
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

L.G.L.T. MEERTENS

~
MC

IW 161/81 FEBRUARI

ISSUES IN THE DESIGN OF A BEGINNERS' PROGRAMMING LANGUAGE

Preprint

kruislaan 413 1098 SJ amsterdam

PJtinted at :the Mathemati.c.al. Cen.tlr.e, 413 K.ltl.Ll6laa.n, Am!):teJui.am.

The Ma.thema:tlc.al. Cen.tlr.e , nounded :the 11-:th on Feb'1.WVLy 1946, -U a non
pnonU: hi6:t,i;tution aimlng a:t :the pJWmo.tion on pl..Vl.e. ma:themati.C-6 and .lt6
appUc.ati.oru,. 1:t -U ~pon6oJr.ed _by :the Ne:theJriand6 Govennment :thMugh :the
Ne:thelli.and6 0Jr.ga.ruzati.on non :the Advanc.ement on Pune RueaJLc.h (Z.W.O.).

1980 Mathematics subject classification: 68B99

ACM-Computing Review-category: 4.22

Issues in the design of a beginners~ programming language*)

by

Lambert Meertens

ABSTRACT

Some problems are related that have been encountered in the design of

a progrannning language for beginners. The solutions were sometimes unex

pected, and required doing away with preconceptions. The use of systematic

methods has been of some help.

KEY WORDS & PHRASES: programming languages, programming language design,

beginners' programming languages, BASIC

This re:port will be submitted for publication elsewhere,

1

1. INTRODUCTION

Of the commonly available algorithmic languages, some are definitely

better suited to convey the algorithmic thoughts of the programmer than

others. Whatever the preferred point of view, be it structured

programming, provability of correctness or the expressibility of

abstraction, some languages stand out for their excellence, some for

their abomination.

The latter should not worry us for languages in disuse. It should,

for languages used widely. The relatively abominable FORTRAN, though far

from dead, seems on its way out. Reasonable alternatives for FORTRAN

exist. That absolute champion, BASIC, however, is steadily marching on.

Moreover, BASIC has it attractive points, from the viewpoint of the

casual, non-professional user.

An attempt is under way to redress that situation, by issuing a

rival language, provisionally referred to as "B" (no relation to the

precursor of C; the "B" is only a language-name name referring to the

yet unknown language name). For a language to beat a rival, more is

involved than language issues. The example of FORTRAN more than goes to

show this point. This paper will be restricted, however, to linguistic

points. It is not intended as an introduction to B, but as an exposition

of some of the choices and problems encountered in the process of

designing an algorithmic language. The attempt has been to base the

solutions, in a rational way, on the design objectives.

Bis designed as the limit of a sequence: B0 , B1 , ••• The

approximation currently under construction, B2 , is the joint effort of

Robert Dewar of the Courant Institute of Mathematical Sciences, New York

University, Leo Geurts of the Mathematical Centre, and the author.

Contributions have been made by Peter King of the University of

Manitoba, Jack Schwartz of the Courant Institute, and Dick Grune and

?aul Klint of the Mathematical Centre. The responsibility for the

opinions expressed is solely that of the author.

2

2. THE DESIGN OBJ~CTIVES FOR B

The idea underlying the design objectives for Bare: beat the enemy

at its strong points. The same idea has governed the design of ELAN

(HOMMEL & al. [4]). There is one important difference: ELAN aims

primarily at the "market" of ·(introductory) education in computer

science, whereas B aims first of all at personal computing. The latter

has not always been the case. The first approximation of 13 (GEURTS &

MEERT~NS [2]) was designed when personal computing was in its infancy.

Although the design objectives themselves have remained the same, their

impact on the design has changed quite drastically.

The design objectives for Bare:

simplicity;

suitability for conversational use;

inclusion of structured-programming tools.

These objectives are elaborated upon in [2]. The change referred to

above is mostly concerned with the objective of simplicity. In [21, this

is interpreted as simplicity not only for the user, but also for the

implementer. It is stated that "B should be implementable on small

minicomputers".

