
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

p. M. B. V IT ANY I

IW 167/81

EFFICIENT IMPLEMENTATIONS OF MULTICOUNTER MACHINES
ON OBLIVIOUS TURING MACHINES, ACYCLIC LOGIC NETWORKS,
AND VLSI

Preprint

~
MC

MEI

kruislaan 413 1098 SJ amsterdam

1980 Mathematics subject classification: 68C40, 68C25, 68CIO
ACM Computing Reviews-catagories: 5.23, 5.25, 5.26.

Efficient implementations of multicounter machines on oblivious Turing

machines, acyclic logic networks, and VLSI.*)

by

Paul M.B. Vitanyi

ABSTRACT

A I-tape oblivious Turing machine can simulate a k-counter machine on

line in linear time and logarithmic space. This leads to a linear cost

combinational logic network implementing n steps of a k-counter machine. In

the VLSI model of computation we can simulate n steps of a k-counter machine

in real-time on area O(k log n). A k-counter machine can be simulated in

real-time by a (nonoblivious) machine without head reversals. Some results

are·stated about oblivious k-counter languages.

KEY WORDS & PHRASES: Counter maehines, eorribin.a.tional logia networks,

oblivious Turing maehines, linear time simulation,

eomplexity measures, VLSI

*) This report will be submitted for publication elsewhere.

1. INTRODUCTION

In many computations it is necessary to maintain several counters such

that, at all times, an instant signal indicates which subset of the counts

is zero. Keeping k counts in tally notation, where a count is incremented

(decremented) by at most 1 in each step, is formalized in the notion of a

k-counter machine. k-counter machines have been studied extensively, because

of their numerous connections with both theoretical issues and practical

applications, in the computer science literature of the last decade. The

purpose of this paper is to investigate the dependence of the required time

and storage, to maintain counts, on storage structure and organization, and

the cost required by a combinational network. To do this, we use a notion

of auxiliary interest: that of an oblivious Turing machine. An oblivious

Turing machine is one whose head movements are fixed functions of time,

independent of the inputs to the machine. The main result obtained here

shows that an oblivious Turing machine with only one storage tape can

simulate a k-counter machine on-line in linear time and in storage logarith

mic in the maximal possible count. These bounds are optimal, up to order

of magnitude, also for on-line simulation by nonoblivious machines.

It is obvious that, for any timing function T(n), given a k-counter

machine, or a k-pushdown store machine, which operate in time T(n), we can

find a time equivaient k-tape Turing machine. However, such a Turing machine

will, apart from using k tapes, also use O(T(n)) storage. In [7] it was shown

that for the pushdown store, of which the contents can not be appreciably

compacted, the best we can do for on-line simulation by an oblivious Turing

machine is 2 storage tapes, 0(T(n) log T(n)) time and 0(T(n)) storage.

For the counter machine, [2] demonstrated a linear time-logarithmic space

simulation by a I-tape Turing machine. [9, Corollary 2] showed how to sim

ulate on-line a T(n) time-, S(n) storage-bounded multitape Turing machine

by an oblivious 2-tape Turing machine in time O(T(n) log S(n)) and storage

O(S(n)). Combining the compacting of counts in [2] and the method of [9]

we achieve the best previously known on-line simulation of a k-counter

machine by an oblivious Turing machine: 2 tapes, O(T(n) log log T(n)) running

time and O(log T(n)) storage. It is somewhat surprising to see that we can

restrict a Turing machine for on-line simulation of a k-counter machine to

2

I storage tape, logarithmic storage, oblivious head movements and still

retain a linear running time.

In section 2 we give some definitions and preliminaries, and, by way

of illustration, discuss the notion of oblivious counter machines •. In

section 3 we derive the main result and connect this with a linear cost

(acyclic) combinational logic network for simulating a k-counter machine.

Subsequently we show that it is straightforward to simulate a k-counter

machine in real-time by a logarithmic cost cyclic logic network or by a

VLSI in logarithmic area cost. In section 4 we indicate some open problems,

like real-time simulation of counter machine (problems) by (oblivious)

Turing machines, and pinpoint the shift in emphasis, in the problem to be

solved, occasioned by the transition to oblivious machines: whereas in the

simulation by nonoblivious machines the main difficulty lies in the simula

tion of more counters by less tapes, in the simulation by oblivious machines

the difficulty lies only in the obliviousness of the simulating device. We

also point out that the implementations for counter machines as described are

optimal, up to a constant multiplicative factor, for the claimed simultaneous

resqurce bounds.

2. DEFINITIONS AND PRELIMINARIES

A one--way on-line k-counter machine (k-CM) consists of a finite-state

control, k counters each capable of containing any integer, and an input

terminal. The states of the finite control are partitioned into polling and

autonomous states. At the start of the computation the CM is in a designated

initial state and all counters are set to zero. A step in a CM computation is

uniquely determined by the state of the control unit, by the symbol scanned

at the input terminal if the state is a polling state, and by the set of

counters which contain zero. The action at that step consists of independent

ly altering the contents of each counter by adding O, +I or -1, and changing

the state of the control unit. If the new state entered by the control unit

is a polling state, the machine also outputs a O or a I, as part of the

step leading up to the new state, indicating "rejection of the sequence of

input symbols so far" or "acceptance of the sequence of input symbols so far".

