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Issues in the design of a beginners~ programming language*) 

by 

Lambert Meertens 

ABSTRACT 

Some problems are related that have been encountered in the design of 

a progrannning language for beginners. The solutions were sometimes unex

pected, and required doing away with preconceptions. The use of systematic 

methods has been of some help. 
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1. INTRODUCTION 

Of the commonly available algorithmic languages, some are definitely 

better suited to convey the algorithmic thoughts of the programmer than 

others. Whatever the preferred point of view, be it structured 

programming, provability of correctness or the expressibility of 

abstraction, some languages stand out for their excellence, some for 

their abomination. 

The latter should not worry us for languages in disuse. It should, 

for languages used widely. The relatively abominable FORTRAN, though far 

from dead, seems on its way out. Reasonable alternatives for FORTRAN 

exist. That absolute champion, BASIC, however, is steadily marching on. 

Moreover, BASIC has it attractive points, from the viewpoint of the 

casual, non-professional user. 

An attempt is under way to redress that situation, by issuing a 

rival language, provisionally referred to as "B" (no relation to the 

precursor of C; the "B" is only a language-name name referring to the 

yet unknown language name). For a language to beat a rival, more is 

involved than language issues. The example of FORTRAN more than goes to 

show this point. This paper will be restricted, however, to linguistic 

points. It is not intended as an introduction to B, but as an exposition 

of some of the choices and problems encountered in the process of 

designing an algorithmic language. The attempt has been to base the 

solutions, in a rational way, on the design objectives. 

Bis designed as the limit of a sequence: B0 , B1 , ••• The 

approximation currently under construction, B2 , is the joint effort of 

Robert Dewar of the Courant Institute of Mathematical Sciences, New York 

University, Leo Geurts of the Mathematical Centre, and the author. 

Contributions have been made by Peter King of the University of 

Manitoba, Jack Schwartz of the Courant Institute, and Dick Grune and 

?aul Klint of the Mathematical Centre. The responsibility for the 

opinions expressed is solely that of the author. 
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2. THE DESIGN OBJ~CTIVES FOR B 

The idea underlying the design objectives for Bare: beat the enemy 

at its strong points. The same idea has governed the design of ELAN 

(HOMMEL & al. [4]). There is one important difference: ELAN aims 

primarily at the "market" of ·(introductory) education in computer 

science, whereas B aims first of all at personal computing. The latter 

has not always been the case. The first approximation of 13 (GEURTS & 

MEERT~NS [2]) was designed when personal computing was in its infancy. 

Although the design objectives themselves have remained the same, their 

impact on the design has changed quite drastically. 

The design objectives for Bare: 

simplicity; 

suitability for conversational use; 

inclusion of structured-programming tools. 

These objectives are elaborated upon in [2]. The change referred to 

above is mostly concerned with the objective of simplicity. In [21, this 

is interpreted as simplicity not only for the user, but also for the 

implementer. It is stated that "B should be implementable on small 

minicomputers". 

The latter reflects our awareness, at the time, of the onset and 

future importance of personal computing. At the same time, it reveals a 

lack of perception of the torrent of hardware evolution. Tomorrow's 

hand-held computers are yesterday's main-frames. Designing a language to 

run smoothly on eight bit 8K machines is designing for the past. In 

designing Bz, it was decided to ignore implementation issues com~letely. 

Not that we do not care about implementation complexity; for the time 

being we merely disregard the feelings of prospective implementers and 

concentrate on the happiness of the user. Once sufficient implementation 

experience for the "final" version of Bis available, it may be decided 

to revise some features that pose undue implementation problems in 

exchange for little or no gain in language appeal. The i,npact of 

ALGOL 6qR on the revision of ALGOL 68 reveals that this may even help to 

improve the language from the user's point of view. 

3. THE TYPES OF B2 

In BO and B1 , the types were I11l'T, REAL, STRING and "RA~GE" types 

(similar to the scalar types of Pascal), and ARRAYs of scalar elements 

indexed by a tuple of RANGE value_s (but without the Pascal restriction 



much thought, and was the first thing tackled again in the design of B2 • 

The type system of B2 has been designed in a new way that is, in 

itself, of interest. If a sufficiently powerful collection of types is 

available (where "type" includes type constructors as "array"), any 

desired type (e.g., deque, or ternary tree) can be "simulated" or 

implemented by the user. The type could also be added as a "standard" 

type to the language. This may increase the ease of use of the language. 