The latter reflects our awareness, at the time, of the onset and

future importance of personal computing. At the same time, it reveals a

lack of perception of the torrent of hardware evolution. Tomorrow's

hand-held computers are yesterday's main-frames. Designing a language to

run smoothly on eight bit 8K machines is designing for the past. In

designing Bz, it was decided to ignore implementation issues com~letely.

Not that we do not care about implementation complexity; for the time

being we merely disregard the feelings of prospective implementers and

concentrate on the happiness of the user. Once sufficient implementation

experience for the "final" version of Bis available, it may be decided

to revise some features that pose undue implementation problems in

exchange for little or no gain in language appeal. The i,npact of

ALGOL 6qR on the revision of ALGOL 68 reveals that this may even help to

improve the language from the user's point of view.

3. THE TYPES OF B2

In BO and B1 , the types were I11l'T, REAL, STRING and "RA~GE" types

(similar to the scalar types of Pascal), and ARRAYs of scalar elements

indexed by a tuple of RANGE value_s (but without the Pascal restriction

much thought, and was the first thing tackled again in the design of B2 •

The type system of B2 has been designed in a new way that is, in

itself, of interest. If a sufficiently powerful collection of types is

available (where "type" includes type constructors as "array"), any

desired type (e.g., deque, or ternary tree) can be "simulated" or

implemented by the user. The type could also be added as a "standard"

type to the language. This may increase the ease of use of the language.

Not all types, however, are equally helpful in this respect. Moreover,

the language is made more complex, and possibly much so. A type system

is competitive only if it is better than each other type system in at

least one respect (ease of use, simplicity).

So we compiled a list of candidate types (including, e.g., bag,

deque, enumerated types, map, multi-valued map, queue, sequence, set,

stack and tree), constructed various schemes for implementing these

types in terms of other types, and assigned numerical values for

(relative) algorithmic importance and learning complexity of each type

and for implementation complexity of each scheme. The values took into

account, of course, that the user we have in mind is not a computer

scientist. This made it possible, with the assistance of a orogram, to

weed out the non-competitive type systems from the rather large powerset

of the candidate types. The resulting list of competitive systems was

quite small, and it was easy, using old-fashioned human taste, to settle

on one for use in B2 •

If B1 might be called ALGOL 60 in BASIC-like disguise (the abstract

of [2] reads: "FORTRAN : ALGOL 60 = PL/I : ALGOL 68 = BASIC : ?"), B2

came out like SETL in sheep's clothing. The result is that the types of

B2 are "numeric", "text", "tuple", "list" and "table".

Numeric values come in two kinds, "exact" (i.e., rational) and

"approximate" (i.e., floating point). The distinction is made at run

time. This choice attempts to combine the following desiderata:

(a) The user must be allowed control over quantities that should not be

subject to rounding errors. (The choice for rational numbers, rather

than integers, is mainly a nicety. But there is some obvious

advantage in having, e.g., 1.25, represent an exact value.)

(b) The user should have no need to worry about the distinction if it is

not important. (E.g., adding exact and approximate values is

allowed.)

(c) The language has strong typing.

3

4

(d) Coercions, i.e., automatic implicit type conversions, are deemed

undesirable.

(e) Approximateness propagates upwards in evaluating arithmetic

expressions.

(This list is not really exhaustive. It implies, among others, the

presupposition that there should be some built-in treatment of

approximate numbers.)

The approach taken satisfies these five desiderata almost perfectly.

Almost ••• ; in conformance with Murphy's Eighth Law, there is one ugly

snag. If xis approximate, x/x does not equal 1. For approximateness

propagates, and the approximate quantity x/x cannot be equal to the

exact quantity 1. It is, presumably, equal to the approximate quantity

In fact, no proper solution satisfying the desiderata (a) through

(e) exists. As soon as one of these is lifted, a full solution becomes

possible. The fact that 1 does not equal ~1 is a violation of (b):

sometimes the user does have to worry. We chose this solution because we

felt that the user should be careful anyway when comparing approximate

values and has no business to expect exact answers.

