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by 
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ABSTRACT 

We prove two theorems about the completeness of Hoare's logic for 

the partial correctness of while programs over an axiomatic specification. 

The first result is a completion theorem: any specification (E,E) can be 

refined to a specification 0:0 ,E0), conservative over (E ,E), whose Hoare' s 

logic is complete. The second result is a normal form theorem: any com­

plete specification (E,E) possessing some complete logic for partial cor­

rectness can be refined to an effective specification (E0 ,E0), conser­

vative over (E,E), which generates all true partial correctness formulae 

with Hoare's standard rules. 
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INTRODUCTION 

With the term Hoare's logic we mean the formal system for the 

manupulation of statements about the partial correctness of while-programs 

first described in HOARE [13] and studied in COOK [IO]. It is a two tiered 

axiomatic system with axioms and proof rules for asserted programs linked 

bu the Rule of Consequence to a conventional axiomatic theory which· gene­

rates first-order essertions about the class of data structures on which 

the programs compute. In this note we will prove a theorem about the com­

pleteness of the Hoare's logic built from any axiomatic specification, and 

another theorem which suggests that Hoare's rules provide a system which 

is generic among all possible logics for partial correctness. 

Let (E,E) be some axiomatic specification where Eis a finite signature 

and Ea set of axioms written in L(E), the first-order language over E. Let 

HL(E,E) be the set of L(E)-asserted programs provable in Hoare's logic for 

(E,E). Let PC(E,E) be the set of all L(E)-asserted programs true in all 

models of (E,E). The soundness of a Hoare's logic is simply the inclusion 

HL(E,E) c PC(E,E). Let us say that the Hoare's logic is logically complete 

if HL(E,E) = PC(E,E). This notion of completeness is the natural proof­

theoretical choice (one thinks of the Completeness Theorem for first-order 

logic)and is a companion to Cook's semantical notion of completeness in 

· [ IO J which is based upon validity in a particular model of the specifying 

theory. There is no entirely general completeness theorem for Hoare's 

logic. To take arithmetic, for example, only the Hoare logic made from com­

plete number number theory is logically complete [7]. However, we prove 

the following "completion theorem" in Section 3. (We assume throughout this 

paper that (r,E) is a specification having no finite models.) 

THEOREM. Any axiomatic specification (E,E) can be refined to a specification 

(EO,EO) which proves precisely the same L(E) assertions and yet possesses 

a logically complete Hoare logic HL(E 0 ,E0). 

A specifying theory (E,E) is complete if any L(E) assertion can be 

decided from the axioms; given any sentence p E L(E)either E !- p or E !- 7p. 

Our other result is this "normal form theorem" of Section 4. 
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THEOREM Any complete specification (E,E) possessing some complete logic 

for partial correctness can be refined to an effective specification 

(E0 ,E0) which proves precisely the same L(E)assertions and yet. 

PC(E,E) C HL(Eo,Eo). 

This note is a companion to our paper [7] which is part of a series 

about Hoare's logic and its proof theory [5,6,7,9]; see also [3,4]. 

Obviously we are assuming readers to be familiar with the papers HOARE 

[13] and COOK [10]; some other material we require will be carefully 

documented in preliminary Sections I and 2. The invaluable survey APT[l] 

is also recommended. 

1. ASSERTIONS,SPECIFICATIONS AND PROGRAMS. 

SYNTAX. Let Ebe a finite signature - all signatures in this paper are 

finite. Let L(E) be the first-order logical language with equality based 

on E. Let Ebe a set of (the universal closures of) assertions of L(E); 

the pair (E,E) is a theory or, as we prefer in the present context, a 

specification. The set of all theorems in L(E) provable from Eis denoted 

Thm(E,E); we often write E ~ p for p € Thm(E,E) when p E L(E) is understood. 

A specification (E,E) is complete if for any sentence p E L(E)either 

Erp or Er 7p •. 

A specification (E',E') is a refinement of specification (E,E) if 

E c I' and Thm(I,E) c Thm(E',E'). Two specifications are logically equiva­

lent if each refines the other. 

