a proof of an generalisation to more

complicated program languages - is the extremely sharp picture of the ZogiaaZ

struature of the strongest postcondition formulae one must have, if one is

to get anything proved about them in PA. (The well-structured and mechanical

appearance of formal proofs in PA should always be considered a criterion

for the success of a logical analysis which PA is asked to support.)

We shall divide the work of this section between 3 unnumbered subsec­

tions.

9

THE DEFINITION OF SP(p,S). The formal strongest postcondition will be in­

ductively defined over the structure of the program, and it will be obvious

that SP(p,S) can be effectively calculated from p and S. The fact that

SP(p,S) does indeed define the strongest postcondition spN(p,S) on the

standard model of arithmetic N will be a straightforward exercise whose

interest or tediousness depends on the reader's chosen semantics for WP.
Because of the design of SP(p,S), statement (1) of our theorem will be

trivial to verify for any sensible operational semantics for WP.
We construct the formula SP(p,S) in a simple extension L of the first­

c
order language L of PA. This language L merely contains formal names for

C

encoding formulae which will be used in connection with the while-construct,

and so represents a notational convenience. However, it is a notational

convenience which must be justified, for its introduction innnediately places

us outside Peano arithmetic. To step back, we must also axiomatise the new

function symbols in an extension PA of PA and observe that the theory
C

PA based upon L is a so-called eliminable extension of PA based upon L
C C

(Theorem 3.1). Here is the construction of L and PA.
C C

First add to L a binary function symbol C, to stand for a coding or

pairing operation, together with unary function symbols L, R to stand for

its left and right unpairing operations as expressed by the axiom

(1) C(L(x),R(x)) = x.

Next, we add to L two binary function symbols REDUCE and PROJECT to stand

for special decomposition operations satisfying the expressions

REDUCE(n,y) = Rn(y) and PROJECT(n,y) = LRn(y)

These decompositions are formally axiomatised by the first-order formulae

(2) REDUCE(O,y) = y

(3) REDUCE(x+l,y) = R(REDUCE(x,y))

(4) PROJECT(x,y) = L(REDUCE(x,y))

Thirdly, we add a ternary symbol INSERT to stand for an operation which

introduces new codes into old ones. It is formally axiomatised by

(5) INSERT(x,O,z) = C(x,R(z))

(6) INSERT(x,y+l,z) = C(L(x),INSERT(x,y,R(z))

Finally, we root the coding operation inside PA with the axiom

(7) 2.C(x,y) = (x+y).(x+y+l)+2y

which is taken from the well-known bijection code: w2 + w defined by

code(x,y) = ½(x+y).(x+y+l)+y

Thus L is L augmented by the 6 new operations C,L,R, RED, PROJ, INS and
C

PA is PA with axioms (1) - (7) and with the induction scheme of PA modified
C

to include all formulae of L.
C

3.1. THEOREM. The theory PA based on L is an eliminable extension of PA
C C

based on Lin the sense that there is an effectively calculable map

E:L + L such that
C

(i) for each assertion p EL, E(p) = p;

and for each assertion p EL
C

(ii) PA r p ++ E(p)
C

(iii) if PA r p then PA r E(p).
C --

The proof of a theorem such as Theorem 3.1 is an involved affair, one

which unrewardingly copies the blueprint of §74 of KLEENE [15] (see also

SMORYNSKI [19]). We omit the argument. Theorem 3.1 authorises us to use

L to define our formulae SP(p,S), and prove formal properties about them
C

using PA, while displaying Land PA in the statements of our theorems. For
C

example, here is a lemma about codings in Peano which we will need later

on. First, we introduce some important notations.

