
AFDELING INFORMATICA 

stichting. 

mathematisch 

centrum 

(DEPARTMENT OF COMPUTER SCIENCE) 

~.A. BERGSTRA & J.W. KLOP 

IW 176/81 

PROVING PROGRAM INCLUSION USING HOARE'S LOGIC 

Preprint 

~ 
MC 

OKTOBER 

kruislaan 413 1098 SJ amsterdam 



Punted a.:t :the Ma:thema:t-lc.ai. CentJz.e, 413 K1U.U6laa.n, Amfi:tvul.a.m. 

The Mathema:t-lc.ai. Centlte , 6ou.nded :the 11-:th 06 FebJtua/l,y 1946, iJ, a. non­
p1t.06li -ln6.tl:tu.ti.on <Wn,{_YlfJ at :the p!tomo.tlon 06 pWLe ma:thema:t-lC-6 a.nd .lt6 
a.ppU.c.a:t-lon6. I:t iJ, .&pon601t.ed by :the Ne:theJli.a.nd6 Gove1t.nment :thlt.ough :the 
Ne:thelt.la.nd6 01t.ga.n-lza:t-lon 601t. :the Adva.nc.ement 06 PUlt.e Ruea.1t.c.h (Z.W.O.). 

1980 Mathematics subject classification: 03D45, 03D80, 68B15, 03D35, 
03D75, 68B10 

ACM - Computing Reviews - category: 4_. 34, 5. 24 



. *) Proving Program Inclusion Using Hoare's Logic 

by 

**} J.A. Bergstra · & J.W. Klop 

ABSTRACT 

We explore conservative refinements of specifications. These form a 

quite appropriate framewor.k for a proof theory for program inclusion based 

on a proof theory for p~ogram correctness. 

We propose two formalized proof methods for program inclusion and 

prove these sound. Both methods are incomplete but seem to cover most 

natural cases. 
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0. INTRODUCTION 

This paper aims at a detailed study of program equivalence, seen from 

the point of view of Hoare's logic for program correctness. Because program 

inclusion 1_s just halfway program equivalence we can safely restrict our 

attention to program inclusion. This moreover has the advantage of connec­

ting closely to the theory of programming using stepwise refinements as 

described in BACK [2]. 

Our work can be seen as belonging to the subject of axiomatic seman­

tics for programs. Its novelty lies in the precise mathematical analysis 

of the situation, in addition to a rather strict adherence to first order 

proof systems and first order semantics for data type specifications. 

Deriving program equivalence from program correctness properties is 

not a new idea, of course. It occurs in compiler correctness proofs, for 

instance HEMERIK [16], and RUSSELL [23], as well as in the general theory 

of program correctness HAREL, PNUELI & STAVI [15]. 

Because of our interest in a proper theoretical analysis, we try to 

minimize the semantical problems by working with while-programs only; this 

by no means trivializes the problem. 

In the sequel of this introduction an intuitive account is given of 

the key definitions that underly the paper. 

INTUITION. Suppose that for s1,s2 c WP(E) we have 

(i) (semantical inclusion) 

and that WE~ wish to prove this fact. Now obviously, (i) implies 

(ii) Alg(E,E) ~ {p} s2 {q} ~ Alg(E,E) I= {p} s1{q}, for all p,q-E L(~). 

However, there is no reason to expect that the reverse implication 

(ii)~ (i) will hold, since (ii) states only roughly that s1 ~ s2, where 

'roughly' refers to the limited expressive power of L(E). (In fact, Remark 

7. 8(2) shows that indeed (ii) =f,.,, (i).) Now consider 
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(iii) V ( I 1 , E 1 ) ;::: (I, E) Vp, q E L (I') 

Alg(I',E') I= {p}S2{q} => Alg(I',E') I= {p}SI {q}. 

Clearly (i) ==>(iii)=> (ii). (For (i) => (iii), note that if (I',E'):::: (I,E), 

then the reducts of (I',E')-algebras to I form a subset of Alg(I,E); hence 

Alg(I,E) f SI~ s2 => Alg(I',E') f SI~ Sz.) 

In fact, we will restrict our attention to a subclass of all refine­

ments (::::) of (I,E), namely to the conservative refinements(!?:) of (I,E), 

for reasons which will be clear later. So consider 

(iv) V ( L ' ' E I ) ~ ( L ' E) Vp ' q E L ( L ' ) 

Now we have (i) =>(iii)=> (iv)=> (iJ); and it turns out that (iv)=> (i). 

(See Remark 7.8(3)). The conclusion is that one can treat the 'semantical' 

inclusion (i) by considering only first order properties of s 1,s2 (i.e. as­

serted programs {p} S. {q}, i = 1,2), provided one is willing to consider 
1 

not only (I ,E), but all its (conservative) refinements. 

This observation prepares the way for an approach via Hoare's logic 

of proving asserted programs. First of all, define 

(v) S C S if f Vp , q E L (I)( HL ( I , E) J- { p} S z { q} => 
I -HL (I,E) 2 

HL(E,E) I- {p} SI {q}) (proof theoretical inclusion) 

and consider 

(vi) vo::',E') t:(E,E) S C S 
I-HL(E',E') 2 

(derivable inclusion) 

the proof-theoretical analogue of (iv). Indeed, it will turn out that this 

'derivable inclusion' , written as HL(E,E) I- SI ~ s 2 , implies the seman­

tical inclusion (i). This is our first "proof system" for proving semantical 

inclusion; we will prove that (v), as a relation of s 1,s2 , is semi-decidable 

in E. 

One morei remark about why it is natural to consider (v), in casll the 
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quantification over all conservative refinements. The first reason of con­

sidering all (conservative) refinements of (I,E) is that only then one is 

able to givE:! as refined as possible first order descriptions of SI ~ s2 • 

This holds already on the semantical level. In (v) there is moreover another 

reason: to prove {p} S {q} we need invariants for the while-loops in S. It 

may be the case that these invariants can not yet be expressed in the 

present specification, so we have to go 'higher-up'. If one attributes a 

defining pmwer to statements S, namely to define the invariants of the while­

loops, then one could say that the defining power of SE WP(I) is sometimes 

ahead of that of the assertion language L(I). 

Of course, the proof system given by (v) 1.s sound, i.e. (v) ~ (i); 

otherwise it did not deserve the name. Some simple program inclusions that 

are in its scope, are program equivalences like 'loop-unwinding', and the 

kind of program equivalences considered in MANNA [20]. This proof system 

is not yet complete, however. In order to prove semantical inclusion (i) 

it is sufficient that (see figure) : 

(vii) 3 ( I: ' , E ') 12: ( I: , E) V ( I 11 , E 11 ) I::: ( I: ' , E ' ) SI C S 
HL (I:", E") z 

(Notation forced inclusion.) 

partial order of conservative refinements. 
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The reason that (vii)=> (i), is a simple consequence of the invariance of 

semantical inclusion (i), i.e. if. O::',E') ~1(I,E) and SJ,SZ E WP (L), then 

(This does not hold for 2 instead of k.) So in order to prove 

Alg(I,E) I= SJ~ s 2 it is sufficient to find some (I' ,E') 2 (I,E) where 

Alg(I' ,E') I= sJ ~ s2 
The proofsystem embodied by (vii) is stronger than that of derivable 

inclusion (vi), and we will give some examples of program inclusion (which 

seem to have some practical interest, too) which require the extra strength 

of this last proof system. 

