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ABSTRACT 

A I-tape oblivious Turing machine can simulate a k-counter machine on

line in linear time and logarithmic space. This leads to a linear cost 

combinational logic network implementing n steps of a k-counter machine. In 

the VLSI model of computation we can simulate n steps of a k-counter machine 

in real-time on area O(k log n). A k-counter machine can be simulated in 

real-time by a (nonoblivious) machine without head reversals. Some results 

are·stated about oblivious k-counter languages. 
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1. INTRODUCTION 

In many computations it is necessary to maintain several counters such 

that, at all times, an instant signal indicates which subset of the counts 

is zero. Keeping k counts in tally notation, where a count is incremented 

(decremented) by at most 1 in each step, is formalized in the notion of a 

k-counter machine. k-counter machines have been studied extensively, because 

of their numerous connections with both theoretical issues and practical 

applications, in the computer science literature of the last decade. The 

purpose of this paper is to investigate the dependence of the required time 

and storage, to maintain counts, on storage structure and organization, and 

the cost required by a combinational network. To do this, we use a notion 

of auxiliary interest: that of an oblivious Turing machine. An oblivious 

Turing machine is one whose head movements are fixed functions of time, 

independent of the inputs to the machine. The main result obtained here 

shows that an oblivious Turing machine with only one storage tape can 

simulate a k-counter machine on-line in linear time and in storage logarith

mic in the maximal possible count. These bounds are optimal, up to order 

of magnitude, also for on-line simulation by nonoblivious machines. 

It is obvious that, for any timing function T(n), given a k-counter 

machine, or a k-pushdown store machine, which operate in time T(n), we can 

find a time equivaient k-tape Turing machine. However, such a Turing machine 

will, apart from using k tapes, also use O(T(n)) storage. In [7] it was shown 

that for the pushdown store, of which the contents can not be appreciably 

compacted, the best we can do for on-line simulation by an oblivious Turing 

machine is 2 storage tapes, 0(T(n) log T(n)) time and 0(T(n)) storage. 

For the counter machine, [2] demonstrated a linear time-logarithmic space 

simulation by a I-tape Turing machine. [9, Corollary 2] showed how to sim

ulate on-line a T(n) time-, S(n) storage-bounded multitape Turing machine 

by an oblivious 2-tape Turing machine in time O(T(n) log S(n)) and storage 

O(S(n)). Combining the compacting of counts in [2] and the method of [9] 

we achieve the best previously known on-line simulation of a k-counter 

machine by an oblivious Turing machine: 2 tapes, O(T(n) log log T(n)) running 

time and O(log T(n)) storage. It is somewhat surprising to see that we can 

restrict a Turing machine for on-line simulation of a k-counter machine to 
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I storage tape, logarithmic storage, oblivious head movements and still 

retain a linear running time. 

In section 2 we give some definitions and preliminaries, and, by way 

of illustration, discuss the notion of oblivious counter machines •. In 

section 3 we derive the main result and connect this with a linear cost 

(acyclic) combinational logic network for simulating a k-counter machine. 

Subsequently we show that it is straightforward to simulate a k-counter 

machine in real-time by a logarithmic cost cyclic logic network or by a 

VLSI in logarithmic area cost. In section 4 we indicate some open problems, 

like real-time simulation of counter machine (problems) by (oblivious) 

Turing machines, and pinpoint the shift in emphasis, in the problem to be 

solved, occasioned by the transition to oblivious machines: whereas in the 

simulation by nonoblivious machines the main difficulty lies in the simula

tion of more counters by less tapes, in the simulation by oblivious machines 

the difficulty lies only in the obliviousness of the simulating device. We 

also point out that the implementations for counter machines as described are 

optimal, up to a constant multiplicative factor, for the claimed simultaneous 

resqurce bounds. 

2. DEFINITIONS AND PRELIMINARIES 

A one--way on-line k-counter machine (k-CM) consists of a finite-state 

control, k counters each capable of containing any integer, and an input 

terminal. The states of the finite control are partitioned into polling and 

autonomous states. At the start of the computation the CM is in a designated 

initial state and all counters are set to zero. A step in a CM computation is 

uniquely determined by the state of the control unit, by the symbol scanned 

at the input terminal if the state is a polling state, and by the set of 

counters which contain zero. The action at that step consists of independent

ly altering the contents of each counter by adding O, +I or -1, and changing 

the state of the control unit. If the new state entered by the control unit 

is a polling state, the machine also outputs a O or a I, as part of the 

step leading up to the new state, indicating "rejection of the sequence of 

input symbols so far" or "acceptance of the sequence of input symbols so far". 