Let Ebe the set of input symbols. The storage required by a CM in processing

w Er* is the sum of the maximum absolute values of the contents of each

counter in the course of the t steps of the computation. The time used in

processing w Er* is the number t of steps used. Let T and S be monotone

increasing functions. A counter machine operates in time T [in storage SJ

3

if, for all n ~ O, when CM is started on an input of length n, the CM polls

the input terminal for the (n+I)-th symbol, at a step t ~ T(n) and requires

space not exceeding S(n) in its computation up to step t. A language Lover

r is recognized by a counter machine if CM accepts every word in Lover I

and rejects every word in r*-L. Lis recognizable in time T(n) [in storage

S(n)J if there is a CM recognizing L which operates in time T [in storage SJ.

We single out the cases c'n ~ T(n) ~ en, for some constants c',c, as linear

time, and T(n) = n as real-time (i.e.,every reachable state is a polling

state). The significance of these time restrictions (especially the latter)

stems from its importance in syntactic analysis and real-time control. More

formal definitions can be found in [2J, together with many results on

k-CMs. The 1nodel is, for the time-restricted case, not sensitive to mild

changes in convention, except that going from one-way to two-way makes

a difference but for the real-time case. Although CMs might seem pretty

restricted machines, which is indeed the case for 1-CMs, in [4J it was

shown that already 2-CMs (without time/ space restrictions) can simulate

a universal Turing machine!

An on-line k-tape TUPing machine (k-TM) is, and works, just like a

k-CM except that the storage structure does not consist of k counters but

of k tapes, each with one read-write two-way head. For formal definitions

and results on on-line k-tape Turing machines, see [8,IOJ. Pertinent to

the discussion here is that k-tape Turing machines with time bounds are

insensitive to mild changes in definition; in particular, if T(n) = O(n)

and T(i) - T(i-1) ~ c, for some constant c and all i, for some Turing

machine M, then we can find a Turing machine M' which recognizes the same

set and operates in real-time.Mis said to operate with constant delay,

and the result follows from the constant speed-up as in [3J.

We shall say that two machines simulate each other, if, when they

are started and subsequently receive the same sequence of input symbols

from their input terminals, they produce the same sequence of symbols as

output. Clearly, simulation is an equivalence relation. We shall say that

the simulation is on-line, if the polling of the input terminal and the

4

outputting of symbols occurs in the same order (but not necessarily at the

same steps) for both machines. This is also an equivalence relation. We

say that one machine that simulates another does so in time T(n) if for

every n, the one machine outputs· at least as many output symbols in the

first T(n) steps, as the other machine outputs during its first n steps.

Finally, we explain the notion of an oblivious machine. A Turing

machine is oblivious, if the polling for input, writing of output and the

movements of the storage heads are fixed functions at time, independent of

the inputs to the machine. (Cf. [5,6,9,11,12]). One may think of the head

movements, the polling for input and the writing of output, as being

governed by a second autonomous machine which has no input terminal. The

same definition can obviously be applied to machines like RAMs, requiring

that the sequence of instructions followed and the sequence of storage

locations accessed each be independent of the input. Many problems seem

inherently oblivious; the usual algorithms for computing+,-,*, and / or

a table look-up can easily be programmed obliviously. Not so a problem

like binary search. One reason to study oblivious Turing machine computations

is t~at they are easily translated in combinational logic networks. Another

is that, when we restrict ourselves to this class of computations, we are

often able to derive lower bounds on time complexity, or time-space trade

offs, of computations. See also [7,9].

Note that the notion of oblivious counter machines does not make too

much sense, since if the motion of the counters is governed by the set of

zero counts only, in effect such a machine can only accept the intersection

of a regular set (due to its finite control) and a counter language over a

one-letter alphabet (the length set checked by the counters). Hence we have:

THEOREM 1. The languages recognized by oblivious 1-CM's are precisely the
regular languages.

PROOF. The one counter either increases indefinitely or cycles through a

count which is bounded by a constant. D

However,

THEOREM 2. (i) The set of languages recognized by an oblivious real-time

2-CM contains strictly content sensitive languages. (ii) The set of

languages accepted by an oblivious 2-CM contains nonPecursive languages.

5

PROOF. In [4] it was shown that 2-C-Ms can simulate universal Turing machines.

Hence (ii) follows by letting a 2-CM accept a nonrecursive unary language.

