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On the existence of Cook semantics*) 

by 

A.de Bruin 

ABSTRACT 

In the literature, for instance in Cook's paper on soundness and com­

pleteness of Hoare systems [6], one can find the following technique of 

defining an operational semantics of a programming language: a function 

Comp is introduced which takes a program Rand a state a and yields a, 

possibly infinite, row of intermediate states as a result. This row is 

meant to be the trace resulting from executing program R starting in state 

a. 

The function Comp is characterized by a number of equations. However, 

these equations are such that it is not irmnediately clear whether they have 

a solution. In the above mentioned paper Cook gives some general remarks 

as to how these equations should be interpreted, but these remarks are not 

intended as a rigorous definition. 

In this paper we show for a simple language, the most sophisticated 

feature of which is that it has parameterless procedures, that the corre­

sponding equations have a unique solution. We show this first in a straight­

forward way, and then by defining the solution through an iterative process 

(using fixed point techniques or a little topology). Furthermore we show 

that the techniques used here can also be applied to other languages de­

scribed in the same way, for instance to the language in Cook's paper. 

KEY WORDS & PHRASES: Operational semantics, Cook semantics, fixed points, 

continuation semantics, recursive definitions, 

denotational semantics 

*)This report will be submitted for publication elsewhere. 
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l • INTRODUCTION 

In this paper we investigate a certain way of defining operational 

semantics of progranuning languages, which has become widely known because 

·Cook used it in his soundness and completeness paper [6]. Cook remarks that 

this semantics has been derived from one of the operational semantics studied 

in Lauer's thesis [10], and also in Hoare & Lauer [7], a paper which is a 

condensed version of the thesis. Later on this style of definition has also 

been employed by de Bakker in his book on the theory of program correctness [3]. 

The technique is as follows: a meaning function Comp is described 

which takes a program and an initial machine state and yields a row of 

states as a result. This row gives the trace left by evaluating the program 

starting in the initial state. A terminating computation yields a finite 

row, and if evaluation does not terminate then the outcome is an infinite 

row. The possibility of infinite rows is Cook's extension over the original 

idea of Lauer. It is a meaningful extension because there are programs which 

are intended to run forever while having a well defined meaning. One can 

think of various kinds of real time processes, for instance data base 

managers and the like. It is not feasible for the meaning function Comp to 

be undefined for such programs which is generally the case for meaning 

functions which are more oriented towards the final outcome of programs. 

For a simple language containing declarations E of parameterless 

procedures, procedure calls, atomic statements A (for instance assignment 

statements), conditional statements and composition of statements the func­

tion Comp would be introduced by the following four equations. 

Comp(<EIA>)(o) =<a>, 

where cr is the state resulting from executing the atomic 

statement A in o 

Comp(<EIP>)(cr) = <cr>/\ Comp(<EIS>)(cr), 

where the declaration P<=S occurs in E. 

Comp(< EI if B then s1 else s2 >)(O) = 

r <cr>A Comp(<EIS 1>)(cr)if Bis true in o 

\ < cr>A Comp(< El s2>) (o) otherwise 

Comp(<Els 1;s2 >)(o) =<o>A Comp(<EIS 1>)(cr)A 

Comp~ EI s2>) (K (.Comp(< E.I s 1·>) (cr)}) 
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Here A denotes the concatenation operator, and K the function which takes 

a row and yields its last element. 

Now there are some questions to be answered. Does there exist a func­

tion Comp with the above properties? If so, is this function total? And 

unique? We cannot provide the answers immediately because the above 

equations can be interpreted as a recursive definiton which is not inductive. 

That is, there is no complexity measure according to which the arguments 

of Comp in the right hand sides of the equations are simpler than the ar­

guments in the corresponding left hand sides. This is true, because if 

the definition would be inductive then Comp would yield a finite row for 

all arguments for which is was defined, and this is clearly not the case 

(evaluate for instance the call P with declaration P4'>P; this yields an 

infinite row<cr,cr,cr, .•• > where cr is the initial state of the calculation). 

Cook was also aware of these questions as the following quotation 

from [6] shows: 

"The definition is recursive, in the sense that Comp appears on the 

right side of the clauses. This may appear ironic in a paper on program 

verification, since one of the important issues in programming language 

semantics is interpreting recursively defined procedures. However, 

one does not have to understand recursive procedures in general in 

order to understand this specific definition. Suffice it to say that 

we intend Comp to be evaluated by "call by name", in the sense that 

occurrences of Comp are to be replaced successively by tneir meanings 

according to the appropriate clauses in the definition". 

In this paper we will show that the answer to the above questions is 

that there is a unique total function which satisfies the equations. We will 

show this in four different ways. 

The first idea is to derive from the recursive definition an inductive 

one which defines the elements of the outcome of Comp one by one. This is 

treated in chapter 3. The other techniques are derived from the idea that a 

solution of the equations can be obtained by iterating an operator derived 

from the equations, with as initial value a meaning function which is now­

here defined. The first iteration then yields a function which is defined 

for atomic statements only, that is which is defined for all statements 

for which we need to use the equations only once to get a final result. The 
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second iteration yields a function which gives the correct result for all 

atomic statements and all statements of the form<EjA1;A2> or< ••• ,P<=A1, ••• IP>, 

that is for all statements for which we can derive the final outcome by 

using the equations not more than twice. Repeating this process we generate 

a sequence of meaning functions that tends to a limit. We then have to 

prove that this limit is the unique total solution of the equations. 

This idea of transforming recursion into iteration is standard in 

denotational semantics. An ordering is defined on the domains and ranges 

of our operators which turn these domains into cpo's, and then a variant 

of Tarski's fixed point theorem is used to get a solution of equations like 

the ones given above. However, these techniques cannot be applied here 

straightforwardly. This phenomenon is analyzed in chapter 4. The main 

obstacle is that the sequence of approximations is not monotonically 

increasing under the obvious ordening on the domain of rows of states. 

We present three ways out of this problem and these are dealt with 

in chapters 5,6 and 7. The first solution is to add to the domain of rows 

of states the finite rows marked as "not yet completed". On the thus aug­

mented domain we are able to define an ordering which makes the fixed point 

theory applicable here. The second idea is to use techniques from continua­

tion semantics: we rewrite the equations in a more generalized form which 

is such that fixed point techniques can be used straightforwardly, and 

after that we show that the unique solution thus obtained induces a unique 

solution of the original equations. 

The third way out is to use the fact that the domain of rows has a 

richer structure than the cpo structure. In fact it can be made in a 

natural way a complete metric topological space. We then use this structure 

to show that any sequence of approximations converges to the unique solution 

of the equations. These ~esults can be found in chapter 7. 

Finally, in the last chapter we will show how to extend the results 

obtained for the paradigm language defined here to definitons of bigger 

languages. We will indicate for what language constructs the techniques 

treated here can be used. 
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2. THE PROBLEM 

In this chapter we will define the language under consideration for­

mally, and we'. will also give the Cook equations for this language in their 

official forn:t. But first some notational conventions. 

Rows will be indicated by angular bra.ckets. For instance we have 

<XI, •.. ,xn> which denotes a finite row of n elements, and< xI ,x2 , ••• > which 

denotes an infinite row. The empty row 1.s denoted by < >. 

Function application associates to the left, that is fabc 1.s an abbreviation 

of ((f(a))(b))(c). Correspondingly, the ➔ -operator used in forming 

function domains associates to the right. The above function f should have 

functionality definition f: A ➔ B ➔ C ➔ D which should be read as 

f: A ➔ (B➔(C➔D)). 

We next describe the syntax of the language. We distinguish the follow­

ing syntactic classes: 

- PE Pva.JL procedure variables 

- A E Ab.:,t Atomic statements. The structure of these statements is not 

specified further, but think of assignments. 

- BE Bexp boolean expressions.These are also considered to be atomic 

building blocks. 

- R E PJi,og p:r>ograms. These have the form <EIS> and must be closed, i.e. 

all procedure variables in E and Sare declared in.E. 

- EE Vee.£ declarations. These have the form<Pi'~sI, ... ,Pn<=Sn>' 

where all Pi are different. 

- s E S.ta;t statements.S:: = AIPlif B then Sielse s 2 1sI;S2 . 

The conditional statement is included to be able to build nontrivial 

programs but they have no other significance, i.e. they make the language 

bigger but not intrinsically more difficult to handle. 