The specification (I',E') is a conservative refinement of (E,E) if 

(I',E') is a refinement of (E,E) in which for any p € L(E) 

E' r p implies Erp 

The set of all while-programs based on I is defined in the usual way 

using the syntax of L(I) and is denoted WP(E). By a specified or asserted 

program we mean a triple of the form {p}S{q}, where S € WP(E)and p,q, EL(E). 

SEMANTICS. The semantics of L(E)is the satisfaction semantics of model 

theory. The validity of assertion p € L(I)for structure A we write A~ p. 

The class of all models of a specification(I,E) is denoted Mod(E,E) or 
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simply Mod(E)when r is clearly understood in the context. For p € L(r), we 

write Mod(E) t= p to mean for every A€ Mod(E),A F p. As far as any proof 

therory of a data type specification is concerned, the semantics of a 

specification (r,E) is Mod(r,E): 

I.I COMPLETENESS THEOREM. Let (r,E) be a specification. For P € L(r) 

E I- p if, and only if, Mod(E) F p. 

For the semantics of WP(r)as determined by a structure A we leave the 

reader free to choose any sensible account of while-program computations 

which applies to an arbitrary structure. COOK [IO]; the graph-theoretic 

semantics in GREIBACH [12]; the denotational semantics described in 

DE BAKKER [2]. 

To the asserted programs we assign partial correctness semantics: the 

asserted program {p}S{q}is valid on a structure A if for each initial state 

a€ States(A),A F p(a) implies either S(a)terminates and AF q(S(a))or S(a) 

diverges; in symbols, AF {p}S{q}. And the asserted program {p}S{q}is valid 

for a specification E if it is valid on every model of E; in symbols, 

Mod(E) F {p}S{q}. 

The partial correctness theory of a structure A is the set 

PC(A) = {{p}S{q}: AF {p}S{q}} 

and the partial correctness theory of a specification(r,E) is the set 

PC(r,E) = {{p}S{q}; Mod(r,E) F {p}S{q}}. 

The strongest postcondition of S € WP(r)and p € L(r)on structure A is 

the set 

SPA(p,S) = {b € States A; 

3a € States(A)[S(a) terminates in final state b 

and AF p(a)J} 

1.2. LEMMA. AF {p}S{q} if,and only if, SPA(p,S) c {b € States(A): AF q(b)}. 

Let A be a structure of signature r. We say L(r)is expressive for 

WP(r)over A if for each S € WP(r)and p € L(r)the strongest postcondition 

SPA(p,S) is definable by an assertion of L(r). 
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PEANO ARITHMETIC AND INDUCTIVE REFINEMENTS. Let N be the standard model of 

arithmetic with primitive operations the successor function x+I, addition 

x+y, multiplication x.y; and with Oas distinguished constant. We shall use 

these notations for the functions and the functions symbols of its signa­

ture IN. 

Peano arithmetic PA is built up as follows: 

Operator axioms: I. 0 f x + I 

2. X + I = y + I ➔ X = y 

3. x+O = X 

4. x + (y+I) = (x+y) + I 

5. x.O = 0 

6. x. (y+ I) = X.y + X 

Induction scheme: for each assertion p E L(IN)' containing free variable x, 

the following is an axiom 

p(O) A Vx[p(x) + p(x+I)] + Vx.p(x) 

That this simple axiomatic description of arithmetic captures all but the 

more esoteric properties of N makes it a natural object of study in the 

logic of programs[9]. But adding PA to a specification turns out to be a 

rather important.idea, too (as confirmed by Basic Lemma 2.5). 

A specification (I,E) is an inductive refinement of Peano a:r>ithmetic 

if it is a refinement of PA and it allows induction in the following form: 

for any ~(x) E L(I)with free variable x 

A model A of (I,E) is called standard if the IN-reduct of A, AjIN' is 

isomorphic to N. 

