
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

A. DE BRUIN

ON THE EXISTENCE OF COOK SEMANTICS

Preprint

~
MC

IW 163/81 APRIL

kruislaan 413 1098 SJ amsterdam

PJunted a.:t :the Ma.:thema.tlc.al Ce.n,t,c,e, 413 KIU.Ll6laan, Am6:teJr..dam.

The Ma:thema.:tlc.ai. Centlte , 6ou.nded :the 11-:th 06 FeblUUVl.y 1946, hi a. non
pll.o 6U ,U'!,6:tltuti,o n ai.mlYlfJ a:t :the pll.Omo:tlo n o 6 pWte ma.:thema.:tlC-6 and -i:t6
a.ppUcati.on6. 1:t hi .6pon60ll.ed by :the Ne:thelli.a.n.d.6 GoveJr.nment :thlwugh :the
Ne:thcvri..a.nd6 Onga.niza:tion 6oJr. :the Adva.nc.ement 06 PU/Le R.ueaJLc.h (Z.W.O.).

1980 Mathematics subject classification: 03D20, 68BIO

ACM-Computing Reviews-category: 5.24

On the existence of Cook semantics*)

by

A.de Bruin

ABSTRACT

In the literature, for instance in Cook's paper on soundness and com

pleteness of Hoare systems [6], one can find the following technique of

defining an operational semantics of a programming language: a function

Comp is introduced which takes a program Rand a state a and yields a,

possibly infinite, row of intermediate states as a result. This row is

meant to be the trace resulting from executing program R starting in state

a.

The function Comp is characterized by a number of equations. However,

these equations are such that it is not irmnediately clear whether they have

a solution. In the above mentioned paper Cook gives some general remarks

as to how these equations should be interpreted, but these remarks are not

intended as a rigorous definition.

In this paper we show for a simple language, the most sophisticated

feature of which is that it has parameterless procedures, that the corre

sponding equations have a unique solution. We show this first in a straight

forward way, and then by defining the solution through an iterative process

(using fixed point techniques or a little topology). Furthermore we show

that the techniques used here can also be applied to other languages de

scribed in the same way, for instance to the language in Cook's paper.

KEY WORDS & PHRASES: Operational semantics, Cook semantics, fixed points,

continuation semantics, recursive definitions,

denotational semantics

*)This report will be submitted for publication elsewhere.

'.

l • INTRODUCTION

In this paper we investigate a certain way of defining operational

semantics of progranuning languages, which has become widely known because

·Cook used it in his soundness and completeness paper [6]. Cook remarks that

this semantics has been derived from one of the operational semantics studied

in Lauer's thesis [10], and also in Hoare & Lauer [7], a paper which is a

condensed version of the thesis. Later on this style of definition has also

been employed by de Bakker in his book on the theory of program correctness [3].

The technique is as follows: a meaning function Comp is described

which takes a program and an initial machine state and yields a row of

states as a result. This row gives the trace left by evaluating the program

starting in the initial state. A terminating computation yields a finite

row, and if evaluation does not terminate then the outcome is an infinite

row. The possibility of infinite rows is Cook's extension over the original

idea of Lauer. It is a meaningful extension because there are programs which

are intended to run forever while having a well defined meaning. One can

think of various kinds of real time processes, for instance data base

managers and the like. It is not feasible for the meaning function Comp to

be undefined for such programs which is generally the case for meaning

functions which are more oriented towards the final outcome of programs.

For a simple language containing declarations E of parameterless

procedures, procedure calls, atomic statements A (for instance assignment

statements), conditional statements and composition of statements the func

tion Comp would be introduced by the following four equations.

Comp(<EIA>)(o) =<a>,

where cr is the state resulting from executing the atomic

statement A in o

Comp(<EIP>)(cr) = <cr>/\ Comp(<EIS>)(cr),

where the declaration P<=S occurs in E.

Comp(< EI if B then s1 else s2 >)(O) =

r <cr>A Comp(<EIS 1>)(cr)if Bis true in o

\ < cr>A Comp(< El s2>) (o) otherwise

Comp(<Els 1;s2 >)(o) =<o>A Comp(<EIS 1>)(cr)A

Comp~ EI s2>) (K (.Comp(< E.I s 1·>) (cr)})

2

Here A denotes the concatenation operator, and K the function which takes

a row and yields its last element.

Now there are some questions to be answered. Does there exist a func

tion Comp with the above properties? If so, is this function total? And

unique? We cannot provide the answers immediately because the above

equations can be interpreted as a recursive definiton which is not inductive.

That is, there is no complexity measure according to which the arguments

of Comp in the right hand sides of the equations are simpler than the ar

guments in the corresponding left hand sides. This is true, because if

the definition would be inductive then Comp would yield a finite row for

all arguments for which is was defined, and this is clearly not the case

(evaluate for instance the call P with declaration P4'>P; this yields an

infinite row<cr,cr,cr, .•• > where cr is the initial state of the calculation).

Cook was also aware of these questions as the following quotation

from [6] shows:

"The definition is recursive, in the sense that Comp appears on the

right side of the clauses. This may appear ironic in a paper on program

verification, since one of the important issues in programming language

semantics is interpreting recursively defined procedures. However,

one does not have to understand recursive procedures in general in

order to understand this specific definition. Suffice it to say that

we intend Comp to be evaluated by "call by name", in the sense that

occurrences of Comp are to be replaced successively by tneir meanings

according to the appropriate clauses in the definition".

In this paper we will show that the answer to the above questions is

that there is a unique total function which satisfies the equations. We will

show this in four different ways.

The first idea is to derive from the recursive definition an inductive

one which defines the elements of the outcome of Comp one by one. This is

treated in chapter 3. The other techniques are derived from the idea that a

solution of the equations can be obtained by iterating an operator derived

from the equations, with as initial value a meaning function which is now

here defined. The first iteration then yields a function which is defined

for atomic statements only, that is which is defined for all statements

for which we need to use the equations only once to get a final result. The

3

second iteration yields a function which gives the correct result for all

atomic statements and all statements of the form<EjA1;A2> or< ••• ,P<=A1, ••• IP>,

that is for all statements for which we can derive the final outcome by

using the equations not more than twice. Repeating this process we generate

a sequence of meaning functions that tends to a limit. We then have to

prove that this limit is the unique total solution of the equations.

This idea of transforming recursion into iteration is standard in

denotational semantics. An ordering is defined on the domains and ranges

of our operators which turn these domains into cpo's, and then a variant

of Tarski's fixed point theorem is used to get a solution of equations like

the ones given above. However, these techniques cannot be applied here

straightforwardly. This phenomenon is analyzed in chapter 4. The main

obstacle is that the sequence of approximations is not monotonically

increasing under the obvious ordening on the domain of rows of states.

We present three ways out of this problem and these are dealt with

in chapters 5,6 and 7. The first solution is to add to the domain of rows

of states the finite rows marked as "not yet completed". On the thus aug

mented domain we are able to define an ordering which makes the fixed point

theory applicable here. The second idea is to use techniques from continua

tion semantics: we rewrite the equations in a more generalized form which

is such that fixed point techniques can be used straightforwardly, and

after that we show that the unique solution thus obtained induces a unique

solution of the original equations.

The third way out is to use the fact that the domain of rows has a

richer structure than the cpo structure. In fact it can be made in a

natural way a complete metric topological space. We then use this structure

to show that any sequence of approximations converges to the unique solution

of the equations. These ~esults can be found in chapter 7.

Finally, in the last chapter we will show how to extend the results

obtained for the paradigm language defined here to definitons of bigger

languages. We will indicate for what language constructs the techniques

treated here can be used.

4

2. THE PROBLEM

In this chapter we will define the language under consideration for

mally, and we'. will also give the Cook equations for this language in their

official forn:t. But first some notational conventions.

Rows will be indicated by angular bra.ckets. For instance we have

<XI, •.. ,xn> which denotes a finite row of n elements, and< xI ,x2 , ••• > which

denotes an infinite row. The empty row 1.s denoted by < >.

Function application associates to the left, that is fabc 1.s an abbreviation

of ((f(a))(b))(c). Correspondingly, the ➔ -operator used in forming

function domains associates to the right. The above function f should have

functionality definition f: A ➔ B ➔ C ➔ D which should be read as

f: A ➔ (B➔(C➔D)).

We next describe the syntax of the language. We distinguish the follow

ing syntactic classes:

- PE Pva.JL procedure variables

- A E Ab.:,t Atomic statements. The structure of these statements is not

specified further, but think of assignments.

- BE Bexp boolean expressions.These are also considered to be atomic

building blocks.

- R E PJi,og p:r>ograms. These have the form <EIS> and must be closed, i.e.

all procedure variables in E and Sare declared in.E.

- EE Vee.£ declarations. These have the form<Pi'~sI, ... ,Pn<=Sn>'

where all Pi are different.