Text values are quite ordinary strings. (The term "text", instead of

the esoteric "string", was taken from HOMMEL & al. [4].) No character

values are provided; a text of length one will do. Two subtext operators

are available. If the value oft is the sequence of characters

c1 , ••• , en, then the value of t@p, with 1 ~ p ~ n+l, stands for

cp, ••• , en and the value of tll, with O ~ l ~ n, is c1 , ••• , cl. A

common combination will be t@pll. If tll""t@(l+l) is defined ("""" is

concatenation), its value is t.

These subtext operators may also be applied to text variables in

target ("1.h.s.") positions. The replacing text need not 1-iave the same

length as the text replaced.

Tuples are like structured values ("records"), but without tags for

selecting the fields. If, e.g., u and v are variables, then u,v may be

used in a target position. This allows decomposition of tuples.

Lists exist for values of any type (e.g., list of list of text). A

list is simply a multi-set, or bag. In an algorithmic context, given the

choice between sets and multi-sets, the latter are more useful. Having

both is unnecessarily complex, and even a potential source of confusion.

Since we do not expect the user to be familiar with the concept of a

consequence is that a total ordering has to be defined on the values of

any given type. This can be done in a reasonably natural way.

Tables are like SETL maps: generalized arrays whose domain is

variable and not necessarily a range of consecutive values. In contrast

to SETL, tables are a genuine type, not a syntactic sugaring for

interpreting a set of pairs as a map. In particular, a table cannot be a

"multi-valued" map.

5

Originally, there were many restrictions in this type system. For

example, the elements of a tuple, list or table could only be numeric or

text values. Tables were indexed by numeric, text or a tuple. Especially

the tuples had a special status. Although we thought we had good reasons

for these restrictions (at the time the decision to ignore the ease of

implementation had not been fully mentally digested), one hy one better

reasons appeared to relax these constraints. At first, the relaxations

tended to make the complexity worse, until we too~ the step that, in

hindsight, seems so obvious: the type system was made completely

orthogonal: tables may be indexed with tables, and so on. (This decision

nevertheless required reworking most of the provisional language

definition.)

As the type system stands now, we are quite pleased by it, Sometimes

the absence of extensible sequences is felt as a slight nuisance, but

the experience on the whole seems to justify their absence as a stanr'lard

type, The types appear in some way to span together the space of needs,

as was the purpose of the exercise. A carefully tamed "free" type was at

some time included, but abandoned later on. It has some merits, however,

that may cause it to reappear.

4. STATEMENT SYNTAX

Statements in Bare rather verbose. Each statement begins with a

keyword, and keywords are also used to separate the parameters of a

statement. For example, the following is an assignment statement:

PTJT a+l IN a.

The philosophy behind this approac~ is given in [2]. An obvious

drawback of verbose syntax is that the user has to key in so many

symbols. However, as is already stated in [2], the language is embedded

in a system that is dedicated to B. In particular, the editor knows the

syntax of B. If this is combined with screen-editing facilities, it is

- - - - .! 1....., - ..l.... - -- -- ,

6

editor knows (or maybe guesses) that a PUT statement is intenrled, it may

already display the IN and position the cursor at the first parameter.

In GEURTS & MEERTENS [3] it is remarked that the keyword approach

makes it possible to have user-defined statement types. This option has

indeed been chosen for B2 • Such statement definitions take the role of

procedures. For example, the user may define

HOWT() !NCR x: PUT x+l IN x

and next use this !NCR statement as though it had been part of the

language all of the time.

Since programs are entered through a B-dedicated editor, it is

realistic to consider program lay-out as an integral part of the syntax.

In particular, indentation is used to indicate grouping of statements.

Although this was already so in [2], it took us quite some time to

disengage ourselves completely from the idea that programs are prepared

on one system and parsed by a second one that need not trust its input.

