
AFDELING. INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

R. KU I PER

IW 169/81

AN OPERATIONAL SEMANTICS FOR BOUNDED NONDETERMINISM

EQUIVALENT TO A DENOTATIONAL ONE

Preprint

~
MC

JULI

kruislaan 413 1098 SJ amsterdam

Plvlnted at .the Mathemctti.c.ai. Cen.tll.e, 413 KJULl6l.aa.n, Am6.teJu:Lam.

The Mathematic.al. Cent'll.e, 6ou.nded .the 11-.th 06 FebJr.UJVc.y 1946, hi a n.on­
pJc.o6U .i.n.6.tU:u:ti.on al.ming at .the pJc.omoUon 06 puJr.e mathemctti.C!-6 and w
appU.c.ctti.on&. 1.t hi .&pon601r.ed · by .the Ne.theJLf..a.n.d6 Gove1r.nment .thlr.ough .the
Ne.thelllan.cu 01r.ga.nizctti.on 601r. .the Advan.c.ement 06 PuJr.e Ruea1r.c.h (Z.W.O.).

1980 Mathematics subject classification: 6810

ACM-Computing Reviews Categories: 5.24, 4.22

An operational semantics for bounded nondeterminism equivalent to a denota­

tional one *)

by

R. Kuiper

ABSTRACT

Dyadic nondeterministic choice is added to the progrannning language

with recursive procedures as used in de Bakker's monograph on program correct­

ness [5]. This leads to considerable changes in the operational semantics. The
possible result of the execution of a program is no more given as a single

state, but as a set of possible states. Furthermore, the execution of a pro­

gram is no more given as a computation sequence but as a set of possible

computation sequences with tree-like properties.

We presemt a "natural" operational semantics O defined by means of a

function Comp, where Comp yields for each program Rand each state a a set

of computation sequences, characterized by equations in the style of COOK

[7]. For this set of equations we prove, in a topological setting, the

existence of a unique solution and the equivalence of the operational seman­

tics to the usual denotational one, defined by fixed point techniques.

KEY WORDS & PHRASES: Operational, semantics, denotational, semantics, bounded

nondeterminism

*) This report will be submitted for publication elsewhere ..

0. INTRODUCTION

The subject of this paper is to investigate the effects of adding bound­

ed nondeterministic choice to a.simple language with recursive procedures on

- the definition and properties of the operational semantics

The motivation to introduce an operational semantics is cne Io11owing

usual one. A method for proving program correctness is to abstract to a more

mathematical level by defining a denotational semantics and to give a proof

system on that level. A way to justify this abstraction is to define an oper­

ational semantics such that on the one hand it is intuitively close to the

actual program execution and on the other hand can be proved to be equivalent

to the denotational semantics. We provide a "natural" operational semantics;

its justification and the proof of its equivalence to a denotational one are

the main aims of this paper.

The reasons to add dyadic nondeterministic choice - as will be seen

later, extension to finite choice introduces no extra problems - are twofold.

Firstly, in practice nondeterministic choice enters the scene directly, cf.

DIJKSTRA's guarded command [9], as well as indirectly, cf. parallellism

and concurrency [12], where one process is selected to proceed, or one

communication is selected to be executed. Secondly, in theory nondeter­

ministic choice is a fairly easy setting in which tree-like structures

appear instead of computation sequences as when dealing with deterministic

sequential programs. This phenomenon also occurs as soon as parallel pro­

gramming and concurrent processes are concerned and introduces considerable

changes in the theoretical treatment. Contrary to the deterministic case,

justification of the defined operational semantics in view of existence and

uniqueness of the described function is not a clear case, and thus grew into

a next-important aim in itself.

The framework we use is that developed in DE BAKKER's monograph on

program correctness [5], especially chapters 5 and 7. The (ultra)metric

distances defined between sets, and convergence with respect to such metrics

we use, are also extensively employed by NIVAT and ARNOLD ([13] and [2])

considering among other subjects, infinite trees and nondeterminism. In their

approach, trees are essentially programs, whereas we use trees of states,

i.e. traces of program executions. Furthermore, Arnold and Nivat obtain the

2

set of all trees by completion of the set of all finite trees. We describe

a tree by the set of all paths in the tree; the set of all trees is the set

of all paths restricted in a suitable way (cf. Definition 9).

It appears that at three stages of the development we are forced to

make the same restriction on the set of sequences used. This restriction

amounts to require a tree-like property with respect to the occurrence of

infinite branches.

This central tree-like property already was observed by R.-J. BACK in

[3] treating unbounded nondeterminism.

The setup of the paper is as follows. After this introduction, in chap­

ter 1 the syn.tax and some preliminary information are given. Chapter 2 starts

with the definition of an operational semantics by means of the function

Comp, which in turn is defined by a set of equations. The main result here is

the existence proof of a unique solution Comp of this set of equations. In

chapter 3 a denotational semantics is described concisely. Finally, in

chapter 4 we prove the equivalence of the operational semantics to the de­

notational one.

1. SYNTAX AND PRELIMINARIES

Recursive procedures and finite nondeterministic choice are the key

characteristics of the chosen language. Note, that subscripted variables

are not treated (i.e., no arrays are present). Including these would neces­

itate a more complicated framework and only obscure our intentions. A

straightforward extension is possible. The phrase "Let (a.E)C be specified by

a.::= qrlxla.1a.2 is to be understood as: All a. or a.i, i EI in the sequel

are assumed to be elements of the set C; a. is of the form qr or x or a. 1a.2 ,

where a. 1, a.2 are elements of C already.

We now define the sets of the syntactic entities we use.