We now turn to the semantics. There are the following semantic classes. 
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states.The internal structure of states is not specified. Notice 

that I is a set, not a cpo. There is for instance no such thing 

as 1- 1.n L 

- T E I 

We define 

A 

- K 

00 * Iw r* rows of states.We define z: = I u . contains the 

sequences and the empty row and Iw the infinite ones. 

the following operators on rows of states. 

concatenation3 defined by the following axioms: 
A 

T 1 T2 = 

< > 

w 
Tl for all Tl EI 

A 
T < > = T 

I 

= < er 1 ' ••• 'er n, er 1 ' ••• , erk > 

A I 
<erl , ••• ,ern > <erl • .•• ' > = <erl' •.. ,ern,erl, ••• , > 

last element extraction, defined by 

K <er 1, •.. ,er >=er 
n n 

finite 

w -. K < > = KT = er for all T E I , where er 1.s an arbitrary 

(but fixed from now on) element in I. 

Finally we distinguish the following elementary valuations. 

- A: A:U:t -rE-+I meaning of atomic statements.Notice that atomic 

statements always terminate. 

- B: Bexp ➔ z: ➔ {tt,ff} meaning of boolean expressions. As the.internal 

structure of A:U:t and Bexp has not been specified, 

we cannot do more than postulate the existence of functions A and B with 

functionalities as above. 

We now have enough tools to formulate the Cook equations. These 

equations are intended to define a function Comp: Pnog-+ I-➔ z:; 00 and are 

stated below 
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Comp<EIA> cr = <AAcr> 

Comp<EIP.> cr = <cr> A Comp<EIS.> cr with P. <= S. in E. 
l. l. l. l. 

Comp<Elif B then s 1 else s 2> cr = 

{ 
<cr> A Comp<E I s i'> a, i£ BBcr = t t 

<cr> A Comp<Els2>, otherwise 

Comp<Els 1;s2> cr = <cr> A, A Comp<EIS2>(K,), 

where,= Comp<EIS 1> cr. 

In the sequel we will refer to this set of equations as CE, which is an 

abbreviation of "the Cook equations". We next formulate a lemma which gives 

information on all total functions satisfying CE. The lemma states that a 

definition through a set of equations like CE is independent of the partic­

ular way we defined KT for,=<> or,£ Ew. This holds because CE is such 

that in it K is never applied to < >, and if K is applied to an element of 

Ew, then its value is irrelevant because it will be used only to determine 

a row which is to be appended to an infinite row, which means that it will 

be neglected. 

LEMMA 2.1. For every totaZ function 4? in P~og + E + E~ which satisfies CE 

the foZZowing hoZds. 

1 • For aU R and a we have 4?Ra :f, < > 

2. If we constuct a set of equations CE' which is Zike CE except for the 

fact that it uses another Zast eZement extraction function K 1 which 

differs from K onZy when appZied to< > or eZements from Ew, then 

~ is also a soZution of CE'. 

PROOF. Straightforward. 0 

3. A STRAIGHTFORWARD SOLUTION 

The idea is the following. We define a new function C which is like 

Comp but takes besides Rand cr an extra argument, a natural number n, and 
th which yields an element from E. This element should then be then element 

of the row Comp Ra. Now it is possible to give an inductive definition of 

C. 
First of all we have to introduce an extra element n ("undefined") 
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because in the set-up as proposed here it is possible to ask for the third 

element of a row of two elements. In such cases we then deliver Q. 

We define 

DEFINITION 3. I. The function C: Pnog _.. I: _.. JN - I: u {Q} is defined by 

induction on n as follows: 

C<E!P.>crn 
i 

if n = 1 
otherwise 

fa if n = 1 
1. C<E IS. >a (n-1) , otherwise, where P .<= S. occurs in E i i i 

if n = I a 

l C<E!s 1>cr(n-1), 

C<EI slcr(n-1), 

if n I and BBcr = tt 

otherwise 

C<E!s 1;s2>crn = 

a, if n = 

C<E!s 1>cr(n-1), 

C<E!s2>(C<E!s 1>crk)(n-k-l), if n I 1 and C<E!S 1>cr(n-l) IQ 
and V := {mjC<E!S 1>am IQ A C<E!S 1>cr(m+l) =·QA m < n} I 0 
where k = min V 

otherwise 

This definition is adward, especially the case <E!s 1;s2>. We can simplify 

this clause by applying the next two lennna's. 

LEMMA 4.3. \IR,cr: CRcrl IQ, 

PROOF. Immediate. □ 

LEMMA 3.3. V R,cr,n: CRan = Q ~ V k ~ n: CRcrk = Q. 

PROOF. Induction on n. For instance, take R = <Ejs 1;s2>. 
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If CRon = n then a fortiori C<EJS 1>crn = Q. If we combine this with Lennna 

3.2 we obtain that the set Vas defined in the last clause of definition 

3.1 is not empty. So the second case in the definition of C<Els 1;s2>crn 

applies and we have CRon = C<EIS2>cr(n-m-1) for some m with l~m<n-1 

Therefore C<EjS2>cr(n-m-1) = n. 
Now we can use the same argument to show that for all k~ we have CRcrk = 

C<Els2>o(k-m-1). Therefore an application of the induction hypothesis 

yields the desired result. D 

COROLLARY 3.4 For all Rand n we have that either CRcrn; nor that there 

exists exactly one k with l~k<n such that CRak In and CRcr(k+l) = n. 
Moreover in the latter case we have V~k:CRam; n and Vm>k:CRam = n. 

LEMMA 3.5. cr, if n = 1 

C <EIS 1>cr(n-1), if C<EIS 1>cr(n-1); n and n; 1 

C <EIS2>(C<EIS 1>crk)(n-k-1), otherwise 

where k is such that C<EIS 1>crk; n and 

C<EIS 1>cr(k+l) = r. 

PROOF. Innnediate from the above Corollary. D 

Next we will use C to define a function Comp satisfying CE. 

DEFINITION 3.6. 

_ { <CRcrk>:=l' if CRon 1 n and CRcr(n+l) = n 
CompR.a = C <» • < Rcrk>k=l' otherwise 

THEOREM 3.7.Comp as defined in 3.6 satisfies CE. 

PROOF. We consider only the case CompRcr for R = <Els 1;s2>. There are two 

subcases. 

a). Comp <EIS 1> cr is infinite. In that case we have Vn: C<EIS 1>crn; n 

and therefore Vn>l:CRcrn = C<EIS 1>cr(n-1), which means CompRcr = 

<cr> A Comp<Els 1>cr. 



A I A On the other hand, we have <cr> Comp<E s 1>cr 

Comp<Ejs2> (K(Comp<EjS 1>cr)) = <cr> A Comp<Ejs 1>cr, 

because Comp<EIS 1>cr is finite. 

b). Comp<EjS 1>cr is finite, say.with length k. Then we have 

cr':= C<Ejs 1>crk ~ n and C<EjS 1>cr(k+l) = n. Moreover 

K(Comp<Ejs 1>cr) = cr'. We thus have 

CRcrn 
r cr, 

= i C<EIS 1>cr(n-1), 

l C<E I s 2>cr' (n-k-1), 

for n = 1 

for I <n::;;k+l 

for n>k+l 

A I A I and therefore CompRcr = <cr> Comp<E s 1>cr Comp<E s 2>cr'. 

THEOREM 3.8. There is exactly one total function satisfying CE. 

D 

PROOF. For any function Comp satisfying CE and for any R,cr and n we can 
th calculate, using only the clauses from CE, then- element from the row 
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CompRcr, like we have done in definition 3.1. So we have that the equations 

CE determine, for every Rand cr, every element from the row CompRcr, that 

is this row must be unique, that is Comp must be unique. 

Note that the above reasoning would no longer be valid if we allowed par­

tial functions in P~og'-+-I-+-I00 to be solutions of CE. D 

4. THERE IS A PROBLEM IF WE TRY TO USE THE FIXED POINT APPROACH 

It is tempting to try to use fixed point theory to answer the 

questions raised in chapter I, because any solution of CE will be a fixed 

point of the operator 1' :D -+ D, where D = P~og --+-I-+-I00
, defined by 

'¥ = H>. >.R. >-a. R - <EI A> -+- < A Ao>, 

R _ <EI P. > -+- < a >A <P< EIS. >a, 
i i 

R _ <Ejif B then s 1 else s 2 > + 

(BBcr = tt + <cr> A <P<EjS 1>cr> A <P<EjS2>cr), 

R _ <Els 1;s2> + <cr> A <P<Els2>(K(<P<Els 1>cr)) 

Now it is a well known fact from denotational semantics (see for 

instance [12] or [3] which both give an introduction to the subject) that 

'¥ has a least fixed pointµ'¥ if this operator is continuous, and in that 



caseµ'¥ equals the lub of the chain .L ,!; '¥.LC: '¥('1:'.L) S '¥('¥.1)) S .... 
So, if we manage to make D a cpo such that'¥ is continuous then we 

obtain the required existence result immediately. Again, it is well known that 
00 

Dis a cpo, if there is an ordening_!; on E which makes this set a cpo. Now 

the intuitive meaning of Tl,!; Tz is that Tz contains more information than 

T1, or that T2 is a better approximation pf some final result than • 1 . A 

technique for turning a set into a cpo that is often used, is to make this 

set a flat cpo, that is to add a totally undefined element .L to it which is 

smaller than all elements while all other elements are incomparable by 

definition. 