Still, (vii) is not'complete' - although it seems hard to find a non­

pathological example of a program inclusion which is semantical (i), but 

which cannot be forced (vii). One can prove, however, that the following 

'cofinal' inclusion is equivalent to semantical inclusion: 

(viii) 3 (L",E") le: (I',E') SC S 
J=: HL(I",E") 2 

(The equivalence (i) <==> (viii) holds also when in (viii) 12:: is replaced by 

2. However, for I:'. we have (vii)=> (viii), not so for 2.) 

One could suspect that there is a multitude of such relations ob­

tained by repeated alternating quantification V 3 V ... from the basic re-

lation C (proof-theoretical inclusion). It is a pleasant surprise, 
..::. HL ( I ,E) 

suggesting the naturalness of the notions involved, that this possible hier-

archy does in fact not exist, and that one has no more relations than in 

the figure on the next page. 

As we have seen, conservative refinements (~) are more natural for 

this theory than general refinements (2). The technical reason is that for 

conservative refinements the 'Joint 

that (almost) every two refinements 

common refinement (I3 ,E3) k (Ii,Ei) 

Refinement Property' holds, stating 

(I.,E.) ~ (E,E) can be refined to a 
i i 

(i=J,2). (This is in fact a strengthened 

version of the well-known Robinson Consistency Theorem.) Also for conserva­

tive refinements we have a useful upward and downward invariance of the 

properties 
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S C . s2 1 -HL(L,E) 
prooftheor.inc(v 

HL(E,E) ~ S1!; s2 
derivable 
inclusion (vi) 
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HL(E ,E) I~ S 1S S 
forced 2 
inclusion (vii) 

co final semantical 

\ 
inclusion (viii~ inclusion (i) 

inclusion 
in some 
refinement 

Alg(E' ,E') F {p} S {q} and Alg(E' ,E') f s1 ~ s2, for (E' ,E') l:: (E,E). 

We will now give a survey of the paper. 

CONTENTS 

O. INTRODUCTION 

1. PRELIMINARIES 

(about logia, programs, and Hoare's Logia) 

2. CONSERVATIVE REFINEMENTS 
(in which a criterion and a characterization of aonservativity are 

given and Robinson's Consistency Theorem is stated.) 

3. DEFINABILITY 

(Padoa's Method and some applications) 

4. PROGRAM INCLUSIONS 

(contains definitions of the various inclusions) 
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5. PROTOTYPE PROOFS 

(this technical concept will be basic for the proof systems in the 

sequel) 

6. COMPLETIONS 

(a logical complete refinement is constructed for each specification) 

7. PROVING PROGRAM INCLUSIONS 

(one of the main theorems is proved, establishing the existence of 

two proof systems for~) 

8~ ABACUS ARITHMETIC 

(a prime example is considered to yield more insight in the relations 

between the various inclusions) 

9. DOMAIN INCLUSION 

(infoPmation about the domainn of s1,s2 can be converted to infoPma­

tion about inclusion s1 ~ s2.) 

JO.REFERENCES 

l • PRELIMINARIES 

In this section we will collect the necessary basic definitions and 

fact.s from logic in general as well as Hoare's logic. 

I.I. Preliminaries about programs and logic. 

The notions of first-order language, derivability (~) and satisfiability 

( f) are supposed known and we repeat them merely to fix the notations and 

terminology used in the sequel. 

In this paper we will exclusively deal with WP(E), the set of while­

programs S defined inductively as follows: S::= x:=t I s1;s2 I if b then 

s1 else s2 fi I while b do Sod, where t E Ter(E), the set of terms over 

the signature E, bis a boolean (i.e. quantifier free) assertion€ L(E), 

the first-order language determined by E. In general, assertions€ L(E) 

will be denoted by p,q,r. The signature says what 'non-logical' symbols we 

are considering; here equality(=) is considered as a logical symbol. We 

allow also infinite signatures. For a further definition of signatures and 

specifications, see Definition 2.1. Note that the signature as defined there, 



is part of the alphabet of L(E)~ 

If (E,E) is a specification (see again Def.2.1), the algebras (or 

models) in Alg(E,E) will be denoted by A= <A, ••• > where A is the under-

lying set of the algebraic structure A. 
We will need the following well-known fact: 

1.1.1. Goael completeness theorem 

(E,E) I- p ~ Alg(E,E) I- p, for au p € L (E). 

We will also need the 

1.1.2. Computation Lemma • Let~= x1, ••• , xk and y = y1, ••• , yk. Let 

S = s(1) e: WP(E)(i.e. S contains precisely the variables 1). 

Then for aU n e: N there is a quantifier free assertion 

Comp8 (~) =yin L(E) such that for every A e: Alg(E) and all !,be: A: ,n 

I + + + S(a) I ~ n & S(a) = b, 

7 

H ·++ rrib., d . ++ndl +I ere~, E_ are constant sy ovs enot~ng a, b a S(a) denotes the length 

of the computation of Son!. 

1.2. Preliminaries on Hoare's logic. 

Let p,q e: L(E) and Se: WP(E). Then the syntactic object {p} S {q} is called 

an 'asserted program'. If A e: Alg(E) , we define: A I= {p} S {q} <==1> 

v!,b e: A: s(!) + & s(!) = b ~(AI= p(!) + q(hl), FUTthermore we define 

Alg(E,E) I= {p} s {q} <=I> VA€ Alg(E,E) A I= {p}S {q}. 

Hoare's logic w.r.t.(E,E) is a proof system designed to prove facts like 

Alg(E,E) f {p}S {q}. We will call this proof system m.(E,E). It has the 

following axioms and rules, by means of which we can derive asserted pro­

grams; notation: m.(E,E) I- {p} S {q}. 
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(I) Assignment a.xiom {p[t/x]} x:=t {p} 

(2) Corrrposit-Z:On rule 
{p} s1 {r} {r} s2 {q} 

{p} SI; S2 {q} 

(3) Conditional rule 

{pAb} S {p} 
(4) Iteration rule: 

{p} while b do S od {pA 7b} 

(5) Consequence rule 
{p}S{q} 

where o::,E) I- p + P1 and o::,E) I- qi ➔ q, 

1.2.1. LEMMA. HL(E,E) is sound, i.e. for all p, S, q E L(E): 

HL(E,E) I- { p} s {q} => Alg (E,E) I= {p} s {q}. 

PROOF. See e.g. COOK [13]. 0 

1.2.2. DEFINITION. HL(E,E) is logically complete if for all 

p,S,q E L(E): HL(E,E) I- {p} s {q} ~ Alg(E,E) I= {p} s {q}. 

(In general, HL(E,E) is not logically complete. The notion of logical com­

pleteness is studied in BERGSTRA-TUCKER [7].) 

From the axioms and rules of HL(E,E) one can derive the following 

useful rules: 

1.2.3. 