Definition 1 Syntax

Let (xE) Iva.JL be the set of integer variables

Let (mE) I~on be the set of constants

Let (PE) Pva.JL be the set of procedure variables

Let (tE) Texp be the set of integer expressions specified by

t::=xlmlt 1+t2 l-••I if b then t 1 else t 2 fi

Let (bE) Bexp be the set of boolean expressions specified by

b: :=true l£alselt 1=t2 1 ••• l7blbf b2

Let (SE) S.t,a,t be the set of statements, specified by

S::=x:=tlS1;s2ls1vs2l if b then SI else s2 filP

Let (EE) Veci. be the set of declarations, specified by
n E : : = <P . <=S • > . l , n~O , P . t P . , 1 :,; i < j :,; n

i ii= i J

Let (RE) P~og be the set of programs, specified by

3

R::=<EIS>, for all Pin Sor S., i=l, ... ,n, there exists
i

j, 1 :,; j :,; n such that P = P.;
J

Note, that bounded choice now can be obtained by applying (s 1vs2)vs3 • The

instances left open in Texp and Bexp can be filled in with analogous

expressions. Note that P~og is defined such, that all programs are closed,

i.e. only these procedure variables occur in a program, for which the proce­

dure body is given in the declaration E.

The following definitions concern assigning meaning to syntactic ob­

jects, i.e. semantics. At this stage, there is no distinction between opera­

tional and denotational semantics. Meaning is assigned by way of functions,

defined by cases, from a syntactic domain to a domain of interpretation. To

enable us later to define the rest of the denotational semantics we design

the domains of interpretation as complete partial orders (cpo's).

DEFINITION 2. (C,~) is a cpo if£

(i) ~ is a partial order on C.

(ii) there is an element i EC such that, for all c EC, i Cc

(iii) each chain <ci>:=l has a least upper bound u:=l ci EC.

DEFINITION 3. Domains of interpretation.

VO = 1N, natural numbers

WO = {tt,ff}, truth values

EO = 1va11. + v0 , functions assigning meaning to variables

4

Let (aE) V = V u {.1 } ' cpo by a 1 ~ a2 iff al = .L or al = a2 0 V V

Let (SE) w = w u {.L }, cpo analogously
0 w

Let (OE) E = E u
0

{ .L }_, cpo analogously

DEFINITION 4. For C cpo, c 1,c2,.1c EC

if a then c 1 else c2 fi • {
cl' if B = tt

c2, if B = ff

.L ' if B = .i
C w

We now define the meaning functions for integer and boolean expressions

which yield, by cases, for each of the expressions and a state a a value in

one of the domains of interpretation.

DEFINITION 5.

(a) V: Iexp + (E+V)

V (t)(.1) = .1
V

For a E rO
V(x)(o) = o(x)

V(m) (o) = a where a is the integer denoted by m.

V(t 1+t 2)(o) = V(t 1)(o) + V(t2)(o)

V (if b then t 1 else t 2 fi) (o) = if W(b) (o) then V(t 1) (o) else V(t2) (o) fi

(b) W: Bexp + (E+W)

W(b) (.1) = .1
w

For a E r. 0
W(true)(o) = tt

W(false)(o) = ff

W(t 1=t2)(o) = (V(t1)(o) = V(t2)(o))

W(7b) (o) = --W(b) (o)

W(b 1~b 2)(o) = (W(b 1)(o),. W(b 2)(o))

5

We end this chapter by introducing the notion variant of a state. The

purpose of this is to be able to indicate the effect of executing a state­

ment, for instance an assignment statement x:=t by a change in the state.

The following definition enables us to change in a state cr the value cr

assigns to a particular x.

DEFINITION 6 •

.L{<l/x} = .1

cr{<l/x1} (x2) = {<l,

cr (x2) ,

2. THE OPERATIONAL SEMANTICS

The aim here is to define an operational semantics which is intuitively

close to the actual program execution.

In the deterministic case a well-known way to achieve this is by way

of a COOK semantics [7]. A function Comp yields for each program Rand

each state cr a, possibly infinite, computation sequence of states,

Comp(R)(cr) = <cr 1,cr2, ... >. Intuitively, these states correspond to the states

a computer goes through when executing R, starting in cr. The operational

semantics then is a function O which yields for each program Rand each

state cr the state K(Comp(R)(cr)), this being the last element of Comp(R)(cr)

if this sequence is finite and the special state .1 otherwise.

Now intuitively Comp should be defined by rules, stepwise generating

the computation sequences; a COOK semantics does so by cases, the cases be­

ing possible program forms. For example,

6

The <a> is motivated as to indicate the operation of splitting up s1;s2 ,

or as a means to make induction arguments later on go through.

Adding nondeterminism necessitates Comp to yield for each Rand a not

the corresponding computation sequence, but the set of computation sequences

covering all possible alternatives depending on the different possible

choices. We now define computation sequences and a set of rules to describe

Comp.

DEFINITION 7. Computation sequences

(a) :E+ = {<a 1, ••• ,a., ••• ,a >la, e: :E, 1 :;; i ~ n,
i n I.

:Ew = {<a 1, ••• ,a., ••• >la, e: :E, i e: lN}
00 l.+ 00 l.

:E = {p, ••• }=:E u:E

Note, that the empty sequence is excluded.

(b) ": z:;00 x Z::00 -+ Z::00
, concatenation, is defined by

n e:

<a1,···,am>"<am+l' 000 > = <a1,···,am,am+l' 000 >

<a 1 , ••• > P = <a I ' ••• >

lN}

with the extension p"{p. i e: I}= {p"p. i e: I}.
l. l.

00

(c) K: :E -+:Eis defined by

1 1 f 'f + __ { ast e ement o p, 1. p e: :E
K (p}

.L, otherwise

with the extension: K({p. Ii e: I}) = {K(p.} Ii e: I}.
l. l.

(d} {n,
length(R) =

co,

if p = <a 1, ••• ,an>

otherwise.

(e) p'is initial segment of p (i.s.o.) iff p = p'"p" or p = p'.

In the sequel, P(Z::00
) = {AIA

00 00

c :E }, the powerset of :E.

DEFINITION 8. Rules for generating computation sequences.
00

Comp: PJr.og -+ (:E-+ P(:E)) by: For all R e: PMg,

for cr = .L, Comp(R)(.L) = {<.L>}, for a e: z:: 0

(i)

(ii)

(iii)

(iv)

(v)

7

Comp(<Elx:=t>)(a) = {<a{V(t)(a)/x}>}

Comp(<EIS 1;s2>)(a) = U{<a>ApAComp(<EIS 2>)(K(p)) IP E Comp(<EIS 1>)(a)}

Comp(<EIS 1vs 2>)(a) = <a>AComp(<EIS 1>)(a) u <a>AComp(<Els2>)(a)

Comp(<E I if b then s 1 else s 2 fi>) (a) =

= if W(b)(a) then <a>AComp(<EIS 1>)(a) else <a>AComp(<EIS 2>)(a) fi

Comp(<EIP>)(a) = <a>AComp(<EISj>)(a), where P = Pj, Pj ,<= Sj in E.