Fork E w, set

ROWk (i, z) = (PROJ (O ,PROJ (i,z)), ••• ,PROJ (k-2,PROJ (i, z)) ,RED(k-1 ,PROJ (i, z)))

For X a list of variables x1, ••• ,~ we write

3.2 LEMMA. It is the case that

(i) PA r j:;;;iAz' =INS(u,i+l,z) + (X=ROWk(j,z) ++ X=ROWk(j,z'))

(ii) PA r z' = INS(<X>k,i+l,z) + X = ROWk(i+l,z')

(iii) PA r X = ROWk(i+l,z') + 3z.(z' = INS(<X>k,i+l,z))

Thus the formal theorems (i)-(iii) are actually written in L and proved
C

using PA, but the elimination theorem maps each statement to an official
C

1 1

statement in L provable from PA. The proof of Lemma 3.2 is left as an exer-

cise for the reader.

We can now define SP(p,S), using this coding machinery to represent in

La operational account of its role on N.

Assume assertion p EL and program SE WP are given. Let X denote the

list of k program variables of Sand let Y denote the list of those free

variables of p not already contained in X. This notation for the iists of

variabies in assertion p and program S we use without further deciaration

throughout the paper. The formula SP(p,S) will have X and Y as its list of

free variables and is inductively defined as follows:

SP(p,x := e) _ 3y.[x=e[y/x] A p[y/x]J where y is not a free

variable of p.

SP(p,S 1;s2) = SP(SP(p,S 1),S2)

SP(p, if b then s 1 else s2 fi) = SP(p A b,S 1) v SP(p A, b,S2)

SP(p, while b do so od) = INV(p,b,So) A; b

where INV(p,b,S0) is the formula built up as follows.

First, set

Ap(i,z,Y) = p[ROWk(O,z)/X] A Vt< i. SP(X = ROWk(t,z) A b,S0)

[ROWk(t+l,z)/X]

and then define

Next set

and so define

12

THE STRONGEST POSTCONDITION CALCULUS. We give three formal theorems about

the strongest postcondition formula.

3.4 IMPLICATION·LAW. Let p,q be assertions ands a program. Let z be a list

of variables containing the list X of the k program variables of s. Then

PA r VZ(p➔q) ➔ VZ(SP(p,S) ➔ SP(q,S))

and consequently

PA r VZ(p++q) ➔ VZ(SP(p,S) +➔ SP(q,S)).

PROOF. The argument is by induction on the structure of S for which the basis

is the assignment.

Assignment, S ::= x := e. Clearly

PA r VZ(p➔q) ➔ VZ.Vy(p[y/x] ➔ q[y/x])

because x occurs in X c z. Therefore,

PA r 'v'Z(p➔q) + (3y(p[y/x] A x=e[y/x]) + 3y. (q[y/x] A x = e[y/x]))

which is

PA r VZ (p+q) + VZ (SP(p,x := e) + VZ (SP(q,x := e),

of course.

The induction step divides into 3 cases.

Composition, S ::= s1;s2• By the induction hypothesis applied to s1 we know

that

13

because Z contains the variables of s1• By the induction hypothesis applied

to s2 we know that

Thus, by the definition of SP(p,S) and SP(q,S),

Conditional, S ::= if b then s1 else s2 fi. Clearly,

PA I- VZ (p➔q) ➔ VZ (pAb ➔ qAb)

PA I- VZ(p➔q) ➔ VZ(pA7b ➔ qA,b)

Hence, by the induction hypothesis,

PA I- VZ(pAb ➔ qAb) ➔ VZ(SP(pAb,S 1) ➔ SP(qAb,S 1)

PA I- VZ(pA7b ➔ qA7b) ➔ VZ(SP(pA,b,S2) ➔ SP(qA,b,S2))

because Z contains the variables of s1 and s2• Whence it follows that

PA I- VZ(p➔q) ➔ VZ(SP(pAb,S 1) v SP(pA,b,S2)

➔ SP(qAb,S 1) v SP(qA7b,S2))

which is the theorem we require, by the definition of SP(p,S) and SP(q,S).

