
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE}

P.W.E. VERHELST & N.F. VERSTER

IW 172/81

PEP: AN INTERACTIVE PROGRAMMING SYSTEM WITH AN
ALGOL-LIKE PROGRAMMING LANGUAGE

P.repr tnt

~
MC

AUGUSTUS

kruislaan 413 1098 SJ amsterdam

P tunted a;t .the Ma;thema:tlc.ai. C en:tlte; 41 3 K-'ULi.J.i laa.n, Am6 .tvui.a.m.

The Mathema:tlc.ai. Cen;tJz.e , oou.nded .the 11-.th oo FeblTJ.UVilg 1946, .;{/.) a noh.;.
p1to6,U .lw.s.til.uti.on a.,im;lntJ .. a.t . .the. pJr.omii:tion 60 ·pwte, mdJthema:tle1> . and ha
appUc.a:tlon6. 1.t ;{.6 .&pon6oJr.ed by the: Ne.the!c1A.nd6 1 GoveJt.nment .thMu.gh '.the
Ne.theJli.and1.i OJc.gan.lza:tlon f,otr_ .the Advan.c.ement of, PU,ll,e Ru eMc.h (Z. W. 0.) •

1~80 Matfiematics suoject classification: 68B20

ACM-Computing Reviews-category: 4.13, 4.22

PEP: an Interactive Programming System with an Algol-like Programming
Language*)

by

**)
P.W.E. Verhelst & N.F. Verster

ABSTRACT

PEP (Program Edi tor and Processor) is an interactive programming
system based on an Algol-like language. It is intended to replace BASIC
as a system for interactive program development on small computers (LSI-
11) •

The language processed by the system allows declaration of
variables, constants and procedures; it has structured statements for
conditional and repetitive execution of program parts.

We describe design and implementation of the system and give our
impressions after one year of experience with the system.

KEY WORDS & PHRASES: Interactive programming, Interpreters, Programming
languages

*) This work is supported by the Netherlands Organization for the Ad
vancement of Pure Research (z.w.o.). Part of this work was done during a
stay of the first author at the Mathematical Centre, Amsterdam.

This paper is not for review; it is intended for publication else
where.

**) Eindhoven University of Technology, Department of Physics
P.O. Box 513, 5600 MB Eindhoven, Netherlands

1

INTRODUCTION

We use a simple computer network, consisting of a central PDP-11/23
host computer and several small LSI-11 satellite computers, for the con
trol of physics experiments. Each LSI-11 computer is located at an
experiment and is connected to it via interfaces. The satellites are
connected to the host computer using serial lines running at 9600 baud.
The host computer provides background storage for data and programs, and
has provisions for the transfer of data to the central Burroughs B7700
computer of our university. The main tasks of the satellite computers
are data acquisition, adjusting experiment parameters, and simple numeri
cal analysis. Data collected by them is transferred to the host computer
using a simple line protocol[1]. In general, the satellite computers
have no local background storage.

The datacommunication lines we use have an effective transfer rate
of about 500 bytes per second. This is acceptable for the transfer of
small programs and small amounts of data; it is not fast enough, however,
to allow swapping of large amounts of memory. The software running on
the satellite computers should support interactive development and execu
tion of programs, without causing too much delay due to slow background
storage. An interpreter based system best satisfies this condition
because it generally is smaller than a system based on separate edit,
compile, and link programs. By keeping the major parts of such a small
system resident in memory, most of the commands can be executed without
access to background storage.

The only acceptable system available to us for use on the satellite
computers was BASIC. Dissatisfaction with the BASIC language and the
unavailability of another suitable system have led to the development of
the PEP system (PEP= Program Editor and Processor). The objective was
to construct an interactive programming environment which provides a
better structured language than BASIC, but which retains the attractive
properties of BASIC systems.

Related systems are UCSD PASCAL[2] and PASCAL-I[3,4]. These systems
are based on compilers that generate code for a virtual machine. Because
they relf on background storage to save compiled programs and to switch
between compilation and program execution, they were not suited for our
applications. Another related system is BASIS[5], an interpreter for a
subset of the PASCAL language. The BASIS system comes very close to our
system, but is larger and slower.