Let Ebe the set of input symbols. The storage required by a CM in processing 



w Er* is the sum of the maximum absolute values of the contents of each 

counter in the course of the t steps of the computation. The time used in 

processing w Er* is the number t of steps used. Let T and S be monotone 

increasing functions. A counter machine operates in time T [in storage SJ 
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if, for all n ~ O, when CM is started on an input of length n, the CM polls 

the input terminal for the (n+I)-th symbol, at a step t ~ T(n) and requires 

space not exceeding S(n) in its computation up to step t. A language Lover 

r is recognized by a counter machine if CM accepts every word in Lover I 

and rejects every word in r*-L. Lis recognizable in time T(n) [in storage 

S(n)J if there is a CM recognizing L which operates in time T [in storage SJ. 

We single out the cases c'n ~ T(n) ~ en, for some constants c',c, as linear 

time, and T(n) = n as real-time (i.e.,every reachable state is a polling 

state). The significance of these time restrictions (especially the latter) 

stems from its importance in syntactic analysis and real-time control. More 

formal definitions can be found in [2J, together with many results on 

k-CMs. The 1nodel is, for the time-restricted case, not sensitive to mild 

changes in convention, except that going from one-way to two-way makes 

a difference but for the real-time case. Although CMs might seem pretty 

restricted machines, which is indeed the case for 1-CMs, in [4J it was 

shown that already 2-CMs (without time/ space restrictions) can simulate 

a universal Turing machine! 

An on-line k-tape TUPing machine (k-TM) is, and works, just like a 

k-CM except that the storage structure does not consist of k counters but 

of k tapes, each with one read-write two-way head. For formal definitions 

and results on on-line k-tape Turing machines, see [8,IOJ. Pertinent to 

the discussion here is that k-tape Turing machines with time bounds are 

insensitive to mild changes in definition; in particular, if T(n) = O(n) 

and T(i) - T(i-1) ~ c, for some constant c and all i, for some Turing 

machine M, then we can find a Turing machine M' which recognizes the same 

set and operates in real-time.Mis said to operate with constant delay, 

and the result follows from the constant speed-up as in [3J. 

We shall say that two machines simulate each other, if, when they 

are started and subsequently receive the same sequence of input symbols 

from their input terminals, they produce the same sequence of symbols as 

output. Clearly, simulation is an equivalence relation. We shall say that 

the simulation is on-line, if the polling of the input terminal and the 
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outputting of symbols occurs in the same order (but not necessarily at the 

same steps) for both machines. This is also an equivalence relation. We 

say that one machine that simulates another does so in time T(n) if for 

every n, the one machine outputs· at least as many output symbols in the 

first T(n) steps, as the other machine outputs during its first n steps. 

Finally, we explain the notion of an oblivious machine. A Turing 

machine is oblivious, if the polling for input, writing of output and the 

movements of the storage heads are fixed functions at time, independent of 

the inputs to the machine. (Cf. [5,6,9,11,12]). One may think of the head 

movements, the polling for input and the writing of output, as being 

governed by a second autonomous machine which has no input terminal. The 

same definition can obviously be applied to machines like RAMs, requiring 

that the sequence of instructions followed and the sequence of storage 

locations accessed each be independent of the input. Many problems seem 

inherently oblivious; the usual algorithms for computing+,-,*, and / or 

a table look-up can easily be programmed obliviously. Not so a problem 

like binary search. One reason to study oblivious Turing machine computations 

is t~at they are easily translated in combinational logic networks. Another 

is that, when we restrict ourselves to this class of computations, we are 

often able to derive lower bounds on time complexity, or time-space trade

offs, of computations. See also [7,9]. 

Note that the notion of oblivious counter machines does not make too 

much sense, since if the motion of the counters is governed by the set of 

zero counts only, in effect such a machine can only accept the intersection 

of a regular set (due to its finite control) and a counter language over a 

one-letter alphabet (the length set checked by the counters). Hence we have: 

THEOREM 1. The languages recognized by oblivious 1-CM's are precisely the 
regular languages. 

PROOF. The one counter either increases indefinitely or cycles through a 

count which is bounded by a constant. D 

However, 

THEOREM 2. (i) The set of languages recognized by an oblivious real-time 



2-CM contains strictly content sensitive languages. (ii) The set of 

languages accepted by an oblivious 2-CM contains nonPecursive languages. 
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PROOF. In [4] it was shown that 2-C-Ms can simulate universal Turing machines. 

Hence (ii) follows by letting a 2-CM accept a nonrecursive unary language. 

(i) follows from (ii) by taking the same machine, change all states to poll

ing states, and letting it expect a 1 when it polls as before, and a O when 

it polls in a state which used to be autonomous. Since the set accepted 

yields a nonrecursive language under erasing of O's, the set must be non

contex.t free. It is content sensitive since it is accepted in real-time. D 

In general, for each language L accepted by an oblivious k-CM with time 

bound T(n), 

-1 
L = h (L') n R 

where Risa regular set, L' is a one-letter language accepted by an oblivious 

k-CM, and his a homomorphism which maps a+ 1 for all letters a in the 

alphabet of L. 