However, if we investigate whether this construction is suited for 

our purposes, we find that this is not the case. More specifically, we 

arrive at a least fixed point which yields the right result for terminating 

processes, but which yields .L for nonterminating processes. In order to 

illustrate what the reason of this phenomenon is, we will evaluate some 

elements of the chain.LC: '¥.LC: '¥2.1 C: ••• approximatingµ'¥, applied to 

the program <P<=PIP>: 

I • .L < p <= p IP> CJ .L 

2. ('¥.i)<P<=PIP>CJ = <CJ> A :,t.< P<=PIP>CJ = <(J>/\ .1 = .1 

(NB. We do not have elements of the form <CJ, .L > in the flat cpo 
00 • 

derived from E , but it seems reasonable to make < cr, .L > = .1) 

3. ('¥ 2 .L ) < P <= PIP > CJ = <CJ>"('¥ 1-) < P<= PI p > 0 = 

<CJ>/\ <0> /\ .L < P <=PI P>o = <a> I\ <a> I\ .1 = .1 

4. ('¥3.1) < p <= PIP> CJ =<CJ >/\('¥ 2.1) < P<= PIP> 0 = 
I\ I\ I\ I <0> <a> <a> .L <P<= P P>CJ 

I\ I\ I\ <CJ> <0> <CJ> .L=.L. 

etc. 

These formulae clearly show what is wrong here. The ordering!; is not 
I\ 

refined enough, we were forced to make <er> .L equal to .L. Notice that 
I\ making < CJ> .1 equal to < CJ > does not work either, because we would then 

get as results in 1,2,3 and 4 respectively .1,<0>, <CJ, er> and <0,0,0>, 
00 

and these elements do not form a chain in the flat cpo derived from E • 

In a flat cpo we have always the situation that an approximation Tl of a 

final answer T(T 1~T) contains either all information (T 1 = T) or no in­

formation at all(T 1 = .1). Now because all finite approximations of an 



infinite row are necessarily unequal to this row we must have that all 

these approximations are equal to .L, that is we get a chain.LC.LC 

with lub .L, and this is not what we want. 

This analysis also shows a way out. What the sequence of approxima­

tion given above should do is yield longer and longer initial segments of 

the final outcome. That is, we should ha~e an ordening such that 

1 1 

< o > !; < a, a> C < a, a,a > !; ... is a chain with the natural lub < a,a,a, •• • >. 
CX) 

This leads us to trying the prefix ordening on L Tl C T 2 iff Tl is a 
CX) 

prefix of T 2 • One easily checks that L with this ordening is a cpo with the 

empty row < > as bottom element. 

This ordening yields a correct approximation sequence for the program 

< P<= PIP> as one easily can check. However this approach does not work in 

general because f is not continuous under this ordening. This stems from 
A 

the fact that the operators Kand are not continuous, not even monotonic 

under the pref ix ordening. For instance, K < cr 1 > = cr 1 and K < cr 1 , cr 2 > = cr 2 • 

Now we have <°t > C < a 1,a2 >, but a1 and a2 might very well be incomparable. 

We can also show that the new approach does not work in a less tech­

nical way. Let us consider the sequence< .L (= XR.Xcr.<>), ,.L,,2.L, ••• > 

and let us apply some of the elements thereof to the program R = < EI P ;A2 > 

where E - < P<= A 1 > and to an initial state cr. We then get the following 

results. 

I. .L Ra = (>..a.< > )Ra = < > 

therefore 

4. (,3 .L)Ra = 

2. (,.L)Ra = <a>" (.L<EIP>cr/ (.L<EjA2> [K(.L<EIP>cr)J) = <cr>"< >" < > = <a> 

2 A I 3. (f .L)Rcr = T (f .L )<E A2> (KT), 
A I A A I where T = <cr> ( (f .L ) <E P>a) = <cr> <cr> ( .L <E A1 >cr) = <cr, cr> 

2 " " (, .L)Ra = <cr,o> (,.L)<EjA2>cr = <cr,cr> <AA2a> = <a,a,AA2a> 

" 2 I T (, .L)<E A2>(KT), 

" 2 " " I where T = <a> ((, .L) <EjP> cr) = <a> <a> (f .L) <E A1> cr = 
A A = <cr> <a> <AA1cr> = <cr,cr,AA1cr> 

3 A 2 I therefore (f .L)Rcr = <cr,cr,AA1cr> (f .L)<E A2>(AA1a) = 
A 

= <cr,cr,AA1cr> <AA2(AA1cr)> = 

= <cr,cr,AA1cr,AA2 (AA1a)>. 
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2 3 Now from these calculations we see that W i q W i because we have 
2 3 . 00 

(W i)Rcr + (W i)Rcr. Therefore the prefix ordering on r is such that 
? 

the sequence< i,Wi, w-i, ••• > is not a chain, and thus W cannot be 

continuous. 

If we analyse what went wrong here, we see that in evaluating 

(w2i)Rcr we apply the last element function K to a row of states which is 

not yet finished, that is we start evaluating A2 "too early", namely in 

state cr which is not the final state resulting from evaluation of P. This 

observation suggests two solutions for the difficulty we have met. The 
00 

first one is to enlarger so that it contains also row of states which 
A are marked as "not yet completed" and to let the operators and K act 

in a continuous manner on these rows. Another possibility is to rewrite W 
A 

in such a way that it does not use the non continuous operators Kand 

any more. Finally, though the above approximation sequence is not a chain, 

we observe that the right outcome has been obtained in the end. This 

suggests that the function~ might be continuous if we would use a more 

subtle notion of continuity. The next three chapters will be devoted to a 

discussion of these possibilities. 

00 

5. ADDING UNFINISHED ROWS TOE • 

We saw above that in E00 finished and unfinished rows of· states must 

be distinguished. We will arrange this as follows: a row <cr 1, •.• ,crn> will 

be marked unfinished by adding the element i to it, so that we get 

<cr 1, ••• ,crn, .L>. Notice that only finite rows can possibly be unfinished; 

infinite rows, which model nonterminating computations, cannot contain 

more information than they already do. All this leads to the following 

definition. 

DEFINITION 5. I E = r* u E *.Lu E00
, where r* and E00 are as before, and 

where r* i is the set of all rows consisting of zero or more states followed 

by the symbol i. 

Thinking in terms of the analysis in the preceding chapter, we see 

that the following ordering is natural. 
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DEFINITION 5.2. For -r 1,-r 2 EE we define -r 1 C • 2 iff either 'l = • 2 or 

is a 

LEMMA 5.3. E with the above ordening is~ cpo. 

PROOF. One easily checks reflexivity, anti-symmetry and transitivity of C. 

One also checks immediately that <i> is the smallest element in E~, and 
~ lastly one can show that every chain in E has a lub by noting that all 

nontrivial chains in E 
A A 

must have the form •i" <i> C • 2 <i> C • 3 <i> C ... 

where Ti is a prefix of •i+l (a nontrivial 

Vi 3k:-r. f •• k). But a chain of this form 

chain is a chain <-r.>. for which 
1. 1. 

1. 1. + has an obvious lub in Ew, namely 

the infinite row which has every element of the chain as a prefix. D 

The next thing to do is to define Kand A on this new domain. The 

analysis in chapter 4 indicates that the operator" should disregard its 

second argument, if its first argument is a row that is not yet completed: 
A • * i -r 1 • 2 = -r 1 for -r 1 1.n E • Because we want K: E - E to be continuous 

we first have to make Ea cpo. 

DEFINITION 5. 4 • 

1. E =Eu {i}, the flat cpo derived from E. 
i 

2. K! E - E is defined by 
i 

3. A E x E - E is defined by 

= f•1• if •1 E Loo U L*i 

l<a1,···,an,al', ••• (,ak,)>, * if Tl E E 

LEMMA 5.5. Kand" as defined in 5.4. are continuous. 

PROOF. Straightforward, use the remark in the proof of 5.3.1 about non­

trivial chains. Note that in order to make K continuous we cannot define 
00 

K(T) to be arbitrary for TEE or T = <>, as we did in chapter 2. D 
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Now that we have added the element J. to Ewe have to change the 

definition of~ a little bit. 