(i) follows from (ii) by taking the same machine, change all states to poll

ing states, and letting it expect a 1 when it polls as before, and a O when

it polls in a state which used to be autonomous. Since the set accepted

yields a nonrecursive language under erasing of O's, the set must be non

contex.t free. It is content sensitive since it is accepted in real-time. D

In general, for each language L accepted by an oblivious k-CM with time

bound T(n),

-1
L = h (L') n R

where Risa regular set, L' is a one-letter language accepted by an oblivious

k-CM, and his a homomorphism which maps a+ 1 for all letters a in the

alphabet of L.

After this digression in oblivious counter machines, we turn to some

salient features o:f; the problem of simulating k-GM's on-line by efficient

oblivious Turing machines. Suppose we can simulate some abstract storage

device Son-line by an efficient oblivious Turing machine M. Then we can

also simulate a collection of k such devices s1,s2, ••• ,Sk, interacting

through a common finite control, by dividing all tapes of Minto k tracks,

each of which is a duplicate of the corresponding former tape. Now the

same head movements do the same job on k collections of tracks as formerly

on the tapes of M, so the time and storage complexity of the extended Mare

the same as those of the original. While the probl~m of, say, simulating a

k-counter machine in real-time by a k'-tape Turing machine, k' < k, stems

precisely from the fact that k' is less thank, the problem of simulating a

k-counter machine by a k'-tape oblivious Turing machine in real-time is the

same problem as that of simulating a I-counter machine in real-time by a

k'-tape oblivious Turing machine. Hence, for a proof of feasibility it

6

suffices to look for the simulation of 1 counter only; for a proof of in

feasibility we have the advantage of knowing that the head movements are

fixed, and are the same for all input streams. Besides, we can assume that

we needed to simulate an arbitrary, albeit fixed, number of counters.

3. ON-LINE SIMULATION OF k-COUNTER MACHINES BY OBLIVIOUS TURING MACHINES,

IMPLEMENTATIONS ON ACYCLIC LOGIC NETWORKS, AND SIMULATION BY VLSI CIRCUITS

In [2] the somewhat surprising result was shown, that a 1-TM can simulate

a k-CM on-line in linear time. This simulation uses O(log n) storage, for n

steps by the k-CM, which is clearly optimal. It is a priori by no means

obvious that an oblivious multi tape TM can simulate but one counter in

linear time. We shall show that the result of [2] can be extended to hold

for oblivious Turing machines.

In our investigation we noted that head-reversals are not necessary

to maintain counters. We di4 not succeed in getting the idea below to work

in an oblivious environment, and include it here as a curiosity, possibly

folklore, item.

Suppose we want to simulate a k-CM C with counts x 1,x2, ••• ,~ represent

ed by the variables n 1 through °k· The number of simulated steps of C is

contained in the variable n. For i = 1,2, ••• ,k if count x. is incremented by
1

0 E {-1,0,+l} then·

n. + n.+2
1 1

n. + n.+J
1 1

n. + n.
1 1

Let, for i = 1,2, ••• ,k,

of C.

for 0 = +]

for 0 = 0

for 0 = -]

x. denote the current count on the i-th counter
1

LEMMA 3. For i = 1,2, ••• ,k, x. = 0 iff n. = n.
1 1

PROOF. Let n be the number of steps performed by C, p. be the number of
1

+J's, r. be the number of O's, and q. be the number of -I's, added to the
1 1

i-th counter, 1 ~ i ~ k, during these n steps. Hence p. + q. + r. = n for
1 1 1

all i, '.5: i '.5: k. By definition we haven.
1

Then it follows that p. = q. and therefore
1 1

= 2p. + r •• Suppose n. = n.
1 1 1

pi - q1 =xi= O. Conversely,

let x. = p. - q. = 0. Then p. = q.
1 1 1 1 1

and n. = p. + q. + r. = n. D
1 1 1 1

Hence we obtain:

COROLLARY. A k-CM C can be simulated in real-time by a (k+2)-head one--1.J)ay

nom;riting finite automaton F of which the heads can detect coincidence.

Hence, 4 heads suffice to accept all recursively enumerable sets.

(Hint: I head reads the input from left to right, I head keeps the count

of n by its distance to the origin, and the remaining k heads so keep

the counts nI through ~. It was shown in [4] that 2-.CMs can accept all

recursively enumerable sets.)

7

After this digression we now turn to an extension of the method used in

[2], and show how it can be made to work in an oblivious environment, in

order to obtain:

THEOREM 4. If C is a k-counter machine, then we can find an oblivious I-tape

Turing machine M that simulates con-line in time O(n) and storage O(log n)

for n steps by c.

Following [7J; we note that in the above theorem "mach,ine" can be

replaced by "transducer" and the proof below will still hold.