Iteration, S •. = while b do s0 od. Because X c Z, we know that

PA I- VZ(p➔q) ➔ VZ(p[ROWk(i,z)/X] ➔ q[ROWk(i,z)/X])

Conjoining formulae to make up A (i,z,Y) and A (i,z,Y) we deduce
p q

PA I- VZ(p➔q) ➔ VZ(A (i,z,Y) ➔ A (i,z,Y)).
p q

14

Conjoining X = ROWk(i,z) and then 3i,3z we proceed to

PA r VZ (p+q~)

PA r VZ(p+q)

+ VZ(B (i,z,X,Y)
p

+ VZ(INV(p,b,sO)

Finally, conjoining ,bit follows that

+ B (i,z,X,Y))
q

+ INV(q, b, s0)).

.PA r VZ(p+q) + VZ(SP(p,S) + SP(q,S))

Notice we did not use the induction hypothesis in this case. Q.E.D.

3.5 EXISTENTIAL LAW. Let p be an assertion and Sa program. Let z be a

variable which is not one in the list X of the program variables of s. Then

PA r SP(3z.p,S) ++ 3z.SP(p,S).

PROOF. The argument is by induction on the structure of S for which the basis

is the assignment.

Assignment, S ::= x := e. By definition,

PA r SP(3z.p,x:=e) ++ 3u(3z.p[u/x] A x=e[u/x])

PA r 3u(3z.p[u/x] A x=e[u/x]) ++ 3z.3u(p[u/x] A x=[u/x])

PA r SP(3z.p,x:=e) ++ 3z.SP(p,x:=e)

The induction step divides into 3 cases.

Composition, s ::= s 1;s2• By definition,

By the induction hypothesis applied to s 1 and the last statement of the

Implication Law 3.4,

and analogously with the induction hypothesis applied to s2,

Combining these theorems we conclude from the definition of SP(p,S),

Conditional., S : := if b then s1 else s2 fi. By definition,

By the induction hypothesis,

Thus, pulling out the existential quantifier and using the definition of

SP(p,S) we derive

PA r SP(3z.p,S) ++ 3z.SP(p,S).

Iteration., S ::= while b do s0 od. By definition,

15

PA r SP(3z.p,S) ++ 3i.3z''(L (i,z',Y) AX= ROWk(i,z')) A, b -=iz. p

Inspecting the definition of A_ (i,z',Y) one sees that
-=1z. p

PA r 3i.3z' .A__ (i,z' ,Y)) ++ 3i.3z' .3z.A (i,z' ,Y) -=iz.p p

Whence the result follows since existential quantifiers commute:

PA r SP(3z.p,S) ++ 3z(3i.3z'(Ap(i,z',Y) AX= ROWk(i,z')) A, b)

PA r SP(3z.p,S) ++ 3z.SP(p,S).

Notice we did not use the induction hypothesis in this case. Q.E.D.

16

3.6 CONJUCTION LAW. Let p,q be assertions and Sa program. Let the free

variabZes of q and the program variabZes of s be disjoint Zists. Then

PA I- SP(p A q,S) ++ _q A SP(p,S)

The proof of this fact closely resembles the Existential Law 3.5 and is

omitted.

THE INVARIANT LAWS We conclude our work with Peano arithmetic with two

important laws about the invariants used in the inductive definition of the

strongest postcondition in the iteration case. These laws are basic lemmas

for the arguments in the next section.

3.7 INVARIANT LAW. Let p be an assertion and iet S be a program. Then

(i) PA I- p + INV(p,b,S)

(ii) PA I- SP(INV(p,b,S) A b,S) + INV(p,b,S)

3.8 INVARIANT LAW. Let p be an assertion and iet S be a program. Then

(i) PA I- INV* (p, b, S)(O) + p

(ii) PA I- INV*(p,b,S)(i+l) ++ SP(INV*(p,b,S)(i) A b,S)

Now Invariant Law 3.8 is quite some work, but Invariant Law 3.7 is a short

calculation once Law 3.8 is proven and so we give this proof first.

PROOF OF INVARIANT LAW 3.7. Consider case (i). Clearly,

PA I­

PA I­

PA I-

And we are done.

p + Bp(O,INS(<X>k,O,z),X,Y)

* Bp(O,INS(<X>k,O,z),X,Y) + INV (p,b,S)(O,X,Y)

* INV (p,b,S)(O,X,Y) + INV(p,b,S)

Consider case (ii).