Intuitively, these rules are sufficient to describe generating the set of

computation sequences for given Rand a. However the concept "generating"

is too fuzzy to be mathematically satisfying. A well-known way out of this

problem is to regard this set of rules as a set of equations, for which Comp

should be a solution. From now on we take this approach: Definition 8 is re­

garded as a set of equations. Now it is clear that then a proof is required

that a solution Comp exists, and moreover that it is unique. For the deter­

ministic case this id done in various ways by DE BRUIN in [6]. For the

nondeterministic case we now show that an extra equation is needed to ensure

uniqueness. We then prove the existence of a unique solution Comp by extend­

ing the techniques of [6]. Then finally we define the operation semantics.

The following examples show, that in general,DEFINITION 8 regarded as

a set of equations does not ensure a solution to be unique and provide

intuition as to which kind of extra equation might solve this deficiency.

EXAMPLE 1. Comp(<P<=PIP>)(a). Intuitively, this should generate {<a,a, •.. >},

However, regarded as an equation, this program gives rise to

Comp(<EIP>)(a) = <a>AComp(<EIP>)(a).

Now both {<a,a, ••. >} and~ satisfy this equation, as Definition 7b implies

pA~ =~,so uniqueness is violated. Both practice (the program will loop)

and theory (the rules generate <a,cr, ••• >) suggest preference for the first

alternative.

The above example suggests the extra equation to be of the form

Comp(R)(a) #~-However, the following example shows that a stronger require­

ment is needed.

8

EXAMPLE 2.

Comp(<P<=x:=xvPIP>)(cr)

Intuitively, this should generate {<cr,cr,cr>,<cr,cr,cr,cr,cr>, ... ,<cr,cr, .•• >} = C

respectively for x:=x chosen the first time possible, the second time, ... ,
never. However, regarded as an equation this program gives rise to

Comp(<EIP>)(cr) = <cr>AComp(<Elx:=xvP>)(cr)

= {<cr,cr,cr>} u <cr,cr>-Comp(<EIP>)(cr)

Now both C and C\{<cr,cr, ... >} satisfy this equation, so uniqueness of the

solution is violated. Both practice and theory indicate which one should be

preferred. Considering practice, a cycle that halts or is repeated accord­

ing to nondeterministic choice potentially can be repeated any finite amount

of time, and also can be repeated forever, So this suggests preference for

the first alternative. Considering theory, for the obvious representation of

the set of computation sequences by trees, finite nondeterministic choice

gives rise to finitely branching trees. By Konig's lemma then follows that a

tree containing infinitely many finite branches, i.e. fintie computation se­

quences, also contains an infinite one, so this also suggests preference for

the first alternative.

The above examples suggest the entire equation to be of the form:

Comp(R) (cr) E G, where G = {G E P(I:00
) l G 1- ~. if <pi>~=l such that

(i)

(ii)

(iii)

then

for all i, p. E G
1

for all i, p. i.s.o.
1

svp{length(pi)} = 00

1
3p E G such that for al 1 i, p . , i. s. o. p }

1

However, the following example shows that an even more subtle require-

ment is needed.

9

EXAMPLE 3.

Comp(<P4=x:=1 v PIP>) (a)

Intuitively, this should generate {<cr,cr,cr{l/x}>,<cr,cr,cr,cr,cr{l/x}>, ••. ,<cr,cr, •..

... >} = C'. However, regarded as an equation, like in example 2,

C'\{<cr,a, ... >} is also possible. Again, the first alternative is to be pre­

ferred.

This example suggests the following strengthening of the above chosen

requirement described by G.

DEFINITION 9 ..
00 00

H ={He P(E00)!H j ~' if <pi>i=l' pie E , such that

(i) for all i, 3p! e H such that p. i.s.o. p! 1 1 1
(ii) for all i, pi i.s.o. Pi+!

(iii) sup{length(p.)} = 00

1

then 3p e H such that for all i, p. 1.s.o. p}
1

REMARK. In the different setting of unbounded nondeterminism, this the

closedness property to be found in [3].

We claim that the following extension of Definition 8 ensures the exis­

tence of a unique solution.

DEFINITION IO. Comp: Pnog + (E ➔ H) is defined by the following set of equa­

tions:

(a) The equations of Definition 8.

(b) For all Re PMg, a e E, Comp(R)(a) e H.

In DE BRUIN [6] for the deterministic case four methods to prove the

existence of a unique solution are presented. We have chosen to adapt to our

case the most topological one, as this seems the best one to extend to sets

of sequences. The idea is the following. Consider the set of functions

Pnog + (E +H); the solution Comp we seek to find is, if it exists, an element

10

of this set. Now as the left parts of the equations in part (a) of Defini­

tion 10 all contain only Comp(R)(cr), a solution of this set of equations can

be interpreted as a fixed point of an endomorphic operator on Ptwg -+ O::-+ H)

defined directly by these equat~ons (cf. Definition 20). To ensure existence

of a unique fixed point, from topology it is known that it is sufficient

that firstly the space is complete metric, i.e. a space with a metric dis­

tance function defined on it such that every Cauchy sequence converges, and

secondly, that the operator is a contraction mapping, i.e. the distance be­

tween the image of any two points is less than or equal to the distance

between the original points multiplied by a fixed constant smaller than 1.

The operator as well as the elements of the domain are given: respec­

tively by the equations and by the type of Comp. Left to choose is the met·­

ric. As usual, we choose the distance between two functions to be the supre­

mum over the elements in the domain of the distance between the two images of

such an element. To do so, we first define a distance between computation

sequences, next between sets of them and finally between the functions. All

of these will have to be complete metrics.

We start by considering computation sequences, i.e. E00
• A natural dis­

tance is the following.