2

DESIGN CONSIDERATIONS

Anatomy of BASIC

BASIC systems are very widespread at the moment, especially in the
area of personal computers and other small systems. Originally, BASIC
was a FORTRAN-inspired programming language, which had to be sufficiently
simple for use by business students [6). We think that the popularity of
BASIC is not only due to the simplicity of the language, but also to a
number of other attractive properties of BASIC systems as a whole. The
most attractive features of these systems are probably the following:

(1) A simple editor is integrated in the command language.

(2) System commands may be freely mixed with directly executed program
ming language statements.

(3) BASIC is available for small computers that do not have excessive
amounts of memory and background storage.

Especially points (1) and (2) make BASIC systems easy to use. It is not
necessary to learn complicated command and edit languages in addition to
the programming language. The absence of complicated operating pro
cedures will soon give the user the feeling that he has control over the
system. The free interleaving of all kinds of commands makes such sys
tems ideal for the gradual development of programs (for example', compar
ing the effects of simple changes to programs is very easy). The ease of
trying out certain constructs will give confidence to the user that he
comprehends their meaning.

Although we found the general behaviour of BASIC systems very
attractive for our applications, we were less satisfied with the BASIC
language. Some of the weaker points are the following:

(1) The absence of procedures makes good program structuring impossible.
The GOSUB statement does not help because it does not allow parame
ters.

(2) The use of short identifiers and line numbers makes programs unread
able and increases the chance of making errors.

(3) The practice to indicate the data type by adding a suffix to the
variable name is not reliable. Originally, this was done to distin
guish between reals and strings (using a dollar sign). In the ver
sion of BASIC that is available to us, a percent sign is used to
indicate integer variables. Because of the relatedness of integers
and reals, this easily leads to mistakes (I and I% are different
real resp. integer variables).

3

Interactive systems invite the user to program sitting in front of his
terminal. Although this practice generally should be condemned, we can
not ignore the fact that it occurs. Programs developed in this way in an
unstructured language easily become unreadable and unreliable. We think
that programming in a better structured language can increase the reada
bility and reliability of such programs; more errors will be detected
because of extra restrictions imposed by the language.

Compilation versus Interpretation

Compilation and interpretation are only two extremes taken from a
wide spectrum of techniques available for the implementation of language
processors. These techniques differ in the distance between the inter
preted code and the original program text. At one end of the spectrum we
have interpretation of the program text; at the other end we have compi
lation of the program to machine language and interpretation of this code
by the hardware. Several intermediate forms are possible, in which the
program is translated to an intermediate code, which is subsequently
interpreted. Examples of such implementations are UCSD PASCAL[2] and EM1
code[7].

In making a choice between the available techniques, there are
several factors that must be considered.

(1) A larger distance between program text and code will result in a
higher complexity of the implementation.

(2) Program execution speed is higher if more checks are · done by the
translator instead of by the interpreter.

(3) A lower level code means extra delay between program modification
and program execution because of the compilation time in between.

(4) If the intermediate code is invertible, i.e. allows reconstruction
of the original program text, storage can be saved by only storing
the program code (see also Brown[8]).

We did not consider the lower execution speed of an interpreter based
system to be a problem for our applications. In experiment control,
speed of program execution is often limited by the data rates associated
with the experiment, instead of by the speed of the computer. We were
more concerned with the memory requirements and therefo~e chose for a
system based on a high level intermediate code that is invertible and
allows a compact representation of programs.

4

THE PEP LANGUAGE

We had to choose between inventing our own language and using an
existing programming language.. Arguments for taking an existing language
are program portability and easier user education if the language is
already known. We expected our applications to be highly nonportable
because of their connection to experiments. The only generally known
language at our university is a dialect of ALGOL-60 that is available on
our Burroughs B7700 computer; this language is too complex to implement
on a small machine. These circumstances, and the desire to improve on
the languages known to us, were the main reasons for designing our own
language. We had the following objectives for the PEP language:

(1) good error detection capabilities

(2) good program structuring facilities

(3) easy to learn (for users with some programming experience)

(4) easy to use in an interactive environment

(5) reasonably simple to implement

How these objectives have been realised will be discussed in the follow
ing sections.

Error Detection

Good error detection is especially important in an interactive
environment where programs are often changed too easily. Errors are
better detected statically (i.e. before program execution) than dynami
cally (i.e. while executing the program). Static detection does not give
the frustration of time lost because of program aborts in the middle of
execution. Static error detection is only possible if the language
imposes restrictions that force the programmer to supply redundant infor
mation to make his programs acceptable. Redundancy in the language is
most useful if it increases the ability to detect inconsistencies in pro
grams. We have chosen for the usual restrictions of Algol-like
languages, i.e. type checking and obligatory declarations.