(i) 
{pl} S{ql} 

Conjunct-ion rule : 

(ii) Disjunction rule :· as (i) with A replaced by v, 



(iii) Invariance rule : if the free variables in pare disjoint from the 

variables in S, then HL(E,E) I- {p} S {p} 

{p} S {r} 
(iv) 3 - rule: provided z does not occur in S. 

{3z p} S { r} 

2. CONSERVATIVE REFINEMENTS 

In this section we will collect some facts concerning the notion of 

refinement and especially, conservative refinement. These notions will be 

of fundamental importance in the sequel. All the material in this section 

(and the next, on 'definability') is standard in Mathematical Logic and 

can be found (e.g) in SHOENFIELD [24] and MONK [21]. For easier reference 

and to conform to our notations, we will give a fairly extensive survey 
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of the subject. Since the arguments used in the proofs are relevant for the 

sequel, we have included some of the proofs. 

2.1. DEFINITION of signatures and specifications. 

(i) A signature Eis a set of nonlogical symbols to be used in Predicate 

Logic. These may be constant-, function-, or predicate symbols; 

the arity of a function - or predicate symbol is the number of argu­

ments it is supposed_ to have. 

(E.g. E = {_Q, S,P, <} is a signature where .Q is a constant symbol, 

Sand Pare unary function symbols and < is a binary predicate symbol.) 

L(E) denotes the set of assertions in which only nonlogical symbols 

1r, a E E occur. 

(ii) If E .::_ L(E), the pair (E,E) is called a specification. 

(iii) Alg(E) is the class of all E - algebra's. 

(E.g. A =(lN ,O,s,p,k) E Alg(E), where E is as in the example above. 

Here O is a constant of A, sand p unary functions and k a binary re­

lation. We will also write SA for the interpretation or semantics of 

Sin A, in casu s; for convenience we will often neglect to distinguish 

notationally the symbol from its interpretation.) 

(iv) Alg(E,E) is the class of E -algebra's A such that A I= E. 

(v) Alg(E,E) I= p means: for all A E Alg(E,E) , A I= p. 



2.2. DEFINITION of refinements 

(i) If L'~ Land E' ~Ewe write (L',E') ~ (L,E) and call (L',E') a refine­

ment of (L,E). Here E = {p e: L(L) I E I- p} • We will always suppose 

that E,E'_ are consistent. 

(ii) If (L',E') is finite (i.e. both L1 and E' are finite), then we write 

(LU L',EuE') ~f (L,E). 

(iii) Let A be some algebra. Then LA is the signatUY'e of A and EA is the 

theory of A : EA = {p e: L(LA) I A f p}. Note that A I= p.,.. 

Alg(LA,EA) I= p. 

(iv) Let (L,E) be a specification. Then Eis corrrpZete if Vp e: L(L), E I- p or 

E I- 7p. 

2.3. DEFINITION (conservative refinements) 

(i) Let (L',E') ~ (L,E) be a refinement such that: Vp e: L(L) E'l-p~E 1-P• 

In other words, such that~ n L(L) = E. Then this refinement is call-

ed consewative over (L,E). (So a conservative 

yield more theorems in the 'original' language 

Notation: (L',E') ~ (L,E) 

(ii) (L' ,E') ~f (L;E) .,.. (L 1 ,E') l:: (L,E) & (L' ,E') 

2.3.1. Note that if E is complete: (L 1 ,E') ~ (L,E) 

2.4. DEFINITION (Expansions and restrictions) 

Let L1 ::i L 

refinement does not 

L(L).) 

> (L ,E) • -f 

... (L',E') J;:: (L,E) • 

(i) If (L' ,E') is a specification, then the restriction of (L' ,E') to the 

signature L is (L,E) -where E = E' n L(L). 

Wewritepr,(L',E') = (L,E). 

(ii) If A' E Alg(L',E'), then the restriction of A' to Lis obtained by 

deleting all constants, functions, predicates in A' corresponding to 

symbols in L 1 -L. We write p~'(A')= A for this restriction. A is also 

called a reduct of A'; and A' is called an expansion of A. 

We will also write A~ A'. 

(iii) Let X .=. A. Then AX is the expansion of A obtained by adding the a E X 

as designat~d constants. Instead of AA we write~. 

Example: for A as in Def. 2. 1. (iii), 1 = (lN ,O, I ,2,3, ••• ,s,p,k). 

(So in L(L~ one can refer to all elements of A by name.) 



2.5. DEFINITION (Elementary equivalence and elementary extensions) 

Let A, BE Alg(E). Then: 

(i) A = B (A,B are elementary equivalent) if£ EA = EB. 

(ii) Let A ~ B • Then : A~ B if£ ~ = BA. 
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(A is an elementary sub-algebra of B , or : B is an elementary exten­

sion of A.) 

2.5.l REMARK Note that A~ B ~A= B. 

2.5.2. PROPOSITION. A~ B ~ BA I= E~ • 

PROOF. See SHOENFIELD [24] p. 74. □ 

In the sequel we will mostly deal with conservative refinements(~). 

They have the pleasant property that two refinements (E.,E.) ~ (E,E) (i=l,2) 
. l. l. 

can be joined to a refinement (E 1 u r2 , E1 u E2) I?: (E,E), provided the ob-

viously necessary requirement that r 1 n r 2 =Eis satisfied. This is a 

(strong) form of A. Robinson's Consisting Theorem (RCT). The version we will 

need is slightly stronger than the usual statement of RCT. For that reason 

we in.elude part of the proof. We start with the very useful Joint Consis­

tency Theorem (JCT); for the (hard) proof we refer to SHOENFIELD [24], p. 79. 

From JCT the remaining theorems in this section follow easily. In MONK [21] 

another order of presentation is followed. 

2.6. Joint Consistency Theorem (Craig- Robinson) 

Let (E,E) and (E',E.')be specifications. Then Eu E' is inconsistent iff 

there is a closed assertion p E L ( E 1 n E 2) such that E I- p and E' I- 7p. 

2.6.1, COROLLARY (Craig Interpolation Lemma). Let p and q be closed asser­

tions such that I- p + q. Then there is a closed assertion r such that 

(i) I- p + r and I- r ➔ q 

(ii) every nonlogiaal symbol occurring in r, occurs in both p and q. 

PROOF. Clearly the specification {p,7q}. is inconsistent: 

{p} n {7q} I- p, p ➔ q, q, 7q, false. Hence by Theorem 2.6 there exists a 
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closed assertion p E L({p,7q}) such that {p} 1- r and {7q} I- 7r. By the 

Deduction Theorem: I- p ➔ r and I- 7q ➔ 7r. 0 

2.6.2. COROLLARY (Robinson's Consistency Theorem). 

I· 

Let (Ii,Ei) t: (I:0 ,E0), i = 1,2, such that 1: 1 n 1: 2 = 1:0 • 

Then 

(i) El u E2 is consistent, and moreover 

(ii) ( I 1 u I:2, El u E2) ~ (I:0 ,E0) and even 

(iii) ( I I u I:2' El u E2) t::: (I:.,E.), i = 1, 2. 
l. l. 

PROOF. follows innnediately from (ii), which follows by transitivity of~ 

from (iii). 

(iii): -Suppose E 1 u E2 ~ p for a closed assertion p E L(I:i). 