After this digression in oblivious counter machines, we turn to some 

salient features o:f; the problem of simulating k-GM's on-line by efficient 

oblivious Turing machines. Suppose we can simulate some abstract storage 

device Son-line by an efficient oblivious Turing machine M. Then we can 

also simulate a collection of k such devices s1,s2, ••• ,Sk, interacting 

through a common finite control, by dividing all tapes of Minto k tracks, 

each of which is a duplicate of the corresponding former tape. Now the 

same head movements do the same job on k collections of tracks as formerly 

on the tapes of M, so the time and storage complexity of the extended Mare 

the same as those of the original. While the probl~m of, say, simulating a 

k-counter machine in real-time by a k'-tape Turing machine, k' < k, stems 

precisely from the fact that k' is less thank, the problem of simulating a 

k-counter machine by a k'-tape oblivious Turing machine in real-time is the 

same problem as that of simulating a I-counter machine in real-time by a 

k'-tape oblivious Turing machine. Hence, for a proof of feasibility it 
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suffices to look for the simulation of 1 counter only; for a proof of in

feasibility we have the advantage of knowing that the head movements are 

fixed, and are the same for all input streams. Besides, we can assume that 

we needed to simulate an arbitrary, albeit fixed, number of counters. 

3. ON-LINE SIMULATION OF k-COUNTER MACHINES BY OBLIVIOUS TURING MACHINES, 

IMPLEMENTATIONS ON ACYCLIC LOGIC NETWORKS, AND SIMULATION BY VLSI CIRCUITS 

In [2] the somewhat surprising result was shown, that a 1-TM can simulate 

a k-CM on-line in linear time. This simulation uses O(log n) storage, for n 

steps by the k-CM, which is clearly optimal. It is a priori by no means 

obvious that an oblivious multi tape TM can simulate but one counter in 

linear time. We shall show that the result of [2] can be extended to hold 

for oblivious Turing machines. 

In our investigation we noted that head-reversals are not necessary 

to maintain counters. We di4 not succeed in getting the idea below to work 

in an oblivious environment, and include it here as a curiosity, possibly 

folklore, item. 

Suppose we want to simulate a k-CM C with counts x 1,x2, ••• ,~ represent

ed by the variables n 1 through °k· The number of simulated steps of C is 

contained in the variable n. For i = 1,2, ••• ,k if count x. is incremented by 
1 

0 E {-1,0,+l} then· 

n. + n.+2 
1 1 

n. + n.+J 
1 1 

n. + n. 
1 1 

Let, for i = 1,2, ••• ,k, 

of C. 

for 0 = +] 

for 0 = 0 

for 0 = -] 

x. denote the current count on the i-th counter 
1 

LEMMA 3. For i = 1,2, ••• ,k, x. = 0 iff n. = n. 
1 1 

PROOF. Let n be the number of steps performed by C, p. be the number of 
1 

+J's, r. be the number of O's, and q. be the number of -I's, added to the 
1 1 

i-th counter, 1 ~ i ~ k, during these n steps. Hence p. + q. + r. = n for 
1 1 1 



all i, '.5: i '.5: k. By definition we haven. 
1 

Then it follows that p. = q. and therefore 
1 1 

= 2p. + r •• Suppose n. = n. 
1 1 1 

pi - q1 =xi= O. Conversely, 

let x. = p. - q. = 0. Then p. = q. 
1 1 1 1 1 

and n. = p. + q. + r. = n. D 
1 1 1 1 

Hence we obtain: 

COROLLARY. A k-CM C can be simulated in real-time by a (k+2)-head one--1.J)ay 

nom;riting finite automaton F of which the heads can detect coincidence. 

Hence, 4 heads suffice to accept all recursively enumerable sets. 

(Hint: I head reads the input from left to right, I head keeps the count 

of n by its distance to the origin, and the remaining k heads so keep 

the counts nI through ~. It was shown in [4] that 2-.CMs can accept all 

recursively enumerable sets.) 
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After this digression we now turn to an extension of the method used in 

[2], and show how it can be made to work in an oblivious environment, in 

order to obtain: 

THEOREM 4. If C is a k-counter machine, then we can find an oblivious I-tape 

Turing machine M that simulates con-line in time O(n) and storage O(log n) 

for n steps by c. 

Following [7J; we note that in the above theorem "mach,ine" can be 

replaced by "transducer" and the proof below will still hold. 