- s E S.ta;t statements.S:: = AIPlif B then Sielse s 2 1sI;S2 .

The conditional statement is included to be able to build nontrivial

programs but they have no other significance, i.e. they make the language

bigger but not intrinsically more difficult to handle.

We now turn to the semantics. There are the following semantic classes.

5

states.The internal structure of states is not specified. Notice

that I is a set, not a cpo. There is for instance no such thing

as 1- 1.n L

- T E I

We define

A

- K

00 * Iw r* rows of states.We define z: = I u . contains the

sequences and the empty row and Iw the infinite ones.

the following operators on rows of states.

concatenation3 defined by the following axioms:
A

T 1 T2 =

< >

w
Tl for all Tl EI

A
T < > = T

I

= < er 1 ' ••• 'er n, er 1 ' ••• , erk >

A I
<erl , ••• ,ern > <erl • .•• ' > = <erl' •.. ,ern,erl, ••• , >

last element extraction, defined by

K <er 1, •.. ,er >=er
n n

finite

w -. K < > = KT = er for all T E I , where er 1.s an arbitrary

(but fixed from now on) element in I.

Finally we distinguish the following elementary valuations.

- A: A:U:t -rE-+I meaning of atomic statements.Notice that atomic

statements always terminate.

- B: Bexp ➔ z: ➔ {tt,ff} meaning of boolean expressions. As the.internal

structure of A:U:t and Bexp has not been specified,

we cannot do more than postulate the existence of functions A and B with

functionalities as above.

We now have enough tools to formulate the Cook equations. These

equations are intended to define a function Comp: Pnog-+ I-➔ z:; 00 and are

stated below

6

Comp<EIA> cr = <AAcr>

Comp<EIP.> cr = <cr> A Comp<EIS.> cr with P. <= S. in E.
l. l. l. l.

Comp<Elif B then s 1 else s 2> cr =

{
<cr> A Comp<E I s i'> a, i£ BBcr = t t

<cr> A Comp<Els2>, otherwise

Comp<Els 1;s2> cr = <cr> A, A Comp<EIS2>(K,),

where,= Comp<EIS 1> cr.

In the sequel we will refer to this set of equations as CE, which is an

abbreviation of "the Cook equations". We next formulate a lemma which gives

information on all total functions satisfying CE. The lemma states that a

definition through a set of equations like CE is independent of the partic

ular way we defined KT for,=<> or,£ Ew. This holds because CE is such

that in it K is never applied to < >, and if K is applied to an element of

Ew, then its value is irrelevant because it will be used only to determine

a row which is to be appended to an infinite row, which means that it will

be neglected.

LEMMA 2.1. For every totaZ function 4? in P~og + E + E~ which satisfies CE

the foZZowing hoZds.

1 • For aU R and a we have 4?Ra :f, < >

2. If we constuct a set of equations CE' which is Zike CE except for the

fact that it uses another Zast eZement extraction function K 1 which

differs from K onZy when appZied to< > or eZements from Ew, then

~ is also a soZution of CE'.

PROOF. Straightforward. 0

3. A STRAIGHTFORWARD SOLUTION

The idea is the following. We define a new function C which is like

Comp but takes besides Rand cr an extra argument, a natural number n, and
th which yields an element from E. This element should then be then element

of the row Comp Ra. Now it is possible to give an inductive definition of

C.
First of all we have to introduce an extra element n ("undefined")

7

because in the set-up as proposed here it is possible to ask for the third

element of a row of two elements. In such cases we then deliver Q.

We define

DEFINITION 3. I. The function C: Pnog _.. I: _.. JN - I: u {Q} is defined by

induction on n as follows:

C<E!P.>crn
i

if n = 1
otherwise

fa if n = 1
1. C<E IS. >a (n-1) , otherwise, where P .<= S. occurs in E i i i

if n = I a

l C<E!s 1>cr(n-1),

C<EI slcr(n-1),

if n I and BBcr = tt

otherwise

C<E!s 1;s2>crn =

a, if n =

C<E!s 1>cr(n-1),

C<E!s2>(C<E!s 1>crk)(n-k-l), if n I 1 and C<E!S 1>cr(n-l) IQ
and V := {mjC<E!S 1>am IQ A C<E!S 1>cr(m+l) =·QA m < n} I 0
where k = min V

otherwise

This definition is adward, especially the case <E!s 1;s2>. We can simplify

this clause by applying the next two lennna's.

LEMMA 4.3. \IR,cr: CRcrl IQ,

PROOF. Immediate. □

LEMMA 3.3. V R,cr,n: CRan = Q ~ V k ~ n: CRcrk = Q.

PROOF. Induction on n. For instance, take R = <Ejs 1;s2>.

8

If CRon = n then a fortiori C<EJS 1>crn = Q. If we combine this with Lennna

3.2 we obtain that the set Vas defined in the last clause of definition

3.1 is not empty. So the second case in the definition of C<Els 1;s2>crn

applies and we have CRon = C<EIS2>cr(n-m-1) for some m with l~m<n-1

Therefore C<EjS2>cr(n-m-1) = n.
Now we can use the same argument to show that for all k~ we have CRcrk =

C<Els2>o(k-m-1). Therefore an application of the induction hypothesis

yields the desired result. D

COROLLARY 3.4 For all Rand n we have that either CRcrn; nor that there

exists exactly one k with l~k<n such that CRak In and CRcr(k+l) = n.
Moreover in the latter case we have V~k:CRam; n and Vm>k:CRam = n.

LEMMA 3.5. cr, if n = 1

C <EIS 1>cr(n-1), if C<EIS 1>cr(n-1); n and n; 1

C <EIS2>(C<EIS 1>crk)(n-k-1), otherwise

where k is such that C<EIS 1>crk; n and

C<EIS 1>cr(k+l) = r.

PROOF. Innnediate from the above Corollary. D

Next we will use C to define a function Comp satisfying CE.

DEFINITION 3.6.

_ { <CRcrk>:=l' if CRon 1 n and CRcr(n+l) = n
CompR.a = C <» • < Rcrk>k=l' otherwise

THEOREM 3.7.Comp as defined in 3.6 satisfies CE.

PROOF. We consider only the case CompRcr for R = <Els 1;s2>. There are two

subcases.

a). Comp <EIS 1> cr is infinite. In that case we have Vn: C<EIS 1>crn; n

and therefore Vn>l:CRcrn = C<EIS 1>cr(n-1), which means CompRcr =

<cr> A Comp<Els 1>cr.

A I A On the other hand, we have <cr> Comp<E s 1>cr

Comp<Ejs2> (K(Comp<EjS 1>cr)) = <cr> A Comp<Ejs 1>cr,

because Comp<EIS 1>cr is finite.

b). Comp<EjS 1>cr is finite, say.with length k. Then we have

cr':= C<Ejs 1>crk ~ n and C<EjS 1>cr(k+l) = n. Moreover

K(Comp<Ejs 1>cr) = cr'. We thus have

CRcrn
r cr,

= i C<EIS 1>cr(n-1),

l C<E I s 2>cr' (n-k-1),

for n = 1

for I <n::;;k+l

for n>k+l

A I A I and therefore CompRcr = <cr> Comp<E s 1>cr Comp<E s 2>cr'.

THEOREM 3.8. There is exactly one total function satisfying CE.

D

PROOF. For any function Comp satisfying CE and for any R,cr and n we can
th calculate, using only the clauses from CE, then- element from the row

9

CompRcr, like we have done in definition 3.1. So we have that the equations

CE determine, for every Rand cr, every element from the row CompRcr, that

is this row must be unique, that is Comp must be unique.

Note that the above reasoning would no longer be valid if we allowed par

tial functions in P~og'-+-I-+-I00 to be solutions of CE. D

4. THERE IS A PROBLEM IF WE TRY TO USE THE FIXED POINT APPROACH

It is tempting to try to use fixed point theory to answer the

questions raised in chapter I, because any solution of CE will be a fixed

point of the operator 1' :D -+ D, where D = P~og --+-I-+-I00
, defined by

'¥ = H>. >.R. >-a. R - <EI A> -+- < A Ao>,

R _ <EI P. > -+- < a >A <P< EIS. >a,
i i

R _ <Ejif B then s 1 else s 2 > +

(BBcr = tt + <cr> A <P<EjS 1>cr> A <P<EjS2>cr),

R _ <Els 1;s2> + <cr> A <P<Els2>(K(<P<Els 1>cr))

Now it is a well known fact from denotational semantics (see for

instance [12] or [3] which both give an introduction to the subject) that

'¥ has a least fixed pointµ'¥ if this operator is continuous, and in that

caseµ'¥ equals the lub of the chain .L ,!; '¥.LC: '¥('1:'.L) S '¥('¥.1)) S
So, if we manage to make D a cpo such that'¥ is continuous then we

obtain the required existence result immediately. Again, it is well known that
00

Dis a cpo, if there is an ordening_!; on E which makes this set a cpo. Now

the intuitive meaning of Tl,!; Tz is that Tz contains more information than

T1, or that T2 is a better approximation pf some final result than • 1 . A

technique for turning a set into a cpo that is often used, is to make this

set a flat cpo, that is to add a totally undefined element .L to it which is

smaller than all elements while all other elements are incomparable by

definition.