DEFINITION 5.6. 1: D + D, where D 
s 

1 = Ac:p.\R.\cr. cr = J. + <J.>, 

R - <EIA> + <AA.a> 

R - <E!P.> + <cr>A c:p<F!S.>cr, 
1 1 

R _ <El if B then s 1 else S2> + 

A I A (BBcr = tt + <cr> c:p<E s 1>cr, <cr> c:p 

R - <EJs 1;s2> + <cr>A c:p<EJs 1>oA c:p<Eis 2> 

REMARKS. 

is defined by 

<EIS2>0), 

(K(c:p<EJS 1>o)). 

I. The expression E + E denotes the cpo of all strict functions from J. s 

2. 

E to E , that is all functions f for which fJ. = <J.>. This precaution J. 
1s needed because otherwise~ would not be continuous. 

One easily checks that the operator ~ has the functionality as announced, 

that is V c:p E P11.og -------+ E --+ J. s 
E 

' 
R E P11.og and CT E E J.' we have that 

~ ~c:pRcr E E (e.g. only the last element might be J.) ' and also 

Vc:pED, RE PJz.og ~ ~(jlRJ. = <J.> (i.e. ~<PR is strict again). 

We will now prove that firstly~ as defined above 1s coutinuous, and 

secondly that for all Rando# J. we have that (µ~)Ro E I: 00
• This second 

fact then implies that µ\fl restricted to the proper domain is a solution 

of CE, because the operators A and K, as defined in 5.4, restricted to I: 00 

are the same as those defined in chapter 2. The second result will also be 

used to show that µ\fl is the only solution of CE. 

LEMMA 5.7. ~ ~s a continuous operator inD---+- D, where Dis as in definition 

5.6. 

PROOF. Straightforward. 0 

The next fact to check 1s that for all Rando# J. we have that 
co 

(µ~)ROE E 
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The proof proceeds as follows. Suppose the assertion is not true. We then 

would have some Rando+ .L for which (µl)Ro € L*.L. Now (µl)Ro = 
i 

= ~((l .L)Ro) and therefore we would 
i . . . *.L 

have that for all i: •. := (li.L)Ro E L*.L. 
i 

Now intuitively •. € L means that 
i 

this approximation of evaluation of 

R in o is not good enough, because this row is not yet completed. This 

suggests that there is a better approximation in the chain <(li.L)Ro>., and 
. i 

in fact this holds already for the next element in the chain: we have 
*.L 

•· EL ==> •·+1 I•·· This is Lemma 5.8. 
i 1 i 

Now if Lemma 5.8 holds we then would have the following situation 

(µl)Ro is the lub of an apparently nontrivial chain, .LRo C (l.L)Rcr ~ ••• 
. ( k *.L with all l .L)Ro EL • And now we have reached a contradiction, for such 

a chain will have a lub in L00
• 

LEMMA 5. 8. Let µl = U qi. 1,Jith 4>. i = l .L. For aZZ Rand aZZ a+ .L we have: 
i i i 

*.L qi.ROEL ==> 4>. 1Ro + 4>.Ro. i i+ i 

PROOF. Straightforward by induction on i. D 

00 

LEMMA 5.9. V R,cr f .L: (µ~)Ra€ L 

PROOF. Cf. the remarks preceding Lermna 5.8 D 

00 

THEOREM 5.10. µ~, restricted to the domain Pnog - E -r L , is a solution 

of CE. 

PROOF. Notice that we cannot state thatµ~ is a solution of CE, because 

µ~ is an element of Pnog -r E -r E~ and as such it can never be a solution 
.L 

00 

of CE. Notice also that we can restrictµ~ to the domain Pnog -r E -r E 

only by virtue of Lermna 5.9. 
A 

Now, to prove the theorem, we first compare the definition of Kand 

from chapter 2 with the ones in Definition 5.4 and we find that the 

restriction of A(according to 5.4.3) to L00 x L00 is the same operator as the 
00 

one in chapter 2, while the restriction of K to E is almost the same, the 

only differences being the cases KT where 1' E Lw or.=<>. If these 

operators would be the same then we were finished, because in Definition 
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5.6 Kand A are applied only to arguments of the form (µ,)Ra and these 

are in E00 by Lennna 5.9. 

However the fixed points of, have the same properties as the ones 

given by Lennna 2. I for the solu.tions of CE. D 

00 

THEOREM 5.11. µ,, restricted to P~og + E + E, is the only solution of CE. 

PROOF. We first prove thatµ, is the only fixed point of V. Suppose not, 

then there would be a bigger fixed point~, that is there would be an R 

and a such that (µV)Ra ¥~Ra.This is impossible however because by Lennna 

5.9 (µV)Ra E E00 which means that (µV)Ra is a maximal element in r~ (there 
~ is no Tin E which is properly bigger than (µV)Ra). 

Now suppose there would be another function C: P~og + 
00 • • 

E + E satisfying 

CE. We can extend this function C to a function C' : P~og + E .1 + s E ~ by 

defining C'Ra = CRa if a EE and <.1> if a= .1. One easily checks that C' 
is a fixed point of V, but then C' =µ,.Contradiction. D 

6. THE CONTINUATION APPROACH 

In chapter 4 we remarked that the direct fixed point approach failed 
A 

due to the fact that the operators Kand are not continuous. In this 

chapter we will try to find a way out of this problem by restructuring 

CE in such a way that these operators are not used any more, or at least 

not in a non continuous way. The problem stems from the clause on constructs 

of the form <Ejs 1;s2>. The idea that we will pursue is to use continuation 

semantics instead of direct semantics. 

Direct semantics defines the meaning of a construct in terms of the 

rows of states that correspond to evaluation of the construct. Therefore 

the operators Kand A have to be used: the meaning of <Ejs 1;s2> is obtained 

by concatenating the rows of states corresponding to the meanings of 

<EjS 1> and <EjS 2>. Construction semantics uses another idea: the meaning 

of a construct is the row of states which is the result of evaluating the 

construct itself followed by evaluation of the rest of the program of which 

the construct is supposed to be a part. Of course, the effect of evaluation 

of the rest of the program cannot be obtained from the construct itself, so 



17 

we have to give the meaning function Comp another argument, a continuation 

which will be a function from states to rows of states describing the effect 

of the rest of the program. One can view this continuation as a coding of 

the row of statements which are to be evaluated once the statement under 

consideration has been worked through. 

In this set up we do not have to coµcatenate two rows any more while 

defining the meaning of <EJs 1;s2>, because the effect of evaluating s 2 can 

be caught by changing the continuation which describes what will happen 

once the whole construct has been evaluated i11to a continuation which 

describes the effect of first evaluating s 2 and then applying the original 

continuation. Then this new formed continuation is given as an argument 

to Comp<EJS 1>. All this leads to the following four equations, denoted by 

"CE " which are intended to define a meaning function Cornn: P1tog ➔ 0 ➔ 0, cont ' ,-
with 0 = I -+ I:00

• 

Comp<EJA>ecr = <AA.a> A e(AAcr) 

Comp<E!P.>0cr = <cr> A Comp<E!S.>0cr 
l l 

Comp<Elif B then s1 else s 2>ecr = 

f <a> A Comp<Els 1>ecr, if BBcr = tt 

l <cr> A Comp<E!S2>ecr, if otherwise 

Comp<Eis 1;s2>ecr = <cr> A Comp<E!S 1>{Comp<E!S2>e}cr 

Notice that the operator K is not used any more. We do us_e the con­

catenation operator, but only in a continuous way (with respect to the 

prefix ordering on I:00
): ACT.AT.<cr>AT is continuous. The fourth clause in the 

above equation can be phrased as follows: evaluating <E!s 1;s2> followed by 

evaluation according to 0 amounts to evaluation of <E!S 1> followed by 

[evaluation of <EjS2> followed by evaluating according to 0]. 

The next thing to. do is to derive from CE an operator,, show 
cont 

that this operator is continuous so that the existence of a fixed point 

is guaranteed. Straightforward reasoning would lead to define the func­

tionality of~ as ~:D-+ D, where D = Pftog-+ 0-+ 0, with 0 = ~--. I: 00
• 

However we must take a precaution here: we have to make the domain D equal 

to the domain of all functions from P1tog to all continuous functions from 

0 to 0: D = P1tog--. [0 __. 0]. This is needed because we can only prove 

continuity of~ if the functions~ involved are continuous in their 
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continuations e. 

Having remarked all this, we are now ready for the definition of'!'. 

DEFINITION 6.1. The operator 'l':D ➔ D, with D = P1tog ➔ [0 ➔ 0] and 0 = E ➔ E 

is defined by 

'!' = H.;>..R.;>..8.Aa. R - <EIA> ➔ <AA a > 11 e (AA a), 

R - <E!P.> + <a>11 ·~<E!S.>8cr, 
1 1 

LEMMA 6.2. 