PROOF. It shall follow from the method used, and is also more generally the 

case for simulation by oblivious Turing machines (cf. last paragraph of 

section 2 and section 4), that if the Theorem holds for I-CM's then it 

also holds for k-CM's, k ~I.Let C be a I-CM. The simulating oblivious 

I-TM M will have one storage tape divided into 3 channels, called the 

n-channel, they-channel and the z-channel. If, in the current step of C 

its count c is modified to c+o, o E {-I,O,+I}, then: 

o = + I => n+n+I; 

o = 0 => n + n+I; 

o = -I => n + n+I; 

y + y+I; 

y+y 

y + y 

z + z, 

z + z, 

z + z+I, 
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where n is the count contained on then-channel, y is the count contained on 

they-channel and z is the count contained on the z-channel. Hence, always 

(1) c = y-z, and (2) y+z ~ n. The count non then-channel is recorded in 

the usual binary notation, with the low order digit on the start square and 

the high order digit on the right, see Figure 1. At the start of the cycle 

simulating the i-th step of C, i = p.2j and pis odd, squares O through j-1 

on then-channel contain l's and square j contains a O. So in this cycle, 

M's head, starting from square 0, travels right to square j and deposits 

a 1 there. It turns all l's on squares O through j-1 into O's during this 

pass. The head then returns to square O. This maintenance of the count n 

completely fixes M's head movements, so Mis oblivious. The representation 

of y and z is in a redundant binary notation. If y is denoted by y0y 1 •·· Y1, 

y. in square j of they-channel, then y. E {0,1,2}, 0 ~ j ~ i, and 
J • . J 

y = r: 0 y.2J. Similarly for the count z. So the representation of y[z] over 
J= J 

{0,1,2} is not unique. Finally, the head covers 2 squares on the tape, and 

shifts 1 square in 1 step of M, like a mask covering 2 tapesquares. So it 

has a look-ahead of 1. See Figure 1. 

1 1 1 I 

0 0 0 0 

1 2· - -
'--v--' 

read-write head 

1 

1 

-

- - - -
- - - -
- - - -

-
-
- C 

( 

I 
I 

} n-channel 

} y-channel 

} z-channel 

Figure 1. The configuration on M's tape after it has simulated 

31 steps of C, consisting of, consecutively, 16 "add I"'s, 

11 "add O"'s, and 5 "add -I" 's. The head has returned 

to the start position. 

We now explain the operation of M. The intuitive idea behind a 2 in 

square j of the y[z]-channel is an, as yet unprocessed, carry from the j-th 

to (j+l)-th position of the binary representation of y[z]. During the left

to-right sweeps of its head, governed by the moves indicated for the updat

ing of n, M maintains invariants (1) and (2). During the corresponding right

to-left sweeps back to the start square, M maintains also invariant (3): 



if y. [z.] > 0 is the contents of squares j on the y[z] channel then 
J J 
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z. 1, z., z. 1 [y. 1,y., y. 1J are O or blank. Moreover, every square right 
J- J J+ J- J J+ 

of a blank square, on that channel, contains blanks and no square containing 

a O has a blank right neighbor in that channel. This latter condition gets 

rid of leading O's. 

The validity of the simulation is now ensured if we can show the 

following assertions to hold at the end of M's cycle to simulate the i-th 

step of C, i ~ I. 

(a) For all i, i ~ I, M can always add I to either channel y or z in the 

cycle simulating step i of C. 

(b) M can maintain invariants (I), (2) and (3) to hold at the end of each 

simulation cycle. 

(c) The fact that (I), (2) and (3) hold at the end of the i-th simulation 

cycle of M ensures that the count of C is O subsequent to C's i-th 

step iff both they-channel and z-channel contain blanks on all squares 

subsequent to the completion by M of simulating C's i-th step. 

CLAlM I. Assertion (a) holds at the start of each simulation cycle. 

PROOF OF CLAIM. In the process of simulating the i-th step of C, M takes 

care of (a) during its left-to-right sweep, by propagating all unprocessed 

carries on squares_O,I, ••• ,j on both they-channel and z-channel to the 

right, leaving O's or I's on squares 0,1, ••• ,j and depositing a digit d, 

0 ~ d ~ 2, on square j+l of the channel concerned, for i = p.2j and p 
is odd. Assuming that M has adopted this strategy, we prove the claim by in-

duction on the number of steps of C, equivalently, number of simulation 

cycles of M. 

Clearly, the claim holds at the start of the first cycle. Suppose the 

claim holds for simulation cycles 1,2, ••• ,i-I, then it also holds for the 
i-th cycle, since: 

Case I. i = 2j. At the start of this cycle the count on channel y[z] can 

be at most 2j-l. At the end of the right sweep the head covers square j. 