Not all types, however, are equally helpful in this respect. Moreover, 

the language is made more complex, and possibly much so. A type system 

is competitive only if it is better than each other type system in at 

least one respect (ease of use, simplicity). 

So we compiled a list of candidate types (including, e.g., bag, 

deque, enumerated types, map, multi-valued map, queue, sequence, set, 

stack and tree), constructed various schemes for implementing these 

types in terms of other types, and assigned numerical values for 

(relative) algorithmic importance and learning complexity of each type 

and for implementation complexity of each scheme. The values took into 

account, of course, that the user we have in mind is not a computer 

scientist. This made it possible, with the assistance of a orogram, to 

weed out the non-competitive type systems from the rather large powerset 

of the candidate types. The resulting list of competitive systems was 

quite small, and it was easy, using old-fashioned human taste, to settle 

on one for use in B2 • 

If B1 might be called ALGOL 60 in BASIC-like disguise (the abstract 

of [2] reads: "FORTRAN : ALGOL 60 = PL/I : ALGOL 68 = BASIC : ?"), B2 

came out like SETL in sheep's clothing. The result is that the types of 

B2 are "numeric", "text", "tuple", "list" and "table". 

Numeric values come in two kinds, "exact" (i.e., rational) and 

"approximate" (i.e., floating point). The distinction is made at run 

time. This choice attempts to combine the following desiderata: 

(a) The user must be allowed control over quantities that should not be 

subject to rounding errors. (The choice for rational numbers, rather 

than integers, is mainly a nicety. But there is some obvious 

advantage in having, e.g., 1.25, represent an exact value.) 

(b) The user should have no need to worry about the distinction if it is 

not important. (E.g., adding exact and approximate values is 

allowed.) 

(c) The language has strong typing. 

3 
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(d) Coercions, i.e., automatic implicit type conversions, are deemed 

undesirable. 

(e) Approximateness propagates upwards in evaluating arithmetic 

expressions. 

(This list is not really exhaustive. It implies, among others, the 

presupposition that there should be some built-in treatment of 

approximate numbers.) 

The approach taken satisfies these five desiderata almost perfectly. 

Almost ••• ; in conformance with Murphy's Eighth Law, there is one ugly 

snag. If xis approximate, x/x does not equal 1. For approximateness 

propagates, and the approximate quantity x/x cannot be equal to the 

exact quantity 1. It is, presumably, equal to the approximate quantity 

In fact, no proper solution satisfying the desiderata (a) through 

(e) exists. As soon as one of these is lifted, a full solution becomes 

possible. The fact that 1 does not equal ~1 is a violation of (b): 

sometimes the user does have to worry. We chose this solution because we 

felt that the user should be careful anyway when comparing approximate 

values and has no business to expect exact answers. 

Text values are quite ordinary strings. (The term "text", instead of 

the esoteric "string", was taken from HOMMEL & al. [ 4].) No character 

values are provided; a text of length one will do. Two subtext operators 

are available. If the value oft is the sequence of characters 

c1 , ••• , en, then the value of t@p, with 1 ~ p ~ n+l, stands for 

cp, ••• , en and the value of tll, with O ~ l ~ n, is c1 , ••• , cl. A 

common combination will be t@pll. If tll""t@(l+l) is defined ("""" is 

concatenation), its value is t. 

These subtext operators may also be applied to text variables in 

target ("1.h.s.") positions. The replacing text need not 1-iave the same 

length as the text replaced. 

Tuples are like structured values ("records"), but without tags for 

selecting the fields. If, e.g., u and v are variables, then u,v may be 

used in a target position. This allows decomposition of tuples. 

Lists exist for values of any type (e.g., list of list of text). A 

list is simply a multi-set, or bag. In an algorithmic context, given the 

choice between sets and multi-sets, the latter are more useful. Having 

both is unnecessarily complex, and even a potential source of confusion. 

Since we do not expect the user to be familiar with the concept of a 



consequence is that a total ordering has to be defined on the values of 

any given type. This can be done in a reasonably natural way. 