The fact that there is no distinction between editor and parser means

that ho special delimiters like BEGIN and F.ND are needed. That BEGIN was

superfluous, we had already realized; but this was true anyway. But for

quite some time, we required END lines, as in

FOR p IN feasible:

IF p IN cand:

DELETE p FROM cand

INSERT p IN chosen

END IF

END FOR

RETURN chosen, cand.

But the lines with END are pure noise. Once one gets used to it, the

following is much more legible:

FOR p IN feasible:

IF p IN cand:

DEU.:TE p FROM cand

INSERT p IN chosen

RETURN chosen, cand.

5. STRONG TYPING WITHOUT DECLARATIONS

It has been clear from the beginning that B should have strong

silly errors as soon as possible. It seemed to us that this calls for

declarations revealing the type of identifiers. (The FORTRAN 57 solution

of restricting the choice of identifiers for a given type is

unacceptable, as is the addition of special symbols as in BASIC.)

One of the attractive features of BASIC is the lack of declarations.

7

Therefore, without really believing in it, we have searched for a system

that allows' strong typing without declarations. (The advantage of

declarations that they provide a redundancy protecting against typos can

be taken over by checks against the use of uninitialized variables and

warnings for assignment to dead variables.) In some languages with

strong typing, it is essential that the type of identifiers is revealed

through a declaration. For ALGOL 68, e.g., the value yielded by

(amode block= ("abc", "def");

2 upb block

)

is 3 if amode is [,] char, but l if amode is [,,] char. But this is

clearly a peculiari_ty. In almost all cases one can reconstruct the types

from the context in which identifiers are used.

This has led us to finding a system for B2 in which it is always

possible to reconstruct the type of identifiers from the context. This

statement should be slightly weakened in two respects.

The first is that it may be possible to assign types to the

identifiers consistently in more than one way. This happens, for

example, in

PUT {} IN x

IF x ={}:WRITE 'yes'.

Here it is clear that the type of xis "list of something", but the

"something" cannot be deduced from the text (assuming xis not used

otherwise). Rut in such cases the net effect is the same for each type

assignment, so we do not care. It also happens in

PUT a IN a,

if no other assignments to a are made. But then a is not initialized,

which is illegal by itself (and is checked statically).

The second is that statements defined with HOWTO may be truly

generic. The definition

HOWTO SWAP a WITH b: PUT b, a IN a, b

8

will work for any type, as long as the two parameters have the same

type. So no type can be assigned to a and b. Instead, the requirement is

that if HOWTOs are expanded as macros to an arbitrary depth, consistent

type assignment remains possible. This raises some hard questions, and

undecidability is lurking around the corner (LANGMAACT< [SJ, GEHANI [1]).

Nevertheless, for Bz this appears to be decidable without undue

restrictions. Only after the last sentence was written down, did the

author become aware of the work on type polymorphism by MILNER [9].

Although this is described for an applicative language, it appears

equally applicable for a language as B. In fact, the situation is

simpler there, since the items carrying a polymorphic type are not

treated as values in B.

There is one point where an unconventional step had to be taken to

uphold the system. If a value comes into being through an operation on

other values, it is sufficient if the result type is only dependent on

the operand types, which is the case in B2 • We may thus concentrate on

the spots where values appear directly. This can happen in two ways.

One is through a constant denotation (literal). This is no 9roblem,

since constants in B2 immediately reveal their types, with one

exception: for empty lists or tables. This case has been treated above.

The other case is when a value is obtained through interactive

input. There is no a priori way to determine the type. Therefore, it is

required that the READ statement reveals the type of the (expected)

input. A first attempt required the presence of a "type specifier",

where the size of the syntax for specifiers turned out not

unsubstantial. This was not very satisfying; it meant the user had to

learn a lot of (relatively weird) syntax for this one purpose. Luckily,

we found another solution, made possible by the fact that for each value

an explicit notation can be given. The type is now specified by

providing a "sample": an expression of the same type. So one has to

write, e.g. ,

READ n, v EGO, {''}

if n is a numeric variable and vis a list of texts. (The constant{}

will not do in this case.)

