
AFDEL I NG I NFORMAT !CA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

D. GRUNE

FROM VW-GRAMMAR TO ALEPH

Preprint

~
MC

IW 162/81 MAART

kruislaan 413 1098 SJ amsterdam

81BL!OfHEEK MATHEMATISCH Cb"JlRUM
-Al\iSFR!lt,rv, ----

PJunted at .the Ma:themati.c.al Ce.nt:lte., 413 Kfl.U..i.6.t.aan, Aml>.teJulam.

The Mat.hema.:tlc.ai. Centll.e, 6ou.nded .the 11-.th 06 FeblLU.all.y 1946, h, a. non­
yJJLo6U .ln&:tliuti.on aiming at. .the pJWmoUon 06 pWLe ma:thema.UC-6 a.nd U:-6
a.ppU..catlon6. 1.t h, .6pon6oll.ed by .the Ne.theJLf.a.nd.6 Govell.nment .thll.ough .the
Ne.thelri.a.nd6 0Jtga.rilzat.ion 6oll. .the Adva.nc.ement 06 PUll.e Ruea.ll.c.h (Z.W.O.).

1980 Mathematics subject classification: 68B99,' 68F05.

ACM-Computing Reviews-category: 4.22, 5.23

From VW-grammar to ALEPH*)

by

Dick Grune

ABSTRACT

This paper gives an exposition of the designing of ALEPH. ALEPH

(acronym for! Language _!ncouraging !_rogram Hierarchy) is a programming

language developed at the Mathematical Centre; it is unusual in that it

originates from the world of grammars rather than from the world of

programming languages. It has the interesting property that it is large

enough not to be dismissed as a toy language and small enough to keep the

task of designing it intellectually manageable.

An account of the design of ALEPH is interesting not only because of

its results, a language with a v~ry simple but powerful flow-of-control in

which the uninitialized-variable problem is solved and in which side

effects are under full control, but also because the way in which these

results are obtained lies open to examination.

KEY WORDS & PHRASES: programming language design, grammars

*)This report will be submitted for publication elsewhere.

1

1 INTRODUCTION

ALEPH (acronym for !_ _!:anguage _§_ncouraging ~rogram !!_ierarchy) [l] is a
programming language developed at the Mathematical Centre; it is unusual in
that it originates from the world of grammars rather than from the world of
programming languages. It has the interesting property that it is large
enough not to be dismissed as a toy language and small enough to keep the
task of designing it intellectually manageable (although barely so).

Therefore an account of the design of ALEPH is interesting not only be­
cause of its results, a language with a very simple but powerful flow-of­
control in which the uninitialized-variable problem is solved and in which
side effects are under full control, but also because the way in which
these results are obtained lies open to examination.

In this paper we shall give an exposition of the designing of ALEPH. A
survey of the line of argument is given in the directed graph in Fig. 1 (at
the end of this monograph). The bubbles contain concepts; the arrows can be
read as "leads to" or "is a prerequisite for'". Bubbles that have no prede­
cessors contain ideas that come from the outside world, those that have no
successors contain (hopefully desirable) results for that outside world.

Figure 1 bears resemblance to the dependency graph of modules in a
large program; several layers can be distinguished: programming language,
flow-of-control, affixes, affix rules, globals.

Inside these levels the dependency of the concepts is fairly badly
structured, as can be expected of an object that was not designed according
to firm design rules.

Little is known about design rules for programming languages. In
essence design rules serve to reduce the intellectual complexity of a task.
Traditional means are: imposing a structure, divide-and-conquer, defining
interfaces, etc. Hardly any of these applies to the design of programming
languages. The most successful principle is still orthogonality, which also
has its prolblems. It does not allow the designer to distinguish between the
cheap and the expensive, and its consistent application is difficult.

1.1 Vocabulary

Our discussion leads us from VW-grammars
ALEPH and conventional programming languages.
(traditionally) used in these different fields,
the reader to refer to the following table.