However, if we investigate whether this construction is suited for

our purposes, we find that this is not the case. More specifically, we

arrive at a least fixed point which yields the right result for terminating

processes, but which yields .L for nonterminating processes. In order to

illustrate what the reason of this phenomenon is, we will evaluate some

elements of the chain.LC: '¥.LC: '¥2.1 C: ••• approximatingµ'¥, applied to

the program <P<=PIP>:

I • .L < p <= p IP> CJ .L

2. ('¥.i)<P<=PIP>CJ = <CJ> A :,t.< P<=PIP>CJ = <(J>/\ .1 = .1

(NB. We do not have elements of the form <CJ, .L > in the flat cpo
00 •

derived from E , but it seems reasonable to make < cr, .L > = .1)

3. ('¥ 2 .L) < P <= PIP > CJ = <CJ>"('¥ 1-) < P<= PI p > 0 =

<CJ>/\ <0> /\ .L < P <=PI P>o = <a> I\ <a> I\ .1 = .1

4. ('¥3.1) < p <= PIP> CJ =<CJ >/\('¥ 2.1) < P<= PIP> 0 =
I\ I\ I\ I <0> <a> <a> .L <P<= P P>CJ

I\ I\ I\ <CJ> <0> <CJ> .L=.L.

etc.

These formulae clearly show what is wrong here. The ordering!; is not
I\

refined enough, we were forced to make <er> .L equal to .L. Notice that
I\ making < CJ> .1 equal to < CJ > does not work either, because we would then

get as results in 1,2,3 and 4 respectively .1,<0>, <CJ, er> and <0,0,0>,
00

and these elements do not form a chain in the flat cpo derived from E •

In a flat cpo we have always the situation that an approximation Tl of a

final answer T(T 1~T) contains either all information (T 1 = T) or no in

formation at all(T 1 = .1). Now because all finite approximations of an

infinite row are necessarily unequal to this row we must have that all

these approximations are equal to .L, that is we get a chain.LC.LC

with lub .L, and this is not what we want.

This analysis also shows a way out. What the sequence of approxima

tion given above should do is yield longer and longer initial segments of

the final outcome. That is, we should ha~e an ordening such that

1 1

< o > !; < a, a> C < a, a,a > !; ... is a chain with the natural lub < a,a,a, •• • >.
CX)

This leads us to trying the prefix ordening on L Tl C T 2 iff Tl is a
CX)

prefix of T 2 • One easily checks that L with this ordening is a cpo with the

empty row < > as bottom element.

This ordening yields a correct approximation sequence for the program

< P<= PIP> as one easily can check. However this approach does not work in

general because f is not continuous under this ordening. This stems from
A

the fact that the operators Kand are not continuous, not even monotonic

under the pref ix ordening. For instance, K < cr 1 > = cr 1 and K < cr 1 , cr 2 > = cr 2 •

Now we have <°t > C < a 1,a2 >, but a1 and a2 might very well be incomparable.

We can also show that the new approach does not work in a less tech

nical way. Let us consider the sequence< .L (= XR.Xcr.<>), ,.L,,2.L, ••• >

and let us apply some of the elements thereof to the program R = < EI P ;A2 >

where E - < P<= A 1 > and to an initial state cr. We then get the following

results.

I. .L Ra = (>..a.< >)Ra = < >

therefore

4. (,3 .L)Ra =

2. (,.L)Ra = <a>" (.L<EIP>cr/ (.L<EjA2> [K(.L<EIP>cr)J) = <cr>"< >" < > = <a>

2 A I 3. (f .L)Rcr = T (f .L)<E A2> (KT),
A I A A I where T = <cr> ((f .L) <E P>a) = <cr> <cr> (.L <E A1 >cr) = <cr, cr>

2 " " (, .L)Ra = <cr,o> (,.L)<EjA2>cr = <cr,cr> <AA2a> = <a,a,AA2a>

" 2 I T (, .L)<E A2>(KT),

" 2 " " I where T = <a> ((, .L) <EjP> cr) = <a> <a> (f .L) <E A1> cr =
A A = <cr> <a> <AA1cr> = <cr,cr,AA1cr>

3 A 2 I therefore (f .L)Rcr = <cr,cr,AA1cr> (f .L)<E A2>(AA1a) =
A

= <cr,cr,AA1cr> <AA2(AA1cr)> =

= <cr,cr,AA1cr,AA2 (AA1a)>.

12

2 3 Now from these calculations we see that W i q W i because we have
2 3 . 00

(W i)Rcr + (W i)Rcr. Therefore the prefix ordering on r is such that
?

the sequence< i,Wi, w-i, ••• > is not a chain, and thus W cannot be

continuous.

If we analyse what went wrong here, we see that in evaluating

(w2i)Rcr we apply the last element function K to a row of states which is

not yet finished, that is we start evaluating A2 "too early", namely in

state cr which is not the final state resulting from evaluation of P. This

observation suggests two solutions for the difficulty we have met. The
00

first one is to enlarger so that it contains also row of states which
A are marked as "not yet completed" and to let the operators and K act

in a continuous manner on these rows. Another possibility is to rewrite W
A

in such a way that it does not use the non continuous operators Kand

any more. Finally, though the above approximation sequence is not a chain,

we observe that the right outcome has been obtained in the end. This

suggests that the function~ might be continuous if we would use a more

subtle notion of continuity. The next three chapters will be devoted to a

discussion of these possibilities.

00

5. ADDING UNFINISHED ROWS TOE •

We saw above that in E00 finished and unfinished rows of· states must

be distinguished. We will arrange this as follows: a row <cr 1, •.• ,crn> will

be marked unfinished by adding the element i to it, so that we get

<cr 1, ••• ,crn, .L>. Notice that only finite rows can possibly be unfinished;

infinite rows, which model nonterminating computations, cannot contain

more information than they already do. All this leads to the following

definition.

DEFINITION 5. I E = r* u E *.Lu E00
, where r* and E00 are as before, and

where r* i is the set of all rows consisting of zero or more states followed

by the symbol i.

Thinking in terms of the analysis in the preceding chapter, we see

that the following ordering is natural.

13

DEFINITION 5.2. For -r 1,-r 2 EE we define -r 1 C • 2 iff either 'l = • 2 or

is a

LEMMA 5.3. E with the above ordening is~ cpo.

PROOF. One easily checks reflexivity, anti-symmetry and transitivity of C.

One also checks immediately that <i> is the smallest element in E~, and
~ lastly one can show that every chain in E has a lub by noting that all

nontrivial chains in E
A A

must have the form •i" <i> C • 2 <i> C • 3 <i> C ...

where Ti is a prefix of •i+l (a nontrivial

Vi 3k:-r. f •• k). But a chain of this form

chain is a chain <-r.>. for which
1. 1.

1. 1. + has an obvious lub in Ew, namely

the infinite row which has every element of the chain as a prefix. D

The next thing to do is to define Kand A on this new domain. The

analysis in chapter 4 indicates that the operator" should disregard its

second argument, if its first argument is a row that is not yet completed:
A • * i -r 1 • 2 = -r 1 for -r 1 1.n E • Because we want K: E - E to be continuous

we first have to make Ea cpo.

DEFINITION 5. 4 •

1. E =Eu {i}, the flat cpo derived from E.
i

2. K! E - E is defined by
i

3. A E x E - E is defined by

= f•1• if •1 E Loo U L*i

l<a1,···,an,al', ••• (,ak,)>, * if Tl E E

LEMMA 5.5. Kand" as defined in 5.4. are continuous.

PROOF. Straightforward, use the remark in the proof of 5.3.1 about non

trivial chains. Note that in order to make K continuous we cannot define
00

K(T) to be arbitrary for TEE or T = <>, as we did in chapter 2. D

14

Now that we have added the element J. to Ewe have to change the

definition of~ a little bit.

DEFINITION 5.6. 1: D + D, where D
s

1 = Ac:p.\R.\cr. cr = J. + <J.>,

R - <EIA> + <AA.a>

R - <E!P.> + <cr>A c:p<F!S.>cr,
1 1

R _ <El if B then s 1 else S2> +

A I A (BBcr = tt + <cr> c:p<E s 1>cr, <cr> c:p

R - <EJs 1;s2> + <cr>A c:p<EJs 1>oA c:p<Eis 2>

REMARKS.

is defined by

<EIS2>0),

(K(c:p<EJS 1>o)).

I. The expression E + E denotes the cpo of all strict functions from J. s

2.