R _ <Elif B then s 1 else s 2> + 

(BBcr = tt + <cr> 11 ~<E!S 1>ea,<cr>11 ~<E!S2>ea), 

R - <Els 1;s2> + <a>11 ~<E!s1 >[~<Els2>e]a 

I. 'l' is weZZ defined, in the sense that for aZZ ~ED we have'¥~ ED, or in 

other words: 'v~ED 'vREPJtog ve 1s_e 2 !; ... : '¥ ~ R(~ei) =~IP ~Rei 

2. IP is continuous. 

PROOF. Straightforward. □ 

We will also need the following Lemma. 

LEMMA 6.3. Let~ E P1tog + [0 + 0] be a fixed point of IP, Then for aZZ R, 

and a we have that ~Rea I < > 

PROOF. Immediate. □ 

00 

By way of an example we will show that the counterexample given in 

chapter 4 is now handled correctly. We again apply the first four approx­

imations of µIP to the program R = <P <= A1 IP;A2> starting in state a. Because 

we are interested in evaluation of this program only, we give (µIP)R as a 

continuation argument the empty continuation AG.<> • 

I. .L R{Aa. < > }a = < > (.L = AR. A8. AG.< > ) 

2. (IP.L)R{1,,cr. < > } = 
A 

.L <EIP>{.L<EIA2>{1,,a.< >} }a 
A 

<a> = <a> <> = <a> 

2 A 
< EIP>{(IP.L)<EIA2>{1,,a.< >}}a= 3. (IP .L)R{1,,a. <>}a = <a> (IP .L) 

A 
<a> 11 .L <EIA1>{(1P.L)<E!A2>{1,,a.<> }}a = <a> = 

I\ A 
= <a> <a> <> = <a,a>. 

3 A 2 I 2 I 4. (IP .L)R{1,,o. < > }a = <a> (IP .L)<E P>{(IP .L)<E A2>{1,,a.<> }}a = 
A 

<a> 11 (IP.L)<EIA1>{(1P2.L)<EIA2>{1,,o,< > }}a = <a> 
A I\ I\ 2 I = <a> <a> <AA1a> ('¥ .L)<E A2>{1,,cr,< > }(AA1a) = 
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A A A A 
= <o> <o> <AA1o> <AA 2 (AA o)> 0.o.< >}(AA2 (AA1 o)) = 

'A A A } A 
=<o> <o> <AA 1o> <AA2 (AA1 o)> <>= 

= <o,o,AA1o,AA 2 (AA 1o)>. 

We can now define Comp as µ'l' applied to AO.< > as standard continua­

tion parameter. 

DEFINITION 6 .4. Comp = AR. AO. (µ'l')RO.o. < > }o 

The next thing to prove is that the function Comp thus defined is a 

solution of CE. The proof is by cases, and the cases that Comp is applied 

to an atomic statement, a conditional statement, or a procedure call are 

straightforward. The interesting case is to prove that 

Comp <Els 1;s2> o = <o>AComp <Els 1>oAComp <EIS2>o' 

with o'as usual. 

Now Comp <EIS1;S2> o = (µ'l')<EIS1;S2> no.<> }o = 

= <o>A (µ4') <EIS 1>{(µ'l')<EIS 2>0o.< >}}o, 

and the right hand side of(+) equals 

••• ( +) 

<o>A(µ4')<EIS 1>0o.< >}oA(µ'l')<E!S 2>00°< > }o', 

where o' = K((µ'l')<EIS 1>0o.<>}o). 

We thus have to establish a correspondence between the old definition 
A 

of composition which used Kand , and the new one which uses continuations. 

This correspondence is phrased in the next "continuation removal" lennna, 

which must be clear if the idea behind continuations has been well under­

stood. 

LEMMA 6.5. Let~ ED= Pnog + [0 + 0] be a fixed point of 4'.For all R,e 

and a -we have that ~Rea = -r A e(n), -where -r = ~R{Ao.< > }o. 

PROOF.(The function K used here is the K as defined in chapter 2). The first 

fact to be remarked is that we have for all R, 8 and o that 

~R{Ao.< > }o ~ ~Reo. This holds because~ ED implies that ~Risa monotonic 

function. From this observation we can innnediately deduce the lennna for 

the case that -r := ~R{Ao,< >}o is infinite, because in that case we have 

that T = ~Reo, due to the fact that -r, being an infinite row, is maximal 

in r. 00
• On the other hand -r = ,: A 8 (KT), due to the definition cf A and we 
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are ready. 

Next, suppose that -r := <P O.cr,.< > }cr is finite (notice that this does 

not imply that <PR0cr be finite). We now prove the len:una by induction on 

the length of -r. As always, the cases that R is an atomic statement, a 

conditional statement or a procedure call are straightforward. So suppose 

R = <Els 1;s2>. We have 

lhs := <PR0cr = <cr>" <P<EIS 1>{<P<EIS2>}cr 

rhs := -r " e (K-r), where -r = <cr> " <P<E IS 1 >{ <P<E I s2>{Acr. < > }}cr. 

Now ~<EIS 1>{Acr.< >}cr cannot be infinite, because the observation at the 

beginning of this proof would then imply that, would be infinite. For the 

same reason the length of ~<EIS 1>{Acr.< >}cr is smaller than or equal to the 

length of ~<EIS 1 >{~<EIS?>{Acr.< >}}cr, which is smaller than the length of 

-r (notice that Len:una 6.3 is used here). Thus we can apply the induction 

hypothesis twice, and this yields 

" " I lhs = <cr> -r 1 <P<E s 2>0(K-r), 

where 1" 1 = ~<EIS 1>{Acr.< >}cr, and 

~<EiS 1>{~<Eis2>{Acr.< >}}cr = , 1 "-r2 , 

with -r 1 as above, and -r 2 = <P<EIS2>{:>..cr.<>}(K-r). 

This last equality yields 
I\ I\ I\ rhs = <a> , 1 , 2 0(K,), 

so there remains to be proved 

<P<Eis2>(K, 1) = , 2 " e(K, 2) 

This is another instance of the lemma. Now , 2 cannot be infinite, because 

I\ I\ 
we have already derived that 1" = <cr> -r 1 -r 2 , and we assumed that -r was 

finite. So -r 2 is finite with length smaller than the length of -r, and we 

can thus use the induction hypothesis once more, leading to the desired 

result. D 

THEOREM 6.6. The function Comp as defined in Definition 6.4 is a solution 

of CE. 

PROOF. See the remarks preceding Lemma 6.5. D 

The last thing to be proved is that the function Comp as defined in 

6.4 is the only solution of CE. This will be done in the same way as in the 



proof of theorem 5.11. We first prove that'¥ has only one fixed point. 

LEMMA 6.7. o/ has exactly one fixed point. 

PROOF. Suppose there are more, then there is a¢ E P~og ➔ [0 ➔ 0] with 

µ'¥ i; ¢. We will prove that for all R,e and a we have (µ'¥)Rea= ¢Rea and 

thus we reach a contradiction. 
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I. If (µ'¥)R13a is infinite then it is maximal L00
• The desired equality then 

follows from (µ'¥)Rea i; ¢Rea. 

2. We now prove for all finite (µ'¥)Rea the desired equality, and we do this 

by induction on its length. 

Because again the other cases are straightforward we restrict ourselves to 

the case R ~ <Els 1;s2>. We have 

lhs := (µ'¥)<Els 1;S2>ea <a>A(µ4')<EIS 1>{(µ'¥)<EjS 2>e}a 

and 

rhs := ¢<Ejs 1;s2>ea = <a>A¢<EjS 1>{¢<Ejs 2>e}a. 

Using Lemma 6.5 we get lhs = <a>AT/T 2 , where Tl= (µ'l')<Ejs 1>{>..a.<> }a and 

T2 = (µ't)<EJ:S 2>e(<)>T 1), and rhs = <a>AT2, where Ti= ¢<Els 1>0.a.<> }a and 

Tz = ¢<E[S 2>8(KTj). Now by applying the induction hypothesis we get first 

that Tl= Ti and thereafter that T 2 = ~;, D 

THEOREM 6.8 .. CE has exactly one solution. 

PROOF. We first show how to transform a solution C of CE into a fixed point 

aC of'¥. This is done in a way which uses in a sense Lemma 6.4: 

aC := >..R >..e.>..a.CRaAe(K(CRa)).We then have the following facts. 

I. For all C E P~og ➔ L ➔ L00 we have that aC E P~og ➔ [0 ➔ 0], i.e aC is 

continuous in its continuation p2rameter. 