VW-grammars: affix-grammars: ALEPH:

grammar grammar program

initial symbol root

through affix grammars to
Different terminology is

and it may be helpful for

conventional
programming languages:

program

2

hyper-rule

may produce
empty

is a blind
alley

hypernotion

metarule

metanotion

rule rule procedure

primitive predicate external rule built-in function

left-hand-side,
LHS

right-hand-side,
RHS

may produce£

produces w

affix expression

affix rule

affix
bound affix
free affix

rule head

rule body

always
succeeds

fails

affix form,
rule call

affix
formal affix
local affix

procedure heading

procedure body

always yields
true

yields false

call

data type

parameter
formal parameter
local parameter

2 TURNING A VW-GRAMMAR INTO A PROGRAMMING LANGUAGE

2.1 VW-grammars

A VW-grammar (named after its originator, A. van Wijngaarden (2, 3]) is
a special type of context-sensitive (CS) grammar that has many properties
of a context-free (CF) grammar. It is based on the observation that we can
use a CF grammar to describe a CS language, provided that this grammar has
infinitely many production rules; every actual production of a desired sen­
tence in tha CS language, however, needs only a finite number of them. In
essence a VW-grammar is a recipe for generating such an infinity of CF pro­
duction rules. For an extensive explanation see J. Craig Cleaveland and R.
Uzgalis [4].

A VW-grammar has the following main constituents:
- the metarules, a collection of (interrelated) CF grammars, each produc­

ing a language for a specific metanotion,
- the hyper-rules, a collection of templates from which to form (an in­

finity of) CF production rules.

A CF production rule is derived from a hyper-rule by replacing con­
sistently each of the metanotions it contains by a terminal production of
that metanotion. For an example see TCGl below.

3

2.2 Two-colour grammars

Let us now introduce the notion of a "two-colour" VW-grammar. We start
from a VW-g:rammar R, which produces sequences of symbols in red. We then
take a second VW-grammar P, which shares part or all of its metarules with
Rand which produces its symbols in blue (or in a different alphabet if you
will). We now combine the two grammars and insert hypernotions of P in hy­
peralternatives of rules of R: the resulting grammar produces sentences in
mixed red and blue text.

If it now so happens that a hypernotion of P shares one or more metano­
tions with lts neighbours that belonged to R, then the production of blue
text is controlled by the same choice of metanotion substitutions as that
of the red text, and the red and blue pieces of text will become correlat­
ed.

As an example we shall now rewrite grammar Q from [4, p. 64] as a two­
colour grammar.

TCGl:
N •• N n;
ABC .. a; b; c.

text: red Na, blue Nb, blue N c.

red N ABC:
red symbol ABC, red Nl ABC,

where rd Nl plus one is N;
where rd N is zero.

red symbol ABC: red letter ABC symbol.
where rd N plus one is N n: where true.
where rd is zero: where true.

blue N ABC:
where bl N is zero;
blue symbol ABC, where bl Nl is N minus one,

blue Nl ABC.
blue symbol ABC: blue letter ABC symbol.
where bl N is N n minus one: where true.
where bl is zero: where true.

where true:

A possible production is (with N = nnn in 'text'):

red-a red-a red-a blue-b blue-b blue-b blue-c blue-c blue-c

4

It is well-known that a CF grammar can be turned into a recognizer for
the language it produces. In the general case this can be unpleasant, but
if enough restrictions are put on the CF grammar, neat recognizers result.
Specifically, the LL(l) restriction leads to an efficient top-down parser,
which, as a program, has virtually the same form as the original grammar.