For any specification (I,E) it is obviously of some interest to look 

at the minimal inductive refinement of Peano and (I,E) made by adjoining 

IN to E and PA to E and closing with the induction scheme over I u IN,if 

necessary. Let this specification be called the Peano companion of (I,E) 

and denote it PA(I,E). 



I .3. LEMMA Let o:,E) be a specification. If A is a EuEN-structure whose 

E-reduct satisfies the axioms E and whose EN-reduct is isomorphic to N 

then A is a standard model of PA(E,E) 

2. HOARE' S LOGIC 
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Hoare's logic for while-programs over specification (E,E) with first­

order assertion language L(E)has the usual axioms and proof rules and there 

can be found in HOARE [13], COOK [JO], DE BAKKER [2], or APT [I]. But nee­

ding an explicit citation is the rule of inference called the Consequence 

Rule: for SE WP(E),p,q,p 1,q 1 E L(E) 

{p}S{q} 

and, in connection with it, the oracle of axioms: Each member of Thm(E,E) 

is an axiom .. The set of all asserted programs provable in Hoare's logic 

for (E,E) we denote HL(E,E) and we write HL(E,E) r {p}S{q}in place of 

{p}S{q} E HL(E,E). The following fact is obvious. 

2.1. REFINEMENT LEMMA.Let (E,E) and (E',E') be specifications. If (E',E') 

is a refinement of (E,E) then HL(E,E) c HL(E',E'). Thus., if (E,E)and 

U'' ,E') rrY>o ,::;,':ulvalent specifications then HL(E,E) = HL(E' ,E'). 

The Corollary to Theorem I in COOK [JO] can be stated as follows. 

2.2 SOUNDNESS THEOREM. For any specification (E,E), HL(E,E) c PC(E,E). 

The Hoare's logic for specification (E,E)is said to be logically complete 

if HL(E,E) == PC(E,E). 

The cornpleteness result devised in COOK [10] can be stated as follows. 

2.3 COOK'S COMPLETENESS THEOREM; Let (E,E)be a complete specification with 

model A. If L(E)is expressive for WP(E)over A then HL(E,E) = PC(A). 

In contrast to our notion of logical completeness which is a 
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specification invariant and which derives from the Completeness Theorem 1.1, 

the notion of adequacy involved in Theorem 2.3 depends upon specification 

and a particular model. Actually, the strength of the completeness assump­

tion on the specification is enough to fuse the independent approaches 

[7]: 

2. 4 THEOREM Let (2: ,E)be a complete specification. If (I. ,E)possesses a model 

A for which L(I.)is expressive for WP(I.)then HL(I.,E) = PC(I.,E) - the Hoare's 

logic of (I.,E) is logically complete. 

Complete specifications do not always provide logically complete Hoare 

logics; Presburger arithmetic illustrates this [10,5]. On the other hand 

incomplete specifications can provide logically complete Hoare logics; this 

is a valuable corollary of our Theorem 3. 1 here. 

Although expressiveness is not a proof theoretical notion (it is not 

preserved by elementary equivalence [7]) its role in structural completeness 

is echoed in the present concern with logical completeness. The following 

theorem about Peano refinements is extracted from our [9]. 

2.5 BASIC LEMMA.Let (I.,E) be an inductive refinement of Peano arithmetic. 

Given any assertion p E L(E)and program SE WP(I.)one can effectively 

calculate an assertion SP(p,S) E L(I.)such that 

1. HL(I.,E) r {p}S{SP(p,S)} 

2. HL(I.,E) r {p}S{q} if, and only if, Er SP(p,S) + q 

3. Over each standard model A of (I.,E) the formula SP(p,S) defines the 

strongest postcondition SPA(p,S). 

It should be noted that Basic Lemma 2.5 provides an entirely proof 

theoretical representation of the strongest postcondition calculus: 

statements (1) and (2) are responsible for the significance of the formula; 

statement (3) is a semantic accessory so to say. 

We conclude our preliminaries with some remarks on logics for partial 

correctness:. 