2. If C is a solution of CE, then aC is a fixed point of'¥. Notice that it 

is needed that aC be continuous in its continuation parameter because 

otherwise it could not be a fixed point of 1¥ ('¥ has functionality D ➔ D, 

where D = PMg ➔ [0 ➔ 0]). 

We present the hard case in the proof of fact 2, by proving that for 

all e and a we have lhs := (aC)<EjS 1;S2>ea = 

= <0>A(aC)<EjS 1>{(aC)<EjS2>8}a =: rhs. 
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By definition we have lhs 

" " I <a> Tl (aC)<E s 2>6(KT 1) = 

T2 = C<EIS2>(KTI). 

= C<EIS 1;s2>cr"6(K(C<Els 1;s2>)) and rhs = 
I\ I\ I\ 

<a> T 1 T2 6(KT2), where Tl= C<EIS 1>cr and 

Because C is a solution of CE we get lhs = 

T; = C<EIS 1>cr and T; = C<EIS2>(KT;). Thus Tl 

therefore lhs = rhs. 

3. Suppose CE has more than one solution, say C and C. Then there exist 
l I 

Rand a such that CRcr f C Ra. This leads to the fact that aC and aC 

are both fixed points of,, and also (aC)R6cr f (aC')R6cr, which con­

tradicts Lennna 6.7. D 

00 

7. E AS A METRIC TOPOLOGICAL SPACE 

For convenience we first of all repeat the definition of the operator 

,:P~og + E + E00 derived from CE 

f = A~.AR.Acr. R - <EIA> + <AAcr>, 

R - <EIP.> + <cr>A~<EIS.>cr, 
l. l. 

R _ <Elif B then s 1 else s 2 > + 

(BBcr + <cr>A~<EIS 1>cr, <cr>A~<Els2>cr), 

R = <Els 1;s2> + <cr>A~<Els 1>crA~<Els2>(K(~<Els 1>cr)) 

Let us consider for a moment the approximation sequence from chapter 

4, 1.Ra, (,1.)Ra, (f21.)Ra, (,31.)Ra, with R = <P<=A1IP;A2>. We found that this 

sequence was not a chain. However it does converge (in some sense) to the 

correct value. This phenomenon also holds for nonterminating computations 

like the evkluation of <P<=A1 ;PIP;A2> in some cr. If one evaluates the 

sequence(, 1.)Rcr one again observes that this sequence converges to the 

right result <a,a,AA1a,AA1a,(AA1) 2a, ••• > though it is not a chain. 

In fact we can prove that the above observations hold in general: we 

have for all Rand a a sequence of approximations (,i1.)Rcr which converges 

to a limit lim(fil.)Rcr. We thus have to define what the limit is of a con­

verging sequence which is not a chain. Moreover we also need to prove that 

this limit process yields a function which is a fixed point of,, i.e. 

VR,cr:f(lim(,il.))Rcr = (lim(,iJ.))Rcr. Now this is equivalent to continuity 
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in the topological sense: f is continuous iff for all converging sequences 

<x.>. we have lim(fx.) = f(lim x.). 
i i . i i 

In the preceding chapters we dealt with chains which are monotonic 

sequences, and the limit of such a sequence could conveniently be defined 

as its least upper bound. In this chapter we will reason along analogous 

lines as in the cpo approach, but now using a more powerful notion of 

limit. This notion can be obtained by defining a distance function don 

L00 which makes L00 a metric topological space. 

This approach is inspired by an endeavour to apply Nivat's results, 

see for example [1 I], to the problem treated in this paper. We saw no way 
00 

to attain this, but the basic facts about L that he gave were very use-

ful. In fact, the whole treatment given in this chapter is much in the 

style of Nivat's. 
00 

First a notation: we denote, for TEL , by T[n] the prefix of T con-

sisting of the first n elements of T, or T itself if its length is smaller 
00 

than n. We then define the following distance function don L : 

otherwise 

One easily checks that dis a metric, i.e. we have the familiar properties 

d(Tl,T2) = 0 iff Tl = T2 

d(TI,T2) = d(T2,Tl) 

d(Tl,T2) ::; d(Tl,T3) + d(T2,T3) 

00 

Now the metric space (L ,d) is complete: 

LEMMA 7.1. A sequence in L00 converges iff it is a Cauchy sequence. 

00 

PROOF. The only if-part is innnediate, because L is a metric space. We next 

prove the if-part. Suppose <T.>. is a Cauchy sequence. We construct a T 
i i 

which is the limit of T. in the following way [11]. We have the Cauchy 
i 

-n property Vn3N: p,q ~ N => d(T ,T) < 2 • Now let for all n, 
p q 

smallest number N with the above property. We then have for 

N be the 
n 

all p ~ N 
n 
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that 

'N [n] = T [n]. 
n p 

••• (1) 

Also the sequence <,N [n]> is a C-chain with lub T := U,N [n]. By (1) 
n n n 1 n 

<,.>. converges to,. D 
i i 

It has been remarked earlier that one of the facts to prove is that'¥ 

is continuous. So we will first have a look at how continuity should be 

defined in this setting. It should be something like "for all converging 

sequences <<Pk>k: lim(IJl<Pk) = IJl(lim<Pk)", which is the analogon of the cpo­

continuity "for all chains <<Pk>k: U (IJl<Pk) = IJI ( LJcpk) ". We therefore have 

to define what it means that a sequence of functions <<Pk>k converges. In 

the cpo theory a sequence <<Pk>k was called a chain if it formed a chain 

taken pointwise, i.e. if <<PkRcr>k was a chain for all Rand cr. In an analogous 

way we can define convergence of the sequence <<Pk>k as pointwise convergence, 

namely be demanding that for all Rand cr the sequence <<PkRCJ>k converges. 

However, the approximation sequences <'i'ki>k that we will investigate 

have the pleasant property that they converge uniformly in Rand CJ, This 

allows us to use a stronger notion of limit, namely the one that corresponds 

to the following distance function on Pnog-+ E + I:00
: d'(<P 1 ,<P 2) is the lub, 

taken over all Rand cr, of d(<P 1Ro,1 2Rcr). One easily checks that a sequence 

<<Pk>k converges according to this distance iff it is uniformly convergent 

in Rand CJ. 

We can set up the theory in this smoother version because of the fact 

that ev~ry right hand side in CE has the form <cr'> or <cr'>~ ••• , where CJ' 

is completely determined by Rand CJ. This fact is crucial in the proof of 

Lennna 7.4. Compare also the remarks following Theorem 7.6. 

We thus have the following metric on Pnog + E + I:00 

and this distance can be characterized as follows. 

LEMMA 7.2. d'(<P 1,<P2) ~ e for O < e < 1, iff for aZZ Rand cr, 
-n 

d(<P 1RCJ,<P2RCJ) ~ 2 (that is, VR,CJ:<P 1RCJ and <P 2RCJ agree on at least their first 
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I -k n-1 eZements), where n = min{k 2 :,; e}. 

PROOF. The if-part is trivial. In order to prove the only if-part, suppose 

there exists on Rand cr with d(~ 1Rcr,~ 2Rcr) > 2-n. Then we have that these 
00 

elements of E do not agree on their first n-1 elements, that is their 

d . ' h 1 2-n+ l h. h . h h. istance is greater tan or equa to w ic is greater tan e. Tis 

implies however that d'(~ 1,~2) > e. Contradiction. D 

We also have that the metric space <Pnog + E + E00
, d'> is complete. 

LEMMA 7.3. Every Cauchy sequence <~k>k in Pnog + E + E00 converges, and its 

Zimit is AR.Acr.lim WkRcr. 

PROOF. Choose e. We have to find an N such that d'(AR.Acr. lim ~kRcr,~i):,; e 

for all i > N, or equivalently we have to find an N such that for all i > N 

and for all R,cr we have 

... (1) 

Now there exists an N such that for all i,j > N: d'(~.,~.):,; e, that is there 
i J 

exists an N such that for all i,j > N and for all cr,R 

d(~.Rcr,~.Rcr):,; E 
i J ••• (2) 

For the N determined in this way we will show that (1) holds. So choose R,cr 

and i > N. By (2) we have Vj > N:d(~.Rcr,~.Rcr) ~ e. From this we conclude 
i J 

(1) by the following argument. 