This suggests that it may be possible to consider the red part of the
two-colour grammar TCGl (which, in a sense, is LL (1)) as a top-down parser
for the red text, while at the same time retaining the producing nature of
the blue part. If we do this, we are led to consider the occurrences of
metanotions i.n hypernotions as parameters. We shall not worry at the moment
about the exact parameter-passing mechanism; for the time being it can be
thought of as "call-by-name". This brings us to the following
grammar/program:

Pl:
text: read Na, print Nb, print N c.

read N ABC:
read symbol ABC, read Nl ABC,

where rd Nl plus one is N;
where rd N is zero.

read symbol ABC: absorb letter ABC.
where rd Nl plus one is N: set N to Nl plus one.
where. rd N is zero: set N to zero.

print N ABC:
where pt N is zero;
print symbol ABC, where pt Nl is N minus one,

print Nl ABC.
print symbol ABC: produce letter ABC.
where, pt Nl is N minus one: set Nl to N minus one.
where pt N is zero: is N zero.

When we read this with the firm conviction that it is a program, seman­
tics begins to attach itself to various constructs. To perform 'text', read
N a's, then print N h's, then print N e's. To read N ABC's, we have the
choice betweem two alternatives which we shall try in order. We attempt to
read a symbol ABC, and if we succeed we read Nl ABC's and set N to Nl plus
one; otherwise (if we cannot read a symbol ABC) we set N to zero. In this
same vein we can understand the rest of the program, which prints Nb's and
N e's.

At this point the reader will have gathered that we have cheated. The
above example! was rigged so that its interpretation as a program suggested
itself. A general VW-grammar does not exhibit such a nice structure, and
the parsing problem cannot be solved. There is, however, a type of CS gram­
mar related to VW-grammars for which the parsing problem can be solved: the
affix grammars.

5

2.4 Affix grammars

Affix grammars are defined by C.H.A. Koster [5]; this definition is
slightly corrected and explained well in [6]. Koster shows that if an affix
grammar is "well-formed" (see below) it is possible to construct a parser
for the language it generates. Most constituents of a VW-grammar also exist
in an affix-grammar. For a list of correspondences see 1. The principal
differences between affix grammars and VW-grammars are:

- a hypernotion consists of a characteris.tic name, its "handle", followed
by one or more metanotions, called "affixes", and

- context conditions are enforced by special rules called "primitive
predicates"; they can be thought of as affix checkers.
A "primitive predicate" is similar to a (normal) rule in that it has

affixes; but rather than producing its output by specifying affix forms and
terminal symbols, it contains a total recursive function T which, depending
on the affixes, will produce either "empty" (£) or the forbidden symbol
(w). We shall call T the "test" of the primitive predicate.

The well-formedness criterion requires (among other things) that all
occurrences of affixes be divided into two groups, the "derived" (o) and
the "inherited" (t) affixes, in such a way that they can properly be inter­
preted as output and input parameters, respectively. Moreover, for each
primitive predicate with derived affixes D, inherited affixes I and test T,
a total recursive function must be given which will calculate D from I such
that T(I, D) succeeds (i.e., produces£); this requirement marks the tran­
sition from a specification language to an algorithmic language.

We shall now show an affix-grammar equivalent to TCGl (some comment is
given between {{and}}):

AGl:
<{{V[n]:}} (text, red, red symbol, blue, blue symbol),

{{V[t]:}} (red-a, red-b, red-c, blue-a, blue-b, blue-c),
{{A[n]:}} (N, Nl, ABC, ABCl),
{{A[t]:}} (n, a, b, c),
{{Q:}} (where rd plus one is, where rd is zero, where is,

where bl is minus one, where bl is zero

) '
{{E:}} text,
{ {R:}} (N: N n; •

Nl: N.

{{S:}}

ABC: a; b; c .•
ABCl: ABC.