PROOF. It shall follow from the method used, and is also more generally the

case for simulation by oblivious Turing machines (cf. last paragraph of

section 2 and section 4), that if the Theorem holds for I-CM's then it

also holds for k-CM's, k ~I.Let C be a I-CM. The simulating oblivious

I-TM M will have one storage tape divided into 3 channels, called the

n-channel, they-channel and the z-channel. If, in the current step of C

its count c is modified to c+o, o E {-I,O,+I}, then:

o = + I => n+n+I;

o = 0 => n + n+I;

o = -I => n + n+I;

y + y+I;

y+y

y + y

z + z,

z + z,

z + z+I,

8

where n is the count contained on then-channel, y is the count contained on

they-channel and z is the count contained on the z-channel. Hence, always

(1) c = y-z, and (2) y+z ~ n. The count non then-channel is recorded in

the usual binary notation, with the low order digit on the start square and

the high order digit on the right, see Figure 1. At the start of the cycle

simulating the i-th step of C, i = p.2j and pis odd, squares O through j-1

on then-channel contain l's and square j contains a O. So in this cycle,

M's head, starting from square 0, travels right to square j and deposits

a 1 there. It turns all l's on squares O through j-1 into O's during this

pass. The head then returns to square O. This maintenance of the count n

completely fixes M's head movements, so Mis oblivious. The representation

of y and z is in a redundant binary notation. If y is denoted by y0y 1 •·· Y1,

y. in square j of they-channel, then y. E {0,1,2}, 0 ~ j ~ i, and
J • . J

y = r: 0 y.2J. Similarly for the count z. So the representation of y[z] over
J= J

{0,1,2} is not unique. Finally, the head covers 2 squares on the tape, and

shifts 1 square in 1 step of M, like a mask covering 2 tapesquares. So it

has a look-ahead of 1. See Figure 1.

1 1 1 I

0 0 0 0

1 2· - -
'--v--'

read-write head

1

1

-

- - - -
- - - -
- - - -

-
-
- C

(

I
I

} n-channel

} y-channel

} z-channel

Figure 1. The configuration on M's tape after it has simulated

31 steps of C, consisting of, consecutively, 16 "add I"'s,

11 "add O"'s, and 5 "add -I" 's. The head has returned

to the start position.

We now explain the operation of M. The intuitive idea behind a 2 in

square j of the y[z]-channel is an, as yet unprocessed, carry from the j-th

to (j+l)-th position of the binary representation of y[z]. During the left

to-right sweeps of its head, governed by the moves indicated for the updat

ing of n, M maintains invariants (1) and (2). During the corresponding right

to-left sweeps back to the start square, M maintains also invariant (3):

if y. [z.] > 0 is the contents of squares j on the y[z] channel then
J J

9

z. 1, z., z. 1 [y. 1,y., y. 1J are O or blank. Moreover, every square right
J- J J+ J- J J+

of a blank square, on that channel, contains blanks and no square containing

a O has a blank right neighbor in that channel. This latter condition gets

rid of leading O's.

The validity of the simulation is now ensured if we can show the

following assertions to hold at the end of M's cycle to simulate the i-th

step of C, i ~ I.

(a) For all i, i ~ I, M can always add I to either channel y or z in the

cycle simulating step i of C.

(b) M can maintain invariants (I), (2) and (3) to hold at the end of each

simulation cycle.

(c) The fact that (I), (2) and (3) hold at the end of the i-th simulation

cycle of M ensures that the count of C is O subsequent to C's i-th

step iff both they-channel and z-channel contain blanks on all squares

subsequent to the completion by M of simulating C's i-th step.

CLAlM I. Assertion (a) holds at the start of each simulation cycle.

PROOF OF CLAIM. In the process of simulating the i-th step of C, M takes

care of (a) during its left-to-right sweep, by propagating all unprocessed

carries on squares_O,I, ••• ,j on both they-channel and z-channel to the

right, leaving O's or I's on squares 0,1, ••• ,j and depositing a digit d,

0 ~ d ~ 2, on square j+l of the channel concerned, for i = p.2j and p
is odd. Assuming that M has adopted this strategy, we prove the claim by in-

duction on the number of steps of C, equivalently, number of simulation

cycles of M.

Clearly, the claim holds at the start of the first cycle. Suppose the

claim holds for simulation cycles 1,2, ••• ,i-I, then it also holds for the
i-th cycle, since:

Case I. i = 2j. At the start of this cycle the count on channel y[z] can

be at most 2j-l. At the end of the right sweep the head covers square j.