E to E , that is all functions f for which fJ. = <J.>. This precaution J.
1s needed because otherwise~ would not be continuous.

One easily checks that the operator ~ has the functionality as announced,

that is V c:p E P11.og -------+ E --+ J. s
E

'
R E P11.og and CT E E J.' we have that

~ ~c:pRcr E E (e.g. only the last element might be J.) ' and also

Vc:pED, RE PJz.og ~ ~(jlRJ. = <J.> (i.e. ~<PR is strict again).

We will now prove that firstly~ as defined above 1s coutinuous, and

secondly that for all Rando# J. we have that (µ~)Ro E I: 00
• This second

fact then implies that µ\fl restricted to the proper domain is a solution

of CE, because the operators A and K, as defined in 5.4, restricted to I: 00

are the same as those defined in chapter 2. The second result will also be

used to show that µ\fl is the only solution of CE.

LEMMA 5.7. ~ ~s a continuous operator inD---+- D, where Dis as in definition

5.6.

PROOF. Straightforward. 0

The next fact to check 1s that for all Rando# J. we have that
co

(µ~)ROE E

15

The proof proceeds as follows. Suppose the assertion is not true. We then

would have some Rando+ .L for which (µl)Ro € L*.L. Now (µl)Ro =
i

= ~((l .L)Ro) and therefore we would
i . . . *.L

have that for all i: •. := (li.L)Ro E L*.L.
i

Now intuitively •. € L means that
i

this approximation of evaluation of

R in o is not good enough, because this row is not yet completed. This

suggests that there is a better approximation in the chain <(li.L)Ro>., and
. i

in fact this holds already for the next element in the chain: we have
*.L

•· EL ==> •·+1 I•·· This is Lemma 5.8.
i 1 i

Now if Lemma 5.8 holds we then would have the following situation

(µl)Ro is the lub of an apparently nontrivial chain, .LRo C (l.L)Rcr ~ •••
. (k *.L with all l .L)Ro EL • And now we have reached a contradiction, for such

a chain will have a lub in L00
•

LEMMA 5. 8. Let µl = U qi. 1,Jith 4>. i = l .L. For aZZ Rand aZZ a+ .L we have:
i i i

*.L qi.ROEL ==> 4>. 1Ro + 4>.Ro. i i+ i

PROOF. Straightforward by induction on i. D

00

LEMMA 5.9. V R,cr f .L: (µ~)Ra€ L

PROOF. Cf. the remarks preceding Lermna 5.8 D

00

THEOREM 5.10. µ~, restricted to the domain Pnog - E -r L , is a solution

of CE.

PROOF. Notice that we cannot state thatµ~ is a solution of CE, because

µ~ is an element of Pnog -r E -r E~ and as such it can never be a solution
.L

00

of CE. Notice also that we can restrictµ~ to the domain Pnog -r E -r E

only by virtue of Lermna 5.9.
A

Now, to prove the theorem, we first compare the definition of Kand

from chapter 2 with the ones in Definition 5.4 and we find that the

restriction of A(according to 5.4.3) to L00 x L00 is the same operator as the
00

one in chapter 2, while the restriction of K to E is almost the same, the

only differences being the cases KT where 1' E Lw or.=<>. If these

operators would be the same then we were finished, because in Definition

16

5.6 Kand A are applied only to arguments of the form (µ,)Ra and these

are in E00 by Lennna 5.9.

However the fixed points of, have the same properties as the ones

given by Lennna 2. I for the solu.tions of CE. D

00

THEOREM 5.11. µ,, restricted to P~og + E + E, is the only solution of CE.

PROOF. We first prove thatµ, is the only fixed point of V. Suppose not,

then there would be a bigger fixed point~, that is there would be an R

and a such that (µV)Ra ¥~Ra.This is impossible however because by Lennna

5.9 (µV)Ra E E00 which means that (µV)Ra is a maximal element in r~ (there
~ is no Tin E which is properly bigger than (µV)Ra).

Now suppose there would be another function C: P~og +
00 • •

E + E satisfying

CE. We can extend this function C to a function C' : P~og + E .1 + s E ~ by

defining C'Ra = CRa if a EE and <.1> if a= .1. One easily checks that C'
is a fixed point of V, but then C' =µ,.Contradiction. D

6. THE CONTINUATION APPROACH

In chapter 4 we remarked that the direct fixed point approach failed
A

due to the fact that the operators Kand are not continuous. In this

chapter we will try to find a way out of this problem by restructuring

CE in such a way that these operators are not used any more, or at least

not in a non continuous way. The problem stems from the clause on constructs

of the form <Ejs 1;s2>. The idea that we will pursue is to use continuation

semantics instead of direct semantics.

Direct semantics defines the meaning of a construct in terms of the

rows of states that correspond to evaluation of the construct. Therefore

the operators Kand A have to be used: the meaning of <Ejs 1;s2> is obtained

by concatenating the rows of states corresponding to the meanings of

<EjS 1> and <EjS 2>. Construction semantics uses another idea: the meaning

of a construct is the row of states which is the result of evaluating the

construct itself followed by evaluation of the rest of the program of which

the construct is supposed to be a part. Of course, the effect of evaluation

of the rest of the program cannot be obtained from the construct itself, so

17

we have to give the meaning function Comp another argument, a continuation

which will be a function from states to rows of states describing the effect

of the rest of the program. One can view this continuation as a coding of

the row of statements which are to be evaluated once the statement under

consideration has been worked through.

In this set up we do not have to coµcatenate two rows any more while

defining the meaning of <EJs 1;s2>, because the effect of evaluating s 2 can

be caught by changing the continuation which describes what will happen

once the whole construct has been evaluated i11to a continuation which

describes the effect of first evaluating s 2 and then applying the original

continuation. Then this new formed continuation is given as an argument

to Comp<EJS 1>. All this leads to the following four equations, denoted by

"CE " which are intended to define a meaning function Cornn: P1tog ➔ 0 ➔ 0, cont ' ,-
with 0 = I -+ I:00

•

Comp<EJA>ecr = <AA.a> A e(AAcr)

Comp<E!P.>0cr = <cr> A Comp<E!S.>0cr
l l

Comp<Elif B then s1 else s 2>ecr =

f <a> A Comp<Els 1>ecr, if BBcr = tt

l <cr> A Comp<E!S2>ecr, if otherwise

Comp<Eis 1;s2>ecr = <cr> A Comp<E!S 1>{Comp<E!S2>e}cr

Notice that the operator K is not used any more. We do us_e the con

catenation operator, but only in a continuous way (with respect to the

prefix ordering on I:00
): ACT.AT.<cr>AT is continuous. The fourth clause in the

above equation can be phrased as follows: evaluating <E!s 1;s2> followed by

evaluation according to 0 amounts to evaluation of <E!S 1> followed by

[evaluation of <EjS2> followed by evaluating according to 0].

The next thing to. do is to derive from CE an operator,, show
cont

that this operator is continuous so that the existence of a fixed point

is guaranteed. Straightforward reasoning would lead to define the func

tionality of~ as ~:D-+ D, where D = Pftog-+ 0-+ 0, with 0 = ~--. I: 00
•

However we must take a precaution here: we have to make the domain D equal

to the domain of all functions from P1tog to all continuous functions from

0 to 0: D = P1tog--. [0 __. 0]. This is needed because we can only prove

continuity of~ if the functions~ involved are continuous in their

18

continuations e.

Having remarked all this, we are now ready for the definition of'!'.

DEFINITION 6.1. The operator 'l':D ➔ D, with D = P1tog ➔ [0 ➔ 0] and 0 = E ➔ E

is defined by

'!' = H.;>..R.;>..8.Aa. R - <EIA> ➔ <AA a > 11 e (AA a),

R - <E!P.> + <a>11 ·~<E!S.>8cr,
1 1

LEMMA 6.2.

R _ <Elif B then s 1 else s 2> +

(BBcr = tt + <cr> 11 ~<E!S 1>ea,<cr>11 ~<E!S2>ea),

R - <Els 1;s2> + <a>11 ~<E!s1 >[~<Els2>e]a

I. 'l' is weZZ defined, in the sense that for aZZ ~ED we have'¥~ ED, or in

other words: 'v~ED 'vREPJtog ve 1s_e 2 !; ... : '¥ ~ R(~ei) =~IP ~Rei

2. IP is continuous.

PROOF. Straightforward. □

We will also need the following Lemma.