) ,
(<text, 0, () , () , ¢ >,
(red, 2 , (t , 1) , (N , ABC) , ¢) ,
(red symbol, 1, (t), (ABC),¢),
(where rd plus one is, 2, (1,0), (N,

AX 1,.y: (x + 1 = y -> £, x + 1
(where rd is zero, 1, (), (N),

AX: (x = 0 -> £ , x O -> w)>,

Nl),
y-)w)>,

6

(where is, 2, (ABC, ABCl), (t,t),
AX Ay: (x = y ->e: , x y -> w)) ,

(blue, 2, (t, t) , (N, ABC), ¢ >,
(blue SYJ\lbol, 1, (t), (ABC),¢>,
(where bl is minus one, 2, (t,o), (N, Nl),

AX Ay: (x = y - 1 -> e: , x y - 1 -> w)),
<where bl is zero, 1, (i), (N),

AX: (x = 0 -> e:, x O -> w))
),

{{P:}} (text: red+ N + a, blue+ N + b, blue+ N + c.

)

>

red + N + ABC:
red symbol+ ABC, red + Nl + ABC,

where rd plus one is+ Nl + N;
where rd is zero+ N.

red symbol+ ABC:
where is+ ABC + a, red-a;
where is + ABC + b, red-b;
where is + ABC + c, red-c.

blue+ N + ABC:
where bl is zero+ N;
blue symbol+ ABC, where bl is minus one+ Nl + N,

blue + Nl + ABC.
blue symbol+ ABC:

where is+ ABC+ a, blue-a;
where is+ ABC+ b, blue-b;
where is+ ABC+ c, blue-c.

To satisfy the well-formedness requirement this text must be augmented
by a list of functions, one for each primitive predicate, that calculate
the derived affixes from the inherited ones. Since lambda-notation does not
allow output-parameters, these functions cannot be written down here. They
correspond to the "set N to ••• "in Pl.

3 FROM AFFIX GRAMMAR TO ALEPH

Although the affix grammar AGl can be converted easily into a program,
it will be clear that affix grammars are still a far cry from a usable pro­
gramming language. We have "primitive predicates" which form a kind of
language inside the language. The global flow-of-control may be obvious but
details about the local flow-of-control (i.e., inside a rule) have to be
decided. The exact nature of affixes is open to negotiation. The affix
rules describe data structures, but their form will depend on decisions
about the affixes.

7

There are of course many ways to approach these problems. One such ap­
proach has led to the Compiler Description Language CDL, designed by C.H.A.
Koster [7]. We shall follow here a different way which leads to ALEPH.

Like in CDL we shall restrict ourselves to top-down (recursive descent)
parsers, since they lead more ·easily to programming languages than bottom­
up parsers. Bottom-up parsers for affix grammars have been constructed by
D. Crowe [8] and A.P.W Bohm [6].

3.1 Global flow-of-control

The global flow-of-control relies completely on rules calling rules
(recursively); since there is only one level of rules and rules cannot oc­
cur as parameters (nor be assigned to "rule variables"), the program is a
directed graph; the starting point is the root. This has the great advan­
tage that many properties of the program can be decided mechanically (re­
cursion check, automatic cross-referencing). On the other hand it means
that the rule-calling and affix-passing mechanism will be used heavily and
that efficiency will be an important factor in the design of both.

3.2 Finding~ place for the primitive predicates

We shall incorporate the 1. / o affix information in the rule heads; an
1.-affix (input affix) is marked by a prefixed) , a o -affix (output affix)
by a postfixed >. We shall postpone the decision about the affix-passing
mechanism to 4.1.

The number of primitive predicates can often be greatly reduced by
describing their effect (producing £ or w) in hyper-rules. Many full-size
examples of this technique can be found in [3, ch. 7] and in [9]. This sug­
gests the possibility of using a fixed set of metarules for every grammar,
i.e., to supply a fixed set of data-types in the programming language.
These data-types are then supported by a predefined set of predicates on
them, the "externals".

The RHS of a rule may contain both affix forms and terminal symbols; we
shall simplify this situation by introducing two rules, "absorb + ABC" and
"produce + ABC". "Absorb + ABC" looks at the next character in the input
stream; if it is equal to ABC, "absorb" absorbs it and succeeds; otherwise
it fails. "Produce + ABC" produces the character ABC. They replace the ab­
sorption and production mechanism implied in the functioning of a two­
colour grammar.