Suppose (1) does not hold. Then there is a o such that d(lim ~kRcr,~iRcr) = 

o + e > e. There exists a j such that d(~.Rcr, lim ~kRcr) < ½o, and without 
J . 

loss of generality j > N. But now we have a contradiction: 

which contradicts (2). D 

The next Lennna states a basic property which we need to prove continuity 

of ijJ. 
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LEMMA 7.4. If for all R,cr:d(~ 1Rcr,~2Rcr) 
n-1 R,cr:d((~$ 1)Rcr,(~~2)Rcr) ~ 2 

-n 
~ 2 , then for all 

PROOF. We show the Lemma for the case R = <EI s 1; s 2>. Suppose d(cp 1R cr,~2Rcr) ~ 
-n. 

2 for all Rand cr, that is, for all Rand cr we have that ~1Rcr and ~2Rcr 

agree on at least their first n-1 elements. We now investigate (~~.)Ro 
l. 

(i = 1,2) and we have that 

We distinguish two cases: 

1. ~1<EIS 1> has length smaller than n-1. Then by hypothesis.= ~1<EIS 1>cr = 

~2<EIS 1>cr because they both agree on at least n-1 elements. Furthermore 

the hypothesis implies that ~1<Els 1>(K,) and ~2<Els2>(K,) agree on at 

least their first n-1 elements. Therefore the (~~i)<EIS1;S2 >cragree on 
· -n-1 at least n elements, that is d((~$ 1)Rcr, (,~2)Rcr) ~ 2 • 

2. If ~1<Els 1>cr has length greater than or equal to n-1 then also 

~2<EjS 1>cr must have more than n-1 elements and furthermore at least the 

first n-1 elements of these rows are equal. But this means that already 

<cr>A~.<Ejs >cr agree on n elements (i=l,2) and the Lemma follows. D 
l. 1 

Notice that from this Lemma we can infer immediately that <,kL>kRcr 

forms a converging sequence for all Rand a. So now the informal remarks 

at the beginning of this chapter are formally justified. 

We next prove a property of, which implies that, is continuous, and 
k 

also that for every initial value ~ the sequence <, ~ >k converges. Notice 

that these two properties were also r.eeded in the cpo theory in order for 

~ to have a fixed point:, had to be continuous and (the particular case) 
k 

<, L>k had to be a chain. 

LEMMA 7.5. Wis a contraction~ in particular v~1,~2: d'(,~ 1,~~2) ~ !d'(~1,~2). 

PROOF. Suppose d'(~ 1,~2) = E. Let n = min{kl2-k ~ E}. We have that 
-U 

d(~ 1Rcr,~2Rcr) ~ 2 - for al,l Rand a by Lemma 7.2. Now Lemma 7.4 implies 
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We can now deduce the theorem we were up to, using standard techniques 

from topology. 

THEOREM 7.6. 'I' has exactly one fixed point. 

PROOF. 1. 'I', being a contraction is continuous. We can straightforwardly 

prove that for all converging sequences <~k>k we have 'l'(lim ~k) = lim ('l'~k), 

or VE> 0 3N Vn > N: d'('l'(lim ~k), 'l'~n) < £. 

2. For every~ E P~og +I+ I 00 the sequence <'l'k~>k is a (uniform convergent) 

Cauchy sequence. For we have 

d'('l'k~,'l'i~) = d'('l'k~,'l'k'l'i-k~) s 

(½)kd'(~,'l'i-k~) s 

(½)k[d'(~,'1'~) + d'('l'~,'1'2~)+ ••• +d'('l'i-k-1~,'l'i-k~)J s 

(½)kd'(~,'l'~)[l+½+ ••• +½i-k-1] s (½)k-ld'(~,'1'~). 

3. Choose a~ in P~og +I+ I 00
• The limit n'I' := lim 'l'k~ is a fixed point of 

'I'. 

4. 

For we have 'l'(n'I') = 'l'(lim 'l'k~) = lim 'l'('l'k~) 
. k+l = lim 'I' ~ = n'I'. 

(by continuity) 

'I' has only one fixed point. For, suppose there would be another one 

Then d'(n'I',~) 'F O. Because both are fixed points we have d'(n'I',~) = 
d' ('1'(11'1'), 'I'~). On the other hand, by Lemma 7.5, we have d'('l'(n'l'),'1'~) 

½d'(n'I',~). This implies d'(n'I',~) = O, and we have a contradiction. 

~-
$ 

□ 

We close this chapter with an investigation of the consequences of a 

little change in CE, namily that the fourth clause is changed into 

We still have that CE has exactly one solution but this fact is now harder 

to prove. In particular Lemma 7.4 is no longer true as one easily observes. 
k Also it is not any more the case that the sequences <'I' ~>k converge uniformly 
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(for arbitrary~) in Rando. 

We have to handle the problem differently, we cannot use the lub­

distance on Pnog + E + E~ any more, but we have to use the pointwise exten-
. ~ . 

sions of convergence in E , quite analogously to how theory was set up for 

cpo structures. In the sequel we give a brief sketch of how Theorem 7.6 has 

to be deduced under these new circumstances. 

1. DEFINITION. <~k>k converges iff VR,o: <~kRo> converges. In that case we 

define lim ~k as AR.Ao. (lim ~kRo). 

2. LEMMA.~ is continuous, i.e. for all converging sequences <~k>k we have 

lim ~~k = ~(lim ~k). 

This is to be proved by cases, the most complex one being R = <Els 1 ;s2>. 

In that case one has to prove lhs:= lim[~k<EIS 1>oA~k<EIS2>(K(~k<EIS 1>o))J = 

(lim ~k)<EIS 1>o~(lim ~k)<EIS2>[K((lim ~k)<EIS 1>o] =: rhs. We distinguish 

two cases. 

a. (lim ~k)<E!S 1>o is a finite row. In that case the sequence <~k<Els 1>o> 

must be constant from a certain index k, and equal to its limit. We then 

can use the fact that for all • 0 the function A ••• 0~. is continuous to 

prove the lemma. 

b. (lim ~k)<E!S 1>o is infinite. In that case lhs = lim(~k<EIS 1>o), to be 

proved using an e-N-argument and the lemma follows. D 

This is a useful lemma, in some sense the anologon of Lemma 7.4. Note 

that the Nin the lemma is in general dependent on Rando. 

The lemma has to be proved by induction on the entity <n, length(R)>. 

This lemma has the following useful consequences (4 and 5). 

4. LEMMA. For all~ we have that <~k~>k converges. 

5. LEMMA. The limit of <~k~>k is independent of the initial value~. 

6. THEOREM. The changed Cook equations have exactly one solution. 

PROOF. There is a fixed point (for instance lim (~k~) =:µ~),by result 2 

and 4. If there would be another fixed point ~0 , then we would have that 

µ~ = lim ~k~O = lim <~0 ,~0 , ••• > = ~O (the first equality holds by result 5). 0 
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8. CONCLUDING REMARKS 

In a certain sense we have worked in a direction opposite to the one 

Scott took when he devised his theory of computing. He wanted to use 

notions from topology such as limit and continuity, and therefore he in­

troduced cpo's because the domains on which programs compute are in general 

not of a topological kind. We found in chapter 4 that I 00 considered as a 

cpo, did not have enough structure to prove the desired result. However by 
00 

using the inherent typology on I we were able to derive this result in an 

elegant manner (chapter 7). 

The above results have been derived for a rather simple paradigm 

language, but the techniques used can readily be applied to more sophisti­

cated languages. All results derived here could in fact have been obtained 

in a more abstract setting. We will outline briefly how this can be done. 

Let P~og be the programming language under consideration, and suppose 
CX) • 

we want to specify a function Comp: Pnog ➔ r + 6, using a set of Cook 

equations. Here 6 can be considered as a set of trace elements which are 

descriptions of machine states in some general sense. Furthermore r is meant 

to be a set of machine configurations which contains enough information to 

start a computation. r can contain the initial state, but possibly also 

other things like the currently valid procedure declarations E. We can have 

r = 6 but this need not necessarily be the case. 

Let Pnog partitioned ink mutually disjoint subclasses Pnog 1, ••• ,Pnogk. 

T Then the Cook equations will in general have the following structure 

for R E Pf!..og 1 

The expressions Comp.Ry will either have the form <o> where o depends only 
i 

on Randy, or it has the form <o>ACMP[R,y] with again o dependent only on 

Randy, and where CMP[R,y] is defined by the following parametrized 

BNF rules: 

CMP[R,y] : := CompR'y' I p ➔ CMP[R' ,y' ], CMP[R0 ,y"J 

CompR'y'AC:MP[R",K(Comp R'y')], 
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where p,y',y",R' and R" are expressions dependent on Randy only. 

Notice that according to this definition all right hand sides in the 

Cook equations begin with a constant one element row <o>, which ensures 

the uniformity property discussed in chapter 7. 

Now all techniques presented in this paper can be applied to equations 

which are built up as above. Furthermore, a wide variety of programming 

languages andl concepts can be described by such equation. We give a few 

examples. 