DEFINITION 11 •

{
P,

p[j] =
<o 1, ••• ,o j >,

DEFINITION 12. Distance on E00

if p = <o 1, ••• ,on> and j ~ n

otherwise

otherwise

00

DEFINITION 13. For a Cauchy sequence <p.>. 1 define the limit lim. p. as
l. 1.= l.~ l.

follows.As <pi>00

1.=I has the Cauchy property, Ve:> O~Ne:Vl,m ~ N d(p 0 ,p) < e:,
= -k e: .(.. m

or, equivalently, Vk E lN3NkVl,m ~ Nkd(p.e_,Pm) < 2

11

By Definition 12 this implies Vk. E lN3NkVl,m ~ NkPNk[k] = pl[k]

Now define lim. p. by (lim. p.)[k] = PNk[k].

= P [k].
m

l. -+a> l. l. -+a> l.

00 =
LEMMA 1. (E , d) is a complete metric space.

PROOF. d evidently is a metric. d is complete iff every Cauchy sequence
00 •

converges. Clearly, every Cauchy sequence <p.>. 1 converges to 11.m. p .• D
l. 1.=].-+<X> l.

Next, we proceed to sets of computation sequences. Note, that defining

the distanced enables us to give a much easier definition of H.

LEMMA 2. H ={HE P(E00
) I H #~'for each Cauchy sequence <pi>:=l in H,

lim. p. E H}.
l. -+a> l.

PROOF. Evident by Definitions 9, 12 and 13. □

REMARK.

(1) Here the topological approach allows an easier solution of the problem

than the cpo approach, where it is more difficult to handle cases like

example 3 as may be seen by the difference between the two definitions

of H.
(2) For E00 with the topology J(d) induced by d, H can be defined by

H ={HE P(E00
) I H # ~, H closed in J(d)}.

A natural distance on His defined as follows.

DEFINITION 14.

H[j] = {p[j] I p E H}.

DEFINITION 15. Distance on H.

otherwise.

12

00

DEFINITION 16. For a Cauchy sequence <H.>. 1 define the limit lim. H. as
1 1= 1➔-oo 1

follows. As <H.>: 1 has the Cauchy property, VE> 03N V.t,m ~ N d(H 0 ,H) < £,
1 1= £ £ ,{., m

or, equivalently, Vk E JN 3Nk V.t,m ~ Nkd(H.t,Hm) < 2-k. By Definition 15 this

implies Vk E JN3NkV.t,m ~ NkHNk[k] = Hk[k] = Hm[k]. Now define I!! Hi

as follows (using Lemma 2).

lim H.
i ➔-co 1

00

= k~l {p E HNk[k] IP= <<Jl, ... ,an>' n < k}

LEMMA 3. (H,d.) is a complete metric space.

PROOF. The first requirement to be a metric space is d(H 1 ,H2) = 0 $=> H1 = H2
Let d(H 1 ,H2) = 0, p E H1. If p E r+, then 3j p = p[j J = p[j+l J. As d(H 1 ,H2) =

O, p = p[j] = p[j+l] E H2[j+l]. Consequently, p E H2. If p E rw, then either

p E H2 or p[i] E H7[i], i = 1,2, •••• In the latter case, there exist

pi E H2, i = 1,2, ..• , such that p[i] = p'[i], i = 1,2, •••• Now clearly

(p!)~ 1 is a Cauchy sequence in H2, and by Definition 13 lim. p! = p.
1 1= 1➔-oo 1

Consequently, (by Lemma) p E H2• Conversely let H1 = H2• Then Vj H1[j] =

H2[j], so d(H1,H2) = 0. The other requirements of being a metric space are

evidently fulfilled.dis complete if£ every Cauchy sequence converges.
00

Let <H.>. 1 be a Cauchy
1 1=

verges to lim. H., by
1➔-oo 1

00

sequence. By Definition 16, <Hi>i=I clearly

Definition 16, clearly lim. H. EH. □
l. ➔-co 1

con-

00

REMARK. The reasons to restrict P(I:) to H 1.n the beginning of this chapter

that did arise when regarding Definition 8 as a set of equations here have

their topological counterpart: Should distanced be defined on P(I:00
) in­

stead of H, then the sets C and C\{<a,a, ... >} of Example 2 (and likewise

C' and C'\{<cr,a, ... >} of Example 3) would have distance O but not be equal.

This violates the metric requirement d(C 1,c2) = 0 $=> c1 = c2. Now dis-
co

regard knowledge of the previously defined restriction of P(r) to H caused

by ambiguities with regard to solutions of the equations in Definition 1 and

indicated by the Examples 1 - 3. (Note, that at that stage no distance be­

tween sets was even defined.) A natural solution of the present problem then,

is the following.

00 00

Restrict P(I) to only those subsets of I , that contain their limit

points in the topology induced by d. Lennna 3 states that this solves the

problem. Not surprisingly, the tree-likeness requirement stated in His

equivalent to this restriction,- as stated in Lemma 2.

13

By now, we arrive at our first aim, turning Pnog + (I+ H) into a com­

plete metric space by defining the following natural distance.

DEFINITION 17.

DEFINITION 18. Distance on C.

= sup{d(¢ 1 (R)(cr), ¢2 (R)(cr))}.
R, CT

00

DEFINITION 19. For a Cauchy sequence<¢.>. 1 define the limit lim. ¢. as
1 1= 1+oo 1

00

follows. As <¢i>i=l has the Cauchy property, VE > 0 3NEVl,m 2: NEd(¢,e_,¢m) < E.

By Definition 18 holds VE> 0 3NEVl,m 2: NEVRVcr d(¢,e_(R)(o), ¢m(R)(cr)) < E,

Then VRVo, <¢i(R)(o)>:=l is a Cauchy sequence. By Lemma 3, VRV0<¢i(R)(0)>:=l

converges to lim. ¢.(R)(o). Now define lim. ¢. as follows.
1+oo 1 1+oo 1

VRVo(lim ¢.) (R) (o) = lim(¢. (R) (er)).
i+oo 1 i➔oo 1

LEMMA 4. (C,d) is a complete metric space.

PROOF. By standard techniques, e.g. see ([8], Chapter 14 Theorem 2.6).