Therefore { e 1 , ◄e 2 } j- p for some closed assertions ei E L(I:i), i = I, 2, such 

that E. I- e. • By the Deduction Theorem : 
l. l. 

I- e2 ➔ ( e 1 ➔ p ) . 

By Craig's IntE~rpolation Lennna 2.6.1: 

for some r E L (I: 1 n I: 2 ) = L(I:0 ). By (*): E2 I- r. Hence E0 I- r, since 

(I: 2 ,E2 ) ~ (r0 ,E0 ). So by (**): E0 I- e 1 + p. Therefore E1 I- p; and this 

proves 0:1 u z: 2 , E1 u E2 ) ~ (r 1,E 1). Likewise for (I: 2 ,E2). 0 
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Next, we will give a characterization of the conservativity of refine­

ments. For many purposes, however, the following criterion for conservativity 

is sufficient. 

2.7. DEFINITION Let (E',E') be a refinement such that every A E Alg(E,E) 

can be expanded to an A'E Alg(E',E'). Then this refinement is called simple. 

(See figure below). 

2.7.1. PROPOSITION (Criterion for conservativity). Simple refinements are 

conservative. 

PROOF. Suppose (E',E') is a simple refinement of (E,E), i.e. 

VA E Alg(E,E) 3 A' E Alg(E',E')A' ~A.Let E If p for some closed asser­

tion p. Then by Godel's Completeness Theore~, A 11 p for some A E Alg(E,E). 

So there is an A' E Alg(E' ,E') such that A'~ A. Hence A' I= 7p; and rea­

soning backwards we have E' ~ p • 0 

~----------------; Alg (Z') 

Alg(l:',E') 

~-+---H------,'---+----------;Alg(l:) 

Alg(l:,E) 

In general, the situation is more complicated. If (E',E') ~ (E,E), 

it may be the case that some A E Alg(E,E) cannot be expanded to an 

A' E Alg(E',E'). So we may 'lose' models when taking a refinement. However, 

such a 'lost' model A is always an elementary substructure of (and hence 

elementary equivalent to) an A' which is not 'lost'; see the next theorem. 

2.7.2. EXAMPLE. (From SHOENFIELD [24], p. 96). Let E' contain the constant 

symbols cO,c 1,c2 , ... and let E' = {ci -:f,. cj I i-:f,.j}. Let (E,E) be obtained 

by omitting cO and let A be (lN-{O}, 1,2,3, ••• ). Then A cannot be expanded 

to an A' E Alg(E' ,E') , since there is no "room" for (an interpretation of) 
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, , I ,' / 

; I 

/ .. ' , / · / ,' ._.. , I 
. / ' 

·, ,'\ ./ ,/ 

l 

Alg(l:') 

Alg(r',E') 

Alg(l:) 

2.7.3. THEOREM (Characterization of conservativity). Let (E',E) ~ (E,E). 

Then the foZZowing are equivaient: 

(i) (EI ,E') ~ (E,E) 

(ii) VA E Alg(E,E) 3A' E Alg(E,E), A" E Alg(E' ,E') suah that 

A~ A' s A" 

(iii) E' u EA is aonsistent, foP aZZ A E Alg(E,E) 

(iv) E' u Er is aonsistent, fop aZZ A E Alg(E,E). 

PROOF. (ii)=o (i): Suppose E 17'P, p E L(E). Then A I;& p for some A E Alg(E,E). 

Now there are A' E Alg(E,E) and A" E Alg(E' ,E') such that A \o( A'::; A". By 

Remark 2.5.1, A= A'. Hence also A' I= 7p. Therefore A" I= 7p; so E' ~ p. 



(i) ~ (iii). Let (r.',E') P- (E,E) and suppose: for some A e: Alg(E,E), 

E' u EA is inconsistent. By Theorem 2.6, there is a closed assertion 

p e: L(r' n r.A) = L('f.) such that E' I- p and EA I- 7p. By conservativity, 

E I- p. Hence~ _A I= p; contradiction with E~ I- 7p , because 

EA I- 7p 4'=0> ~ I= 7 p 4=> A f 7 p. 

(iii) ~ (ii). Suppose E' u EA is consistent. Then there is a B" such that 

B" I= E' u EA • Let B' be the~reduct of B" to the signature r.', and let B 

be the reduct of B" to r.. Then BA I= EA , so by Proposition 2.5.2, A~ B; 

and trivially B ~ B' 
(iii)~ (iv) trivial. 

~ 

(iv)~ (iii): Suppose E'u EA is inconsistent. Then by Theorem 2.6, E'I- p 

and EA I- 7p, for some p e: L(E' n EA)= L(E). Now EA I- 7p ~EA~ 7p, 

since~EA is complete. Hence E' u EA~ is in~onsistent":' 0 
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* ' 2.7.3.1. EXAMPLE Let N = (1N ,0,I,+,x) and let N be some non-standard model 

of arithmetic, so N* = N. Then (r.N *, EN*) I:: (r.N,EN). Proof: EN* u EA is 

consistent for every A e: Alg(r.N,E~) (i:e. every A such that A ~ N) because 

EA= EN 2:_ E~*. (Note that this refinement is not simple). 

3. DEF INABILITY 

We now turn to a special kind of simple conservative refinement (the 

definitional refinement), collect some material about definability, and use 

this to prove that'+' is not definable in the algebra (1N ,0,S,P) which will 

play an important role later on. 

3.1. DEFINITION Let 6 c r. and consider ('f.,E). An n-ary predicate symbol 

TI e: r. - 6 is definable in terms of 6 in E, if there is an assertion p e: L(6) 

such that 

(where x1, ••• ,xn are distinct variables). An n-ary function symbol 

~ e: r. - 6 is definable in terms of 6 in E if there is an assertion p e: L(6) 

such that 
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(where x 1, ••• ,xn,y are distinct variables). 

3.2. DEFINITION (I',E') ~d (I,E), in words: (I',E') is a definitional re­

finement of (I,E), if (I',E') ~ (I,E) and every symbol EI' - r is definable 

in terms of r in E'. 

3.3. THEOREM (Padoa's method). Let (I u {T}, E) be a specification whePe 

TI r. Then Tis not definable in tePms of r in E, if thePe aPe two models 
A B -A, B E Alg (I u{ T}, E) such that A = B and CJ = CJ fora evePy nonZogical 

A B symbol CJ Er, but T # T • 

PROOF.· Let T be a predicate symbol. (The ,proof for function symbols, in­

cluding the constant symbols which can be considered as 'O-ary' function 

symbols, is similar.) Suppose A, B exist as in the theorem, and suppose 

that Tis definable in terms of r in E. That is: 

for i;;ome assertion p E L(I). Then for: EA we have: 
➔ A L -+ I ➔ ➔ B a E T ~ A 1- p [a] <==0< ·B = p [a] ~ a E T (where the middle equiva-

lence follows since p E L(I) and A, B have the same interpretation for every 
A B symbol in I). Hence T = T, contradiction. D 

3.3.1. REMARK 

(i) A much stronger theorem results when in Theorem 3.3, 'if' is replaced 

by 'if£': Beth's Definability Theorem (BDT). 