Since the count, on either channel, now has reached at most 2j, it suffices

to put a O or I in square j. The relevant carries can always be propagated,

since the maximum count on squares O through hon a channel is less than
h+2

2 because

10

Case 2. i = p.2j, p > 1 and p odd. The square on the channels scanned by

the left part of the head, in its rightmost position of this sweep, is

square j. The last time square j was scanned by the left part of the head was

2j cycles ago, and at that cycle i', i' = (p-1)2j, also square j+l was

scanned by the left part of the head, since i' = ((p-1)/2)2j+l. Hence, under

the assumption that the scheme of simulating step 1,2, ••• ,i-1 of C by M was

carried out correctly, square j+l contains no 2 at the start of cycle i,

since it was left with a blank, 0 or 1 in cycle i' and has not been visited

since. The maximum count left, at the end of the i'-th cycle, in squares

0 . f . h h 1 2j + l · j ,1, ••• ,J o eit er c anne, was -1. Since then, 2 cycles have passed,

and therefore the count to be represented, by squares 0,1, ••• ,j+J of either

channel, cannot exceed

which certainly can be taken care of by a 2 in square j+l (covered by the

right part of the head in cycle i) and l's in squares O through j-1. By

the same reasoning as in case 1 all necessary intermediate carries, left on

squares O through j, by cycles i'+l through i-1, can be propagated right

during the current ·left-to-right sweep, leaving squares O through j with

blanks, O's or l's, and square j+l with d E {blank, 0,1,2}, when the head

returns to the origin, for both they-channel and z-channel.

Hence a left-to-right sweep can always update they and z count

appropriately, under the assumed strategy of M, during its oblivious head

movements governed by the updating of then-count. DD

CLAIM 2. Assertion (b) holds at the start of each simulation cycle.

PROOF OF CLAIM. As we saw in the proof of claim 1, assertion (a) is implemen

ted during the left-to-right sweeps. During the right-to-left sweeps

assertion (b) is implemented.

Clearly, assertion (b) holds at the start of the 1-th cycle. During

its right-to-left sweeps, at each step M subtracts the 2-digit numbers

covered on they- and z-channel from each other, leaving the covered

positions on at least one channel containing only O's. M also changes

leading O's on either channel into blanks during its right-to-left sweeps.

Suppose the claim holds at the start of simulation cycles 1,2, ••• ,i. We

show that it then also holds at the start of simulation cycle i+l. It is

obvious that M's strategy outlined above maintains invariants (1) and (2).

It is left to show that it also maintains invariant (3).

Case 1. i = 2j. The count on they-channel [z-channel] can be at most2j.

Hence the head covers the most significant digits on either channel, while

on its right-to-left sweep it only encounters blanks, O's or I's. Moving

left, it subtracts the lesser number covered by the head from the greater

(or equal) number on the other channel, at each step, meanwhile leaving

blanks instead of leading O's on either channel. The following situations

can arise:

(i) a b C I- a 0 0
d e f M d 0 0
~

+
'--v--"

+

if be = ef;

(ii) a b C I- a b' c'
d e f M d 0 0

'--v--" '--v--"

+ +

if cb > fe, where c'b' = cb - fe;

(iii)

a b C I- a 0 0
d e f M d e' f'

'--v--" ---.,.....,
+ +

11

12

if cb < fe, where f'e' = fe - cb. For the sake of the picture we have

denoted both O's and blanks by 0. Since i = 2j, at the outset of the right

to-left sweep the head has blanks under its right window, since the maxi

mal position containing nonblank digits is square j. Hence there will be

no problem turning leading O's, created in the right-to-left cleaning, into

blanks during the travel to the low order square.

Suppose, condition (3) is not fulfilled after the right-to-left sweep.

Say, yh > 0 and not all of zh-l' zh, and zh+l are O or blank, h ~ 2.

Let zh+l > 0. Then, since

a b c

d e f
'---v--'

+

a 0 0
d e' f'

'---v--'

+

with f' = zh+l > O,according to (iii) must have been the move leaving the

(h+l)-th square, and for all values of a,d,e' the next move must be

a 0 0
d e' f'

'---v--'

this contradicts yh > O.

1-
M

a' 0 0
d' e" f'

'-v--'
+

Let~> O, or let zh-l > 0. This also leads to a contradiction with

yh > 0, as we leave for the reader to check. For h E {0,1} the argument

proceeds similarly, with allowance for the borderline case.

Case 2. i = p.2j, p > 1 and pis odd. At the start of the right-to-left

sweep, the square covered by the left side of the head on either channel

is square j. At the start of this cycle, condition (3) is satisfied for the

complete tape, according to the induction assumption, so at the start of

the right-to-left sweep it is satisfied for all squares h ~ j+3, since

at most square j+l can be changed by the right part of the head. Moreover,

either square j+2 on they-channel, or square j+2 on the z-channel contains

a O or blank. So at the start of the right-to-left sweep we can assume

that the situation is

yj-1 yj Yj+l Yj+2
z. I z. z. I 0 J- J J+

'--v--'

...:::>
where, for the sake of the argument, we identify O and blank. The last

time square j+l was covered was at cycle i', 2J cycles ago. According to

the induction assumption, condition (3) was satisfied at the end of that

cycle and, moreover, since i' = ((p-l)/2)2j+l, according to the proof of

claim 1, squares O through j+l contained only O's, I's or blanks at the

13

end of that cycle. Assume that at the end of cycle i', y. 1[z. 1] > 0. Then,
J+ J+

also at the end of that cycle, z., z. 1, z. 2 [y., y. 1, y. 2] E {O, blank}.
J J+ J+ J J+ J+

Hence, the 1naximum count on squares O through j+2 on the z-[y-J channel

of that cycle was 2J-1. So in the current cycle i, the maximum count on
• • 1

these squares of the z-[y-J channel becomes at most 2.2J-l = 2J+ -I.