The same EG mechanism is used to allow optional type information to

be specified in other contexts. For example, in

HOWTO REMOVE e FROM f EG {e}:

the specification gives (redundant) information about the type

relationship between the parameters.

6. FORMULAS

Just like "procedure calls" and "statements" are unified in Bz, so

are "function calls" and "formulas". A new operator or function is

introduced by a YIELD unit:

YIELD fac n:

PUT 1 IN f

FOR i IN {l •• n}: PUT f*i IN f

RETURN f

The tuple mechanism gives a natural way to introduce more

parameters:

YIELD abs (x, y): RETURN sqrt (x*x+y*y).

The parentheses are only required since the formal parameter is an

explicit tuple; the definition might also have run:

YIELD abs z:

PUT z IN x, y

RETURN sqrt (x*x+y*y).

In either case, the user may apply this operator in a sequence as

PUT a, b IN c

PUT abs c IN r.

The user might also prefer a dyadic operator:

YIELD x dyabs y: RETURN abs (x, y).

9

For some reason or other, the priorities of operators are a trouble

spot in algorithmic languages. An extreme solution as in A~L is not

attractive; the more so since Bz is not really expression-oriented.

Anyway, it is unacceptable if 2*n+l really means 2*(n+l) (although it

certainly helps in making the users feel they belong to an esoteric

cult). The MABEL solution (KING [6]) of requiring parentheses as soon qS

several operators are involved, combines the virtues of simplicity and

error resistance. Still, it seems a bit harsh to require parenthesizing

of 2*m*n.

The solution that has been adopted for Bz is to require

parenthesizing whenever the priorities are not established by standing

10

convention and might matter. This is achieved by not assigning simple

priorities to operators, but a priority interval instead. This interval

represents a "fuzzy" priority. If the precedence decision is independent

of the choice of priorities from the intervals, the expression is

acceptable. Otherwise, parentheses must be inserted. User-defined

operators are always assigned the maximal interval.

Acceptable expressions are, e.g., m*n/d+c+l, a-b+l and 2*sqrt x.

Unacceptable are a/2*b, a/2/b and sqrt 2*x, to give just a few examples.

Of course, the editor warns the user on the spot that parentheses must

resolve the ambiguity.

It was a bit surprising that such a simple device as priority

intervals could be tuned to give such reasonable results.

7. GENERATORS

Lists are only useful if there is some easy way to step through

them. Originally, there were two ways for stepping through a list, one

(OVER alist) in the normal, and one (REVO alist) in reversed order (word

play intended). The second form followed an idea from MEERTENS [8], and

was connected to the scalar type requirement for table domains in B0 •

Once this requirement is relaxed, the convenience of the additional form

no longer justifies the extra complexity.

The keyword OVER was changed to IN for B2 • For example, the

statement

FOR i IN a: INSERT i IN b

merges list a into b. This was done after it had already been decided to

allow quantified tests: the test

SOME i IN a HAS i (0

succeeds if a contains a negative element (and sets i to stand for the

value of the first such element, if any). Instead of SOME, also EACH and

NO are allowed.

In B0 , the domain of a table had to be defined as a RANGE type in order

to create the table. With a dynamic domain, this no longer applies. But

there should be some way for the user to go through a table domain. As·a

first attempt, a domain operator was introduced: []t gives the list of

indexes i such that t[i] is defined. So we could write:

FOR i IN [] t : • • • •

Switching to a seemingly unrelated topic, we wanted some simple but

powerful mechanism for text parsing. A first attempt was a "FITS test"

of the form

withe a text expression, vi variables and ti tests. (The keyword FITS

keeps appearing and disappearing in the design of B, each time with a

different meaning.) The whole test succeeds if an assignment of text

values to v 1, ... , vn is possible, such that e = v 1- ••. -vn and all of

the tests t. succeed. If several successful assignments were possible,
]_

the lexicographically first one would be returned.