We shall change the keyword initsym to root; the end of the text will
be marked with·an end. Our program now has the form (character constants
are quoted with /'s):

P2:
root text.

8

external set to plus one+ N) +)Nl = "!NCR",
set+)N + Nl) = "SET",
set to minus one+ N) +)Nl = "DECR",
equal+)N +)Nl = "EQUAL".

text: read+ N + /a/, print+ N + /b/, print+ N + /c/.

read+ N) +)ABC:
read symbol+ ABC, read+ Nl + ABC,

where rd plus one is+ Nl + N;
where rd is zero+ N.

read symbol+)ABC: absorb+ ABC.
where rd plus one is+)Nl +)N: set to plus one+ N + Nl.
where rd is zero+ N): set+ 0 + N.

print+)N +)ABC:
where pt is zero+ N;
print symbol+ ABC, where pt is minus one+ Nl + N,

print+ Nl + ABC.
print symbol+)ABC: produce+ ABC.
where pt is minus one+ Nl) +)N: set to minus one+ N + Nl.
where pt is zero+)N: equal+ N + O.

end

Note that characteristic strings have been supplied in the external de­
clarations, which enable the compiler to find the proper routines outside
the program.

3.3 Local flow-of-control

Local flow-of-control is the flow-of-control inside a rule once it is
called due to global flow-of-control rules. Since global flow-of-control is
trivial, we shall use simply "flow-of-control" for "local flow-of-control".

The parsing problem for affix grammars can be solved by a general top­
down parser (5, par. 8], at the expense of extensive back-tracking. Now
ALEPH is intended for the writing of production soft-ware; here any back­
track problems should be solved once at the writing desk, rather than over
and over again when the program is run. A traditional way to avoid back­
tracking is to require the grammar to be of type LL(l).

What does it mean for an affix grammar to be LL(l)? It should be borne
in mind that the LL(l)-property is important only because it allows simple
flow-of-control rules for a backtrack-free deterministic parser. We shall
therefore take these rules as a starting point:

LL (1) rules :

9

- call the initial rule; iff it succeeds, the input belongs to the
language
a rule is "called" by trying the alternatives in its RHS for applica­
bility and calling an applicable alternative (there can only be one
such alternative)

- an alternative is "applicable" iff its first rule call succeeds
- an alternative is "called" by calling its rules in textual order as

long as these rule calls succeed
- an alternative "succeeds" iff all its rule calls succeed
- a rule call "succeeds" iff the rule called has an applicable alterna-

tive that succeeds.

Moreover we have an error condition:
if any applicable alternative fails, the input does not belong to the
generated language (i.e., if an alternative is applicable it is the
correct one).

We want to take over these rules as much as possible. After some exper­
imentation we have come to the following flow-of-control rules:

ALEPH rules:
- execute the affix form in the root; it must succeed

an affix form is "executed" by trying the alternatives in the RHS · of
its rule for applicability and executing the first applicable alterna­
tive

- an alternative is "applicable" iff its first affix form succeeds
- an alternative is "executed" by executing its affix forms in textual

order as long as these affix forms succeed
- an alternative "succeeds" iff all its affix form succeed
- a affix form "succeeds" iff the rule called has an applicable alt~rna-

tive that succeeds.

These flow-of-control rules allow us to view the first affix form as an
"entrance key": you enter the first alternative to which you have the right
key. Once you enter this alternative no others can be reached any more. An
important consequence is that there is only one way to reach a given affix
form. This leads immediately to the Central Theorem of ALEPH:

When the N-th affix form in the M-th alternative is
reached, the entrance keys of alternatives 1 through M-1
have failed, and affix forms 1 through N-1 in this alterna­
tive have succeeded.

This Central Theorem is a great help in deriving assertions (see
below).

We still have to investigate the error condition inherited from the
LL(l) flow-of-control rules; we shall postpone this until 3.5.