(ii) Write (I',E') ~I (I,E) iff r'-r is a singleton. Then the version of 

BDT as indicated in (i) can be paraphrased as: (I'.E') 1:: 1 (I,E) ~ the 
I' d 

mapping Pr: Alg (I',E')is injective. 

A slightly stronger version of BDT as e.g. in SHOENFIELD [24], p. 81, 

says the same for ~d instead of ~J. 
Noting further that ~d implies l::s , we have the following model 

theoretic characterization of definitional refinements: 
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(r',E') ~d (r,E) ~ 

r' Pr: Alg (r',E') + Alg (I,E) is injective ~ 

r' Pr : Alg (r',E') + Alg (r,E) is bijective. 

3.3.2. APPLICATION In the sequel we will reed the following fact: Let 

A= (1N ,O,S,P). Then the function+ is not definable in A. PROOF, by Padoa's 

method. (For another proof, using elimination of quantifiers, see section 8.) 

Suppose+ is definable in A; i.e. for some assertion r we 

have A I= r [a,b,c] ~ a + b = C Now let A' = (1N ,O,S,P ) 

so A' I= r (x,y,z) ~ X + y = z . 
Hence EA, I- r(x,y,z) ~ X + y = z , so the symbol+ is definable in 

terms of rA in EA' . 
To show that this is contradictory, we use Padoa's method (3~3): we 

N N 
will try to fiNd N1 ,N2N E Alg (rA,EA') such that N1 = N2 , a 1 = a 2 for all 

a 'f + , but + 1 'f + 2 Two such models are readily obtained; we nave to 

take 'non-standard' models: 

where 1N + = 1N - {O}, and .where we write ab instead of (a, b). Further, 

S(n) = (n+l) , P(n+I) ) = n , P(00) = o0 , and n +. n' , = m m m m mi m 
(n+n').( ') (i=I,2). 

1. m+m 

(Intuitively: the n0 are the standard numbers; there are nonstandard 

numbers divided in copies of 2'l, indexed by positive integers. The point is 

that these indices are so to speak indiscernible for the specification in 

question, so there is considerable liberty in defining'+' on the non-

standard part.) D 

3.3.3. EXAMPLE Some reducts of arithmetic. In the following schema most 

of the above concepts are illustrated. Upward lines denote conservative 

refinements (of the theory of the structure in question); the 'clusters' 

of structures are equivalence classes w.r.t. the equivalence generated by 

~d. Simple refinements are indicated with 's'. The most remarkable facts 
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here are the definability of exponentiation from O, I, + , x, which is well­

known; and less well-known, the definability of + in terms of O, S, x, by 

the following: 

i+ J = k ~ (i'k")'(j'k")' = ((i'j')'(k"k"))' 

where x' = Sx, x" = S(Sx). (See BOOLOS-JEFFREY [II] p. 219.) 

(lN,0,1, +,x,exp) 

(lN ,0, I, +,x) 

(lN ,O,S,P, +,x) ful 1 arithmetic 

(lN ,O,S,x, +) 

(lN ,O,S,P,x) 

(lN ,0,S,x) 

rJl 
p 
0 ..... 

~ 
,I.J rJl 
CJ ffi p 

uJ ::, ,... .... r:,o 
>:: 0 

QJ ,... 
rJl 

-~ ~ ,I.J 

~ QJ 
rJl ,... ...... 

uJ ::, ..... 
CJ CJ ,.c: 

< ..... >:: QJ ;3 

(lN ,O, I,+, S,P) 

(lN,0,1,+) 

(lN ,O,S,P, +) 

(lN ,O,S, +) 

Presburger arithmetic 

~ "Cl ,... 
0 rJl >, ..... ,I.J ...... ..0 

>, ,... QJ ell ,... QJ rJl ..... QJ s 
0 0.. ,I.J ...... 
QJ QJ ,... ..0 

,.c: >, ,I.J tU ell 
,I.J ...... ..... 0.. p 

...... p ..... 
QJ tU ..... ...... .... ...... ::, .... ...... QJ 

..0 ,I.J tU "Cl 
tU p QJ ,,....., QJ 

"Cl QJ ...... 0 ...... ..... :> ..0 CJ ..0 
CJ QJ tU ..__,, ell 
QJ p i::: 

"Cl :,., ..... >, ..... 

(lN ,O,S,P) 

(lN ,O,S) 

(lN ,O,P) 

Abacus arithmetic 

...... .... .......... 
i::: QJ p QJ 
0 "Cl 0 "Cl 

s 

(lN) 



4. PROGRAM INCLUSIONS 

We will now introduce the various notions of inclusion C between 

statements s 1 ,-s2 E WP (E) which we will study, and prove some elementary 

facts about them. 
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4.1. DEFINITION (i) Let SE WP(E) and A= (A, ••. ) E Alg(E,E). Let S contain 

the variables x 1, ..• ,xn (n ~ l). Then SA : An ➔ An is the partial function 

determined by S; i.e. 

f (b 1, .•. ,bn) if S.converges with input 

= (a 1, ... a ) and yields (b 1, ... ,b ); -
n - n 

l undefined else. 

REMARK Thei restriction to functions f : An ➔ An is not essential. Instead 

of e.g. f(x 1,x2,x3) = x 1 • x2 one may use f'(x 1,x2,x3) = (x 1•x2,0,,0).) 

4.2. DEFINITION of semantical inclusion. Let s 1,s2 E WP(E). Then: 

(i) 1 ( "" E) I S C S S A c S A , for all A E Alg (I ,E). A g "• = 1 - 2 <==> 1 - 2 

This inclusion is said to be semantical. Instead of the LHS we will also 

use the notation: s1 ~ Alg(E,E)s2 . 

(ii) Semant;ical equivalence w.r.t.(E,E) is defined by: 

4.3. DEFINITION of prooftheoretical inclusion. 

(i) S C S 
l -HL(E ,E) 2 

iff for all p,q E L(E): 
HL ( E , E) I- { p} S 2 { q} ~ HL ( E , E) I- { p} S l { q}. 

(Note the direction of the implication. Intuitively: s 1 is less defined than 

s 2 so {p} s1{q} is more often trivially true.) 

(ii) s 1 = HL(E,E)s2 is the corresponding equivalence. 
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4.4. DEFINITION of derivable inclusion. 

(i) - V(I: 1 ,E')~ (I:,E) SI C s2 • 
-HL(I:' ,E') 

(The terminology 'derivable' and the choice of the notation 'I-' is motivat­

ed by the sequel: it will be proved that derivable inclusion w.r.t. (E,E) 

is semi-decidable in E.) As before we define HL(I:,E) I- s1 = s 2 derivable 

equivalence w.r.t. (E,E). 

(ii) 

4.5. DEFINITION of forced inclusion 

As before, foreed equivalence w.r.t. (I:,E) is defined. 

4. 6. DEFINITION of cofinal inclusion. The inclusion s1 ~ s2 is cofinal, iff 

V(E' ,E) ~ (I:,E) 3 (E",E") I?: (I:' ,E') s C s 
I -HL(I:" ,E") 2 · 

It is clE~ar that all inclusions ( ~) defined above are partial orders 

and that all equivalences ( =) are equivalence relations, except for forced 

and cofinal inclusion resp. equivalence. For the last case, 'cofinal', we 

will eventually prove that 'cofinal - semantical', hence cofinal inclusion 

is indeed transitive. We will now prove that also forced inclusion is tran­

sitive - hence it is a partial order and forced equivalence is an equiva­

lence relation indeed. First we need a simple proposition about renaming 

of symbols. 