PA I- SP(INV(p,b,S) A b,S) + SP(3i.INV*(p,b,S)(i) A b,S).

17

By the existential Law 3.5,

PA I- SP(3i.INV*(p,b,S)(i) A b,S)-+ 3i.SP(INV*(p,b,S)(i) A b,S).

By Invariant Law 3.8,

PA I- 3i.SP(INV*(p,b,S)(i) A b,S)-+ 3i.INV*(p,b,S)(i+l)

Trivially,

PA I- 3i.INV*(p,b,S)(i+l)-+ INV(p,b,S)

And we are done. Q.E.D.

PROOF OF INVARIANT LAW 3.8. Case (i) is obvious so consider case (ii).

First of all we will need two formal theorems which we record here and

prove at the end of the section.

3.9 LEMMA. Let p be an assertion and Sa program. Then

(i) PA I- A (i,z,Y) +-+ A(i,INS(u,i+l,z),Y) p I

(ii) PA I- Ap(i,z,Y) A SP(X=ROWk(i,z)Ab,S)[X/ROWk(i+l,z)] +-+ Ap(i+l,z,Y)

Here is the deduction for case (ii) of Invariant Law 3.8. By the definition

of INV*(p,b,S)(i),

PA I- SP(INV*(p,b,S)(i)Ab,S) +-+SP(3z.B (i,z,X,Y)Ab,S)
p

By the Existential Law 3.5 and the definition of B (i,z,X,Y), and the
p

Conjunction Law 3.6,

PA I- SP(3z.B (i,z,X,Y)Ab,S) +-+3z.[A (i,z,Y)ASP(X=ROWk(i,z)Ab,S)]
p p

So consider this last formula through several transformations: it is

equivalent in PA to

18

By Lennna 3.9(i), it is equivalent to

By Lennna 3.2(ii), it is equivalent to

3z.3z'[z'=INS(<X>k,i+l,z)AAP(i,z',Y)ASP(X=ROWk(i,z)Ab,S)

AX=ROWk(i+l,z')J

Applying the Implication Law 3.4 to Lennna 3.2(i), it is equivalent to

3z.3z'[z'=INS(<X>k,i+l,z)AAP(i,z',Y)ASP(X=ROWk(i,z')Ab,S)

AX=ROWk(i+l,z')J

And, clearly, this last formula is equivalent in PA to

3z.3z'[z'=INS(<X>k,i+l,z)AAP(i,z',Y)AX=ROWk(i+l,z')

ASP(X=ROWk(i,z')Ab,S)[ROWk(i+l,z')/X]] (*)

Now by Lemma 3.2(ii) and the definition of A, this formula irrrpZies p

which is equivalent to

3z'.B (i+l,z',X,Y)
p

which is equivalent to

INV*(p,b,S)(i+l).

On the other hand to prove the reverse implication, that (**) implies (*) in

PA, one can rely on Lemma 3.2(iii).

19

This concludes the proof of Invariant Law 3.8, given Letmna 3.9.

PROOF OF LEMMA 3.9. Consider (i). By definition, A (i,z,Y) is equivalent in
p

PA to

Now by Lemma 3.2(i), the first conjunct can be replaced by

p[ROWk(O,INS(u,i+i,z))/X].