Tables are like SETL maps: generalized arrays whose domain is 

variable and not necessarily a range of consecutive values. In contrast 

to SETL, tables are a genuine type, not a syntactic sugaring for 

interpreting a set of pairs as a map. In particular, a table cannot be a 

"multi-valued" map. 

5 

Originally, there were many restrictions in this type system. For 

example, the elements of a tuple, list or table could only be numeric or 

text values. Tables were indexed by numeric, text or a tuple. Especially 

the tuples had a special status. Although we thought we had good reasons 

for these restrictions (at the time the decision to ignore the ease of 

implementation had not been fully mentally digested), one hy one better 

reasons appeared to relax these constraints. At first, the relaxations 

tended to make the complexity worse, until we too~ the step that, in 

hindsight, seems so obvious: the type system was made completely 

orthogonal: tables may be indexed with tables, and so on. (This decision 

nevertheless required reworking most of the provisional language 

definition.) 

As the type system stands now, we are quite pleased by it, Sometimes 

the absence of extensible sequences is felt as a slight nuisance, but 

the experience on the whole seems to justify their absence as a stanr'lard 

type, The types appear in some way to span together the space of needs, 

as was the purpose of the exercise. A carefully tamed "free" type was at 

some time included, but abandoned later on. It has some merits, however, 

that may cause it to reappear. 

4. STATEMENT SYNTAX 

Statements in Bare rather verbose. Each statement begins with a 

keyword, and keywords are also used to separate the parameters of a 

statement. For example, the following is an assignment statement: 

PTJT a+l IN a. 

The philosophy behind this approac~ is given in [2]. An obvious 

drawback of verbose syntax is that the user has to key in so many 

symbols. However, as is already stated in [2], the language is embedded 

in a system that is dedicated to B. In particular, the editor knows the 

syntax of B. If this is combined with screen-editing facilities, it is 

- - - - .! 1....., - ..l.... - -- -- , 
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editor knows (or maybe guesses) that a PUT statement is intenrled, it may 

already display the IN and position the cursor at the first parameter. 

In GEURTS & MEERTENS [3] it is remarked that the keyword approach 

makes it possible to have user-defined statement types. This option has 

indeed been chosen for B2 • Such statement definitions take the role of 

procedures. For example, the user may define 

HOWT() !NCR x: PUT x+l IN x 

and next use this !NCR statement as though it had been part of the 

language all of the time. 

Since programs are entered through a B-dedicated editor, it is 

realistic to consider program lay-out as an integral part of the syntax. 

In particular, indentation is used to indicate grouping of statements. 

Although this was already so in [2], it took us quite some time to 

disengage ourselves completely from the idea that programs are prepared 

on one system and parsed by a second one that need not trust its input. 

The fact that there is no distinction between editor and parser means 

that ho special delimiters like BEGIN and F.ND are needed. That BEGIN was 

superfluous, we had already realized; but this was true anyway. But for 

quite some time, we required END lines, as in 

FOR p IN feasible: 

IF p IN cand: 

DELETE p FROM cand 

INSERT p IN chosen 

END IF 

END FOR 

RETURN chosen, cand. 

But the lines with END are pure noise. Once one gets used to it, the 

following is much more legible: 

FOR p IN feasible: 

IF p IN cand: 

DEU.:TE p FROM cand 

INSERT p IN chosen 

RETURN chosen, cand. 

5. STRONG TYPING WITHOUT DECLARATIONS 

It has been clear from the beginning that B should have strong 



silly errors as soon as possible. It seemed to us that this calls for 

declarations revealing the type of identifiers. (The FORTRAN 57 solution 

of restricting the choice of identifiers for a given type is 

unacceptable, as is the addition of special symbols as in BASIC.) 

One of the attractive features of BASIC is the lack of declarations. 
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Therefore, without really believing in it, we have searched for a system 

that allows' strong typing without declarations. (The advantage of 

declarations that they provide a redundancy protecting against typos can 

be taken over by checks against the use of uninitialized variables and 

warnings for assignment to dead variables.) In some languages with 

strong typing, it is essential that the type of identifiers is revealed 

through a declaration. For ALGOL 68, e.g., the value yielded by 

(amode block= ("abc", "def"); 

2 upb block 

) 

is 3 if amode is [,] char, but l if amode is [,,] char. But this is 

clearly a peculiari_ty. In almost all cases one can reconstruct the types 

from the context in which identifiers are used. 