DEFINITION 20.

t: C + C is defined by

14

R = <Elx:=t> + {<cr{V(t)(cr)/x}>}

R = <E I S l ; S 2 > +

+ <cr>A~(<EIS 1>)(cr)A•(<EIS2>)(K(•(<EIS 1>)(cr)))

R - <Els 1vs 2> + <cr>••(<EIS 1>)(cr) u <cr>••(<Els 2>)(a)

R = <E I if b then S 1 else s 2 fi> +

if W(b)(cr) then <cr> •• (<EIS 1>)(cr)

else <cr>·•{<EIS 2>)(cr)

R = <E IP> + <cr> • • (<E I S . >) , where P = P. , P . ~ S . in E.
J J J J

Note, that~ is well-defined, i.e. V•·~(•) EC, as can be easily seen from

the definition.

PROOF. Each of the following cases is trivial for cr = ~, so from here on

cr E r0 •

Case 1. R = <Elx:=t>

By Definition 20

So by Definitions 15 and 18, d(~(. 1),~(. 2)) = 0 ~ }d(. 1,.2).

Case 2. R 1 <Elx:=t>, R 1 <EIS 1;s2>.

By Definition 20, V•Vcr ~(.)(R)(cr) = <cr>·•(R')(cr), R' as given by the right

hand part of definition 20.

So

= sup{d(~(. 1)(R)(cr),~(.2)(R)(cr))}, by definition 18
R,cr

= sup{d(<cr>•• 1(R')(cr),<cr>·• 2(R')(cr))}
R,cr

= ½ sup{d(. 1(R')(cr),. 2(R')(cr))}, by definition 15
R,cr

Case 3. R = <EIS 1; s 2>, analogously to case 2. D

By now we can, by using well-known topology, justify our claim made

above.

· LEMMA 6. <I> has a unique fix-point.

15

PROOF. By Lennnas 4 and 5, using standard techniques from topology. Cf. ([8],

p. 305) and ([6], p.2). □

THEOREM 1. The set of equations of Definition 10 has a unique solution Comp.

PROOF. Directly from Definitions 10 and 20 and Lennna 6. D

Finally, having justified the definition of Comp, we define the opera­

tional semantics.

DEFINITION 21. Operational semantics. 0: P~og ➔ (f.+E) is defined by: For

all R, for all o, O(R)(o) = K(Comp(R)(o)).

For later use we here state the following lennna.

LEMMA 7.

(i) 0 (<E I s 1 ; s 2 >) (CJ) = 0 (<E I s 2 >) Q O (<E I s 1 >)(0)

(ii) O(<Els 1vs 2>)(o) = O(<EIS 1>)(o) u O(<EIS 2>)(o)

(iii) O(<E I if b then s 1 else s 2 fi>)(u) = if W(b)(o) then O(<EIS 1>)(o)

else O(<EIS2>)(o) fi

(iv) O(<EIP>)(o) = O(<EIS.>)(o), where P = P., P. <= S. in E.
J J J J

PROOF. Evident from Definitions 10 and 21. 0

3. THE DENOTATIONAL SEMANTICS

We here present the denotational semantics for which the operational

one, treated in Chapter 2, was designed to serve as an intuitive counterpart.

The method used is the fixed point approach in a cpo setting, as can be found

in [15]. The denotational semantics we use greatly resembles the one in

([5], Chapters 5 and 7), so only a very concise treatment is given, just

16

defining the notions and stating the results we need for the equivalence

proof in Chapter 4.

We start by defining a domain, consisting of a selection of subsets of

P(r·) with the Egli-Milner ord~ring,cf.[JO].Note the resemblance to the do­

. main of results in Chapter 2, with regard to H being the outcome domain of

Comp.

DEFINITION 22.

(,E)T = {T E P(I) I T finite or .l E T}

DEFINITION 23. Egli-Milner ordering

or .l i , 1 and , 1 = , 2•

LEMMA 8. (T,C) is a epo.

'We now give the domain of strict functions I+ T.
s

DEFINITION 24.

•= E + T, i.e.• is strict if£ •Ci)= {.1}.
s

DEFINITION 25.

I ➔ T
s

with the extension: For each•= I ➔ T, w: T ➔ T by w = AT• U •Co) and
S S OET

17

DEFINITION 26 •

. LEMMA 9 • (M,t:) is a cpo.

We now introduce y Er, where y gives meaning to procedure variables;

furthermore we define variant of y.

DEFINITION 27.

(yE)r = PvM + M

DEFINITION 28.

{
1/J,

y{l/J/P}(P') =
y(P')'

if P' = P

otherwise

The following is needed from the theory of cpo's.

DEFINITION 29. (C,~) cpo, f: C + C

(a) X is a fixed point of f iff f(x) = x.

(b) X is the least fixed point µf of f iff:

(i) xis a fixed point of f;

(ii) for all y, y fixed point of f, X ~ Y•

DEFINITION 30. (C,~), (C',~) cpo; f: C + C' is continuous iff:

(i) x1 ~ x2 => f(x 1) ~' f(x 2) (monotonicity);
00 •

(ii) for each chain <x.>. 0 in C,
1 i=

Notation: f E [C + C'].

LEMMA 10. C. cpo, f. E [Cn+cJ, i = 1, ••• ,n
1 1

by

18

Then

After these preparations we define the denotational semantics as follows.

DEFINITION 31. Denotational semantics

(a) N: Stat ·+ (r + M) is defined by

(i) N(x:=t)(y) = Aa•{a{V(t)(a)/x}}

(ii) N(s 1;s2)(y) = N(s 2)(y)oN(S 1)(y)

(iii) N(slvs2)(y) = N(Sl)(y) u N(S2)(y)

(iv) N (if b then s 1 else s 2 fi)(y)= Ao• if W(b)(a) then N(s 1)(y)(a)

else N(s 2) (y) (a) fi

(b) M: PJr.og --!► (r+M) is defined by

M(<EIS>)(y) = N(S)(y{ij;./P.}1?° 1), where <l/J 1, ... ,l/J > = µ<'¥ 1, ... ,'¥n> and
l l 1= n

'¥. = AljJ 11, .•. ,AljJ'N(S.)(y{ljJ!/P.}1?° 1), j = 1, ... ,n.
J n J l l 1=

LEMMA 11 •

J = 1, .•. ,n.