I. The language treated in this paper has ti= r = I:, and the equation CE 

are of the above form, as can easily be seen. 

2. Cook has in his paper r = SxDxP, where D contains the functions from 

variables to registers (adresses), S contains the states: functions from 

registers to values and P contains the functions from procedure variables 

to pairs consisting of a procedure body and a list of formal parameters. 

He furthermore uses 6 = S. In this set-up declarations can be handled as 

follows 

Comp(begin new x; D; S end) <s, o ,rr> = 
I\ • ) I <s> Comp(beg1.n D; S end < s ,o, TT>, 

where o'(y) = o(y) if y # x, and= Xic+J if Y=X, 

where~ is the highest indexed register used in o. 

In the above clause D stands for the language construct which consists of 

a row of declarations separated by semicolons. 

3. The while statement 1.n Cook's paper: 

Comp(while B do S) <s, o ,TT>= 

BB<s,o> ➔ Comp(S)<s,o,TT>/\Comr (while b do S)<K(Comp(S)<s,o,TT>),o,TT>, 

<s> 

Notice that for this clause the uniformity property does not hold: the 

right hand side of this rule does not begin with a one element list for 

all cases. This can be remedied easily though. 

4. Backtracking can be handled as follows. Suppose the language contains 

statements of the form try s1or s2 , establishing a choice point, and an 

atomic statement fail which causes control to return to the latest en­

countered choice point and to proceed from there with evaluation of the 

other alternative (if this has not yet been used of course), while 
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returning the state to the situation it was in before evaluation of the 

first alternative started. 

The corresponding Cook equation could then be 

Comp(try s1 or s2)0 = <cr>"[K(CompS 1cr) = FAIL -+ 

Comps 1aJ 

Comp(fai!__)cr == <FAIL> 

(Notice that his approach does not work as it stands now, if we allow a 

try statement to be composed with another one like in constructs 

try s1or s2 ;s3 because failure in s3 should cause backtracking too. This 

can be handled though, see [5, chapter 6]) 

5. In [4] and [3, chapter 10] we gave a Cook semantics for the goto-statement. 

Again, the equation used there fit in the general scheme given above. 

Notice that if in a set of Cook equations the last clause in the de­

finition of CMP[R,y] is not used (that is, if we do not use k, nor" in 

a non continuous way), that then we can prove that the operator derived from 

the Cook equations is continuous, not only in the topological sense 

(chapter 7), but also in the cpo sense, because we are not bothered any more 

by the objections from chapter 4. 

The semantics for the goto-statement that we gave in [4] and [3] obeys 

this restriction. This is often the case when Cook equation use continuations, 

or syntactic continuations, which are a variant thereof. In the latter case 

the function Comp does not have a continuation parameter which is a function, 

but Comp uses a list of statements which are to be executed after the one 

which is evaluated at the 

Comp((S 1;s2);S3)cr 

Comp(A;S)cr 

moment. In [4] we gave 

" = <a> Comp(S 1;(S2 ;s3))cr 

" <AAa> CompS(AAcr) 

the following equations 

Observe that the list of statements is stored here implicitly namely 

as part of the program (that part of the first parameter of Comp which lies 

to the right of the semicolon). We could also have stored this list more 

explicitly and keep it in y. r would then be equal to I: x {lists of state­

ments} and the Cook equations would be like 

" " Comp(S 1;s2)<n,L> = <a> CompS 1<cr,<S2> L> 

" CompA<a,L> = L=<>-+ <AAa>, <AA.a> Comp(hdL) <0,t ,fL> 

(compare the SECD-machien semantics [9]). 
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So in general the use of continuation semantics leads to Cook equations 

which induce lub-continuous operators. This shows that, in some sense, 

continuation semantics 1.s more elegant than direct semantics. The fact that 

direct semantics leads to discontinuity has to do with the following. The 

effect of executing SI;s2 can be caught only by applying the function 

derived from s 2 to the result of evaluation of SI. Now in continuation 

semantics we also associate a function with s 2 but this function is used 

more subtly, we do not only·have the option to apply this function, but 

we might als:o update it (as in the clause Comp (SI;s2)ecr = 
I\ . 

<a> CompSI{Comps2e}cr),or we can, as in the case of the goto-statement 

disregard it: completely. 

In direct semantics we are forced to apply the function Comp s 2 to 

the result of evaluation of SI' that is to K(Comps 10). The discontinuity 

which creeps: in here stems from the fact that CompsI0" has too much in­

formation: as far as Comps2 is concerned only the last element of this 

row matters. 

The opposite can also occur. For instance, if we would try to model 

the goto-statement with direct semantics, and we would insist that we have 

a Cook equation like Comp(s 1;s2)a = <cr>ACompS 1crACompS2 (K(Comps 1cr)), then 

Comps 1a does not contain enough information about the evaluation of s 1• We 

must know whether evaluation of SI terminated because a goto-statement 

leading out of s 1 has been executed, for in that case Comps2 should not be 

applied to K(Comps 1a). 

We. can obtain this effect by taking as trace elements in t:, and r not 

cr's, but pairs from 1: x N instead. Now a result <cr,n> would mean that cr 

is the result of evaluating a statement during which n goto-statements have 

been process:ed. If we add to the statzments the "declarations" of the 

labels occurring in it (E:::<L .<= S. >., where S. is that part of the 1. 1. 1. 1. 
program that: textually follows L.) then we get programs <EJS> for which 1. 
we would have Cook equations like the following. 

Comp<Elgoto L.><a,n> = <a,n+l>AComp<EJS.><cr,n+l> 
-- 1. i 

Comp<Ejs 1;s2><cr,rt> = 
K(Comp<EJS ><a,n>) = <a',n> ➔ 

1 A A 
<cr,n> Comp<EISI><a,n> Comp<Ejs2><cr' ,n>, 

I\ <cr,n> Comp<EIS 1><a,n>, 

that 1.s s2 should only be evaluated if the number of goto's processed has 
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not increased due to evaluation of s1• 

So we se,e here that we could make direct semantics work only by adding 

extra information. All this can be contrasted with the mechanism used in 

continuation semantics. In evaluating Comp(S 1;s2)ecr = <cr>A Comps 1 {Comps 2e}a, 

the continuation Comps2e is applied only if s1 is an atomic statement, that 

is if evaluation of s1 yields a simple result (a row of one element) and we 

can be certain that there are no complicat'ing side effects. In all other 

cases the continuation Comps2e is updated, and not applied. The fact that 

continuation semantics leads to lub-continuous operators is due to this 

more cautious: approach. 

The theory as it stands now cannot be applied to nondeterministic 

programs, andl as a consequence of this neither to parallel programs. This 

is due to the fact that nondeterministic programs generate trees and not 

rows. However, it seems that the techniques presented here can be extended 

to trees as well. Part of this extension is reported on in [8]. 

The central theorem that we have proved four times in this paper 

holds also if the Cook equations do not have expressions in their right­

hand sides which start with a constant row. Notice however that we have 

to be careful here. We could not for instance leave out the <cr> 1.n the 

second clause on procedure calls in CE (chapter 2), because if we would 

have done so,, then Comp<P <= PjP>cr would not yield an infinite row which it 

should do because <P <= PjP> specifies a nonterminating computation. 

However, the central theorem of this paper would be much harder to 

prove, as has been remarked already in chapter 7. In that case'¥ does not 

converge uniformly, and we had to work out in more detail how'¥ behaves in 

order to prove the theorem. The same phenomenon can be observed in other 

chapters. For instance, Definition 3.1, must now be by induction on 

<n, length(R)> instead of n, and the same holds for induction arguments 1.n 

some other proofs (for instance Lennna 6.5). Furthermore, Lemma 5.8 is no 

longer true, as the counterexample R = A1;A2 and i = 0 shows. A weaker 
*.L 

version of the lennna holds though: VR,cr ,/: .L 3k:<P.Rcr EI: => <P.+kRcr #: <P.Ra. 
l. l. l. 

So it pays off to demand that the Cook equations are all of the standard 

form described earlier in this chapter. 

There are also other reasons to do so. The operational senantics 
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yields a row of states (or o's) which is intended as the trace left by 

execution of the program under consideration. Now the execution of s1;s2 
can be divided into three parts, namely first determining that the state­

ment is a composition of two other statements, secondly evaluating the first 

statement, and lastly evaluating .the second one. It is plausible to demand 

that all three stages must have an effect on the trace, so in particular 

this must hold for the first one. It is therefore reasonable that every 

clause in the Cook equations adds an element to the trace, because every 

clause of the equations corresponds to some action, or to a decomposition of 

the statement being evaluated. 
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00 
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