LEMMA 6.3. Let~ E P1tog + [0 + 0] be a fixed point of IP, Then for aZZ R,

and a we have that ~Rea I < >

PROOF. Immediate. □

00

By way of an example we will show that the counterexample given in

chapter 4 is now handled correctly. We again apply the first four approx

imations of µIP to the program R = <P <= A1 IP;A2> starting in state a. Because

we are interested in evaluation of this program only, we give (µIP)R as a

continuation argument the empty continuation AG.<> •

I. .L R{Aa. < > }a = < > (.L = AR. A8. AG.< >)

2. (IP.L)R{1,,cr. < > } =
A

.L <EIP>{.L<EIA2>{1,,a.< >} }a
A

<a> = <a> <> = <a>

2 A
< EIP>{(IP.L)<EIA2>{1,,a.< >}}a= 3. (IP .L)R{1,,a. <>}a = <a> (IP .L)

A
<a> 11 .L <EIA1>{(1P.L)<E!A2>{1,,a.<> }}a = <a> =

I\ A
= <a> <a> <> = <a,a>.

3 A 2 I 2 I 4. (IP .L)R{1,,o. < > }a = <a> (IP .L)<E P>{(IP .L)<E A2>{1,,a.<> }}a =
A

<a> 11 (IP.L)<EIA1>{(1P2.L)<EIA2>{1,,o,< > }}a = <a>
A I\ I\ 2 I = <a> <a> <AA1a> ('¥ .L)<E A2>{1,,cr,< > }(AA1a) =

19

A A A A
= <o> <o> <AA1o> <AA 2 (AA o)> 0.o.< >}(AA2 (AA1 o)) =

'A A A } A
=<o> <o> <AA 1o> <AA2 (AA1 o)> <>=

= <o,o,AA1o,AA 2 (AA 1o)>.

We can now define Comp as µ'l' applied to AO.< > as standard continua

tion parameter.

DEFINITION 6 .4. Comp = AR. AO. (µ'l')RO.o. < > }o

The next thing to prove is that the function Comp thus defined is a

solution of CE. The proof is by cases, and the cases that Comp is applied

to an atomic statement, a conditional statement, or a procedure call are

straightforward. The interesting case is to prove that

Comp <Els 1;s2> o = <o>AComp <Els 1>oAComp <EIS2>o'

with o'as usual.

Now Comp <EIS1;S2> o = (µ'l')<EIS1;S2> no.<> }o =

= <o>A (µ4') <EIS 1>{(µ'l')<EIS 2>0o.< >}}o,

and the right hand side of(+) equals

••• (+)

<o>A(µ4')<EIS 1>0o.< >}oA(µ'l')<E!S 2>00°< > }o',

where o' = K((µ'l')<EIS 1>0o.<>}o).

We thus have to establish a correspondence between the old definition
A

of composition which used Kand , and the new one which uses continuations.

This correspondence is phrased in the next "continuation removal" lennna,

which must be clear if the idea behind continuations has been well under

stood.

LEMMA 6.5. Let~ ED= Pnog + [0 + 0] be a fixed point of 4'.For all R,e

and a -we have that ~Rea = -r A e(n), -where -r = ~R{Ao.< > }o.

PROOF.(The function K used here is the K as defined in chapter 2). The first

fact to be remarked is that we have for all R, 8 and o that

~R{Ao.< > }o ~ ~Reo. This holds because~ ED implies that ~Risa monotonic

function. From this observation we can innnediately deduce the lennna for

the case that -r := ~R{Ao,< >}o is infinite, because in that case we have

that T = ~Reo, due to the fact that -r, being an infinite row, is maximal

in r. 00
• On the other hand -r = ,: A 8 (KT), due to the definition cf A and we

20

are ready.

Next, suppose that -r := <P O.cr,.< > }cr is finite (notice that this does

not imply that <PR0cr be finite). We now prove the len:una by induction on

the length of -r. As always, the cases that R is an atomic statement, a

conditional statement or a procedure call are straightforward. So suppose

R = <Els 1;s2>. We have

lhs := <PR0cr = <cr>" <P<EIS 1>{<P<EIS2>}cr

rhs := -r " e (K-r), where -r = <cr> " <P<E IS 1 >{ <P<E I s2>{Acr. < > }}cr.

Now ~<EIS 1>{Acr.< >}cr cannot be infinite, because the observation at the

beginning of this proof would then imply that, would be infinite. For the

same reason the length of ~<EIS 1>{Acr.< >}cr is smaller than or equal to the

length of ~<EIS 1 >{~<EIS?>{Acr.< >}}cr, which is smaller than the length of

-r (notice that Len:una 6.3 is used here). Thus we can apply the induction

hypothesis twice, and this yields

" " I lhs = <cr> -r 1 <P<E s 2>0(K-r),

where 1" 1 = ~<EIS 1>{Acr.< >}cr, and

~<EiS 1>{~<Eis2>{Acr.< >}}cr = , 1 "-r2 ,

with -r 1 as above, and -r 2 = <P<EIS2>{:>..cr.<>}(K-r).

This last equality yields
I\ I\ I\ rhs = <a> , 1 , 2 0(K,),

so there remains to be proved

<P<Eis2>(K, 1) = , 2 " e(K, 2)

This is another instance of the lemma. Now , 2 cannot be infinite, because

I\ I\
we have already derived that 1" = <cr> -r 1 -r 2 , and we assumed that -r was

finite. So -r 2 is finite with length smaller than the length of -r, and we

can thus use the induction hypothesis once more, leading to the desired

result. D

THEOREM 6.6. The function Comp as defined in Definition 6.4 is a solution

of CE.

PROOF. See the remarks preceding Lemma 6.5. D

The last thing to be proved is that the function Comp as defined in

6.4 is the only solution of CE. This will be done in the same way as in the

proof of theorem 5.11. We first prove that'¥ has only one fixed point.

LEMMA 6.7. o/ has exactly one fixed point.

PROOF. Suppose there are more, then there is a¢ E P~og ➔ [0 ➔ 0] with

µ'¥ i; ¢. We will prove that for all R,e and a we have (µ'¥)Rea= ¢Rea and

thus we reach a contradiction.

21

I. If (µ'¥)R13a is infinite then it is maximal L00
• The desired equality then

follows from (µ'¥)Rea i; ¢Rea.

2. We now prove for all finite (µ'¥)Rea the desired equality, and we do this

by induction on its length.

Because again the other cases are straightforward we restrict ourselves to

the case R ~ <Els 1;s2>. We have

lhs := (µ'¥)<Els 1;S2>ea <a>A(µ4')<EIS 1>{(µ'¥)<EjS 2>e}a

and

rhs := ¢<Ejs 1;s2>ea = <a>A¢<EjS 1>{¢<Ejs 2>e}a.

Using Lemma 6.5 we get lhs = <a>AT/T 2 , where Tl= (µ'l')<Ejs 1>{>..a.<> }a and

T2 = (µ't)<EJ:S 2>e(<)>T 1), and rhs = <a>AT2, where Ti= ¢<Els 1>0.a.<> }a and

Tz = ¢<E[S 2>8(KTj). Now by applying the induction hypothesis we get first

that Tl= Ti and thereafter that T 2 = ~;, D

THEOREM 6.8 .. CE has exactly one solution.

PROOF. We first show how to transform a solution C of CE into a fixed point

aC of'¥. This is done in a way which uses in a sense Lemma 6.4:

aC := >..R >..e.>..a.CRaAe(K(CRa)).We then have the following facts.

I. For all C E P~og ➔ L ➔ L00 we have that aC E P~og ➔ [0 ➔ 0], i.e aC is

continuous in its continuation p2rameter.

2. If C is a solution of CE, then aC is a fixed point of'¥. Notice that it

is needed that aC be continuous in its continuation parameter because

otherwise it could not be a fixed point of 1¥ ('¥ has functionality D ➔ D,

where D = PMg ➔ [0 ➔ 0]).

We present the hard case in the proof of fact 2, by proving that for

all e and a we have lhs := (aC)<EjS 1;S2>ea =

= <0>A(aC)<EjS 1>{(aC)<EjS2>8}a =: rhs.

22

By definition we have lhs

" " I <a> Tl (aC)<E s 2>6(KT 1) =

T2 = C<EIS2>(KTI).

= C<EIS 1;s2>cr"6(K(C<Els 1;s2>)) and rhs =
I\ I\ I\

<a> T 1 T2 6(KT2), where Tl= C<EIS 1>cr and

Because C is a solution of CE we get lhs =

T; = C<EIS 1>cr and T; = C<EIS2>(KT;). Thus Tl

therefore lhs = rhs.

3. Suppose CE has more than one solution, say C and C. Then there exist
l I

Rand a such that CRcr f C Ra. This leads to the fact that aC and aC

are both fixed points of,, and also (aC)R6cr f (aC')R6cr, which con

tradicts Lennna 6.7. D

00

7. E AS A METRIC TOPOLOGICAL SPACE

For convenience we first of all repeat the definition of the operator

,:P~og + E + E00 derived from CE

f = A~.AR.Acr. R - <EIA> + <AAcr>,

R - <EIP.> + <cr>A~<EIS.>cr,
l. l.