This has led us to finding a system for B2 in which it is always 

possible to reconstruct the type of identifiers from the context. This 

statement should be slightly weakened in two respects. 

The first is that it may be possible to assign types to the 

identifiers consistently in more than one way. This happens, for 

example, in 

PUT {} IN x 

IF x ={}:WRITE 'yes'. 

Here it is clear that the type of xis "list of something", but the 

"something" cannot be deduced from the text (assuming xis not used 

otherwise). Rut in such cases the net effect is the same for each type 

assignment, so we do not care. It also happens in 

PUT a IN a, 

if no other assignments to a are made. But then a is not initialized, 

which is illegal by itself (and is checked statically). 

The second is that statements defined with HOWTO may be truly 

generic. The definition 

HOWTO SWAP a WITH b: PUT b, a IN a, b 
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will work for any type, as long as the two parameters have the same 

type. So no type can be assigned to a and b. Instead, the requirement is 

that if HOWTOs are expanded as macros to an arbitrary depth, consistent 

type assignment remains possible. This raises some hard questions, and 

undecidability is lurking around the corner (LANGMAACT< [SJ, GEHANI [1]). 

Nevertheless, for Bz this appears to be decidable without undue 

restrictions. Only after the last sentence was written down, did the 

author become aware of the work on type polymorphism by MILNER [9]. 

Although this is described for an applicative language, it appears 

equally applicable for a language as B. In fact, the situation is 

simpler there, since the items carrying a polymorphic type are not 

treated as values in B. 

There is one point where an unconventional step had to be taken to 

uphold the system. If a value comes into being through an operation on 

other values, it is sufficient if the result type is only dependent on 

the operand types, which is the case in B2 • We may thus concentrate on 

the spots where values appear directly. This can happen in two ways. 

One is through a constant denotation (literal). This is no 9roblem, 

since constants in B2 immediately reveal their types, with one 

exception: for empty lists or tables. This case has been treated above. 

The other case is when a value is obtained through interactive 

input. There is no a priori way to determine the type. Therefore, it is 

required that the READ statement reveals the type of the (expected) 

input. A first attempt required the presence of a "type specifier", 

where the size of the syntax for specifiers turned out not 

unsubstantial. This was not very satisfying; it meant the user had to 

learn a lot of (relatively weird) syntax for this one purpose. Luckily, 

we found another solution, made possible by the fact that for each value 

an explicit notation can be given. The type is now specified by 

providing a "sample": an expression of the same type. So one has to 

write, e.g. , 

READ n, v EGO, {''} 

if n is a numeric variable and vis a list of texts. (The constant{} 

will not do in this case.) 

The same EG mechanism is used to allow optional type information to 

be specified in other contexts. For example, in 

HOWTO REMOVE e FROM f EG {e}: 



the specification gives (redundant) information about the type 

relationship between the parameters. 

6. FORMULAS 

Just like "procedure calls" and "statements" are unified in Bz, so 

are "function calls" and "formulas". A new operator or function is 

introduced by a YIELD unit: 

YIELD fac n: 

PUT 1 IN f 

FOR i IN {l •• n}: PUT f*i IN f 

RETURN f 

The tuple mechanism gives a natural way to introduce more 

parameters: 

YIELD abs (x, y): RETURN sqrt (x*x+y*y). 

The parentheses are only required since the formal parameter is an 

explicit tuple; the definition might also have run: 

YIELD abs z: 

PUT z IN x, y 

RETURN sqrt (x*x+y*y). 

In either case, the user may apply this operator in a sequence as 

PUT a, b IN c 

PUT abs c IN r. 

The user might also prefer a dyadic operator: 

YIELD x dyabs y: RETURN abs (x, y). 

9 

For some reason or other, the priorities of operators are a trouble 

spot in algorithmic languages. An extreme solution as in A~L is not 

attractive; the more so since Bz is not really expression-oriented. 