Therefore, at the start of the current right-to-left sweep z. 1, z. 2 J+ J+
[yj+l'Yj+2J E {0, blank}. So if at the start of the current right-to-left

sweep z. 1 > 0 then y. 2 , y. 1 E {O, blank} and if y. 1 > 0 then
J+ J+ J+ J+

zj+2 , zj+l ,c: {O, blank}. Hence, at the start of this right-to-left sweep,

condition (3) is fulfilled for all squares h 2': j+2, and if z. 1 [y. 1 J > 0
J+ J+

then also y.+ 1[z.+1J E {O, blank}, with all leading O's turned into blanks
J J

up to, and including, square j+l. So case 2 reduces to case 1, except for

the case that y. 1. [z. 1] > 0 when the head starts its right-to-left sweep
J+ J+

at the i-th cycle, and the subtraction of z. 1 z. [y. 1 y.] from y. 1 y.
J+ J J+ J J+ J

[z. 1 z.] creates new leading O's, which have to be turned into blanks.
J+ J

This difficulty, however, is easily circumvented by either marking the

most significant digits on they- and z-channels, or by giving the head

an extra look ahead.

This proves the claim. DD

CLAIM 3. Assertion (c) holds at the start of each simulation cycle.

PROOF OF CLAIM. That a square on a channel can only contain a blank if

all squares right of it, on that channel, contain blanks, and that the

representations of y and z have no leading O's, at the start of each

simulation cycle, is a consequence of the proof of claim 2. That y-z = c

at the conclusion of the i-th simulation cycle of M, where c is the

14

count of C after i steps, follows because in the left-to-right sweep we add

the correct amount to a channel according to claim 1, and in the right-to

left sweep we subtract equal amounts from either channel. It remains to

show that as a consequence of the maintenance of condition (3) assertion

(c) holds under these conditions.
Suppose that, at the end of the i-th simulation cycle of M, not both

they- and the z-channel contain but blanks and that, by way of contradiction,

y-z = 0. Assuming for the sake of the argument that negatively indexed squares

contain blanks, and identifying O's and blanks, we can represent y-z by

00
y-z = I

j=-00

with x. = y. - z. for all j. It is a consequence of condition (3) that not
J J J

both yi and zj are unequal to O, and neither can xj and xj+l have an

opposite sign. So if z. = 0 then x. = y. and if y. = 0 then
J J J J

x. = -z .• Further-
] J

more, if x. E {-1,-2} and x., E {1,2}, j';&j, then
J J

lj-j'I > 1 and there

is an integer h in between j and j' such that~= O. If some square on the

y- or z-channel contains a nonblank symbol we can, because there are no

leading O's, assume that there is a square, say the h-th one, on this

channel containing a digit d E {1,2}, and l~I = d. Since the sequence

••• , x_ 1, x0 , x 1, ••• ,xi' xi+t'•·· contains no consecutive elements which

have an opposite sign, and x_ 1 = xi+l = O, there must be integers l,r,

0 ~ l ~ h ~ r ~ i, such that xl through xr are unequal to O and of the

same sign while xl-l = xr+l = O. So under the assumptions (for l ~ 1):

(a)

(b)

r
I I
j=l

r
I

j=l

l-2 00

I I
j=-00 j=r+2

15

l-2
(c) 0 ::;; I

J=-oo

00

(d) either I I
j=r+2

j I r+2 x.2 2: 2 •
J

00

or I I
j=r+2

We have now obtained a contradiction: the lefthand side of equation (a) has

a value in [:/,2r+Z_2l+IJ while the righthand side has a value in

[0,2,e_-2] u [2r+Z_l·+2,oo). The only remaining case l=O is also easily found

to lead to a contradiction. So we cannot have both a nonblank symbol in a

square of either they- or z-channel and y-z = 0.

It remains to show that if c # 0 then not both channels y and z contain

only blanks. Since always, at the start of a cycle, c = y-z holds, if

c 'f O then y 'f z; so in that case at least one of they-channel and z-channel

must contain a count 'f 0. Hence there must be a square which contains a

digit d > 0 on one of these channels. DD

By claims 1,2 and 3 the on-line simulation of C by Mis correct as

outlined. It is easy to see that the simulation uses O(log n) storage for

simulating n steps by C. We now estimate the time required for simulating

n steps by C. In the i-th simulation cycle M needs to travel to square J,

for i = p.2J and pis odd. Therefore, M needs 2j steps for this cycle. For

i = p.2J and pis even, i.e., i is even, M needs I step. Hence, for simulat

ing 2h+I steps by C, M needs all in all:

T(2h+I) h 2h-j. 2j 2h = LI +
J=

= 2h+I .Ej~I . 2-j J. + 2h

h+l 00 . 2-j 2h < 2 . I. I J . +
J=

= 2.2h+I + 2h

Now, given n, choose h = L log nJ so that 2h::;; n < 2h+I. Then
h+l h T(n) ::;; T(2) ::;; 5.2 ::;; Sn.