Now this would have filled an appreciable part of the syntax for one

specialized capability. Moreover, it was unlike anything else in the

language. Then we realized that we almost had the capability already

there, right under our hands. For the semantics were exactly those of

SOME v1 , ••• , vn IN??? HAS t 1 AND ••• AND tn,

provided some suitable expression for the??? could be substituted. This

expression should be a list of all n-tuples s1 , , sn such that e =

s 1 - •.• -sn' A provisional notation for this list was e/n (e divided inn

parts). This raises the problem that the type of e/n is dynamically

dependent on n, which is incompatible with strong typing. If the form

were only allowed in this context, the problem would disappear; in fact,

then is then redundant, since there are exactly n bound variables.

This triggered the solution adopted now. It is illustrated by the

following example:

WHILE SOt.ffi h, s, t P ARSP-lG sent IIAS s

INSERT h IN words

PUT t IN sent.

' .

If sent contains a comma, the parsing will be found that positions sat

the first comma (so h will not contain a comma). If sent does not

contain a comma, the test fails. If sent originally held the text

'hickory,dickory,dock', the effect is that of

INSERT 'hickory' IN words

INSERT 'dickory' IN words

PUT 'dock' IN sent.

This is the most complicated feature in B2 ; it is, however, quite

~m.70 ..--F,,1 _ Tt-c: c::,=,m.<int i cs can be explained in already familiar terms• At

11

12

the same time, it takes away the nagging problem that a simple statement

as

PUT 'memory is becoming cheap'/ 24 IN m

threatens to blow up even gigabyte systems.

When OVER and REVO were originally introduced, and when they were

replaced by IN, we did not think of the construction as a generator.

With PARSING, we clearly have a generator. It is quite natural then to

have a generator INDEXING to go through all indexes of a table. For

example,

FOR i INDEXING c:

IF c[i] > max: ~UT max I~ c[i]

applies a partial Procrustean operation to the elements of c.

Such a decision may seem simple. But it has many ramifications. One

is that the domain operator should be abolished. This is no great loss.

Inspection of programs shows that in practice it is never used in a

statement like

PUT [] t IN tdom.

But the operator was used in other ways. Previously, the way to delete

an index from the domain was

DELETE i FROM [] t,

using []t as a pseudo-target. This had worried us, since the counterpart

INSERT i IN []t

could not be admitted~ Some other notation has to be devised for this

deletion, removing at the same time the unorthogonality.

The meaningful test

i IN []t

also has to be replaced by some other notation. One solution is a test

DEFINED t[i],

which can also be put to other uses (e.g., DEFINED sqrt -1). Another

solution that is considered is derived from the observation that the

test

x IN a

may be viewed as an abbreviation for

SOME i IN a HAS i = x.

So we could introduce a test

x INDEXING t,

using a similar abbreviation. A not particularly helpful, but harmless,

consequence is that there should then also be a PARSING test.

8. THE FINAL COMPOSITION

As has been clear from the exposition, composing a language is not

merely a matter of putting ingredients together and stirring till the

result is a smooth paste. It would be helpful to language designers, if

some top-down design method existed for algorithmic languages. If such a

method exists, it has escaped our attention. The requirement for

applying a method as "separation of concerns" is that the relevant

concerns be separable. The whole experience of language design points in

a different direction: seemingly innocent minor decisions may quite

unexpectedly work major havoc in seemingly unrelaten corners. A well

composed language is one in which the "features", although orthogonal,

lend themselves to easy combination in many natural modes of expressing

algorithmic thought. This means that the whole language is a tightly

knit fabric, threatened by loose ends.