R _ <Elif B then s 1 else s 2 > +

(BBcr + <cr>A~<EIS 1>cr, <cr>A~<Els2>cr),

R = <Els 1;s2> + <cr>A~<Els 1>crA~<Els2>(K(~<Els 1>cr))

Let us consider for a moment the approximation sequence from chapter

4, 1.Ra, (,1.)Ra, (f21.)Ra, (,31.)Ra, with R = <P<=A1IP;A2>. We found that this

sequence was not a chain. However it does converge (in some sense) to the

correct value. This phenomenon also holds for nonterminating computations

like the evkluation of <P<=A1 ;PIP;A2> in some cr. If one evaluates the

sequence(, 1.)Rcr one again observes that this sequence converges to the

right result <a,a,AA1a,AA1a,(AA1) 2a, ••• > though it is not a chain.

In fact we can prove that the above observations hold in general: we

have for all Rand a a sequence of approximations (,i1.)Rcr which converges

to a limit lim(fil.)Rcr. We thus have to define what the limit is of a con

verging sequence which is not a chain. Moreover we also need to prove that

this limit process yields a function which is a fixed point of,, i.e.

VR,cr:f(lim(,il.))Rcr = (lim(,iJ.))Rcr. Now this is equivalent to continuity

23

in the topological sense: f is continuous iff for all converging sequences

<x.>. we have lim(fx.) = f(lim x.).
i i . i i

In the preceding chapters we dealt with chains which are monotonic

sequences, and the limit of such a sequence could conveniently be defined

as its least upper bound. In this chapter we will reason along analogous

lines as in the cpo approach, but now using a more powerful notion of

limit. This notion can be obtained by defining a distance function don

L00 which makes L00 a metric topological space.

This approach is inspired by an endeavour to apply Nivat's results,

see for example [1 I], to the problem treated in this paper. We saw no way
00

to attain this, but the basic facts about L that he gave were very use-

ful. In fact, the whole treatment given in this chapter is much in the

style of Nivat's.
00

First a notation: we denote, for TEL , by T[n] the prefix of T con-

sisting of the first n elements of T, or T itself if its length is smaller
00

than n. We then define the following distance function don L :

otherwise

One easily checks that dis a metric, i.e. we have the familiar properties

d(Tl,T2) = 0 iff Tl = T2

d(TI,T2) = d(T2,Tl)

d(Tl,T2) ::; d(Tl,T3) + d(T2,T3)

00

Now the metric space (L ,d) is complete:

LEMMA 7.1. A sequence in L00 converges iff it is a Cauchy sequence.

00

PROOF. The only if-part is innnediate, because L is a metric space. We next

prove the if-part. Suppose <T.>. is a Cauchy sequence. We construct a T
i i

which is the limit of T. in the following way [11]. We have the Cauchy
i

-n property Vn3N: p,q ~ N => d(T ,T) < 2 • Now let for all n,
p q

smallest number N with the above property. We then have for

N be the
n

all p ~ N
n

24

that

'N [n] = T [n].
n p

••• (1)

Also the sequence <,N [n]> is a C-chain with lub T := U,N [n]. By (1)
n n n 1 n

<,.>. converges to,. D
i i

It has been remarked earlier that one of the facts to prove is that'¥

is continuous. So we will first have a look at how continuity should be

defined in this setting. It should be something like "for all converging

sequences <<Pk>k: lim(IJl<Pk) = IJl(lim<Pk)", which is the analogon of the cpo

continuity "for all chains <<Pk>k: U (IJl<Pk) = IJI (LJcpk) ". We therefore have

to define what it means that a sequence of functions <<Pk>k converges. In

the cpo theory a sequence <<Pk>k was called a chain if it formed a chain

taken pointwise, i.e. if <<PkRcr>k was a chain for all Rand cr. In an analogous

way we can define convergence of the sequence <<Pk>k as pointwise convergence,

namely be demanding that for all Rand cr the sequence <<PkRCJ>k converges.

However, the approximation sequences <'i'ki>k that we will investigate

have the pleasant property that they converge uniformly in Rand CJ, This

allows us to use a stronger notion of limit, namely the one that corresponds

to the following distance function on Pnog-+ E + I:00
: d'(<P 1 ,<P 2) is the lub,

taken over all Rand cr, of d(<P 1Ro,1 2Rcr). One easily checks that a sequence

<<Pk>k converges according to this distance iff it is uniformly convergent

in Rand CJ.

We can set up the theory in this smoother version because of the fact

that ev~ry right hand side in CE has the form <cr'> or <cr'>~ ••• , where CJ'

is completely determined by Rand CJ. This fact is crucial in the proof of

Lennna 7.4. Compare also the remarks following Theorem 7.6.

We thus have the following metric on Pnog + E + I:00

and this distance can be characterized as follows.

LEMMA 7.2. d'(<P 1,<P2) ~ e for O < e < 1, iff for aZZ Rand cr,
-n

d(<P 1RCJ,<P2RCJ) ~ 2 (that is, VR,CJ:<P 1RCJ and <P 2RCJ agree on at least their first

25

I -k n-1 eZements), where n = min{k 2 :,; e}.

PROOF. The if-part is trivial. In order to prove the only if-part, suppose

there exists on Rand cr with d(~ 1Rcr,~ 2Rcr) > 2-n. Then we have that these
00

elements of E do not agree on their first n-1 elements, that is their

d . ' h 1 2-n+ l h. h . h h. istance is greater tan or equa to w ic is greater tan e. Tis

implies however that d'(~ 1,~2) > e. Contradiction. D

We also have that the metric space <Pnog + E + E00
, d'> is complete.

LEMMA 7.3. Every Cauchy sequence <~k>k in Pnog + E + E00 converges, and its

Zimit is AR.Acr.lim WkRcr.

PROOF. Choose e. We have to find an N such that d'(AR.Acr. lim ~kRcr,~i):,; e

for all i > N, or equivalently we have to find an N such that for all i > N

and for all R,cr we have

... (1)

Now there exists an N such that for all i,j > N: d'(~.,~.):,; e, that is there
i J

exists an N such that for all i,j > N and for all cr,R

d(~.Rcr,~.Rcr):,; E
i J ••• (2)

For the N determined in this way we will show that (1) holds. So choose R,cr

and i > N. By (2) we have Vj > N:d(~.Rcr,~.Rcr) ~ e. From this we conclude
i J

(1) by the following argument.

Suppose (1) does not hold. Then there is a o such that d(lim ~kRcr,~iRcr) =

o + e > e. There exists a j such that d(~.Rcr, lim ~kRcr) < ½o, and without
J .

loss of generality j > N. But now we have a contradiction:

which contradicts (2). D

The next Lennna states a basic property which we need to prove continuity

of ijJ.

26

LEMMA 7.4. If for all R,cr:d(~ 1Rcr,~2Rcr)
n-1 R,cr:d((~$ 1)Rcr,(~~2)Rcr) ~ 2

-n
~ 2 , then for all

PROOF. We show the Lemma for the case R = <EI s 1; s 2>. Suppose d(cp 1R cr,~2Rcr) ~
-n.

2 for all Rand cr, that is, for all Rand cr we have that ~1Rcr and ~2Rcr

agree on at least their first n-1 elements. We now investigate (~~.)Ro
l.

(i = 1,2) and we have that

We distinguish two cases:

1. ~1<EIS 1> has length smaller than n-1. Then by hypothesis.= ~1<EIS 1>cr =

~2<EIS 1>cr because they both agree on at least n-1 elements. Furthermore

the hypothesis implies that ~1<Els 1>(K,) and ~2<Els2>(K,) agree on at

least their first n-1 elements. Therefore the (~~i)<EIS1;S2 >cragree on
· -n-1 at least n elements, that is d((~$ 1)Rcr, (,~2)Rcr) ~ 2 •

2. If ~1<Els 1>cr has length greater than or equal to n-1 then also

~2<EjS 1>cr must have more than n-1 elements and furthermore at least the

first n-1 elements of these rows are equal. But this means that already

<cr>A~.<Ejs >cr agree on n elements (i=l,2) and the Lemma follows. D
l. 1

Notice that from this Lemma we can infer immediately that <,kL>kRcr

forms a converging sequence for all Rand a. So now the informal remarks

at the beginning of this chapter are formally justified.

We next prove a property of, which implies that, is continuous, and
k

also that for every initial value ~ the sequence <, ~ >k converges. Notice

that these two properties were also r.eeded in the cpo theory in order for

~ to have a fixed point:, had to be continuous and (the particular case)
k

<, L>k had to be a chain.

LEMMA 7.5. Wis a contraction~ in particular v~1,~2: d'(,~ 1,~~2) ~ !d'(~1,~2).

PROOF. Suppose d'(~ 1,~2) = E. Let n = min{kl2-k ~ E}. We have that
-U

d(~ 1Rcr,~2Rcr) ~ 2 - for al,l Rand a by Lemma 7.2. Now Lemma 7.4 implies

27

We can now deduce the theorem we were up to, using standard techniques

from topology.