16

Since the movement of M's head has nothing to do with the actual counts

y and z, but only with the number of steps passed since the start of C, it

1.s easy to see that a k-CM can be simulated on-line by an oblivious I-tape

TM M., which is just like M, but equipped with y.- and z.- channels, -K l. l.

1 ~ i ~ k, and therefore with a total of 2k+l channels. Just like M, ~

uses 0(log n) storage and T(n) ~ Sn steps to simulate n steps of Ck, the

simulated k-CM, which proves the Theorem.

The covering of 2 tape squares by the head of M can be simulated

easily by cutting out I square of the storage tape and buffering it in

the finite control. The swapping to and fro, from tape to buffer, according

to the storage head movement, is easily handled in the finite control, of

which the size 1.s blown up a bit. This is similar to the way to achieve the

speed-up in [3]. D

It is well-known that oblivious Turing machine computations correspond

to those of combinational logic net-works [7,9]. The networks we consider

are acyclic interconnections of gates by means of wires that carry signals.

It will be assumed that there are finitely many different types of gates

available and that these form a "universal" basis, so that any input-output

function can be implemented by a suitable network. Each type of gate has a

cost and a delay, which are positive real numbers, say I for each. The cost

of a network is the sum of the costs of its gates. The depth of a network

is the maximum over all input-to-output paths of the sum of the delays of

the gates of that path. The method used 1.n the previous section can also

be used to construct a combinational logic network that implements the first

n steps of the computation by a k-CM. Such a network will haven inputs

carrying suitable encodings of the symbols read from the input terminal

and n outputs carrying encodings of the symbols written on the output

terminal, where we assume, for technical reasons that the k-CM is a trans

ducer. If the input- and output- alphabets have more than two symbols,

the inputs and outputs of the network will be "cables" of wires carrying

binary signals. Using standard techniques, [7,9], it is easy to show, by

imitation of the oblivious Turing machine constructed in the proof of

Theorem 4, that:

17

COROLLARY. If C is a k-CM transducer, then we can construct a combinational

logic network implementing n steps of C with cost O(kn) and depth O(kn).

When we are not restricted· to acyclic logic networks, but are allowed

cyclic logic networks, or work in the framework of the VLSI model of

computation recently advanced in [SJ, it is not difficult to see that:

THEOREM 5. If C is a k-CM transducer, then we can construct

(i) a cyclic logic network simulating n steps of C with cost O(k log n)

in real-time;

(ii) a VLSI simulating n steps of C in real-time with area O(k log~).

PROOF. We prove (ii), and (ii) clearly implies (i). The VLSI circuit

realizing the claimed behavior could look as follows:

on-line

input
FI-

~ n NITE I ...
CON- : 0 TROL

output
LO-

□ ~ □ GIC ~ ~ ... ~

flog nl colunm.s

Figure 2. VLSI circuit simulating k-CM.

k rows

Each row stores a count in ordinary binary notation, with the low digit

contained in the left block. Each block stores two bits: one for the binary

digit of the count, and one to indicate whether the count digit contained

is the most significant bit of that count. Carries are propagated along the

top wire of each row, borrows along the bottom wire. The middle wires of

each row transport information concerning the most significant bit in that

row. Each block contains the necessary logic to process and transmit

correctly carries, borrows and information concerning the most significant

18

bit. The finite-control-logic rectangle processes the input signals and the

information from the first blocks of each row, whether they contain a most

significant bit O of the corresponding count, to issue carries or borrows

to the first block of each row and to compute the output signal. We leave

it to the reader to confirm that, subsequent to receiving the input signal,

the corresponding output signal can be computed in time O(log k), which

corresponds to the bit length of an input signal for driving k counters.

Hence the VLSI circuit simulates the k-CM in real-time. Since the area

occupied by the wires emanating from each block can be kept to the same

size as the area occupied by the block itself, the blocks take O(k log n)

area. The finite control logic structure contains some trees of depth log k,

so its area can be kept to O(k log k). Under the assumption that

k E O(n) this yields the required result. D

To fit a long thin rectangle in a square, as often is necessary to

implement the structure on chip, we can fold it without increasing the

surface area significantly. Note that the structure contains no long wires,

and. that it does not have to be overall synchronized: local synchronization

is all we need. Hence it is a practicable design.

4. DISCUSSION AND SOME OPEN PROBLEMS

The counter machine as described in essentially an on-line device.