10

The above rules are (almost) all the flow-of-control ALEPH has: there
are no~-, while-, do-, repeat-, until-, or exit-clauses. Rather than
emphasizing repetition, ALEPH emphasizes decomposition: each problem is
decomposed into several alternatives with entrance keys and each alterna­
tive is decomposed into a sequence of sub-problems (which may, of course,
be congruent to the original problem). In short, every problem is attacked
by recursive descent.

Often a problem that requires a complicated application of the tradi­
tional if's and while's can be formulated simply in ALEPH. A good example
is searching a list for a given name; the search process stops in one of
two ways: the list is empty, or we found the name. In the first case we
want to insert the name, in the second we are satisfied with the reference
to it. Here we would need a multi-exit loop or a global toggle; or we would
have to perform the same test twice. In ALEPH we simply state the alterna­
tives and tell what to do:

find name+)name+)list+ entry):
is empty+ list, insert+ name+ list+ entry;
is name on top+ name+ list, top of+ list+ entry;
next of+ list+ listl, find name+ name+ listl + entry.

$ approximate declarations of the rules used:

is empty+)list: $ succeeds if 'list' refers to an empty list.

insert+)name+)list+ entry):
$ insert the name in 'list' and put its position in 'entry'.

is name on top+)name+)list:
$ succeeds if the topmost name on 'list' equals 'name'.

top of+)list+ entry):$ put the position of the top of 'list' in 'entry'.

next of+)list+ listl):
$ put the position of the next element of 'list' in 'listl'.

3.4 Success/failure

We have assumed in the above that any rule can fail (but we have not
based any conclusions on that). It soon becomes clear, however, that some
rules cannot fail, e.g., because a rule produces£ regardless of the values
of its affixes.

The Central Theorem shows us immediately that if any alternative but
the last one in a rule has an entrance key that cannot fail, part of the
RHS is inaccessible.

11

3.5 Side effects

It is the error condition for LL(l)-parsing in 3 .3 that allows us to
avoid back-tracking, in the following way. When a rule call fails, it has
only called other rules that failed. Now since the only terminal rule is
"absorb", and since "absorb" has no side effect when it fails (3 .2), no
rule call that fails will have had side effects (by induction). So nothing
is modified on failure, and no back-track is necessary. This is the "No
cure - no pay" principle: you may order something, but if you don't get it,
you don't pay.

We would certainly like to carry this nice feature of LL(l) parsing
over into our programming language. This is done trivially by forbidding
any applicable alternative to fail (either statically or dynamically). But
we can do better than this.

Where a CF grammar only has rules (which have side effects on success),
we have rules (which also have side effects on success) and primitive
predicates (which never have side effects). Moreover, some of our rules
derive entirely from primitive predicates (see 3.2). So in ALEPH a success­
ful affix form does not necessarily imply side effects.

Consequently it is perfectly safe to allow failure of an applicable al­
ternative, provided no affix form with side effects has yet succeeded in
the alternative.

Under this regime the "No cure - no pay" principle holds:

If an affix form fails it has had no side effects.

In 3.4 we have divided the rules into two groups, those that can fail
and those that can't. Now we have a second division, in those that can have
side effects (on success) and those that can't. These divisions are in­
dependent, so four classes (rule types) result:

can fail cannot fail

can have side effects predicate action

cannot have side effects question function
(The reader is warned that the word predicate above is a historical misno­
mer and has nothing to do with primitives predicates.)

This classification allows us to give a proper place to "absorb" and
"produce": their rule types are external predicate and external action,
respectively.

In principle the compiler could assess these properties, but it is much
more useful to have the programmer specify his intentions (opinions) and
have the compiler check them. The non-trivial redundancy obtained is ex­
ploited for error detection.