Some semantic error sources that are easily avoided are automatic
conversion from real to integer and use of the same operator symbol for
both real and integer division. Implicit conversion from real to integer
may lead to errors if a value is falsely assumed to be integer and
assigned to an integer variable. The notation a/b, with a and b of type
integer, suggests that a rational (or real) number is produced. We
therefore require explicit indication of rounding and let a/b always pro
duce a real result, using a div b for integer division.

5

Languages like ALGOL-60 and PASCAL have some syntactic peculiarities
that can cause errors to go undetected. One example is the subtle effect
of the semicolon terminating statements prematurely; compare

if B then S;

and

Another example is the nested if-statement of PASCAL,

if B then if B1 then S1

where indentation suggests a meaning different from the actual one. To
obtain the intended meaning, it should be written as

if B then begin if B1 then S1 end
else s;

This kind of errors can easily be prevented by adopting the ALGOL-68 con
vention of terminating all structured statements explicitly (using fi and
od). This has the additional advantage that program modifications are
easier: it is not necessary to add an extra begin and end when a single
statement is replaced by more than one statement. Also more informative
error messages can be given because there is more than one terminator
symbol.

Characteristics of the PEP Language

In this section we can only give a brief summary of the PEP
language. A complete description of the language may be found in [g].

A PEP program consists of two parts: an (optional) section contain
ing declarations and a section containing statements. These parts are
held together using the keywords declare, begin, and end. Possible
statements are assignment, procedure call, and the if, while, and for
statement. The latter three statements use explicit terminating symbols,
fi and od. Possible declarations are constant, variable, and procedure
declaration. A procedure declaration consists of a heading, specifying
formal parameters and possible return value, and a body, which has the
same structure as a program, i.e. allows declarations local to the pro
cedure.

We have included an "on-statement" in the language for the program
matic interception of faults, such as arithmetic exception conditions and
hardware errors. The main reason for such a mechanism is that testing

6

for exception conditions after every operation makes a program more
unreadable than is necessary. The on-statement has the form

on C during S1 do S2 oq

If during execution of S1 an exception condition occurs, execution of S1
is aborted and execution continues with S2; if no exception occurs, S2 is
ignored. C specifies the condition(s) one is interested in. We also
provide a procedure "alarm(c)", which raises exception condition "c".

We did not include a goto-statement in the PEP language. Its main
use would be to "glue" pieces of program together and this leads to
unstructured and unreadable programs.

Input/output operations are available in the same form as in PASCAL,
i.e. the procedures "read", "readln", "write", and "writeln" (see [10]).
These procedures are nonstandard in that they accept a variable number of
parameters. In the "write" and "writeln" procedures formatting specifi
cations can be given. Some additions to the PASCAL facilities that we
found useful are tabulation and the possibility to write integers in
arbitrary radix. We also adopted the convention to initialise input in
an end-of-line state as suggested in [11]. Similarly, we made
"readln(f,v1, ••• ,vn)" equivalent to

readln(f); read(v1, ••• ,vn)

which is closer to the normal use of "readln".

We found that, owing to the use of explicit statement terminators
for structured statements, semicolons become superfluous. Insertion or
deletion of a semicolon can never change the meaning of a program (in
contrast with the first example of the previous section); it can only
make a program syntactically incorrect. Semicolons also do not add to
the error detection capabilities of the language because they can never
point out inconsistencies in the program. Because semicolons can still
be helpful in making a program more readable, we did not omit them from
the language, but instead have made their use optional.

Because we did not need the complete collection of types available
in PASCAL, we could keep the type system simple. All types are built-in
and the user cannot define new types. We distinguish between simple
types, array types, and structured types.

The most important simple types are "integer", "real", "boolean",
and "char". For variables of these types the usual collection of arith
metic and logical operations is available. The simple type "range" is
useful for specifying ranges in array declarations and in the for
statement. Values of this type are constructed using expressions of the
form "a •• b", in which "a" and "b" are integer values. Some additional
simple types ("int1", "int2", "nat1", and "nat2") allow efficient storage

1

of small signed and unsigned integers in single bytes or words, which is
especially useful for compact storage of arrays.