Even if we take the off-line variant, where the input is read from an input

tape delimited by markers, and the input read-write head is allowed a two

way motion governed by the state of the finite control, a zero count at

any moment in the computation can influence all later counts. So any

device simulating a counter machine, even the off-line variant, has no

other option than to compute a representation of all intermediate counts

in the counter machine computation. This shows two things:

(i) any universal scheme for implementing a counter machine, both the

on-line and the off-line variant, can take no shortcuts: it has to compute

(a representation of) all intermediate counts of the counter machine;

(ii) as a consequence of (i), all implementations of counter machines

described are optimal, both for n steps by the on-line variant and n steps

by the off-line variant, up to a constant multiplicative factor, for the

claimed simultaneous resource bounds of storage, time and area.

Comparing our solution of the linear-time simulation of a k-CM with

the nonoblivious one in [2], the reader will notice that our average

19

time complexity is the same as the worst-case time complexity in [2]. So

in actual fact, the solution in [2] will run faster in most cases than the

one presented here.

In [1] it was shown that the Origin Crossing Problem: "report when the

k counters simultaneously reach zero" admits a real-time I-tape Turing

machine solution. Can this problem also be solved by a real-time oblivious

k'-tape Turing machine for some k'? For the related Axis Crossing Problem

"report when one of the k counters reaches zero" and the relatec:1 "simulate

a k-CM in real-time" it is an open question whether this is doable by a

k'-tape TM, k' < k, which is nonoblivious. It seems that such questions

are naturally couched in terms of oblivious Turing machines. For consider

the following observation:

THEOREM 6. Let M be an oblivious k'-tape Turing machine which simulates a

1-CM in real time. Then we can find, for any k, an oblivious k'-tape

Turing machine ~,which simulates a k-CM in real-time.

Hence the que_stion of a real-time simulation of a k-CM, or a real-time

solution to the Origin Crossing Problem or the Axis Crossing Problem, by

an oblivious k'-TM, k' < k, reduces to the real-time simulation of a I-CM

by an oblivious multitape Turing machine. Apart from the fact that it is

easier to prove things about oblivious machines, this reduction would seem

to make it easier to obtain a (dis)affirmative answer to the question. Note

that in the nonoblivious case the stress of the problem lies differently.

It is easy to simulate a 1-CM by a I-tape Turing machine in real-time: in

O(n) storage the trivial way and, more difficultly, in O(log n) storage

as in the solution to the Origin Crossing Problem of [I]. Contrary to the

linear time on-line simulation of [2], of a I-CM by a 1-TM, the real-time

simulation of [I] does not seem to extend to a simulation by an oblivious

I-TM. Here the problem lies exactly in the obliviousness of the simulating

machine, and not in the fact that we must real-time maintain more counts

on less tapes. Finally, in [12] we have used the result of section 3 to

20

show that the notion of limited obliviousness, [11,12], is not just disguised

plain obliviousness, but indeed a new concept in between obliviousness and

total nonobliviousness.

REFERENCES

[l] FISCHER, M.J. & A.L. ROSENBERG, Real-time solutions of the origin

crossing problem, Math. Systems Theory I (1968), 257-264.

[2] FISCHER, P.C., A.R. MEYER & A.L. ROSENBERG, Counter machines and Counter

languages, Math. Systems Theory 2 (1968), 265-283.

[3] HARTMANIS, J. & R.E. STEARNS, On the computational complexity of

algorithms, Trans. Amer. Math. Soc. _!__!2_ (1965), 285-306.

[4] MINSKY, M., Recursive unsolvability of Post's problem of tag and other

topics in the theory of Turing machines, Ann. of Math. 74 (1961),

437-455.

[5] MEAD, C.A. & L.A. CONWAY, Introduction to VLSI Systems. Addison-Wesley,

New York, 1980.

[6] PATERSON, M.S., M.J. FISCHER & A.R. MEYER, An improved overlap argument

fo:r on-line multiplication, SIAM-AMS Proceedings, Vol. 7,

(Complexity of Computation) 1974, 97-112.

[7] PIPPENGER, N. & M.J. FISCHER, Relations among complexity measures,

Journa,l ACM, 26 (1979), 361-384.

[8] ROSENBERG, A.L., Real-time definable languages, Journal ACM ..!!t_ (1967),

645-662.

[9] SCHNORR, C.P., The network complexity and Turing machine complexity of

finite functions, Acta Informatica Z., (1976), 95-107.

[IO] VITA.NY!, P.M.B., On the power of real-time Turing machines under varying

specifications, extended.abstract, Lectu,re Notes in Computer

Science 85 (1980), 658-671, Springer Verlag, New York (Proc. 7th

IC.ALP).

[11] VITA.NY!, P.M.B., Relativized Obliviousness, Lecture Notes in Computer

Science 88 (1980), 665-672, Springer Verlag, New York. (Proc.

MFCS '80).

21

[12] VIT.ANYI, P.M.B., Complexity of limited oblivious computation, Tech.

Rept. IW /81, Mathematisch Centrum, Amsterdam, 1981.