Since the count, on either channel, now has reached at most 2j, it suffices 

to put a O or I in square j. The relevant carries can always be propagated, 

since the maximum count on squares O through hon a channel is less than 
h+2 

2 because 
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Case 2. i = p.2j, p > 1 and p odd. The square on the channels scanned by 

the left part of the head, in its rightmost position of this sweep, is 

square j. The last time square j was scanned by the left part of the head was 

2j cycles ago, and at that cycle i', i' = (p-1)2j, also square j+l was 

scanned by the left part of the head, since i' = ((p-1)/2)2j+l. Hence, under 

the assumption that the scheme of simulating step 1,2, ••• ,i-1 of C by M was 

carried out correctly, square j+l contains no 2 at the start of cycle i, 

since it was left with a blank, 0 or 1 in cycle i' and has not been visited 

since. The maximum count left, at the end of the i'-th cycle, in squares 

0 . f . h h 1 2j + l · j ,1, ••• ,J o eit er c anne, was -1. Since then, 2 cycles have passed, 

and therefore the count to be represented, by squares 0,1, ••• ,j+J of either 

channel, cannot exceed 

which certainly can be taken care of by a 2 in square j+l (covered by the 

right part of the head in cycle i) and l's in squares O through j-1. By 

the same reasoning as in case 1 all necessary intermediate carries, left on 

squares O through j, by cycles i'+l through i-1, can be propagated right 

during the current ·left-to-right sweep, leaving squares O through j with 

blanks, O's or l's, and square j+l with d E {blank, 0,1,2}, when the head 

returns to the origin, for both they-channel and z-channel. 

Hence a left-to-right sweep can always update they and z count 

appropriately, under the assumed strategy of M, during its oblivious head 

movements governed by the updating of then-count. DD 

CLAIM 2. Assertion (b) holds at the start of each simulation cycle. 

PROOF OF CLAIM. As we saw in the proof of claim 1, assertion (a) is implemen

ted during the left-to-right sweeps. During the right-to-left sweeps 

assertion (b) is implemented. 

Clearly, assertion (b) holds at the start of the 1-th cycle. During 

its right-to-left sweeps, at each step M subtracts the 2-digit numbers 



covered on they- and z-channel from each other, leaving the covered 

positions on at least one channel containing only O's. M also changes 

leading O's on either channel into blanks during its right-to-left sweeps. 

Suppose the claim holds at the start of simulation cycles 1,2, ••• ,i. We 

show that it then also holds at the start of simulation cycle i+l. It is 

obvious that M's strategy outlined above maintains invariants (1) and (2). 

It is left to show that it also maintains invariant (3). 

Case 1. i = 2j. The count on they-channel [z-channel] can be at most2j. 

Hence the head covers the most significant digits on either channel, while 

on its right-to-left sweep it only encounters blanks, O's or I's. Moving 

left, it subtracts the lesser number covered by the head from the greater 

(or equal) number on the other channel, at each step, meanwhile leaving 

blanks instead of leading O's on either channel. The following situations 

can arise: 

(i) a b C I- a 0 0 
d e f M d 0 0 
~ 

+ 
'--v--" 

+ 

if be = ef; 

(ii) a b C I- a b' c' .... 
d e f M d 0 0 

'--v--" '--v--" 

+ + 

if cb > fe, where c'b' = cb - fe; 

(iii) 

a b C I- a 0 0 
d e f M d e' f' 

'--v--" ---.,....., 
+ + 

11 
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if cb < fe, where f'e' = fe - cb. For the sake of the picture we have 

denoted both O's and blanks by 0. Since i = 2j, at the outset of the right

to-left sweep the head has blanks under its right window, since the maxi

mal position containing nonblank digits is square j. Hence there will be 

no problem turning leading O's, created in the right-to-left cleaning, into 

blanks during the travel to the low order square. 

Suppose, condition (3) is not fulfilled after the right-to-left sweep. 

Say, yh > 0 and not all of zh-l' zh, and zh+l are O or blank, h ~ 2. 

Let zh+l > 0. Then, since 

a b c 

d e f 
'---v--' 

+ 

a 0 0 
d e' f' 

'---v--' 

+ 

with f' = zh+l > O,according to (iii) must have been the move leaving the 

(h+l)-th square, and for all values of a,d,e' the next move must be 

a 0 0 
d e' f' 

'---v--' 

this contradicts yh > O. 

1-
M 

a' 0 0 
d' e" f' 

'-v--' 
+ 

Let~> O, or let zh-l > 0. This also leads to a contradiction with 

yh > 0, as we leave for the reader to check. For h E {0,1} the argument 

proceeds similarly, with allowance for the borderline case. 