Array types are specified by giving one or more index ranges and the
element type, which must be simple. In addition to the conventional
index operation, it is possible to select subarrays by giving a range as
index or by only partially supplying indices. The assignment statement
can be used to copy the contents of arrays and subarrays.

The system may be configured to contain a number of structured
types. These types allow declaration of input/output devices and files.
Variables of structured type have an internal structure that is com
pletely hidden; they can only be used as parameter to certain built-in
procedures.

The following program gives a general impression of the PEP
language. It illustrates some of the operations possible on arrays. A
percent sign indicates comment until the end of the line.

declare
inprod = procedure (a,b: array O of real)
% Determine inner product of a,b
% a,b should have identical index ranges
declare

sum: real;
begin

sum:= O;

real;

for i in index_range(a) do sum+:= a[i]*b[i] od;
return sum

end

x: array 1 •• 200 of real;
corr: array 1 •• 100 of real;

begin

end

% Statements to fill x

fork in 1 •• 100 do

od• _,
corr[k] :: inprod(x[1 •• 100],x[k •• k+99]);
writeln(k, corr[k])

writeln(sqrt(inprod(corr,corr)))

8

Static versu::i Dynamic Binding

Because we have chosen for the possibility of declarations local to
procedures, a mechanism must b.e provided to keep track of the, possibly
multiple, meaning of identifiers. In the encoded form of the program
identical identifiers are indistinguishable, even if they have their ori
gin in different declarations. The simplest scheme is to keep track of
the most recent meaning of each identifier only (dynamic binding). This
has the disadvantage that sometimes surprising effects are produced if
the same identifier is used in different declarations. Because later
declarations take precedence over earlier ones, dynamic binding often
takes the wrong meaning of identifiers. The alternative is the static
binding scheme of ALGOL and PASCAL, but this is considerably more compli
cated to implement in an interpreter; this would mean, for instance, that
differently bound identifiers should be made distinguishable in the code.
We have chosen for dynamic binding, but we impose such restrictions on
programs that static and dynamic binding always give the same meaning.
The rules we use are as follows.

(1) No local declarations may declare identifiers that are already
declared global to a procedure (i.e. no static overdeclarations).

(2) Procedures may not be passed as parameter (and no ALGOL-60 by name
parameters).

(3) Forward references (use of identifiers declared further on in the
program text) are not allowed.

The first two rules guarantee that it is not possible to call a procedure
needing a global variable that is hidden by dynamic overdeclarations; the
global variables of a called procedure always are a subset of the global
variables at the point of the call, and these cannot have been overde
clared. The third rule guarantees that violations of the first two rules
can be detected in a single pass through the program.

We do not consider restriction (1) to be a disadvantage; static
overdeclarations can be an important error source, and this is removed by
this restriction. We do see problems in restrictions (2) and (3), how
ever. These restrictions make it impossible to write general procedures
that depend on one or more user-defined procedures (either passed as
parameter or accessed via a fixed name) • This problem can be solved
because the system supports dynamic binding between separate programs,
but this is not a neat solution. Restriction (3) also makes it difficult
to write mutually recursive procedures (this is only possible if one pro
cedure is declared within the other).

9

THE PEP SYSTEM

The PEP system consists of three parts:

(1) the interpreter itself in· the form of a procedure that takes an
encoded program as parameter;

(2) a table (global environment) supplying all standard declarations
available to PEP programs (input/output, data types, standard func
tions and procedures);

(3) a monitor program for communication with the user.

Parts (1) and (2) are necessary for the execution of PEP programs and
must always .reside in memory. Part (3) is only needed for program edit
ing and could be removed from memory during program execution; to reduce
switching time between editing and execution, however, it is generally
held resident.

In the following sections we will describe intermediate code, inter
preter, monitor program, and some of the facilities offered by the sys
tem.

Intermediate Code

The intermediate code forms the interface between the monitor pro
gram and the interpreter. It is also used for the compact storage of PEP
programs on disk. The intermediate code is split into a part that is
necessary for the reconstruction of program text only and a part that is
needed by the interpreter to execute a program. The first part contains
information about line division, indentation depth, and comments; the
second part consists of program code and identifiers. The program code
is a sequence of symbols, which are encoded as follows:

Keywords (if, begin, end, etc.) and special symbols(":=","+", ",",
etc.) are encoded in a single byte using values in the range 1 •• 99.