12

P3:

Our program is now (affixes are written in small letters):

root text.

external function set to.plus one+ n) +)nl = "!NCR",
function set+)n + nl> = "SET",
function set to minus one+ n) +)nl = "DECR",
question equal + >n +)nl == "EQUAL",
predicate absorb+)abc = "ABS",
action produce+)abc = "PROD".

action text: read+ n + /a/, print+ n + /b/, print+ n + /c/.

action read+ n> +)abc:
read symbol+ abc, read+ nl + abc,

where rd plus one is+ nl + n;
where rd is zero+ n.

predicate read symbol+)abc: absorb+ abc.
function where rd plus one is+)nl +)n: set to plus one+ n + nl.
function where rd is zero+ n): set+ 0 + n.

action print+ >n +)abc:
where pt is zero+ n;
print symbol+ abc, where pt is minus one+ nl + n,

print+ nl + abc.
action print symbol+)abc: produce+ abc.
function where pt is minus one+ nl) +)n: set to minus one+ n + nl.
question where pt is zero+)n: equal+ n + O.

end

We see the impact the rule type classification has on the program: for
each rule it is locally clear what to expect of it in terms of flow-of­
control. The consistency of the indications is checked by the compiler; we
have here strong type checking, not for data types but for rule types.

4 AFFIXES

Rules in an affix grammar can have bound affixes (those that occur in
the LHS and in the RHS) and free affixes (that occur in the RHS only). In
ALEPH these correspond to formal and local affixes, or "formals" and "lo­
cals". There are "input" and "output" formals; an input formal has a value
upon entry to the rule an output formal must have received a value when the
rule ends.

Of course it is necessary that all input affixes of an affix form have
obtained a value when the affix form is executed. Now, since

13

the Central Theorem states that there is only one path from rule en­
trance to a given affix form, and the C.T. gives that path,

- the initial states of all formals and locals at rule entrance are known
from the LHS, and
for each affix form A on the path the effect on the affixes passed to
it is known from the LHS of A,

the compiler can ascertain in an efficient way that never the value of an
affix will be used before that affix has received a value. No run-time
checking is necessary. A similar test can ensure that an output formal will
always receive a value.

The details of this test depend on the affix-passing mechanism.

4.1 The affix-passing mechanism

The affix-passing mechanism has to obey two conditions: the value of an
inherited affix must be available inside the rule, and the value obtained
by a derived affix inside the rule must be made available to the caller.

If we do not allow the value of an affix to be changed (once it has ob­
tained a value), then the story ends here: all affix-passing mechanisms
that conform to the above conditions are indistinguishable (except,
perhaps, as to efficiency).

Little is known, however, about the possibility of programming with in­
itializable constants only, and we felt that variables are indispensable.
This decision has led to an interesting extension of the "No cure - no pay"
principle to local variables.

Since rules need the possibility to change values of affixes of calling
rules, it seems that we need at least call-by-reference (or a more general
mechanism). Call-by-reference, however, can surprise the programmer pain­
fully with invisible aliases, as in:

action produce a orb+ p) + q):
set+ p + /a/, set+ q + /b/, produce+ p.

where a call "produce a or b + x + x" produces /b/. Moreover, back-track
rears its ugly head again when a rule fails after having changed the value
of an (output) affix.

On the other hand it is clear that call-by-value is insufficient.

A good in-between is found in "copy-restore": upon rule entry all input
affixes are copied to a local work space, and upon rule exit all output af­
fixes are restored from that local work space. If we now suppress the res­
toring if the rule fails ("copy-maybe-restore"), no effects on affixes will
propagate upwards upon failure, and a failing rule will never spoil infor­
mation: the "No cure - no pay" principle also holds for affixes.

Under these circumstances we can easily introduce "inout-affixes",
which must have a value upon entrance and which return the (possibly
changed) value; notation:+)tag).

14

The copy-maybe-restore mechanism allows us to view the (formal and lo­
cal) affixes as local variables, some of which are already initialized upon
rule entrance and some of will be returned to the caller if and when the
rule succeeds. This mechanism is easy to explain and efficient to imple­
ment. It aids programming in that it supplies automatic back-tracking on
local variables.