Anyway, it is unacceptable if 2*n+l really means 2*(n+l) (although it 

certainly helps in making the users feel they belong to an esoteric 

cult). The MABEL solution (KING [6]) of requiring parentheses as soon qS 

several operators are involved, combines the virtues of simplicity and 

error resistance. Still, it seems a bit harsh to require parenthesizing 

of 2*m*n. 

The solution that has been adopted for Bz is to require 

parenthesizing whenever the priorities are not established by standing 
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convention and might matter. This is achieved by not assigning simple 

priorities to operators, but a priority interval instead. This interval 

represents a "fuzzy" priority. If the precedence decision is independent 

of the choice of priorities from the intervals, the expression is 

acceptable. Otherwise, parentheses must be inserted. User-defined 

operators are always assigned the maximal interval. 

Acceptable expressions are, e.g., m*n/d+c+l, a-b+l and 2*sqrt x. 

Unacceptable are a/2*b, a/2/b and sqrt 2*x, to give just a few examples. 

Of course, the editor warns the user on the spot that parentheses must 

resolve the ambiguity. 

It was a bit surprising that such a simple device as priority 

intervals could be tuned to give such reasonable results. 

7. GENERATORS 

Lists are only useful if there is some easy way to step through 

them. Originally, there were two ways for stepping through a list, one 

(OVER alist) in the normal, and one (REVO alist) in reversed order (word 

play intended). The second form followed an idea from MEERTENS [8], and 

was connected to the scalar type requirement for table domains in B0 • 

Once this requirement is relaxed, the convenience of the additional form 

no longer justifies the extra complexity. 

The keyword OVER was changed to IN for B2 • For example, the 

statement 

FOR i IN a: INSERT i IN b 

merges list a into b. This was done after it had already been decided to 

allow quantified tests: the test 

SOME i IN a HAS i ( 0 

succeeds if a contains a negative element (and sets i to stand for the 

value of the first such element, if any). Instead of SOME, also EACH and 

NO are allowed. 

In B0 , the domain of a table had to be defined as a RANGE type in order 

to create the table. With a dynamic domain, this no longer applies. But 

there should be some way for the user to go through a table domain. As·a 

first attempt, a domain operator was introduced: []t gives the list of 

indexes i such that t[i] is defined. So we could write: 

FOR i IN [ ] t : • • • • 



Switching to a seemingly unrelated topic, we wanted some simple but 

powerful mechanism for text parsing. A first attempt was a "FITS test" 

of the form 

withe a text expression, vi variables and ti tests. (The keyword FITS 

keeps appearing and disappearing in the design of B, each time with a 

different meaning.) The whole test succeeds if an assignment of text 

values to v 1, ... , vn is possible, such that e = v 1- ••. -vn and all of 

the tests t. succeed. If several successful assignments were possible, 
]_ 

the lexicographically first one would be returned. 

Now this would have filled an appreciable part of the syntax for one 

specialized capability. Moreover, it was unlike anything else in the 

language. Then we realized that we almost had the capability already 

there, right under our hands. For the semantics were exactly those of 

SOME v1 , ••• , vn IN??? HAS t 1 AND ••• AND tn, 

provided some suitable expression for the??? could be substituted. This 

expression should be a list of all n-tuples s1 , , sn such that e = 

s 1 - •.• -sn' A provisional notation for this list was e/n (e divided inn 

parts). This raises the problem that the type of e/n is dynamically 

dependent on n, which is incompatible with strong typing. If the form 

were only allowed in this context, the problem would disappear; in fact, 

then is then redundant, since there are exactly n bound variables. 

This triggered the solution adopted now. It is illustrated by the 

following example: 

WHILE SOt.ffi h, s, t P ARSP-lG sent IIAS s 

INSERT h IN words 

PUT t IN sent. 

' . 

If sent contains a comma, the parsing will be found that positions sat 

the first comma (so h will not contain a comma). If sent does not 

contain a comma, the test fails. If sent originally held the text 

'hickory,dickory,dock', the effect is that of 

INSERT 'hickory' IN words 

INSERT 'dickory' IN words 

PUT 'dock' IN sent. 