Case 2. i = p.2j, p > 1 and pis odd. At the start of the right-to-left 

sweep, the square covered by the left side of the head on either channel 

is square j. At the start of this cycle, condition (3) is satisfied for the 

complete tape, according to the induction assumption, so at the start of 

the right-to-left sweep it is satisfied for all squares h ~ j+3, since 

at most square j+l can be changed by the right part of the head. Moreover, 

either square j+2 on they-channel, or square j+2 on the z-channel contains 

a O or blank. So at the start of the right-to-left sweep we can assume 

that the situation is 



yj-1 yj Yj+l Yj+2 
z. I z. z. I 0 J- J J+ 

'--v--' 

...:::> 
where, for the sake of the argument, we identify O and blank. The last 

time square j+l was covered was at cycle i', 2J cycles ago. According to 

the induction assumption, condition (3) was satisfied at the end of that 

cycle and, moreover, since i' = ((p-l)/2)2j+l, according to the proof of 

claim 1, squares O through j+l contained only O's, I's or blanks at the 
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end of that cycle. Assume that at the end of cycle i', y. 1[z. 1] > 0. Then, 
J+ J+ 

also at the end of that cycle, z., z. 1, z. 2 [y., y. 1, y. 2 ] E {O, blank}. 
J J+ J+ J J+ J+ 

Hence, the 1naximum count on squares O through j+2 on the z-[y-J channel 

of that cycle was 2J-1. So in the current cycle i, the maximum count on 
• • 1 

these squares of the z-[y-J channel becomes at most 2.2J-l = 2J+ -I. 

Therefore, at the start of the current right-to-left sweep z. 1, z. 2 J+ J+ 
[yj+l'Yj+2J E {0, blank}. So if at the start of the current right-to-left 

sweep z. 1 > 0 then y. 2 , y. 1 E {O, blank} and if y. 1 > 0 then 
J+ J+ J+ J+ 

zj+2 , zj+l ,c: {O, blank}. Hence, at the start of this right-to-left sweep, 

condition (3) is fulfilled for all squares h 2': j+2, and if z. 1 [y. 1 J > 0 
J+ J+ 

then also y.+ 1[z.+1J E {O, blank}, with all leading O's turned into blanks 
J J 

up to, and including, square j+l. So case 2 reduces to case 1, except for 

the case that y. 1. [z. 1] > 0 when the head starts its right-to-left sweep 
J+ J+ 

at the i-th cycle, and the subtraction of z. 1 z. [y. 1 y.] from y. 1 y. 
J+ J J+ J J+ J 

[z. 1 z.] creates new leading O's, which have to be turned into blanks. 
J+ J 

This difficulty, however, is easily circumvented by either marking the 

most significant digits on they- and z-channels, or by giving the head 

an extra look ahead. 

This proves the claim. DD 

CLAIM 3. Assertion (c) holds at the start of each simulation cycle. 

PROOF OF CLAIM. That a square on a channel can only contain a blank if 

all squares right of it, on that channel, contain blanks, and that the 

representations of y and z have no leading O's, at the start of each 

simulation cycle, is a consequence of the proof of claim 2. That y-z = c 

at the conclusion of the i-th simulation cycle of M, where c is the 
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count of C after i steps, follows because in the left-to-right sweep we add 

the correct amount to a channel according to claim 1, and in the right-to

left sweep we subtract equal amounts from either channel. It remains to 

show that as a consequence of the maintenance of condition (3) assertion 

(c) holds under these conditions. 
Suppose that, at the end of the i-th simulation cycle of M, not both 

they- and the z-channel contain but blanks and that, by way of contradiction, 

y-z = 0. Assuming for the sake of the argument that negatively indexed squares 

contain blanks, and identifying O's and blanks, we can represent y-z by 

00 
y-z = I 

j=-00 

with x. = y. - z. for all j. It is a consequence of condition (3) that not 
J J J 

both yi and zj are unequal to O, and neither can xj and xj+l have an 

opposite sign. So if z. = 0 then x. = y. and if y. = 0 then 
J J J J 

x. = -z .• Further-
] J 

more, if x. E {-1,-2} and x., E {1,2}, j';&j, then 
J J 

lj-j'I > 1 and there 

is an integer h in between j and j' such that~= O. If some square on the 

y- or z-channel contains a nonblank symbol we can, because there are no 

leading O's, assume that there is a square, say the h-th one, on this 

channel containing a digit d E {1,2}, and l~I = d. Since the sequence 

••• , x_ 1, x0 , x 1, ••• ,xi' xi+t'•·· contains no consecutive elements which 

have an opposite sign, and x_ 1 = xi+l = O, there must be integers l,r, 

0 ~ l ~ h ~ r ~ i, such that xl through xr are unequal to O and of the 

same sign while xl-l = xr+l = O. So under the assumptions (for l ~ 1): 

(a) 

(b) 

r 
I I 
j=l 

r 
I 

j=l 

l-2 00 

I I 
j=-00 j=r+2 
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l-2 
(c) 0 ::;; I 

J=-oo 

00 

(d) either I I 
j=r+2 

j I r+2 x.2 2: 2 • 
J 

00 

or I I 
j=r+2 

We have now obtained a contradiction: the lefthand side of equation (a) has 

a value in [:/,2r+Z_2l+IJ while the righthand side has a value in 

[0,2,e_-2] u [2r+Z_l·+2,oo). The only remaining case l=O is also easily found 

to lead to a contradiction. So we cannot have both a nonblank symbol in a 

square of either they- or z-channel and y-z = 0. 