The introduction of variables allows the following shorter form of our
program:

P4:
root text.

external function increment by one+ >n> = "INCR",
function set+ >n + nl> = "SET",
function decrement by one+ >n> = "DECR",
question equal+ >n +)nl = "EQUAL",
predicate absorb+ >abc = "ABS",
action produce+ >abc = "PROD".

action text - n: $ a "local"
read+ n + /a/, print+ n + /b/, print+ n + /c/.

action read+ n> +)abc:
read symbol+ abc, read+ n + abc,

where rd plus one+ n;
where rd is zero+ n.

predicate read symbol+ >abc: absorb+ abc.
function where rd plus one+ >n>: increment by one+ n.
function where rd is zero+ n): set+ 0 + n.

action print+ >n +)abc:
where pt is zero+ n;
print symbol+ abc, where pt minus one+ n,

print+ n + abc.
action print symbol+)abc: produce+ abc.
function where pt minus one+ >n>: decrement by one+ n.
question where pt is zero+ >n: equal+ n + O.

end

5 OTHER FEATURES

Program P4 is correct ALEPH and, given suitable external routines INCR
••• PROD, it will run. However, a number of externals have been predefined
in ALEPH; there are other data types besides the integers used here; there
are abbreviations for right-recursive rule calls; and there are other
features. All these allow the program to be simplified. For lack of space
we shall not treat them here. Details can be found in the ALEPH Manual [l].

15

6 CONCLUSION

We have shown that by drawing heavily on the analogy between grammars
and programs, and between parsing and problem solving, a practical language
can be designed that has some properties not generally found in programming
languages.

Among these properties are:

a simple and effective flow-of-control based solely on selection,
decomposition and procedure calling;

- a Central Theorem which states in simple terms the conditions that ap­
ply when a given construct is reached;

- an efficient compile-time check on the initialization of variables;

- a firm and compiler-checkable concept of side effects.

7 REFERENCES

[1] D. Grum:?, R. Bosch & L.G.L.T. Meertens, ALEPH Manual, IW 17/77,
Mathematical Centre, Amsterdam, 1977 (third printing).

[2] A. van Wijngaarden, Orthogonal design and description of a formal
languagi:?, MR 76, Mathematical Centre, Amsterdam, 1965.

[3] A. van Wijngaarden et al. (Eds.), Revised Report on the Algorithmic
Languagi:? ALGOL 68, Acta Informatica 5, 1-236, 1975; MC Tract SO,
Mathematical Centre, Amsterdam, 1976; SIGPLAN Notices.!.?_, 5, 1977.

[4] J. Craig Cleaveland & R.C. Uzgalis, Grammars for Programming Languages,
Elsevier Scientific Pub. Co., Amsterdam, 1977.

[S] C.H.A. Koster, Affix Grammars, in ALGOL 68 Implementation, North­
Holland Publ. Co., Amsterdam, 1971, p 95.

[6] A.P.w.]Bohm, Affixgrammatica's, afstudeerverslag (Affix Grammars, MSc.
thesis), TH Delft, Delft, 1974, in Dutch.

[7] C.H.A. Koster, A Compiler Compiler, MR 127/71, Mathematical Centre, Am­
sterdam, 1971.

[8] D. Crow1e, Generating Parsers for Affix Grammars, Comm. ACM _!i, 728-734,
1972.

[9] R. Glandorf, D. Grune & J. Verhagen, AW-grammar of ALEPH, IW 100/78,
Mathematical Centre, Amsterdam, 1978.

fig.1

USE ONE
COLOUR
Fo•

PAR­
SING

NCFORMAL/1..0CAL SJOE
E.FFECT" ON FAILURE

(•AUTOMATIC. LOCAL
8ACICT'ft4c,c)

NO CUR£ -

NO PAY
(Fol\ F'OJtMAUI,

LOCALS)