Constant denotations (integer, floating point, string) are encoded
as a prefix byte (range 100 •• 127) followed by the value in one or
more bytes.

Identifiers are encoded as bytes in the range 128. _. 254. If more
than 127 identifiers are used a multiple byte code is used which
starts with prefix 255. The text corresponding to an identifier is
stored in a separate table which can be indexed by a number derived
from the code. We place no limit on the length of identifiers.

The information contained in the intermediate code allows reasonable
reconstruction of the original program text (only the number of blanks

10

between symbols may change). Because the encoding is invertible and not
context dependent, the program can be encoded immediately when it is
typed in. This reduces storage requirements, both because we need not
store the program text and because the code is more compact than the
text.

The Interpreter

The interpreter has two functions: the detection of errors and the
execution of the program. Because detection of syntax errors during exe
cution is too late, we have split the operation of the interpreter into
two passes. The first pass through a program is responsible for checking
conformity to the syntax, compatibility of data types, and satisfaction
of the restrictions concerning overdeclarations. In addition, it leaves
information in the program code to speed up forward jumps during program
execution. These jumps occur, for example, in the if and while statement
when a condition is false. At all such places room is reserved in the
code to store the jump distance. The second pass through the program
performs the actual execution; this is done only if the first pass did
not detect any errors. Both passes through the code are performed by the
same program; a flag indicates whether it is the checking pass or the
actual execution.

The interpreter program has the structure of a top-down recursive
descent parser (see e.g. Gries [12]). In such a parser there is a pro
cedure corresponding to each syntactic construct. Each such procedure
checks that the correct symbols appear in the input text (in our case the
program code), and it calls other procedures to handle subconstructs. We
will show a simple example to illustrate this. The if-statement

if <expr> then <stat> else <stat> fi

is recognised by the following parser procedure.

if_stat = procedure;
begin

end• --'

expect('if'); expr; expect('then');
stat; expect('else');
stat; expect('fi');

The call "expect(sy)" checks that symbol "sy" appears in the program code
and skips that symbol; the procedures "expr" and "stat" recognise expres
sions respectively statements. We will now show how this parser can be
transformed into the first and second pass of the interpreter.

In addition to checking the syntax, the first pass must fill in the
jump distances after then and else. This is done using the procedures
11 f jump" and "flabel 11 ; --iicjump (p)'ts tores the current position in the

11

program code in its argument "P" (a reference parameter) and skips the
locations reserved for storing the jump distance; "flabel(p)" stores the
jump distanci:, at position "p" in the program code. This gives the fol
lowing procedure for doing the first pass.

if stat= procedure;
declare p1,p2: integer;
begin
--expect('if'); expr; expect('then');

f jump(p1);

end;

stat; expect('else');
fjump(p2);
flabel(p1); stat; expect('fi');
flabel(p2);

The second pass must perform the actions corresponding to the syn
tactic constructs. For the if-statement this means making a choice
between the two alternatives based on the boolean value of the expres
sion. The following procedure handles both passes.

if stat= procedure;
declare p1,p2: integer;
begin
--1expect('if'); expr; expect('then');

if cjump(p1) then goto L1 fi;
stat; expect('else---r;- -
if fjump(p2) then goto L2 fi;

L1: flabel(p1); stat; expect('fi');
L2: flabel (p2);
end;

The only difference between the two passes is in the operation of
"cjump", "fjump", and "flabel". During the first pass "cjump" and
"fjump" reme1mber the position in the code and return false. During the
second pass 11 cjump" tests the boolean value that is produced by "expr"
and left on a stack. If this value is true, a jump is made in the inter
preted code and true is returned; otherwise "cjump" only skips the jump
distance that is stored in the code and returns false. We use the same
return convemtion for "fjump" and let it always make a jump in the inter
preted code during the second pass. The procedure "flabel" does nothing
during the second pass. It should be noted that during the second pass a
jump in the interpreted code is always accompanied by a 'jump (goto) in
the interpreter program. There are a number of other differences between
the two passes that are not shown here. For example, during the first
pass of an expression only the types of the intermediate and final values
are determined and no further computation takes place.

12

Declarations are handled by allocating "declaration cells" on a
stack. The current meaning for an identifier is found in an "association
table", which contains for every identifier a pointer to the correspond
ing declaration cell (or nil if undeclared). A declaration cell contains
type indication, value, identifier number, and a pointer to the previous
meaning for that identifier. On procedure entry, declaration cells are
allocated and the association table is updated. On procedure exit, pre
vious meanings are restored and the declaration cells are deallocated.