By Implication Law 3.4, applied to Lemma 3.2(i), the second conjunct can

be replaced by

Vt< i.SP(X=ROWk(t,INS(u,i+I,z))Ab,S)[ROWk(t+l,z)/X]

Using Letmna 3.2(i) again, this formula is equivalent to

V't<i. SP (X=ROWk (t, INS (u, i+ I, z) Ab, S) [ROWk (t+ I, INS (u, i+ l, z)) /X]

and so the conjunction is what we require: by definition,

PA I- A (i,z,Y) +-+ A (i,INS(u,i+l,z),Y)
p p

Next consider (ii). By definition, A (i+l,z,Y) is equivalent in PA to p

p[ROWk (0, z) /X]AVt<i+ l. SP (X=ROWk (t, z) Ab, S) [ROWk (t+ l, z) /X]

The second conjunct can be rewritten as

Vt<i.SP(X=ROWk(t,z)Ab,S)[ROWk(t+l,z)/X]ASP(X=ROWk(i,z)Ab,S)

[ROWk(i+l,z)/X]

And so regrouping the formula we itmnediately get

20

PA r- A (i +l, z, Y)++A (i,z, Y)ASP (X=ROWk(i, z)Ab, S) [ROWk(i+ 1, z) /X] p . p

This concludes the proof of Lemma 3.9 and so the proof of the Invariant

Laws 3.8 and 3.7.

4. PROOF OF THE THEOREM: THE STRONGEST POSTCONDITION AND HOARE'S LOGIC

It now remains for us to consider the role of a formal first-order

strongest postcondition SP(p,S) in Hoare's logic HL(PA) based on Peano

Arithmetic PA. The proofs of statements (2) and (3) of the theorem use in­

duction on the structure of a program and are fairly smooth arguments

because of the Invariant Laws which organise the calculations involving

the while-construct.

STATEMENT 2. For any p E .Land SE WP

HL(PA) r- {p}S{SP(p,S)}.

PROOF. The argument is an induction on S for which the basis is the assign­

ment statement.

Assignment: S = x := e. First observe the following trivial theorems of

Peano Arithmetic:

PA r- p + (e=e[x/x]0 A p[x/x])

PA r- (e=e[x/x] A p[x/x]) + 3y. (x=e[y/x] A p[y/x])

PA r- 3y. (x=e[y/x] A p[y/x]) + 3y. (x=e[y/x] A p[y/x])[e/x]

By the definition of the formal strongest postcondition we conclude that

PA r- p + SP(p,x := e)[e/x].

The axiom scheme for assignment provides

HL(PA) r- {SP(p,x := e)[e/x]}x := e{SP(p,x := e)}

21

HL(PA) I- {SP(p,x := e)[e/x]}x := e{SP(p,x := e)}

and by the Rule of Consequence it follows that HL(PA) I- {p}S{SP(p,S)}.

The induction step divides into 3 cases:

Composition: S - s1;s2• The induction hypothesis applied to s1 and s2 yields

that for any p EL

HL(PA) I- {p}S1{SP(p,S 1)}

HL(PA) I- {SP(p,S 1)}S2{SP(SP(p,S 1),S2)}

and the Composition Rule combines these formal theorems to derive

which is HL(PA) I- {p}S{SP(p,S)} by its definition.

ConditionaZ: S = if b then s1 else s2 fi. The induction hypothesis applied to

to s1 and s2 yields that for any p EL

HL(PA) I- {p A b}S 1{SP(pAb,S 1)}

HL(PA) I- {p A ,b}S2{SP(p A -,b,S2)}

From the derived rule Disjunction Lemma 2.2 and the Rule of Consequence

it follows that

HL(PA) I- {pAb}S 1{SP(p,b,S1) v SP(pA,b,S2)}

HL(PA) I- {pA'7b}S2 { SP(pAb, s1) v SP(pA'7b, s2)}

The Conditional Rule combines these formal theorems to derive

which is HL(PA) I- {p}S{SP(p,S)} by its definition.

22

Itez>ation: S = while b do sO od. The induction hypothesis applied to sO
yields for any p EL

From Invariant Law 3.7(ii) and the Rule of Consequence it follows that

and, using the Iteration Rule, that

Applying the Rule of Consequence with Invariant Law 3.7(i), and using the

definition of the strongest post-condition, we conclude

HL(PA) I- {p}S{SP(p,S)}

This concludes the proof of the statement. Q.E.D.

STATEMENT 3. Foz> any p,q EL and SE WP, and foz> any extension T of Peano

Az>ithmetia,

HL(T) I- {p}S{q} if, and on1,y if, T I- SP(p,S) -+ q.