4.7. DEFINITION (I: 1 ,E1) ~ (E 2,E2) ((r 1,E 1) and (I: 2,E2) are isomorphic 

specifications)if (E 1,E1) can be obtained from (r2,E2) by renaming some of 

the nonlogical symbols; distinct symbols must be replaced by distinct sym­

bols. 
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4.7.1. REMARK So Robinsons Consistency Theorem 2.6.2 says (see figure) 

that if (Ii,Ei) ~ (I,E) , i = 1,2, then for some variant (I2,E2); (I2,E2) 

such that (I2,E2) ~ (I,E), there exists a (I3 ,E3) ~ (I 1,E 1), (I2,E2) . 

4. 7. 2. PROJP0SITION Let SI, s 2 E WP(I). Suppose 

(i) 

(ii) 

(I',E'),O:",E") 12: (I,E), 

(I' ,E') ~ (I",E"), and 

I ' n I" = L Then 

HL( '"'' E') I S ' S .......... HL ('"'",E") I- SI '_ s2. t..., - 1=- 2..--,, Lo L 

PROOF. (i) routine; (ii) at once from (i) 0 

4.8 PROPOSITION Let Sl,s2,s3 E WP (I). Then: 

PROOF. The assumptions are 



22 

3(Ei,EP 12: o::,E) vcr'l.,E'l.) R <ri,EP si ~ HL(I'.',E'.')si+l (i=1,2) 
1 1 

( see figure) 

Now consider such (I!,E!) , i = 1,2. By Proposition 4.7.2. we may suppose 
1 1 

that Ij n I 2 =I. Now by Robinsons Consistency Theorem, 

(I* ,E*) = (Ij u I 2 , Ej u E2) ~ (I,E). Also, by transitivity of~ HL' in 

* *) IL the 'upper cone' of (I ,E we have s 1 ~ HL s 2. Hence (I,E) 1 s 1 ~ s3 . 

D 

Another corollary of Robinson's Consistency Theorem 2.6.2 is: 

4.9 PROPOSITION. Forced inclusion implies cofinal inclusion. 

PROOF. Suppose HL(I,E) f~ s 1 ~ s 2 , i.e.: 
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To prove: 

(2) 

Take (E',E') as in (I), and consider a (Ej,Ej) as in (2). By Prop. 4.7.2. 

(ii)· we can 'shift' (E',E') to an isomorphic variant (E'*,E'*) such that 

I'* n I'= I, and still having the property that s 1 ~ HL s 2 in all refine­

ments. 

Then t~ke (E'1',Ej') in (2) as the um.on of (Ej,Ej) and (E'*,E'*) by 

RCT 2.6.2. this is possible. D 

4.9.1. REM~RK. For~ instead of~ the above proposition fails. E.g. take 

SI = x := 0 

s2 = if o > then x := 0 else x := fi 

Let I = {O, I,<} , E = the theory of partial order, E1 = E u {0 <I} and 

E =Eu {O > I} Then HL(E E) " I-" S = S hence HL(E E) "IL" S = 2 ' '2 1-2, ' 1 ]-

However, for all (E',E') ~ O::,E1), S1 iHL(E',E')s2. 
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4.10. REMARK. All inclusions introduced above, except semantical inclusion, 

were obtained by quantification over the 'basic' prooftheoretical inclusion 

~HL. This suggests looking at all inclusions of the following general form: 

S C V3V •• • 3 
1 - HL(E,E) 

and likewise SIC ~~r:Er s2, and the dual notions obtained by inter­

changing 3,V. (Note that only alternating strings of quantifiers are inte­

resting, since obviously --W-- = --V-- and likewise for 3.) So derivable 

inclusion w.r.t.(E,E) is. CVHL(E,E) , forced inclusion is ~~(E,E), and 

cofinal inclusion is ~ ~ (E ,E). (In the sequel we will also consider 'in-
1 . . f" ' C 3 ) c us1.on 1.n some re 1.nement : _ IIL(E ,E) • 

Now between these generalized inclusions there are a priori the fol­

lowing implications; see the figure where an implication is downward. (Only 

the quantifiers of ~~L(-E ,E) are mentioned.) 

V3V V3V3V 

3 3V3 

However, this hierarchy of inclusions 'collapses' because 

(i) 
3V V3V 

~ HL(E,E) = ~ HL(E,E) 

(ii) 
V3 3V3 

~ HL(E,E) = ~ HL(E,E) 

To see the nontrivial direction of (i), note that it was proved already in 

Proposition 4.9. By a similar argument also (ii) follows. 



Now 3V3V = 33V = 3V, V3V3V = V3V = 3V, etc. Hence the only in­

clusions are those displayed in the following figure: 

V 

3 

3 
(Remark: we did not prove that S,HL(r,E) is a partial order. Question: 

is it?) 
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4.11. REMARK (Contexts) All inclusions that are defined above exhibit the 

desirable property of staying valid in a context: let s1 , s2 E WP(r) and. let 

C [ J be a 'aontext statement'(also in r), i.e. a statement with a 'hole'. 

Then 

The proof follows in a straightforward manner by observing that 

Vp,q E 1(r) HL(r,E) I- {p} s2 {q} * HL(r,E) I- {p} sJ {q} 

implies 

Vp,q € L(r) HL(r,E) I- {p} c [s2J {q} * HL(r,E) I- {p} c [SJ J {q}. 

4.J2. REMARK. (Inva:raianaes.) For a better insight in what happens inside 

the 'cone of refinements', we will investigate whether the notions 

(1) Alg(r,E) I= p E I- p 

(2) Alg(r,E) I= {p} s {q} HL(r,E) I- {p} s {q} 

(3) Alg(r,E) I= SJ C s2 
. 

SJ C HL(r ,E) S2 - , 
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are invariant under 'shifting (I,E) upward or downward'. 

Ad (1). Upward and downward invariant (i.e. V(E',E') ~ (E,E) 

(Alg(E,E) I= p <=> Alg(E' ,E') I= p)); this follows simply from Godels Com­

pleteness Theorem and the definition of conservativity. 

Ad (2). Here the situation is already somewhat more complicated: 

Alg(, ) I= {p} S {q} is upward and downward invariant ; see Proposition 

4.13. However, for HL( , ) l- {p} S {q} we have only the (trivial) upward 

invariance, i.e.: 

vo::' ,E') ~ (E,E) HL(E,E) 1-{p} s {q} => HL(E' ,E') I- {p} s {q}. 

That here 11 <= 11 does not hold, is because an invariant needed for the proof 

of 1- {p} S{q} may be available in (E' ,E') but not yet in (E,E). 

Ad (3). Again the semantical notion, Alg (,) f s 1 i;:_ s2 , is invariant in 

both directions. For 'upward' this is trivial; for 'downward' certainly not 

- see the next Lemma (4.14). 