THEOREM 7.6. 'I' has exactly one fixed point.

PROOF. 1. 'I', being a contraction is continuous. We can straightforwardly

prove that for all converging sequences <~k>k we have 'l'(lim ~k) = lim ('l'~k),

or VE> 0 3N Vn > N: d'('l'(lim ~k), 'l'~n) < £.

2. For every~ E P~og +I+ I 00 the sequence <'l'k~>k is a (uniform convergent)

Cauchy sequence. For we have

d'('l'k~,'l'i~) = d'('l'k~,'l'k'l'i-k~) s

(½)kd'(~,'l'i-k~) s

(½)k[d'(~,'1'~) + d'('l'~,'1'2~)+ ••• +d'('l'i-k-1~,'l'i-k~)J s

(½)kd'(~,'l'~)[l+½+ ••• +½i-k-1] s (½)k-ld'(~,'1'~).

3. Choose a~ in P~og +I+ I 00
• The limit n'I' := lim 'l'k~ is a fixed point of

'I'.

4.

For we have 'l'(n'I') = 'l'(lim 'l'k~) = lim 'l'('l'k~)
. k+l = lim 'I' ~ = n'I'.

(by continuity)

'I' has only one fixed point. For, suppose there would be another one

Then d'(n'I',~) 'F O. Because both are fixed points we have d'(n'I',~) =
d' ('1'(11'1'), 'I'~). On the other hand, by Lemma 7.5, we have d'('l'(n'l'),'1'~)

½d'(n'I',~). This implies d'(n'I',~) = O, and we have a contradiction.

~-
$

□

We close this chapter with an investigation of the consequences of a

little change in CE, namily that the fourth clause is changed into

We still have that CE has exactly one solution but this fact is now harder

to prove. In particular Lemma 7.4 is no longer true as one easily observes.
k Also it is not any more the case that the sequences <'I' ~>k converge uniformly

28

(for arbitrary~) in Rando.

We have to handle the problem differently, we cannot use the lub

distance on Pnog + E + E~ any more, but we have to use the pointwise exten-
. ~ .

sions of convergence in E , quite analogously to how theory was set up for

cpo structures. In the sequel we give a brief sketch of how Theorem 7.6 has

to be deduced under these new circumstances.

1. DEFINITION. <~k>k converges iff VR,o: <~kRo> converges. In that case we

define lim ~k as AR.Ao. (lim ~kRo).

2. LEMMA.~ is continuous, i.e. for all converging sequences <~k>k we have

lim ~~k = ~(lim ~k).

This is to be proved by cases, the most complex one being R = <Els 1 ;s2>.

In that case one has to prove lhs:= lim[~k<EIS 1>oA~k<EIS2>(K(~k<EIS 1>o))J =

(lim ~k)<EIS 1>o~(lim ~k)<EIS2>[K((lim ~k)<EIS 1>o] =: rhs. We distinguish

two cases.

a. (lim ~k)<E!S 1>o is a finite row. In that case the sequence <~k<Els 1>o>

must be constant from a certain index k, and equal to its limit. We then

can use the fact that for all • 0 the function A ••• 0~. is continuous to

prove the lemma.

b. (lim ~k)<E!S 1>o is infinite. In that case lhs = lim(~k<EIS 1>o), to be

proved using an e-N-argument and the lemma follows. D

This is a useful lemma, in some sense the anologon of Lemma 7.4. Note

that the Nin the lemma is in general dependent on Rando.

The lemma has to be proved by induction on the entity <n, length(R)>.

This lemma has the following useful consequences (4 and 5).

4. LEMMA. For all~ we have that <~k~>k converges.

5. LEMMA. The limit of <~k~>k is independent of the initial value~.

6. THEOREM. The changed Cook equations have exactly one solution.

PROOF. There is a fixed point (for instance lim (~k~) =:µ~),by result 2

and 4. If there would be another fixed point ~0 , then we would have that

µ~ = lim ~k~O = lim <~0 ,~0 , ••• > = ~O (the first equality holds by result 5). 0

29

8. CONCLUDING REMARKS

In a certain sense we have worked in a direction opposite to the one

Scott took when he devised his theory of computing. He wanted to use

notions from topology such as limit and continuity, and therefore he in

troduced cpo's because the domains on which programs compute are in general

not of a topological kind. We found in chapter 4 that I 00 considered as a

cpo, did not have enough structure to prove the desired result. However by
00

using the inherent typology on I we were able to derive this result in an

elegant manner (chapter 7).

The above results have been derived for a rather simple paradigm

language, but the techniques used can readily be applied to more sophisti

cated languages. All results derived here could in fact have been obtained

in a more abstract setting. We will outline briefly how this can be done.

Let P~og be the programming language under consideration, and suppose
CX) •

we want to specify a function Comp: Pnog ➔ r + 6, using a set of Cook

equations. Here 6 can be considered as a set of trace elements which are

descriptions of machine states in some general sense. Furthermore r is meant

to be a set of machine configurations which contains enough information to

start a computation. r can contain the initial state, but possibly also

other things like the currently valid procedure declarations E. We can have

r = 6 but this need not necessarily be the case.

Let Pnog partitioned ink mutually disjoint subclasses Pnog 1, ••• ,Pnogk.

T Then the Cook equations will in general have the following structure

for R E Pf!..og 1

The expressions Comp.Ry will either have the form <o> where o depends only
i

on Randy, or it has the form <o>ACMP[R,y] with again o dependent only on

Randy, and where CMP[R,y] is defined by the following parametrized

BNF rules:

CMP[R,y] : := CompR'y' I p ➔ CMP[R' ,y'], CMP[R0 ,y"J

CompR'y'AC:MP[R",K(Comp R'y')],

30

where p,y',y",R' and R" are expressions dependent on Randy only.

Notice that according to this definition all right hand sides in the

Cook equations begin with a constant one element row <o>, which ensures

the uniformity property discussed in chapter 7.

Now all techniques presented in this paper can be applied to equations

which are built up as above. Furthermore, a wide variety of programming

languages andl concepts can be described by such equation. We give a few

examples.

I. The language treated in this paper has ti= r = I:, and the equation CE

are of the above form, as can easily be seen.

2. Cook has in his paper r = SxDxP, where D contains the functions from

variables to registers (adresses), S contains the states: functions from

registers to values and P contains the functions from procedure variables

to pairs consisting of a procedure body and a list of formal parameters.

He furthermore uses 6 = S. In this set-up declarations can be handled as

follows

Comp(begin new x; D; S end) <s, o ,rr> =
I\ •) I <s> Comp(beg1.n D; S end < s ,o, TT>,

where o'(y) = o(y) if y # x, and= Xic+J if Y=X,

where~ is the highest indexed register used in o.

In the above clause D stands for the language construct which consists of

a row of declarations separated by semicolons.

3. The while statement 1.n Cook's paper:

Comp(while B do S) <s, o ,TT>=

BB<s,o> ➔ Comp(S)<s,o,TT>/\Comr (while b do S)<K(Comp(S)<s,o,TT>),o,TT>,

<s>

Notice that for this clause the uniformity property does not hold: the

right hand side of this rule does not begin with a one element list for

all cases. This can be remedied easily though.

4. Backtracking can be handled as follows. Suppose the language contains

statements of the form try s1or s2 , establishing a choice point, and an

atomic statement fail which causes control to return to the latest en

countered choice point and to proceed from there with evaluation of the

other alternative (if this has not yet been used of course), while

31

returning the state to the situation it was in before evaluation of the

first alternative started.

The corresponding Cook equation could then be

Comp(try s1 or s2)0 = <cr>"[K(CompS 1cr) = FAIL -+

Comps 1aJ

Comp(fai!__)cr == <FAIL>

(Notice that his approach does not work as it stands now, if we allow a

try statement to be composed with another one like in constructs

try s1or s2 ;s3 because failure in s3 should cause backtracking too. This

can be handled though, see [5, chapter 6])

5. In [4] and [3, chapter 10] we gave a Cook semantics for the goto-statement.

Again, the equation used there fit in the general scheme given above.

Notice that if in a set of Cook equations the last clause in the de

finition of CMP[R,y] is not used (that is, if we do not use k, nor" in

a non continuous way), that then we can prove that the operator derived from

the Cook equations is continuous, not only in the topological sense

(chapter 7), but also in the cpo sense, because we are not bothered any more

by the objections from chapter 4.