This is the most complicated feature in B2 ; it is, however, quite 

~m.70 ..--F,,1 _ Tt-c: c::,=,m.<int i cs can be explained in already familiar terms• At 

11 
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the same time, it takes away the nagging problem that a simple statement 

as 

PUT 'memory is becoming cheap'/ 24 IN m 

threatens to blow up even gigabyte systems. 

When OVER and REVO were originally introduced, and when they were 

replaced by IN, we did not think of the construction as a generator. 

With PARSING, we clearly have a generator. It is quite natural then to 

have a generator INDEXING to go through all indexes of a table. For 

example, 

FOR i INDEXING c: 

IF c[i] > max: ~UT max I~ c[i] 

applies a partial Procrustean operation to the elements of c. 

Such a decision may seem simple. But it has many ramifications. One 

is that the domain operator should be abolished. This is no great loss. 

Inspection of programs shows that in practice it is never used in a 

statement like 

PUT [] t IN tdom. 

But the operator was used in other ways. Previously, the way to delete 

an index from the domain was 

DELETE i FROM [] t, 

using []t as a pseudo-target. This had worried us, since the counterpart 

INSERT i IN []t 

could not be admitted~ Some other notation has to be devised for this 

deletion, removing at the same time the unorthogonality. 

The meaningful test 

i IN []t 

also has to be replaced by some other notation. One solution is a test 

DEFINED t[i], 

which can also be put to other uses (e.g., DEFINED sqrt -1). Another 

solution that is considered is derived from the observation that the 

test 



x IN a 

may be viewed as an abbreviation for 

SOME i IN a HAS i = x. 

So we could introduce a test 

x INDEXING t, 

using a similar abbreviation. A not particularly helpful, but harmless, 

consequence is that there should then also be a PARSING test. 

8. THE FINAL COMPOSITION 

As has been clear from the exposition, composing a language is not 

merely a matter of putting ingredients together and stirring till the 

result is a smooth paste. It would be helpful to language designers, if 

some top-down design method existed for algorithmic languages. If such a 

method exists, it has escaped our attention. The requirement for 

applying a method as "separation of concerns" is that the relevant 

concerns be separable. The whole experience of language design points in 

a different direction: seemingly innocent minor decisions may quite 

unexpectedly work major havoc in seemingly unrelaten corners. A well 

composed language is one in which the "features", although orthogonal, 

lend themselves to easy combination in many natural modes of expressing 

algorithmic thought. This means that the whole language is a tightly 

knit fabric, threatened by loose ends. 

The best aid to systematic language design, until now, is the 

paradigm of orthogonality, that derives its name from the title of 

VAN WIJNGAARDEN [12], but whose essence can already be found in 

his [11]. Experience shows that its application requires skill, if not 

expertise. It is interesting to see that the evolution of B has been in 

the direction of more orthogonality, mainly by virtue of the quest for 

simplicity. 

For part of the work in designing B2 , a new systematic approach has 

been used: the method described in section 3 to select the type system. 

This method is more widely applicable; it can be used, e.g., to find a. 

proper system of string operations from a large set of candidates. Work 

is in progress to apply another systematic method for the final 

polishing of the whole language. 

The idea has been used before by the author in a composition 

exercise of a different nature: composing a string quartet with 

13 
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traditional harmony (MEERTENS [7]). The same idea is applicable here. In 

its bare essence, it boils down to considering all combinations of all 

alternatives for the microscopic design decisions. For each combination, 

a check list is inspected of potential unacceptable or undesirable 

consequences. For each transgression, a fine is imposed. The combination 

that collects the minimal total fine, comes out as the winner. 

This method is, of course, NP-complete. In practice, however, it is 

expected to be feasible with the aid of some heuristics, since many 

design decisions form relatively independent small clusters. Still, this 

computational complexity is indicative of how hard it is to design a 

language. The example of the five reasonable desiderata for the numeric 

values, only four of which could be satisfied simultaneously, is just 

one example of the problems a language designer may run accross. 

It would be misleading to call such methods "language design by 

computer". The real skill goes into identifying the decisions, weighing 

the importance and merits of various approaches, and identifying harmful 

combinations. Only a dumb, but hard, part of the work is left to brute 

force. It is expected that the first-time "winner" will mainly serve to 

show deficiencies in the input to the program, and that several 

iterations will be needed to come up with a nice product. Indeed, the 

exercise may point out directions we have overlooked. If anything, the 

method requires that human prejudice is made explicit. The algorithm 

itself is, like Justice, blind-folded. 
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APPENDIX A: A Bo and a B2 program for the sieve of Eratosthenes. 