Finally, s1 i;:_ HL(,) s2 is neither upward, nor downward invariant. 

One can even show that it may happen that s1 i;:_ HL(, ) s2 is alternatingly 

true and false while following some upward path (E O,EO) ~ (E 1 ,E 1) S 

4.13·. PROPOSITION. Let (E' ,E") ~ (E,E) , p,q E L(E) and S E WP (E). Then 

Alg (E,E) I= {p} S {q} <==> A1g(E' ,E') I= {p} S {q}. 

PROOF. (=>) is trivial. To prove the reverse, we use Theorem 2.7.3, which 

says that for every A E Alg(E,E) there is an A' E Alg (E,E) and an A" E 

Alg(E',E') such that A<A' ~A". By Remark 2.5.1, we have A= A'.- Now 

the result follows by the following Lennna from BERGSTRA-TUCKER [7]: 

"Let A= A' . Then A I= {p} S {q} <==> B I= {p} S {q}". D 

4.14. LEMMA. Le-f: (E',E') ~ (E,E). Then for all s],s2 E WP(E): 

Alg(E,E) I= s1 i;:_ s2 <=> Alg(E',E') I= s1 i;:_ s2 • 

PROOF. (=>) is easy: take A' E Alg(E' ,E'). 

A I= s1 i;:_ s2 • But then trivially also A' 

structure on A' does not play a role. 

E' Then PE (A') = A E Alg(E,E). So 

I= S 1 i;:_ s2 , since the extra 
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(<=). Proof by contraposition: take A E Alg(E,E) such that A !;I s 1 C s2• 
-+ -+ Then there are a= a 1, ••• ,an EA and b = b 1, ••• ,bn EA such that, par abus 

de language: 

More precisely: for some n, and for all m: 

A I= <I> n 
-+ -+ 

A 7 1/1 (a,b), 
m --

Comps <!) = b 
I ,n 

-+-+ -+ ~ 
and 1/1 (a,b) = 7 Comps (a)= b. m -- z,m - -

-+-+ -+-+I Let r be the set of assertions {</> (a, b)} u { 1/1 (a, b) m E lN}. n-- m 

CLAIM. For some B : B I= E' u r . So B I:/ s 1 ~ s2 , hence 

Alg(E' ,E') I=,' s 1 ~ s2 and we are through. 

PROOF OF THE CLAIM. Suppose there is no such B, i.e. E' u r is inconsistent. 

Then for some finite 6. .=.. r , we have that E' u 6. is already inconsistent. 

Say p. = { <j>n , 7 1/1 0 , ••• , 7 'I' k- I } • So E' I- 7 ( <j> A M 'I' • ) , 
n . k 1 1< 

hence 

I -+-+ -+-+ -+-+ E' - 7 3 x,y (</> (x,y) A M 1/J. (x,y)). 
n i< k 1 

By the conservativity of E' over E, we can replace E' here by E. However, 

this contradicts the fact that 

I -+-+ -+-+ . -+-+ A = 3 x,y (</> (x,y)A,M 1/l(x,y)). 
n 1< k 

□ 

5. PROTOTYPE PROOFS. 

Let us abbreviate the implication 
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HL(:E' ,E') I- {p} s2 {q} ~ HL(:E' ,E') r {p} s 1 {q} 

by H:E' ,E', p,q). So by definition, HL(:E,E) I- s 1 ~ s 2 is equivalent to: 

<l>(:E' ,E' ,p,q) for> aU (:E') Ii:: O:,E) and aU p,q e: L (:E'). Now it turns out 

that among all these~ (:E',E',p,q) there is a 'generic' one, 
0 0 -+ ,+ ~(:E ,E ,r(x),r (x)). I.e.: 

0 0 -+ -+ ~(:E ,E ,r(x),r'(x)) <==o-

V(:E',E') 12: (:E,E) Vp,qe:L(:E') ~ (:E',E', p,q). 

The situation is even further simplified,-since the generic implication has 
oo, -+ -+ • an antecedent HL(:E ,E ) - { r(x) } s 2 { r '(x)} which is always true. This 

reduces checking whether HL(:E,E) I- s 1 C s2 or not, to checking whether 

HL(:Eo,Eo) ~ {r(~)} s 1 {r'(~)}, which is semi-decidable. (Hence our choice 

of the notation I- in HL(:E,E) I- s 1 C s2.) 

Finding this generic implication is based on the observation that 

every proof HL(:E' ,E') I- {p} S {q} can be viewed as an instantiation of a 

"prototype proof" 1r(S). In order to define this concept, we need an ef­

ficient notation for proofs of asserted programs. One method is to consider 

a proof as a proof tree; a second way is to consider a proof as a flow­

diagram with assertions written at the cut-points. We will use a more work­

able linear notation of proofs which will be introduced now. First we will 

define the concept 'interpolated statement' which can be viewed as the flow­

diagram corresponding to the statement plus some assertions written at 

some cutpoints. 

* * * * 5.1. DEFINITION. The class IStat(I:), with typical elements S ,s1 ,S , ••• , 

of interpolated statements is inductively defined by 

S* . ·= .. 
while b dos* od. 

Here Se: WP(E). So the class of interpolated statements contains next to 

the usual statements also asserted statements and statements interlaced 
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with assertions in an arbitrary way;.but it contains also proofs of asser­

ted statements. These will be singled out by means of the following exten­

ded proof rules. 

5.2. DEFINITION. By means of the following axions and extended proof rules 

we can derive proofs of asserted statements: 

( 1 ) Assigr,ment axiom scheme: 

{p(t)} x:=t {p} 

( 2) Extend,ed corrroosi tion ru 'le: 

{p} s7 {r} {r} s; {q} 

(3) Extend,ed aonditional ru'le: 

{p} if b then {pAb} s7 {q} else {pA7b} s; {q} fi {q} 

(4) Extend,ed iteration rule: 

{pAb} s* {p} 

{p} while b do {pAb} s* {p} od {pA7b} 

(5) Extend,ed consequence rule: 

p + P, {pl} s* {ql} ql + q 

{p} {pl} s* {qt} {q} 

5.3. DEFINITION and NOTATION. 

(i) Let Pr O:,E) be the class of proofs (interpolated statements) which 

can be derived using this axiom scheme and extended proof rules, 

such that in (5) only implications provable from E are used. 
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(ii) If s* E IStat (L), then cr (s*) will denote the underlying statement 

obtained by erasing all {p} ins*. (So cr can be inductively defined 

as follows: 

(iii) 

cr(S) = S for S E WP(E) 

cr(s*{p}) = cr({p} s*) = cr(s*) 

cr(if b then s7 else s; fi) = if b then cr(s7) else cr(s;) fi 

cr(while b do s*od) = while b do cr(S*) od.) 

If S* E lPr (E, E), then K(S*) will denote the set of consequences p 

used in the derivation of s*. Note that these consequences can be 

read of directly from s*: K(S*) = {p+p'I {p} {p'} 2:,. s*}.(Here 

denotes 1:he relation of being contained as a 'subword'.) 

-+ p' 

"c II 

(iv) Ifs* E Pr (E,E) ands*= {p} S~ {q}, then pre (S*) = p and post (s*) 

= q. 