The semantics for the goto-statement that we gave in [4] and [3] obeys

this restriction. This is often the case when Cook equation use continuations,

or syntactic continuations, which are a variant thereof. In the latter case

the function Comp does not have a continuation parameter which is a function,

but Comp uses a list of statements which are to be executed after the one

which is evaluated at the

Comp((S 1;s2);S3)cr

Comp(A;S)cr

moment. In [4] we gave

" = <a> Comp(S 1;(S2 ;s3))cr

" <AAa> CompS(AAcr)

the following equations

Observe that the list of statements is stored here implicitly namely

as part of the program (that part of the first parameter of Comp which lies

to the right of the semicolon). We could also have stored this list more

explicitly and keep it in y. r would then be equal to I: x {lists of state

ments} and the Cook equations would be like

" " Comp(S 1;s2)<n,L> = <a> CompS 1<cr,<S2> L>

" CompA<a,L> = L=<>-+ <AAa>, <AA.a> Comp(hdL) <0,t ,fL>

(compare the SECD-machien semantics [9]).

32

So in general the use of continuation semantics leads to Cook equations

which induce lub-continuous operators. This shows that, in some sense,

continuation semantics 1.s more elegant than direct semantics. The fact that

direct semantics leads to discontinuity has to do with the following. The

effect of executing SI;s2 can be caught only by applying the function

derived from s 2 to the result of evaluation of SI. Now in continuation

semantics we also associate a function with s 2 but this function is used

more subtly, we do not only·have the option to apply this function, but

we might als:o update it (as in the clause Comp (SI;s2)ecr =
I\ .

<a> CompSI{Comps2e}cr),or we can, as in the case of the goto-statement

disregard it: completely.

In direct semantics we are forced to apply the function Comp s 2 to

the result of evaluation of SI' that is to K(Comps 10). The discontinuity

which creeps: in here stems from the fact that CompsI0" has too much in

formation: as far as Comps2 is concerned only the last element of this

row matters.

The opposite can also occur. For instance, if we would try to model

the goto-statement with direct semantics, and we would insist that we have

a Cook equation like Comp(s 1;s2)a = <cr>ACompS 1crACompS2 (K(Comps 1cr)), then

Comps 1a does not contain enough information about the evaluation of s 1• We

must know whether evaluation of SI terminated because a goto-statement

leading out of s 1 has been executed, for in that case Comps2 should not be

applied to K(Comps 1a).

We. can obtain this effect by taking as trace elements in t:, and r not

cr's, but pairs from 1: x N instead. Now a result <cr,n> would mean that cr

is the result of evaluating a statement during which n goto-statements have

been process:ed. If we add to the statzments the "declarations" of the

labels occurring in it (E:::<L .<= S. >., where S. is that part of the 1. 1. 1. 1.
program that: textually follows L.) then we get programs <EJS> for which 1.
we would have Cook equations like the following.

Comp<Elgoto L.><a,n> = <a,n+l>AComp<EJS.><cr,n+l>
-- 1. i

Comp<Ejs 1;s2><cr,rt> =
K(Comp<EJS ><a,n>) = <a',n> ➔

1 A A
<cr,n> Comp<EISI><a,n> Comp<Ejs2><cr' ,n>,

I\ <cr,n> Comp<EIS 1><a,n>,

that 1.s s2 should only be evaluated if the number of goto's processed has

33

not increased due to evaluation of s1•

So we se,e here that we could make direct semantics work only by adding

extra information. All this can be contrasted with the mechanism used in

continuation semantics. In evaluating Comp(S 1;s2)ecr = <cr>A Comps 1 {Comps 2e}a,

the continuation Comps2e is applied only if s1 is an atomic statement, that

is if evaluation of s1 yields a simple result (a row of one element) and we

can be certain that there are no complicat'ing side effects. In all other

cases the continuation Comps2e is updated, and not applied. The fact that

continuation semantics leads to lub-continuous operators is due to this

more cautious: approach.

The theory as it stands now cannot be applied to nondeterministic

programs, andl as a consequence of this neither to parallel programs. This

is due to the fact that nondeterministic programs generate trees and not

rows. However, it seems that the techniques presented here can be extended

to trees as well. Part of this extension is reported on in [8].

The central theorem that we have proved four times in this paper

holds also if the Cook equations do not have expressions in their right

hand sides which start with a constant row. Notice however that we have

to be careful here. We could not for instance leave out the <cr> 1.n the

second clause on procedure calls in CE (chapter 2), because if we would

have done so,, then Comp<P <= PjP>cr would not yield an infinite row which it

should do because <P <= PjP> specifies a nonterminating computation.

However, the central theorem of this paper would be much harder to

prove, as has been remarked already in chapter 7. In that case'¥ does not

converge uniformly, and we had to work out in more detail how'¥ behaves in

order to prove the theorem. The same phenomenon can be observed in other

chapters. For instance, Definition 3.1, must now be by induction on

<n, length(R)> instead of n, and the same holds for induction arguments 1.n

some other proofs (for instance Lennna 6.5). Furthermore, Lemma 5.8 is no

longer true, as the counterexample R = A1;A2 and i = 0 shows. A weaker
*.L

version of the lennna holds though: VR,cr ,/: .L 3k:<P.Rcr EI: => <P.+kRcr #: <P.Ra.
l. l. l.

So it pays off to demand that the Cook equations are all of the standard

form described earlier in this chapter.

There are also other reasons to do so. The operational senantics

34

yields a row of states (or o's) which is intended as the trace left by

execution of the program under consideration. Now the execution of s1;s2
can be divided into three parts, namely first determining that the state

ment is a composition of two other statements, secondly evaluating the first

statement, and lastly evaluating .the second one. It is plausible to demand

that all three stages must have an effect on the trace, so in particular

this must hold for the first one. It is therefore reasonable that every

clause in the Cook equations adds an element to the trace, because every

clause of the equations corresponds to some action, or to a decomposition of

the statement being evaluated.

RELATED WORK AND ACKNOWLEDGEMENTS

In a letter to Cook [1], Krzysztof Apt suggested a method to compute

Comp which is related to the techniques of chapter 3: he proposes to define

by induction on k the row Comp'Rok which should consist of the first k ele

ments of CompRo. Having defined Comp' he then defines CompRo =Tiff

3k: CompRon = T for all n ~ k. He therefore defines Comp only for finite

rows.

The same holds for the results of Jeff Zucker in the appendix of [3].

He defines the function Comp as a fixed point of a set of equations derived

from CE. He does this by using the recursion theorem.

The technique in chapter 5 of adding the bottom element L to w~rk a

row as not yet completed has been used by Ralph Back in his analysis of

unbounded nondeterminism [2].

The results in chapter 7 where inspired by the reading of Nivat's and

others work on infinite computations, as reported on for instance in [11].
00

The topology on I was presented there, and also the proof of Lemma 7.1 can

be found there.

I acknowledge with pleasure the assistence of the following persons:

the members of the Dutch working group on semantics where an earlier version

of this work has been presented, and in particular Ruurd Kuiper with

whom I have had frequent and stimulating discussions on the material

presented here. I would like to thank Jaco de Bakker and Ruurd Kuiper who

read the manuscript and came to me with useful connnents and finally, I

would also like to thank Nizethe Kennnink and Susan Carolan for doing such

a good typing job on a rather disjointed manuscript.

35

REFERENCES

[1 J APT, K. R. , personal communication

[2] BACK, R.J., Semantics of unbounded nondeterminism, in: Proc. 7th coll.

automata, languages and prograrmning (J.W. de Bakker and J. van

Leeuven, eds.), pp.51-63, Lecture Notes in Computer Science 85,

Springer (1980).

[3] BAKKER, J.W. DE, Mathematical theory of program correctness, Prentice

Hall Int. (1980).

[4] BRUIN, A. DE, Goto statements: semantics and deduction systems, Report

IW 74/79, Mathematisch Centrum (1979).

[5] BRUIN, A. DE, Operational and denotational semantics describing the

matching process in SNOBOL4, Report IW 151/80, Mathematisch

Ce:ntrum (1980).

[6] COOK, S.A., Soundness and completeness of an a,xiom system for program

ve:r>ification, SIAMJ. on Computing, Vol. 7, Nr. I, pp 70-90

(1978).

[7] HOARE, C.A.R. and LAUER, P.E., Consistent and complementary formal

theories of the semantics of programming languages, Acta

Informatica, Vol. 3, pp. 135-153 (1974).

[8] KUIPER, R., An operational semantics for nondeterminism equivalent to

the mathematical one, Mathematical Centre Report, to appear.

[9] LANDIN, P.J., 'l)he mechanical evaluation of expressions, Computer J.,

Vol. 6, nr.4, pp. 308-320 (1964).

[JO] LAUER, P.E., Consistent formal theories of the semantics of programming

languages, IBM Laboratory Vienna, Techn. Report TR 25-121 (1971).

[11] NIVAT, M., Infinite words, infinite trees, infinite computations, in:

Foundations of computer science III, part 2: languages, logic,

semantics (J.W. de Bakker and J. van Leeuwen, eds.), pp.J-52,

Mathematical Centre Tracts 109.

[12] STOY, J.E., Denotational semantics - the Scott-Strachey approach to

programming langua.ue theory, M. I. T. Press, Cambridge, Mass. (I 977).