Quite obviously, for any specification (I.,E), HL(I.,E) is recursively 

enumerable in Thm(I.,E). Taking the weakest criterion one can sensibly use, 

we define any set lpc(I.,E) of asserted programs which is r.e. in Thm(I.,E) 
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to be a logic of partial correctness for the specification (L,E). 

A logic of partial correctness lpc(L,E) is sound if lpc(L,E) c PC(L,E) 

and is logically complete if lpc(L,E) = PC(L,E). 

·Following [5], it is easy·to prove that PC(L,E) is co-r.e in Thm(L,E); 

we have the following theorem in consequence. 

2.6. LEMMA. There exists a sound and logically complete logic of partial 

correctness lpc(L,E) for a specification (L,E) if, and only if, PC(L,E)is 

recursive in Thm(L,E). 

3. A COMPLETION THEOREM 

In this section we prove the following completion theorem: 

3. 1 THEOREM Let (L,E) be a specification. Then there is a conservative 

refinement (LO;EO) of (L,E) for which HL(LO,EO) is logically complete. 

PROOF. Let LO= Lu LN. For each countable ordinal a we inductively define 

a set Ta of assertions from L(LO) using Basic LeIIlllla 2.5: for the basis, 

TO= PA(L,E) 

for each countable ordinal a, 

Ta+l = Ta u {SP(p,S)-+ q: p,q E L(LO),S E WP(L) 

and Mod(T) F {p}S{q}} 
a 

for each countable limit ordinal y, 

Clearly, the countability of L(LO) entails that for some countable ordinal 

a, T = T 1• Let a be the least such ordinal, the degree of (L,E), and 
y y+ 

set EO = T0 • 

3.2 LEMMA. HL(LO,EO) is logically complete. 
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PROOF.Suppose Mod(EO) I= {p}S{q}. Let y be the least ordinal index such 

that Mod(T) F {p}S{q}. Then, obviously, y ~ cr and, by construction, we 
y 

know that 

By Basic Lennna 2.5, 

Thus, by the Rule of Consequence, 

and we are done. D 

3.3 LEMMA.(r.O,EO) is conservative over (E,E) 

PROOF. Suppose for a contradiction that pis an assertion of L(E) such that 

EO r p but E J·f: p . 

By the Completeness Theorem I.I, there must exist a model A of signature E 

for Eu {7p}. By the Downward Lowenheim-Skolem Theorem, we may assume A to 

be countable and hence we may choose functions on A to interpret the new 

symbols of EN such that the augmented structure Bis a standard model of 

PA(Eo,Eo); in symbols, BILN ~ N. 

We shall prove that BF EO• Once this is done we may observe that 

B I= Ea u { 7 p} and so EO 1--f p, the required contradiction. 

We show that BF Ea by induction on the ordinals indexing the con­

struction of EO• The basis follows from Lennna 1.3. Assume Bf Ta and con­

sider Ta+l" Let SP(p,S) + q E Ta+l - Ta. Then Mod(Ta) F {p}S{q}and so 

BL {p}S{q}.By Basic Lemma 2.5, we know BF SP(p,S)+q. Therefore, Bf T r a+I. 
Lastly, if B F T13 for each S < y then B F U T8 and this is B f T . D 

S<y y 



3.4. COROLLARY.Incomplete specifications may have 'logically complete 

Hoare fogies. 
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An obvious, but important, question arising from this argument is the 

following. 

3.5 QUESTION Can the set of axioms E0 be proved, or chosen, to be a not 

too complicated set, for example an arithmetical set, or even a recursively 

enumerable set in certain circumstances? 

The degree 0 of the specification o:,E) is an unknown quantity. 

4. A NORMAL F'ORM THEOREM. 

In this section we prove the following normal form theorem for Hoare­

like logics. 

4.1. THEOREM.Let (E,E) be a specification which is complete. If the partial 

correctness theory PC(E,E) possesses a complete logic lpc(E,E) then there 

is a recursit,1e and conservative refinement (E 0 ,E0) of (E ,E) for which 

the standard Hoare logic HL(E0 ,E0) contains PC(E,E). 