It remains to show that if c # 0 then not both channels y and z contain 

only blanks. Since always, at the start of a cycle, c = y-z holds, if 

c 'f O then y 'f z; so in that case at least one of they-channel and z-channel 

must contain a count 'f 0. Hence there must be a square which contains a 

digit d > 0 on one of these channels. DD 

By claims 1,2 and 3 the on-line simulation of C by Mis correct as 

outlined. It is easy to see that the simulation uses O(log n) storage for 

simulating n steps by C. We now estimate the time required for simulating 

n steps by C. In the i-th simulation cycle M needs to travel to square J, 

for i = p.2J and pis odd. Therefore, M needs 2j steps for this cycle. For 

i = p.2J and pis even, i.e., i is even, M needs I step. Hence, for simulat

ing 2h+I steps by C, M needs all in all: 

T(2h+I) h 2h-j. 2j 2h = LI + 
J= 

= 2h+I .Ej~I . 2-j J. + 2h 

h+l 00 . 2-j 2h < 2 . I. I J . + 
J= 

= 2.2h+I + 2h 

Now, given n, choose h = L log nJ so that 2h::;; n < 2h+I. Then 
h+l h T(n) ::;; T(2 ) ::;; 5.2 ::;; Sn. 



16 

Since the movement of M's head has nothing to do with the actual counts 

y and z, but only with the number of steps passed since the start of C, it 

1.s easy to see that a k-CM can be simulated on-line by an oblivious I-tape 

TM M., which is just like M, but equipped with y.- and z.- channels, -K l. l. 

1 ~ i ~ k, and therefore with a total of 2k+l channels. Just like M, ~ 

uses 0(log n) storage and T(n) ~ Sn steps to simulate n steps of Ck, the 

simulated k-CM, which proves the Theorem. 

The covering of 2 tape squares by the head of M can be simulated 

easily by cutting out I square of the storage tape and buffering it in 

the finite control. The swapping to and fro, from tape to buffer, according 

to the storage head movement, is easily handled in the finite control, of 

which the size 1.s blown up a bit. This is similar to the way to achieve the 

speed-up in [3]. D 

It is well-known that oblivious Turing machine computations correspond 

to those of combinational logic net-works [7,9]. The networks we consider 

are acyclic interconnections of gates by means of wires that carry signals. 

It will be assumed that there are finitely many different types of gates 

available and that these form a "universal" basis, so that any input-output 

function can be implemented by a suitable network. Each type of gate has a 

cost and a delay, which are positive real numbers, say I for each. The cost 

of a network is the sum of the costs of its gates. The depth of a network 

is the maximum over all input-to-output paths of the sum of the delays of 

the gates of that path. The method used 1.n the previous section can also 

be used to construct a combinational logic network that implements the first 

n steps of the computation by a k-CM. Such a network will haven inputs 

carrying suitable encodings of the symbols read from the input terminal 

and n outputs carrying encodings of the symbols written on the output 

terminal, where we assume, for technical reasons that the k-CM is a trans

ducer. If the input- and output- alphabets have more than two symbols, 

the inputs and outputs of the network will be "cables" of wires carrying 

binary signals. Using standard techniques, [7,9], it is easy to show, by 

imitation of the oblivious Turing machine constructed in the proof of 

Theorem 4, that: 
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COROLLARY. If C is a k-CM transducer, then we can construct a combinational 

logic network implementing n steps of C with cost O(kn) and depth O(kn). 

When we are not restricted· to acyclic logic networks, but are allowed 

cyclic logic networks, or work in the framework of the VLSI model of 

computation recently advanced in [SJ, it is not difficult to see that: 

THEOREM 5. If C is a k-CM transducer, then we can construct 

(i) a cyclic logic network simulating n steps of C with cost O(k log n) 

in real-time; 

(ii) a VLSI simulating n steps of C in real-time with area O(k log~). 