PROOF. Assume T I- SP(p,S) -+ q. Because T extends Peano Arithmetic, state­

ment 2 implies HL(T) I- {p}S{SP(p,S)}; by the Rule of Consequence we derive

HL(T) I- {p}S{q}.

The argument for the other implication is more involved and is an

induction on S for which the basis is the assignment statement:

Assignment: S = x := e. Suppose that HL(T) I- {p}x := e{q}. Then there must

exist an assertion r EL such that

T I- p -+ r[e/x]

HL(T) r { r[e/x]}x := e{ r}

T r r -+ q

Now in T we can calculate

T r SP(p,x:=e) -+3y. (x=e[y/x] A p[y/x]) by definition;

T 1- SP(p,x:=e) -+3y. (x=e[y/x] A r[e[y/x]/xJ)

because from T I- p-+r[e/x] it follows that T I- p[y/x]-+ r[e[y/x]/x].

Continuing:

T 1- SP(p,x:=e) -+ 3y. (x=e[y/x] A r[x/x]

T I- SP(p,x:=e) -+ 3y. (x=e[y/x] Ar)

T I- SP (p ,x:=e) -+ r

T I- SP(p,x:=e) -+ q

And this is what is required.

The induction step divides into 3 cases:

because y l FV(r);

23

Composition: S = SI;s2 • Suppose that HL(T) I- {p}S{q}. Then there exists an

assertion r EL such that

Applying the induction hypothesis to SI we find that T I- SP(p,SI)-+ rand

by the Rule of Consequence it follows that HL(T) I- {SP(p,SI)}S2{q}. Now

applying the induction hypothesis to this last asserted program yields

which is T r SP(p, S) -+ q by the definition of the strongest postcondition.

Conditional,: S = if b then SI else s 2 fi. Suppose that HL(T) I- {p}S{q}. Then

24

Applying the induction hypothesis yields

Thus,

which is T r SP(p,S) +. q by the definition of the strongest postcondition.

Iteration: S = while b do s0 od. Suppose that HL(T) r {p}S{q}. Then there

must exist an assertion r EL such that

T r p ➔ r

HL(T) r {rAb}S0{r}

T r rA,b + q

Applying the induction hypothesis to the asserted program above yields

We shall derive the following theorem in T

whence we simply calculate

T r (INV(p,b,S0)A;b) + (rA,b)

T r SP(p,S) ➔ q

by definition of the strongest postcondition and the fact that T r rA,b ➔ q.

To prove (**) first recall that

and so it is sufficient to prove

This is done using the induction scheme in Peano Arithmetic which is also

available in T.

Basis: * T I- INV (p,b,S0)(0) -+ r.

This follows from the Invariant Law 3.8(i) and T I- p -+ r.

25

Induction Step: If T I- INV*(p,b,S0)(i)-+ r then T I- INV*(p,b,S0)(i+l)-+ r

Consider Invariant Law 3.8(ii): the theorem of T we require follows

from

This follows easily from an application of Implication Law 3.4 to

T I- INV*(p,b,So)(i) Ab-+ r Ab

T I- SP(INV* (p,b,So) (i) A b,·So) -+ SP·(r Ab, s0) by

T I- SP(INV* (p,b,So) (i) A b,So) -+ r by (*)

This concludes the proof of(**), statement 3 and the theorem. Q.E.D.

PROOF OF COROLLARY. Let R be a family of refinements of PA such that for

each TE R we have HL(T) I- {p}S{q}. Then, by the theorem, statement 3, we

have T I- SP(p,S) -+ q for each T E Rand so, by definition, the formula

SP(p,S)-+ q E CORE(R). Now PA is extended by CORE(R), thus HL(CORE(R)) I-
{p}S{q} by statement 3 of the theorem. Q.E.D.