THEOREM 2. M is -well-defined.

PROOF. Essentially from Lemmas 10 and 11 . D

For later use, in Chapter 4, we here state the following lemmas.

LEMMA 12. Aa•M(S)(y)(a) is monotone.

LEMMA 13. M(<EIP>) = M(<EIS.>), -where P _ P., P. <= s. in E.
J J J J

4. THE EQUIVALENCE OF THE OPERATIONAL AND THE DENOTATIONAL SEMANTICS

The set-up of the equivalence proof for the two semantics defined in

the foregoing chapters, i.e. O(R) = M(R)(y), is as follows.

A natural way to proceed might seem to apply induction on the length

of individual computation sequences in Comr(R)(a) proving

19

a' E O(R)(a) ~ a' E M(R)(y)(a). However, it is only possible to prove this

for a' such that Comp(R)(a) E P(E+). Namely, if there is an infinite computa­

tion sequence in Comp(R)(a) then i E O(R)(a)Jas can be directly inferred from

Definitions 7 and 21. It is by·no means clear, that in this case also

i E M(R)(y)(a), as the concept of computation sequence belongs to the realm

of operational semantics. So using set inclusion O(R)(a) s M(R)(y)(a) is not

possible for this kind of inclusion. Choosing the Egli-Milner ordering

O(R)(a) ~ M(R)(y)(a) with this induction is also impossible, as for this

ordering it is required to prove O(R)(a) = M(R)(y)(a) if ii O(R)(a).

The way out we have chosen is to apply, in case Comp(R)(a) E P(E+), in­

duction on the sum of the lengths of the computation sequences in Comp(R)(a),

thus proving O(R)(a) = M(R)(y)(a) in this case. In case there is an infinite

computation sequence in Comp(R)(a), and so , by Definition 21, i E O(R)(a),

we prove O(R)(a)\{i} s M(R)(y)(a) elementwise by the above mentioned induc­

tion on the length of individual computation sequences. Thus we yield

O(R) ~ M(R)(y). Proving M(R)(y) C O(R) by standard techniques then completes

the proof.

In order to apply induction to the s1..U11 of the lengths of the computation

sequences in case Comp(R)(a) E P(E+) we have to prove that this sum is finite.

This is made explicit by a careful application of an analogue of Konigs lemma.

One of the well-known formulations of Konig's lemma is the following:

LEMMA. (Konig's) A finitely branching tree where all branches are of finite

length contains only finitely many nodes.

As we work in the realm of sets of (computation) sequences instead of

trees, we want to restate this lemma using these notions. Restate "finitely

branching" by "there are only finitely many different initial segments of

length n, for all n E lN", "all branches are of finite length" by "a set of

finite sequences", and finally "finitely many nodes" by "finitely many se­

quences".

So the analogue to Konig's lennna seems to be

If in a set of finite sequences there are only finitely many different

initial segments of length n, for all n E lN, then there are only finitely

many different sequences.

Now this is not true!

20

Counter example: {<O>,<O,O>, ••• }. The reason for this is, that the treestruc­

ture does not allow {<O>,<O,O>, ••. } as a set of branches in a finitelybranch­

ing tree but forces to add <O,O, ••• >:

For a set of finite sequences this is not the case. So an extra requirement

of such a set is to be added. Not surprisingly, taking the set to have a

property analogeous to H for computation sequences is sufficient, as this

reflected the tree-like way in which Comp generated a 'set of computation

sequences'.

We now give the analogue of Konig's lemma.

LEMMA 14. If in a set C of finite sequences {r-, ••• }, r = <s 1, s 2, ••• , sn>,

n E "N, there are only finitely many different initial segments of length n

for aU n E "N, and C has the foUowing property: C is tree-Zike i.e. if

there is a row of sequences <r!>~ 1, not necessarily r! EC, such that
1 i= 1

(i) for all i, 3r. EC: r! i.s.o. r.
1 1 1

(ii) for all i, ri i.s.o. riTl

(iii) sup.{length(r!)} = 00
1 1

then]..im r! EC, then there are only finitely many sequences in C.
1~ 1

PROOF. By contradiction. Suppose there are infinitely many different se­

quences. Let G(n) = {rllength(r) = n, r i.s.o. infinitely many different

sequences}. We show by induction that G(n) f:- 0 for all n E "N. Induction

basis: To prove G(l) f:- 11). As there are only finitely many different initial

segments of length l and infinitely many different sequences, G(l) f:- 11). In­

duction step: To prove G(k+l) f:- 11). As there are infinitely many different

sequences but only finitely many different initial segments of length k or

k+l, and G(k) = 11) (Ind. hyp.), G(k+l) f:- 11). So G(n) f:- 11) for all n EN. Now

clearly, for all n E "N every element of G(n) is initial segment of at least

one of the elements of G(n+l). So by the axiom of choice there are r. E G(i)
1

such that ri i.s.o. ri+l' i = 1,2, •.•• As C is tree-like, this implies that

there is an infinite sequence in C. Contradiction. D

21

REMARK. Note that the property "tree-like" had to be brought to the surface

on three fully independent occasions where it was more or less hidden in the
;

structure of the concepts under consideration:

(1) In Definition 10 to select tree-like solutions of the equations.

(2) In Definition 15, restricting the distanced to a space consisting of

only tree-like sets.

(3) In Lemma 14 to select sets sufficiently tree-like to prove an analogue

of Konig's lemma for them.

We now show, that for all Rand all cr, Comp(R)(cr) satisfies the require­

ments of Lemma 14. The only requirement left to prove is, that Comp(R)(cr)

gives only rise to finitely many different initial segments. This is done

in the following lemma.

LEMMA 15. For all R and all a the following holds for Comp(R) (cr): There are

only finitely many different initial segments of length n, for all n E lN,

in Comp(R)(a).

PROOF. Let R = <EIS>. Proof by cases, applying induction on the length of

the initial segment. Let

I(n)(Comp(R)(cr)) = {p' Ip' i.s.o. p E Comp(R)(cr), length (p')=n}

Induction basis: To prove #(I(l)(Comp(R)(cr))) < 00 •

By cases:

(i) S = x:=t. Then Comp(R)(cr) = {<cr{V(t)(cr)/x}>}. Consequently,

#(I(l)(Comp(R)(cr))) = 1 < oo.