The best aid to systematic language design, until now, is the

paradigm of orthogonality, that derives its name from the title of

VAN WIJNGAARDEN [12], but whose essence can already be found in

his [11]. Experience shows that its application requires skill, if not

expertise. It is interesting to see that the evolution of B has been in

the direction of more orthogonality, mainly by virtue of the quest for

simplicity.

For part of the work in designing B2 , a new systematic approach has

been used: the method described in section 3 to select the type system.

This method is more widely applicable; it can be used, e.g., to find a.

proper system of string operations from a large set of candidates. Work

is in progress to apply another systematic method for the final

polishing of the whole language.

The idea has been used before by the author in a composition

exercise of a different nature: composing a string quartet with

13

14

traditional harmony (MEERTENS [7]). The same idea is applicable here. In

its bare essence, it boils down to considering all combinations of all

alternatives for the microscopic design decisions. For each combination,

a check list is inspected of potential unacceptable or undesirable

consequences. For each transgression, a fine is imposed. The combination

that collects the minimal total fine, comes out as the winner.

This method is, of course, NP-complete. In practice, however, it is

expected to be feasible with the aid of some heuristics, since many

design decisions form relatively independent small clusters. Still, this

computational complexity is indicative of how hard it is to design a

language. The example of the five reasonable desiderata for the numeric

values, only four of which could be satisfied simultaneously, is just

one example of the problems a language designer may run accross.

It would be misleading to call such methods "language design by

computer". The real skill goes into identifying the decisions, weighing

the importance and merits of various approaches, and identifying harmful

combinations. Only a dumb, but hard, part of the work is left to brute

force. It is expected that the first-time "winner" will mainly serve to

show deficiencies in the input to the program, and that several

iterations will be needed to come up with a nice product. Indeed, the

exercise may point out directions we have overlooked. If anything, the

method requires that human prejudice is made explicit. The algorithm

itself is, like Justice, blind-folded.

REFERENCES

[1] GEHANI, N., Generic procedures: an implementation and an

undecidability result, Computer Languages l (1980) 155-161.

[2] GEURTS, L.J.M & L.G.L.T. MEERTENS, Designing a beginners'

programming language, in New Directions in Programming Languages

1975, 1-18, (S.A. Schuman, ed.), IRIA, Roquencourt, 1976.

[3] GEURTS, L.J.M & L.G.L.T. MEERTENS, Keyword grammars, in

Implementation and Design of Algorithmic Languages, 1-12,

(J. Andre & J.-P. Banatre, eds), IRIA, Rocquencourt, 1978.

[4] HOMMEL, G., J. JACKEL, S. JAHNICHEN, K. KLEINE, W. 1~0CH &

K. KOSTER, ELAN - Sprachbeschreibung, Akademische

Verlagsgesellschaft, Wiesbaden, 1979.

[SJ LANGMAACK, H., On correct procedure parameter transmission in

higher programming languages, Acta Informatica l (1973) 110-142.

[6] KING, P.R., MABEL manual, University of Manitoba, 1978.

[7] MEERTENS, L.G.L.T., The imitation of musical styles by a computer,

in Information Processing 68, Proc. of IFIP Congress 1968,

Vol. 1, xxiv-xxv, North-Holland Publ. Co., Amsterdam, 1968.

[8] MEERTENS, L.G.L.T., Mode and meaning, in New Directions in

Programming Languages 1975, 125-138, (S.A. Schuman, ed.), IRIA,

Roquencourt, 1976.

[9] MILNER, R., A theory of type polymorphism in programming, J. of

Computer and System Sciences l2_ (1978) 348-375.

[10] TRACTON, ~., 57 Practical Programs & Games in Basic, Tab Books,

Blue Ridge Summit, 1978.

[11] VPN WIJNGAARDEN, A., Generalized ALGOL, in Symbolic Languages in

Data Processing, Proc. of an ICC Symp., 409-419, Gordon and

Breach, 1962; also in Annual Review in Automatic 'Programming,

Vol. 3, 17-26, (R. Goodman, ed.), Pergamon Press, 1963.