Identifiers for which no declaration appears in the program itself
are bound dynamically. Their meaning is found by searching a system
environment, which consists of a collection of association tables. Ini
tially, the system environment consists of a table of standard declara
tions only (the global environment). Each invocation of the interpreter
temporarily adds the declarations of the currently executed program to
the system environment. This mechanism allows one program to access the
declarations of other programs. Declarations never survive the execution
of a program, however.

The interpreter has been implemented as a machine language pro
cedure, which can be invoked using a call of the form "interpret(c,t,n)",
where "c" is an array containing the program code, "t" an array contain
ing identifier names, and "n" an integer giving the number of different
identifiers. This procedure is accessible to all PEP programs. The
availability of the interpreter in this form allowed us to write the
remainder of the PEP system in the PEP language itself.

The Monitor Program

The monitor program[13] reads commands typed in by the user and exe
cutes them. It provides operations on a "current program", which is kept
in a number of arrays. Commands are provided for editing the current
program, for executing it, for storing it on disk, and for retrieving
stored programs from disk. The most important commands are the follow
ing:

LIST
DEL
GET
SAVE
RUN

list portion of current program
delete lines
read current program from disk
write current program to disk
execute current program

These commands suffice for simple use of the system. A complete list of
commands is given in table I.

The interpretation of the commands is straightforward. First the
syntax of the command is checked; if this is correct, the system checks
whether there are any semantic problems; only if the command cannot cause
errors will the corresponding action be executed. By keeping to this

13

convention it is guaranteed that the system never enters an inconsistent
state, like e.g. a program which no longer has increasing sequence
numbers. By checking for obvious user errors, the user is also protected
against inconsistent actions. For example, it is impossible to leave the
system with an unsaved program-or to overwrite an existing file acciden
tally.

Program lines are entered by typing a sequence number followed by
the program text. This sequence number determines the location where the
line is inserted in the current program. Any line not starting with a
command keyword or sequence number is assumed to be a statement from the
PEP language that is to be executed immediately. This is done by encod
ing it, surrounding it with a begin and end symbol, and passing it to the
interpreter as a program.

Table I. Monitor commands

Command Operation

BYE
CLEAR
DEL
FIX
GET
HELP
JOIN
LIST
LOAD
MON
MOVE
RESEQ
RUN
SAVE
SEQ
SHIFT
SHOW
TITLE
UNLOAD
USER

terminate PEP session
destroy current program
delete lines
replace part of a line
read program from disk
show commands and standard names
insert lines read from file
list part of current program
add library to system environment
switch to different monitor program
move lines within current program
renumber program lines
execute program
write program to disk
enter automatic sequence mode
change indentation of lines
show memory usage
change name of current program
remove library
change user identification

The monitor program has been implemented in the PEP language and can
also be invoked from user programs by calling the procedure "monitor"
(which has no parameters). In the command mode that then is established,
new PEP programs and directly executed PEP statements have access to all
declarations available at the moment of calling "monitor". This mechan
ism can be used for debugging purposes or for interacting with the pro
gram by means of the command language itself. Often, this possibility

14

will make it unnecessary for a user to implement a separate command
language to control his program. The following skeleton for a simple
database program may serve as an example of this use of "monitor".

declare
data:
read_data =procedure •••
write_data =procedure •••

% Declaration of access procedures
begin

read_data;
monitor;
write_data;

end

This program, when executed, will first read its global data from disk·;
then allow the user to inspect and modify the data by typing in calls of
access procedures, and finally write the modified data back to disk.

Program Modularisation

As explained in the description of the interpreter, programs can
communicate with each other via the system environment. This mechanism
can be used in two ways. A user can build a standard collection of
declarations by placing them in a separate program. The executable
statements of this program should contain an invocation of the procedure
"monitor". By executing this program, the user establishes a new system
environment, which includes his standard declarations. These are then
available to all later executed programs.

A second application is a kind of overlay mechanism that reduces
memory requirements for large programs. If a program contains a large
procedure, its body can be moved to a separate program; the original body
can then be replaced by an invocation of this program. This transforma
tion always works correctly and reduces the size of the program in
exchange for some extra time necessary for invoking the transformed pro
cedure.