The following B0 program is copied from [2]. 

BEGIN 

CONST n IS 1999 

RANGE sievesize FROM 2 1Y) n 

R~~GE primality HAS prime, nonprime 

ARRAY (sievesize) a TYPE primality 

FOR i OVER sievesize PUT prime IN a(i) 

VAR k TYPE int, kmult TYPE sievesize 

PUT 2 IN k 

WHILE k*k FITS kmult 

BEGIN 

VAR kl 1YPE sievesize 

IF k FITS kl, a(kl) = prime DO sieve 

PUT k+l IN k 

END 

sieve: 

BEGIN 

PUT nonprime IN a(kmult) 

WHILE kmult+k FITS kmult PUT nonprime IN a(kmult) 

END 

FOR i OVER sievesize 

IF a(i) = prime 

BEGIN 

NEWLINE 

PRINT i 

END 

~D 

This problem was certainly not selected in [2] to show the 

clumsiness of B0 • The algorithmic thought is captured more easily, 

though, in B2 : 



HOWTO SIEVE n: 

PUT {2 •. n}, 2 IN primes, k 

WHILE k*k <= n: 

PUT k*k IN kmult 

WHILE kmult <= n: 

IF kmult IN primes: DELETE kmult FROM primes 

PUT kmult+k IN kmult 

PUT (k+l) min primes IN k 

WRITE primes 

SIEVE 1999 

Note that this program is algorithmically slightly different from 

the Bo program given above. The formula x min y yields the smallest 

element of the list y that is at least x. 
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APPENDIX B: A BASIC and a B2 prog~am for tabulating a recurrent 

sequence. 

The following program is copied from KENTON [10]. It has been 

selected because for this problem none of the "strong" points 6f B2 , 

such as manipulation of lists·, apply. For purposes of fair comparison, 

non-keywords have been rendered in lower case. 

10 REM This program computes a table of Fibonacci numbers 

20 PRINT "Enter first term" 

30 INPUT a 

40 PRINT "Enter second term" 

50 INPUT b 

60 PRINT "Maximum number of terms= 

70 INPUT n 

80 PRINT 

90 PRINT "Table of Fibonacci numbers" 

100 PRINT "Term no.","Fibonacci number" 

110 LET k=l 

120 PRINT k, a 

130 LET k=2 

140 PRINT k, b 

150 LET k=k+l 

160 LET q=a+b 

170 PRINT k,q 

180 LET a=b 

190 LET b=q 

200 IF k)=n THEN 220 

210 GOTO 150 

220 PRINT "Maximum numbers of terms reached" 

230 PRINT 

240 PRINT "Type 1 to continue, 0 to stop" 

250 INPUT l 

260 IF l=l THEN 280 

270 STOP 

280 PRINT 

290 GOTO 20 

300 END 

The following B2 program is not an exact transliteration; it 

contains an obvious improvement t~at might also be applied to the BASIC 



should be considered that part of the thesis motivating the development 

of Bis that BASIC invites clumsy programming. 

HOWTO TABULATE FIBONACCI NUMBERS: 

PUT 'yes' IN cont 

WHILE contll = 'y': 

WRITE/ 'Enter first term: ' 

READ a EG 0 

WRITE/ 'Enter second term: ' 

READ b EG 0 

WRITE/ 'Maximum number of terms= 

READ n EG 0 

WRITE// 'Table of Fibonacci numbers' 

PUT 'Term no. ', 'Fibonacci number' IN ct, cf 

WRITE/ ctAcf 

PUT length ct, length cf IN lt, lf 

FOR k IN {l •• n}: 

WRITE/ (k>>lt//2)A(a>>(lt+lf//2)) 

PUT k+l, b, a+b IN k, a, b 

WRITE/ 'Maximum number of terms reached' 

WRITE/ 'Do you want another table? ' 

RF.AD cont EG " 

This program shows some "formatting": the formula x>>n yields a text 

of length n representing the value of x, right adjusted (left-padded 

with blanks). 
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