(ii) s = s1;s2• Then Comp(R)(cr) = U{<cr> p Comp(<EIS2>)(K(p)) I
p E Comp(<EIS 1>)(cr)}, so I(l)(Comp(R)(cr)) = {<cr>}. Consequently,

#(I(l)(Comp(R)(cr))) = 1 < oo.

Cases (iii), (iv) and (v) of Definition 10 analogeously to (ii) lead to

#(I(l)(Comp(R)(cr)) = 1 < 00 • Induction hypothesis: Assume

#(I(l)(Comp(R)(cr))) < 00 , for 1 ~ l ~ k. Induction step: To prove

#(I(k+l)(Comp(R)(cr))) < 00 •

By cases:

(i) S = x:=t. Then I(k+l)(Comp(R)(cr)) = I(k+l)({<cr{V(t)(cr)/x}>}) = ~.

22

Consequently, #(I(k+l)(Comp(R)(a))) = 0 < 00 •

(ii) s - s1;s2• Then Comp(R)(a) = {<a>ApAComp(<EIS2>)(K(p))

p E Comp(<EIS 1>)(a)}. Consequently,

#(I(k+l)(Comp(R)(a))) = #(I(k)(Comp(<EIS 1>)(a))) +

+ E{#(I(k+l-(l+length(p)))(Comp(<EIS 2>)(K(p))))

p E Comp(<EIS 1>)(a), length(p) < k} < oo (Ind. hyp.)

Cases (iii), (iv) and (v) of Definition 10 analogously to (ii) lead to

#(I(k+l)(Comp(R)(a))) < 00 • So #(I(n)(Comp(R)(a))) < 00 for all R, all a, all

n E JN. D

After these preparations, we can state Letm11a 16, which enables us to

apply induction on the sum of the lengths of the computation sequences in

Comp(R)(a) in case Comp(R)(a) E P(E+).

LEMMA 16. For all Rand alZ a for which Comp(R)(a) E P(E+), Comp(R)(a) is

a finite set.

PROOF. It is given that all computation sequences in Comp(R)(a) are finite.

By Letm11a 15 there are only finitely many different initial segments of

length n, for all n E JN. By Definition 10b, and Definition 9, Comp(R)(a)

has the tree-like property as required in Lemma 14. Consequently, by Lemma

14, Comp(R)(a) in this case is finite. D

Finally, we arrive at the main theorem of this chapter, stating equiva­

lence of O(R) and M(R)(y).

DEFINITION 32. For

00
--{:{length(p) J

A E P(E),length(A) _

p € A}, if #(A) < 00 and,
Vp E A, p E E+

otherwise.

THEOREM 3. For all Rand aZl y, O(R) = M(R)(y).

23

PROOF. Let R = <EIS>. We prove VR Vy Va O(R)(a) = M(R)(y)(a). As this holds

trivially for a=~, in the sequel assume a E r0 • We prove Egli-Milner in­

clusion in both directions.

(1) O(R) (a) ~ M(R) (y) ~a) as fol°lows.
+ Case A. If Rand a are such that Comp(R)(a) E P(E) then O(R)(a) =

= M(R)(y)(a) proof by cases, applying induction on the sum of the lengths

of the computation sequences. (Justified by Lemma 16.)

(i) S = x:=t

O(<Elx:=t>)(a) = K(Comp(<Elx:=t>)(a))

= K({<a{V(t)(a)/x}>})

= a{V(t)(a)/x}

= M(<Elx:=t>)(y)(a)

+ N.B. This result holds for all a, as Comp(<Elx:=t>)(a) E P(E). By De-

finition 10 only a=~ or S = x:=t lead to length (Comp(R)(a)) = 1, so

the induction basis is provided.

(ii) S = s1;s2

By Definition 10 and Lemma 16, length (Comp(<EIS 1>)(a)) <

length (Comp(<Els 1;s2>)(a) < 00 ·and

length (Comp(<EIS 2>)(K(Comp(<EIS 1>)(a)))) <

length (Comp(<EIS 1;s2>)(a)) < 00 • So by induction O(<EIS 1>)(a) =

M(<EIS 1>)(y)(a) and O(<EIS2>)(K(Comp(<EIS 1>)(a) =

M(<EIS 2>)(y)(K(Comp(<EIS 1>)(a)). Consequently,

O(<Els 1;s2>)(a) = O(<EIS2>)oO(<EIS 1>)(a), by Lemma 7

= O(<EIS2>)(K(Comp(<EIS 1>)(a))), by Definition 21

= M(<EIS 2>)(y)(K(Comp(<EIS 1>)(a)))

= M(<EIS 2>)(y)(O(<EIS 1>)(cr)), by Definition 21

= M(<EIS 2>)(y) 0 M(<EIS 1>)(y)(a)

= M(<EIS 1;s2>)(y)(a), by Definition 31

24

Cases (iii), (iv) and (v) of Definition 10 can be treated analogously to

(ii), applying Lemma 13 when treating Case 5.

Case B. If Rand a are such that LE Comp(R)(a) then a'# L, a' E

E O(<EIS>)(a) implies a' E M(<EIS>)(y)(a), proof by cases, applying

induction on the length of computation sequence corresponding to that out­

come. There may be more than one sequence satisfying this requirement; in

that case choose one arbitrary. We again distinguish the following cases.

(i) S = x:=t

Immediately by the above proved equivalence O(<Elx:=t>)(a) =

M(<Elx:=t>)(y)(a). By Definition 10 this is the only case pertain­

ing to length (p) = 1, p E Comp(<EIS>)(a) so the induction basis is

provided.

(ii) S = s1;s2

Consider a computation sequence <a 1 (=a),a 2 , ••• ,an(=a')> E

Comp(<EIS 1 ;s2>)(a). By Definition 10 there is an intermediate state

aj #Lin this sequence such that <a 2 , ••• ,aj> E Comp(<EIS 1>)(a) and

<a., ••• ,a > E Comp(<EIS 2>)(a.). As length (<a2 , ... ,a.>) <
J n J . J

length(<a 1, ••• ,a >) and length(<a., ••• ,a >) < length (<a 1 , ••• ,a >)
n J n n

by induction aj E M(<EIS 1>)(y)(a) and a' E M(<EIS2>)(y)(aj). Con-

sequently, by Definition 31 a' E M(<EIS 1 ;s2>)(y)(cr).