[12] VA~ WIJNGAARDEN, A., Orthogonal design and description of a formal

language, Report MR 76, Mathematical Centre, Amsterdam, 1965.

15

16

APPENDIX A: A Bo and a B2 program for the sieve of Eratosthenes.

The following B0 program is copied from [2].

BEGIN

CONST n IS 1999

RANGE sievesize FROM 2 1Y) n

R~~GE primality HAS prime, nonprime

ARRAY (sievesize) a TYPE primality

FOR i OVER sievesize PUT prime IN a(i)

VAR k TYPE int, kmult TYPE sievesize

PUT 2 IN k

WHILE k*k FITS kmult

BEGIN

VAR kl 1YPE sievesize

IF k FITS kl, a(kl) = prime DO sieve

PUT k+l IN k

END

sieve:

BEGIN

PUT nonprime IN a(kmult)

WHILE kmult+k FITS kmult PUT nonprime IN a(kmult)

END

FOR i OVER sievesize

IF a(i) = prime

BEGIN

NEWLINE

PRINT i

END

~D

This problem was certainly not selected in [2] to show the

clumsiness of B0 • The algorithmic thought is captured more easily,

though, in B2 :

HOWTO SIEVE n:

PUT {2 •. n}, 2 IN primes, k

WHILE k*k <= n:

PUT k*k IN kmult

WHILE kmult <= n:

IF kmult IN primes: DELETE kmult FROM primes

PUT kmult+k IN kmult

PUT (k+l) min primes IN k

WRITE primes

SIEVE 1999

Note that this program is algorithmically slightly different from

the Bo program given above. The formula x min y yields the smallest

element of the list y that is at least x.

17

\

18

APPENDIX B: A BASIC and a B2 prog~am for tabulating a recurrent

sequence.

The following program is copied from KENTON [10]. It has been

selected because for this problem none of the "strong" points 6f B2 ,

such as manipulation of lists·, apply. For purposes of fair comparison,

non-keywords have been rendered in lower case.

10 REM This program computes a table of Fibonacci numbers

20 PRINT "Enter first term"

30 INPUT a

40 PRINT "Enter second term"

50 INPUT b

60 PRINT "Maximum number of terms=

70 INPUT n

80 PRINT

90 PRINT "Table of Fibonacci numbers"

100 PRINT "Term no.","Fibonacci number"

110 LET k=l

120 PRINT k, a

130 LET k=2

140 PRINT k, b

150 LET k=k+l

160 LET q=a+b

170 PRINT k,q

180 LET a=b

190 LET b=q

200 IF k)=n THEN 220

210 GOTO 150

220 PRINT "Maximum numbers of terms reached"

230 PRINT

240 PRINT "Type 1 to continue, 0 to stop"

250 INPUT l

260 IF l=l THEN 280

270 STOP

280 PRINT

290 GOTO 20

300 END

The following B2 program is not an exact transliteration; it

contains an obvious improvement t~at might also be applied to the BASIC

should be considered that part of the thesis motivating the development

of Bis that BASIC invites clumsy programming.

HOWTO TABULATE FIBONACCI NUMBERS:

PUT 'yes' IN cont

WHILE contll = 'y':

WRITE/ 'Enter first term: '

READ a EG 0

WRITE/ 'Enter second term: '

READ b EG 0

WRITE/ 'Maximum number of terms=

READ n EG 0

WRITE// 'Table of Fibonacci numbers'

PUT 'Term no. ', 'Fibonacci number' IN ct, cf

WRITE/ ctAcf

PUT length ct, length cf IN lt, lf

FOR k IN {l •• n}:

WRITE/ (k>>lt//2)A(a>>(lt+lf//2))

PUT k+l, b, a+b IN k, a, b

WRITE/ 'Maximum number of terms reached'

WRITE/ 'Do you want another table? '

RF.AD cont EG "

This program shows some "formatting": the formula x>>n yields a text

of length n representing the value of x, right adjusted (left-padded

with blanks).

19

0