Machine Language Procedures

Machine language procedures are necessary to alleviate the lack of
speed of interpreter based program execution and for providing operations
on special types of peripheral devices. There are two ways to access
procedures writ ten in machine language. The first is via the built-in
table of standard declarations, · but this only gives access to a fixed
collection of procedures. This collection is always resident in memory
and is therefore restricted to generally useful procedures.

15

form
body,
tion.

A second way to access machine language routines is available in the
of a variant of the normal procedure declaration. Instead of a
the address of a piece of machine code may be given in the declara
This is illustrated in the following skeleton program.

declare
code: array O of nat2;
fun= procedure-Ca: real) : real at code[O];
proc = procedure (a,b: integer) atcode[1];
%
% Other declarations
%

begiE_
load_code(code,'FILE');
%
% Statements using fun, proc
%

end

The procedure "load_ code" reads machine code from a file into an
and it relocates any absolute addresses that appear in the code.
the convention that a collection of machine language procedures
starts with a table containing their addresses.

array,
We use
always

Al though this mechanism introduces some insecurity into the system
(arbitrary machine code can now be executed), it cannot cause any prob
lems as long as well-tested routines are used; both parameters and result
are checked by the system in the same way as is done for normal procedure
calls.

EXPERIENCE WITH THE SYSTEM

Use of the System

The results obtained with the PEP system are very satisfactory. The
system has been used for the programming of several new experiments.
Most of this: work concerns molecular beam scattering and plasma physics.
Examples arE~ the averaging time of flight spectra over long times (up to
24 hours), the frequency stabilisation of a dye laser, and the recording
of spectral line shapes using a scanning interferometer. It has also
been applied to test interfaces, to solve simple numerical problems, and
to automate some of the teaching laboratories for undergraduate students.
We intend to use it for all new experiments.

Although the PEP language is less simple than BASIC, users have no
difficulties: with learning the language. Even beginning programmers with
only some BASIC or FORTRAN experience have no problems. A general obser
vation we made is that programmers gain more insight in the problems they

16

are trying to solve because a PEP program always reflects the structure
of a problem better.

We find the possibility to nest environments by recursively invoking
the interpreter a powerful program structuring tool. Every user can
create his own standard environment with procedures and functions that
are typical for his application. Global data and constants can also be
included in such a user environment. The global data survive execution
of erroneous programs and can hence be used to save the intermediate
results of an experiment; the global constants allow a user to give names
to addresses of devices connected to his experiment. In addition, device
specific machine language routines can be included in the user environ
ment. No expertise is required to build such environments; they have the
form of normal PEP programs.

The dynamic binding mechanism of the interpreter can be used to
alleviate the problems caused by the lack of procedure and call-by-name
parameters. An example of this is a program for solving nonlinear least
squares problems, which uses a fixed name to access the procedure that
gives the application dependent parameter function. Another use of this
is made in test programs, which rely on certain standard declarations in
the user environment to access the interfaces that should be tested.

There exist two versions of the PEP system: one version runs under
the RT-11 operating system and the other version runs stand-alone on an
LSI-11 and uses the remote file system of our central PDP-11/23. Origi
nally, we planned a central system for file storage because our budget
did not allow us to buy background storage for every LSI-11 computer. We
now find that such a configuration has additional advantages~ The shared
file system makes exchange of programs between users and update of shared
programs much easier. It also allows us to provide central news and
documentation files to all users.

Time and Space Requirements

Execution speed of PEP is of the same order as that of BASIC. Table
II gives.a comparison between PEP and BASIC. Machine language constructs
for the same operations would need times between 10 and 200 microseconds,
which is a factor 10 to 100 faster.

We have also compared the execution speed of the PEP system with the
times given in [5] for the BASIS system. For the fastest. version of the
BASIS interpreter these times are approximately equal to the ones given
in table II; however, these times were measured on a faster computer
(PDP-11/45) and the PEP system must hence be considerably faster than
BASIS. •It should also be noted that this fast BASIS version would be too
large to fit into an LSI-11; the slower version has about the same size
as the PEP system, but is a factor 3 to 4 slower than the fast version.