PROOF. We prove (ii), and (ii) clearly implies (i). The VLSI circuit 

realizing the claimed behavior could look as follows: 

on-line 

input 
FI-

~ n NITE I ... 
CON- : 0 TROL 

output 
LO-

□ ~ □ GIC ~ ~ ... ~ 

flog nl colunm.s 

Figure 2. VLSI circuit simulating k-CM. 

k rows 

Each row stores a count in ordinary binary notation, with the low digit 

contained in the left block. Each block stores two bits: one for the binary 

digit of the count, and one to indicate whether the count digit contained 

is the most significant bit of that count. Carries are propagated along the 

top wire of each row, borrows along the bottom wire. The middle wires of 

each row transport information concerning the most significant bit in that 

row. Each block contains the necessary logic to process and transmit 

correctly carries, borrows and information concerning the most significant 
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bit. The finite-control-logic rectangle processes the input signals and the 

information from the first blocks of each row, whether they contain a most 

significant bit O of the corresponding count, to issue carries or borrows 

to the first block of each row and to compute the output signal. We leave 

it to the reader to confirm that, subsequent to receiving the input signal, 

the corresponding output signal can be computed in time O(log k), which 

corresponds to the bit length of an input signal for driving k counters. 

Hence the VLSI circuit simulates the k-CM in real-time. Since the area 

occupied by the wires emanating from each block can be kept to the same 

size as the area occupied by the block itself, the blocks take O(k log n) 

area. The finite control logic structure contains some trees of depth log k, 

so its area can be kept to O(k log k). Under the assumption that 

k E O(n) this yields the required result. D 

To fit a long thin rectangle in a square, as often is necessary to 

implement the structure on chip, we can fold it without increasing the 

surface area significantly. Note that the structure contains no long wires, 

and. that it does not have to be overall synchronized: local synchronization 

is all we need. Hence it is a practicable design. 

4. DISCUSSION AND SOME OPEN PROBLEMS 

The counter machine as described in essentially an on-line device. 

Even if we take the off-line variant, where the input is read from an input 

tape delimited by markers, and the input read-write head is allowed a two

way motion governed by the state of the finite control, a zero count at 

any moment in the computation can influence all later counts. So any 

device simulating a counter machine, even the off-line variant, has no 

other option than to compute a representation of all intermediate counts 

in the counter machine computation. This shows two things: 

(i) any universal scheme for implementing a counter machine, both the 

on-line and the off-line variant, can take no shortcuts: it has to compute 

(a representation of) all intermediate counts of the counter machine; 

(ii) as a consequence of (i), all implementations of counter machines 

described are optimal, both for n steps by the on-line variant and n steps 



by the off-line variant, up to a constant multiplicative factor, for the 

claimed simultaneous resource bounds of storage, time and area. 

Comparing our solution of the linear-time simulation of a k-CM with 

the nonoblivious one in [2], the reader will notice that our average 
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time complexity is the same as the worst-case time complexity in [2]. So 

in actual fact, the solution in [2] will run faster in most cases than the 

one presented here. 

In [1] it was shown that the Origin Crossing Problem: "report when the 

k counters simultaneously reach zero" admits a real-time I-tape Turing 

machine solution. Can this problem also be solved by a real-time oblivious 

k'-tape Turing machine for some k'? For the related Axis Crossing Problem 

"report when one of the k counters reaches zero" and the relatec:1 "simulate 

a k-CM in real-time" it is an open question whether this is doable by a 

k'-tape TM, k' < k, which is nonoblivious. It seems that such questions 

are naturally couched in terms of oblivious Turing machines. For consider 

the following observation: 

THEOREM 6. Let M be an oblivious k'-tape Turing machine which simulates a 

1-CM in real time. Then we can find, for any k, an oblivious k'-tape 

Turing machine ~,which simulates a k-CM in real-time. 

Hence the que_stion of a real-time simulation of a k-CM, or a real-time 

solution to the Origin Crossing Problem or the Axis Crossing Problem, by 

an oblivious k'-TM, k' < k, reduces to the real-time simulation of a I-CM 

by an oblivious multitape Turing machine. Apart from the fact that it is 

easier to prove things about oblivious machines, this reduction would seem 

to make it easier to obtain a (dis)affirmative answer to the question. Note 

that in the nonoblivious case the stress of the problem lies differently. 

It is easy to simulate a 1-CM by a I-tape Turing machine in real-time: in 

O(n) storage the trivial way and, more difficultly, in O(log n) storage 

as in the solution to the Origin Crossing Problem of [I]. Contrary to the 

linear time on-line simulation of [2], of a I-CM by a 1-TM, the real-time 

simulation of [I] does not seem to extend to a simulation by an oblivious 

I-TM. Here the problem lies exactly in the obliviousness of the simulating 

machine, and not in the fact that we must real-time maintain more counts 

on less tapes. Finally, in [12] we have used the result of section 3 to 
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show that the notion of limited obliviousness, [11,12], is not just disguised 

plain obliviousness, but indeed a new concept in between obliviousness and 

total nonobliviousness. 
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