Cases (iii), (iv) and (v) of Definition 10 can be treated analogeously to

(ii), applying Lemma 13 when treating Case 5.

Now combining A and B yields VR Vy Va 0(R)(a) C M(R)(y)(cr).

(2) Conversely, we prove M(R)(y) ~ O(R) as follows:

By Definition 31, it is equivalent to show N(S)(y{¢i/Pi}~=l) C 0(<EIS>).

By Definition 31 and Lemma 10, w. can be defined as follows. Let
0 0 1

<¢ 1, ••• ,¢n> = <;\a•L, ••• ,;\.a•L>

k+l k+l
<¢ 1 ' ••• 'wn >

k = 0,1, •••

LJOO k .
then wi = 7c=0 wi, i = 1, ••• ,n.

. k n co N k n . By Lemma LI·, N(S)(y{¢./P.}. 1) = LJ 0 (S)(y{¢./P.}. 1). Therefore it is
1 1 i= 7c= 1 1 i=

sufficient to show that for all k, N(S)(y{¢~/P.}~_ 1) C 0(<EIS>). We
1 1 1- -

apply induction on <k,l(S)>, where l(S) is the length of S, i.e. the

number of symbols of S with ordering <k 1,l 1> < <k2,l2> iff k 1 < k 2 or

k 1 = k 2 and l 1 < l 2 •

so the induction basis is satisfied.

We again distinguish the following cases:

(i) S = x:=t

k n N(x:=t)(y{ 11•./P.}. 1) = :>..0•0{V(t)(0)/x} = O(<Elx:=t>)
'I' l. l. 1.=

(ii) S = s1 ;s 2

l(S.) < l(s 1;s2), so <k,l(S.)> < <k,l(S ;S)>, j = 1,2.
J Jk n 1 2

So by induction N(S.)(y{t/J~/P.}. 1) C O(<EIS.>), j = 1,2.
J l. l. 1.= - J

Consequently, by Lemma 9, 12 and Definition 31,

25

Cases (iii) and (iv) of Definition 10 can be treated analogeously to (ii)

(v) S = P.

By Definition 10, P = P., P. ~ S. in E. By Lemma 10, O(<EIP>) = O(<EIS.>)
J J J J

If k = 0 there is nothing to prove. Otherwise

k/ kn = N(S.)(y{t/J. P.}. l
J l. l. 1.=

k k-1 k-1
t/J. = '¥.(t/Jl , ... ,t/J)

J J n

k-1 n = ~I (S .) (y { 1/J • /P . } . l) ,
J l. l. 1.=

C: O(<EIS.>)
- J

= O(<EIP>)

by Definition 31

Combining these results yields M(R)(y) S O(R), i.e.

Vk Vy Va M(R)(y)(0) ~ O(R)(y)(0). □

26

ACKNOWLEDGEMENTS

I wish to thank Jaco de Bakker for his stimulating remarks and Arie de

Bruin for his fruitful cooperation during the process of writing this paper.

To Linda Brown and Susan Carolan I am grateful for the efficient typing of

the manuscript. The referees I thank for their constructive remarks.

REFERENCES

[I] APT, K.R. & G. PLOTKIN, A Cook's tour> of countable nondeterminism. To

appear in Proc. of the 8 Int. Coll. on Automata, Languages and

Programming, Springer (1981).

[2] ARNOLD, A, & M. NIVAT, Metric intePpretations of infinite trees and

semantics of nondeterministic PeCUPsive programs, Theoretical

Computer Science II {pp. 108-205) (1980).

[3] BACK, R.-J., Semantics of unbounded nondeterminism, in: Proc. 7th Int.

Coll. on Automata, Languages and Programming, (J.W. de Bakker and

J. van Leeuwen, eds.) pp. 51-63. Lecture Notes in Computer Science

85, Springer (1980).

[4] BAKKER, J.W. de, Semantics of infinite processes using generalized

trees, in: Mathematical Foundations of Computer Science 1977

(J. Grusk, ed.) Lecture Notes in Computer Science 85, Springer

(1977).

[5] BAKKER, J.W. de, Mathematical theory of program correctness, Prentice

Hall Int. (1980).

[6] BRUIN, A. de, On the existence of Cook semantics, Mathematical

Centre Report, IW 163/81 (1981).

[7] COOK, S.A., Soundness and completeness of an axiom system for program

verification, SIAM J. on Computing, 7, pp. 70-90 (1978).

[8] DUGUNDJI, J., Topology, Allyn and Bacon, Boston (1966).

[9] DIJKSTRA, E.W., Guarded commands, nondeterminacy and formal derivations

of programs, Communications ACM 18, pp. 453-457 (1975).

[1 OJ EGLI, H .. , A mathematical model for noncleterministic computations.,

ETH, Zurich, 1975.

27

[11] EMERSON, E.A. & E.M. CLARKE, Characterizing correctness properties of

parallel programs using fixed points., in: Proc. 7th. Int. Coll.

on Automata, Languages and Progrannning (J.W. de Bakker and J. van

LE(euwen, eds.) pp. 169-181. Lecture Notes in Computer Science 85,

Springer (1980).

[12] HOARE, C.A.R., Communicating sequential processes., Connn. ACM 21, 8

(1978).

[13] NIVAT, M., Infinite words., infinite trees., infinite computations., in:

Foundations of computer science III, part 2 (J.W. de Bakker and

J. van Leeuwen, eds), Mathematical Centre Tract 109, pp. 1-52

(1979).

[14] PARK, D., On the semantics of fair parallellism., Proc. 1979 Copenhagen

Winter School (D. Bj~rner, ed.). Lecture Notes in Computer

Science 86 (1979).

[15] STOY, J., Denotational semantics., The Scott-Strachey Approach to

Progrannning Language Theory, MIT Press, 1977.

ONTVANGEN 1 7 SEP. 1981