26

REFERENCES

[1] APT~ K.R., Ten years of Hoare's logic3 a survey in F.V. JENSEN,

B.H. MAYOR and K.K. M~LLER (eds), Proceedings from 5th

Scandinavian Logic Syrrrposium3 Aalborg University Press, Aalborg,

1979, 1-44. (A second edition of this paper will appear in ACM

Transactions on Prograrmning Languages and Systems).

[2] DE BAKKER, J.W., Mathematical theory of program correctness3 Prentice­

Hall International, London, 1980.

[3] BARWISE, J., Handbook of mathematical logic3 North-Holland, Amsterdam,

1977.

[4] BERGSTRA, J.A., J. TIURYN & J.V. TUCKER, Floyd's principl,e 3 correctness

theories and program equivalence3 Mathematical Centre, Department

of Computer Science Research Report IW 145, Amsterdam, 1980. (To

appear in Theoretical Computer Science.)

[5] BERGSTRA, J.A. & J.V. TUCKER, Some natural structures which fail, to

possess a sound and decidable Hoare-like logic for their whiZe-­

p11ograms. (To appear in Theoretical Computer Science. An earlier

edition of this paper is registered at the Mathematical Centre as

Report IW 136/80).

[6] BERGSTRA, J.A. & J.V. TUCKER, Algebraically specified programming

systems and Hoare's logic3 Mathematical Centre, Department of

Computer Science Research Report IW 143, Amsterdam, 1980.

[7] BERGSTRJ~, J.A. & J.V. TUCKER, Expressiveness and the completeness of

Hoare's Zogic3 Mathematical Centre, Department of Computer

Science Research Report IW 149, Amsterdam, 1980.

[8] BERGSTRA, J.A. & J.V. TUCKER, On the refinement of specifications and

Hoare's logic3 Mathematical Centre, Department of Computer Science

Research Report IW 155, Amsterdam, 1980.

[9] BERGSTRA, J.A. & J.V. TUCKER, On the completeness of Hoare's logic3

Mathematical Centre, Department of Computer Science Research

Report Amsterdam, 1981. In preparation.

[10] COOK, S .. A., Soundness and completeness of an cixiom system for program

verification3 SIAM J. Computing ?_ (1978) 70-90.

27

[10] COOK, S.A., Soundness and comp"leteness of an a:x:iom system for program

verification, SIAM J. Computing J... (1978) 70-90.

[11] GOGUEN, J.A., J.W. THATCHER & E.G. WAGNER, An initia"l a"lgebra a:pproaah

to the specification,-correctness and irrrp"lementation of abstract

data types, in: R.T. Yeh (ed) Current trends in programming meth­

odo"logy IV, Data Structuring, Prentice-Hall, Englewood Cliffs,

NL>w Jersey, 1978, 80-149.

[12] GREIBACH, S.A., Theory of program structures: schemes, semantics,

verification, Springer-Verlag, Berlin, 1975.

[13] HOARE, C.A.R., An a:x:iomatic basis for computer programming, Communica­

tions Association Computing Machinery g (1969) 576-580.

[14] IGARASHI, S., R.L. LONDON & D.C. LUCK.HAM, Automatic program verification

I: a "logical basis and its implementation, Acta Informatica 4

(1975) 145-182.

[15] KLEENE, s.c., Introduction to metamathematics, North-Holland/P. Noordhof,

Am.sterdam/Groningen 1952.

[16] LUCK.HAM, D.C. & N. SUZUKI, Verification of array, record and pointer

operations in PASCAL, ACM-Transactions on Programming Languages

and Systems_!_ (1979) 226-244.

[17] MUSSER, D.R., Abstract data type specification in the AFFIRM system,

IEEE Transactions on software engineering 6(1) (1980) 24-32.

[18] PARIS, J. & L. HARRINGTON, X mathematical incompleteness in Peano

arithmetic, in BARWISE [3] 1133-1142.

[19] SMORYNSKI, c., The incomp"leteness theorems, in BARWISE [3] 821-865.

[20] ZUCKER, J.I., E:x:pressibility of pre- and post- conditions, in DE BAKKER

[2] 444-465.