PROOF.From the definition of a logic of partial correctness and LeIIlllla 2.5, 

we know that PC(E,E) is recursive in Thm(E,E). Formally, let 

{{p.}S.{q.}: 1 E w} be an enumeration of all asserted programs with 
1 1 1 

p.,q. E L(E) and S. E WP. Let{¢.: i E w} be an enumeration of all asser-
1 1 1 1 

tions of L(E)provable from E. The assumption that PC(E,E) is recursively 

enumerable in Thm (E,E) means that A= {i E w: {p.}S.{q.} E PC(E,E)} is 
1 1 1 

r.e. in B = {i E w: ¢. E Thm(E,E)} and we can claim 
1 

4. 2 LEMMA. There is a recursive function f: w-+ w such that f (B) = A. 

PROOF. Let for nEw Dn be the uniquely determined set {a 1, ... ,ak} such that 

n = zal + ••• + zak and a 1 < ••• < ak, if n > 0 and Dn = 0 if n = O. De­

noting with T the formula Vx(x=x) a formula F(n,m,l,i) is defined as follows: 

F(n,m,l,i) - M 
jED 

n 

¢ • /\ M 7¢ . /\ ( M T v 
J jED J l-times 

m 

M T) 
i-times 
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It is meant that from F(n,m,l,i) one can read off n,m,l and i immediately. 

Moreover, if Dn =Band Dm s B F(n,m,b,i) EB 

Because A is r.e. in B there exists a recursive function g such that 

-
i EA~ 3n,m,l(D c BAD c BA g(n,m,l,i) = O). n m-

The function f can now be given, after choosing k0 to be some fixed 

element of A. 

f(j) =if$, is of the form F(n,m,l,i) for some n,m,l,i E w,(necessarily 
J 

uniquely determined) and g(n,m,l,i) = 0 then i, otherwise k0 . 

It is not hard to verify that this f works. 

With the construction of Theorem 3.1 in mind, and the association of 

{pf(i)}Sf(i){qf(i)} to $i' we set E0 =Eu EN and define 

Obviously, (E0 ,E0) is an r.e. refinement of (E,E); we have to show that its 

Hoare's logic embraces PC(E,E) and that it is conservative. 

PROOF.Let {p.}S.{q.} E PC(E,E) and choose some i EB such that f(i) = j. 
J J J 

Because$, E Thm(E)we have 
1 

EO r p. -+ $, A p. 
J 1 J 

and by definition 

EO r SP ( $ . A p . , S . ) -+ q . 
1 J J J 

By the Basic Lemma 2.5 about inductive refinements, 

HL(E0 ,E0) r {p.}S.{q.}. 
J J J □ 



To show that (r0 ,E0) is a conservative refinement of (E,E) we need 

only show that E0 is refined by the theory T1, the second stage in the 

construction of T in the proof of Theorem 3.1. Remember that 
a 

T1 = PA(E,E) u {SP(p,S) ➔ q: Mod(PA(E,E)) j= {p}S{q}} 

Clearly, it is sufficient to check that for 1 e w 

in which case Eo C Tl. 

Here we need the completeness assumption on E which implies either 

E ~ <p. or E r- 7 cjl •• In the first case, cp. e Thm(E), we get f(i) e A and 
1 l 1 
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{pf (i)} Sf (i) {qf (i)} e PC(E ,E) by LeIIlllla 4. 2. Thus, {cpi A pf (i) } sf (i) {qf (i)} 

e PC(E,E) c PC(PA(E,E)). 

In the second case, 7 cpi e Thm(E), we get {cpi A pf(i)}Sf(i){qf(i)} 

e PC(PA(E,E)) trivially. □ 

Certainly, there are structures A possessing a complete logic for 

partial correctness and for which the standard Hoare logic is not complete 

(see [4]. But what comes to mind, in addition to applications, is the 

following. 

4.4 QUESTION .. Is the statement of Theorem 4.1 true without the hypothesis 

of completeness on the specification? 

An affirmative answer, which we think obtains, would be a strong statement 

about the genericity of Hoare's logic. 
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