17

Table II. Speed comparison of PEP and BASIC
(all times in milliseconds measured on an LSI-11)

PEP I BASIC

------------------------------1-------------------------------
Statement Time I Statement Time

------------------------------1-------------------------------
i : = 0 o. 8 I I% = Oj o. 7
r := O 1.4 I R = o 1.3
r:=r*r 2.4 I R=R*R 2.1
a(1] := O 2.1 I A(1) = O 4.1
for i in 1 •• 10 do od 7.2 I FOR I%= 1% TO 10% 19.2

I NEXT I%
write ('A') 1 • 9 I PRINT "A" 2. 6

The first pass of the interpreter checks about 200 lines per second.
The delay caused by the syntax check is negligible for most programs.
Most compilers would need considerably more time to check a program. The
main reason for this difference is that the lexical analysis, which takes
much time in a compiler, has already been performed by the editor.

Memory requirements for the PEP system depend on the collection of
standard procedures included. The interpreter itself takes about 9 kb,
the monitor program takes about 13 kb, and the normal set of standard
declarations, which includes input/output procedures and .mathematical
functions, takes about 16 kb. This leaves 18 •• 22 kb for user programs
(assuming 56 •• 60 kb total available memory) • Memory can be gained by
omitting some of the standard declarations or by switching to a smaller
monitor program.

PEP programs are stored in a very compact form. We observe a reduc
tion in program size by a factor 2 because of the encoding used. Storage
requirements during program execution are also not excessive. Each
declaration takes a fixed amount of 1 O bytes (the declaration cell) •
Only for.arrays and structures additional space is necessary.

18

CONCLUDING REMARKS

We have shown that it is possible to construct an interactive pro
gramming system that is much more powerful than the so ubiquitous BASIC
systems, without having to give up the attractive properties of these
systems. The advantages of the PEP system over BASIC are:

The programming language is more powerful, especially because of the
availability of procedures.

Programs are better readable because of the structured statements
and the more meaningful names of variables and procedures. This
benefits the exchange of ideas and programs between users.

More programming errors are detected before actual program execu
tion, instead of being detected as run-time errors or even not being
detected at all. This makes the system more user-friendly and pro
grams more reliable.

The slowness of an interpreter based system is, in our view, completely
compensated for by the ease with which such a system can be used and by
the fast response to program changes. Because we have also provided an
easy access to assembly language procedures, execution speed never is a
problem.

REFERENCES

[1] P. Verhelst and J .H. Voskamp, "Software for a Simple Computer Net
work," DECUS Proceedings Vol. 7(1), pp.239-243 (1980).

[2] K.L. Bowles, "UCSD PASCAL, A (Nearly) Machine Independent Software
System for Micro and Mini Computers," ACM SIGMINI Newsletter Vol.
4(1), pp.3-7 (Feb. 1978).

[3] R .J. Cichelli, "Pascal-I - Interactive, Conversational Pascal-S,"
ACM SIGPLAN Notices Vol. 15(1), pp.34-44 (Jan. 1980).

[4] Pascal News(15), pp.63-66,101 (Sep. 1979).

[5] R.P. van de Riet and R. Wiggers, "Practice and Experience with
BASIS: an Interactive Programming System for Introductory Courses
in Informatics," Software - Practice and Experience Vol. 9, pp.463-
476 (1979).

[6) T.E. Kurtz, "BASIC," ACM SIGPLAN History of Programming Language
Conference, pp.103-118(1978).

19

[7] A.S. Tanenbaum, "Implications of Structured Programming on Machine
Architecture," Communications of the ACM Vol. 21(3), pp.237-246
(1978). - -- --

[8] P.J. Brown, "More on the Re-creation of Source Code from Reverse
Polish," Software - Practice and Experience Vol. 7, pp.545-551
(1977).

[9] P.W.E. Verhelst, "PEP - Language Description," Report VDF/CO 79-18,
Eindhoven University of Technology, Department of Physics, Eind
hoven (1980).

[10] K. Jensen and N. Wirth, PASCAL, User Manual and Report, Springer-
Verlag, Berlin-Heidelberg-New York(1976). -

[11] c. Bron and E.J·. Dijkstra, "A Discipline for the Programming of
Interactive Input in Pascal," ACM SIGPLAN Notices Vol. 14(12),
pp.59-61 (Dec. 1979).

[12] D. Gries, Compiler Construction for Digital Computers, John Wiley
and Sons, New York, N.Y. (1971).

[13] P.W.E. Verhelst, "PEP - Monitor Program," Report VDF/CO 80-08,
Eindhoven University of Technology, Department of Physics, Eihd
hoven (1980).