(v) Lets* E Pr (E,E). Thens* is called a reduced proof, iff it contains 

no occurrence of a triple {p} {q} {r}. (By the transitivity of-+, 

every proof may be supposed reduced, up to equivalence.) 

* ** 5.4. DEFINITION. (I) Two interpolated statements S, S such that 
* **. cr(S ") = cr(S ) =Sare called matching if at every place the same number 

of assertions occur ins*, s**. 

( Notation: s* ~ s**·) To be precise: 

(i) s ~ s for s E WP(E) 

(ii) s* ** {p} s* ~ {q} ** s* {p} ~ s** {q} ~ s ,·~ S and 

for all assertions p,q E L(E). 

(iii) * ** * ** 
SI ~ SI ' s2 ~ sz => 

if b then~ S~ * . else s 2 i2:_ ~ if b then ** 
SI else ** 

s2 fi 

(iv) s* ~ s** => 

while b also s* od ~ while b dos** od. 

(2) Lets*= -- {p} -- be an interpolated statement containing {p}. Then 

s** = -- {p} {p}-- is called a trivial expansion of s*. 

5.5~ DEFINITION. In the following definition we will use a set of n-ary re­

lation symbols {r. I i E w } • If s* E IStat contains some of these 
1 



r-symbols, [s*J. will be the result of replacing each occurrence of r. in 
J 2 1. 

s* by r( .. ) where (,): lN + lN is the usual byective pairing function. 
1.,J 

(This device merely serves to 'refresh' the r-symbols where necessary.) 
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➔ 
(i) Let SE WP(E) involve the variables x (=x 1, ••• ,xn). By induction on the 

structure of S we define 1r'(S) as follows: 

(I) 

(2) 

1r' (x. :=t) 
1. 

(That is, 1r'(S 1) and 1r'(S2) are concatenated, without infix. Moreover, 

the r-symbols in [1r'(s 1)J0 are made distinct from those in [1r'(s2)J1.) 

(3) 

(4). 1r' (while b do S od) = 

* ➔ * where S = [1r'(S)J4 and r 0 (x) = post (S ). 

(ii) 

1r(S) is called the prototype proof of S. 

5.5.1. EXAMPLE. Let S be x 1:"" O;x2 := l; while x2 >x3 do if x 1 = 0 then 

x 3 := 0 else:. x1 := x2 + 1 fi od ; x 1 := x 1 + x2 . Then 1r(S) = 
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{r I (xl ,x2,x3)} 

{r2 (o,x2,x3)} 

x 1 := 0 

{t2(xl ,x2,x3)} 

{ r 3 (x 1 , I , x 3 )} 

x 2 .- I 

{r3(xI ,x2,x3)} 

{r6(xI,x2,x3)} 

while x2 > x3 do 

{r6 (x 1,x2 ,x3 ) A x 2 > x 3 } 

fr,~ (x 1 ,x2 ,x3 )} 

if xI = 0 then 

{r4 (x 1 ,x2 ,x3 ) A x 1 = O} 

{rS(xI ,x2,0)} 

x3 .- 0 

{r5(xl ,x2,x3)} 

{r6(xl ,x2,x3)} 

else 

{rl~ (x 1 ,x2 ,x3 ) A 7 x 1 = 0} 

{r7 (x2+I ,x2 ,x3)} 

xI := x 2+I 

{r7(xl ,x2,x3)} 

{r6(xl ,x2,x3)} 

fi 

od 

{r6 (x 1 ,x2 ,x3 ) A 7x2 > ½} 

{r8(xl+x2,x2,x3)} 

xl := xl+x2 

{r8(x1,x2,x3)} 

{r9 (xl ,x2 ,x3)} 
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5.5.2. PROPOSITION. Let r be a 'new' relation symbol occurring in ,r(8). Then 

r has an occurrence in ir(S) of the form {r{~)}, i.e. the arguments are all 

variables. 

PROOF. Evident by inspection of the definition of ,r(S). 0 

* 5.6. DEFINITION. Let S E !Stat (E) contain the n-ary relation symbol r, 

and let p = p{x1, ••• ,xn) EL (E). (Note: p may contain other variables than 

those displayed.) 

Then ~p (s*) is the result of replacing each r(t 1, ••• ,t), occurring r n 
. * ( ) . . . Pt,•··,Pr *) in S, by p t 1, ••• ,t • Likewise we define~ (S • 

n r 1, ••• ,rn 

5.6.1. REMARK. One can think of the proto~ype proof ir(S) as an initial ob­

ject in the category of proofs {p} s* {q} (where a(s*) = S) ; morphisms 

between proofs are the substitutions~-

5.7. LEMMA. Lets* E Pr (E,E) be a Peduaed pPoof suah that a(s*) = S. Then 

* ~: ir(S) + S for some substitution~ as in Def. 5.6. 

(So evePy proof is an instance of the prototype proof.) 

PROOF. Consider s,s* as in the lennna. We may suppose thats* and ir(S) are 

matching; if not, only some trivial expansions (Def. 5.4) of s* are required. 

We will construct by induction on the structure of Sa substitution 

* ~: ir(S) ➔ S. 

Case 1. S = x := t(y,x,!), where all variables int are displayed. Now 

and 

So the substitution will be ~ r.(y,x,1) * p.(i=l,2,3). 
i i 

case 2. s = s 1 ; s 2 • 
* * * Sos = {po} {pt} st {p2} s2 {p3} {p4}. 
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By induction hypothesis we have substitutions 

Now 

➔ ➔ = {rO(x)} n'(s 1) n'(s2) {r 1(x)} 

= {r0 (~)} ••• {r0(~)} {rj(~)} ••• {r 1(~)} 

where --- = n(S 1) and----= n(S2). From this it is evident how to 

construct the desired~. (Remark: the arity of the new r-symbols in n(S.), 
1 

i= 1,2, is that of S (i.e. n if S has the variables x1, ••• ,xn).) 

Case 3. S = if b then s 1 else s 2 fi 

* Then n(S) and S are as follows: 
➔ ➔ • ➔ ➔ n(S) = {r0 (x)} {r1(x)} if b then {r 1(x) Ab} n'(s 1){r2(x)} 

➔ ➔ 
else {r 1(x) A7b} n'(S2){r2(x)} 

➔ ➔ fi {r2(x)} {r3(x)} 

s* = {pO} {p 1} if b then {p 1 Ab} s; {p2} 

* else {p 1 A 7 b} s 2 {p2} 

fi {p2} {p3}. 

Again ~ : r. (~) ~ p. (i=O, 1,2,3) ; the induction hypothesis takes care of the 
1 1 

correspondence between n'(S.) and S~(i=I,2). 
1 1 

Case 4. S = while b do S' od. 
➔ 

(In the following 'r! stands for 'r.(x)'.) 
1 1 

n(S) = {ro} { r I } while b do { r I A b} n'(S') od {r1 A7b} {r2} 

~: I l I }nd. I I hyp. 

s* * = {pO} {p 1}while_ b do {pl Ab} s od {pl A 7 b} {p2 } 



* Here r 1 = post (1r'(S 1 )) and p1 = post (S ). D 

In the sequel we will need a simple proof-theoretical fact, stating 

that derivability in first order predicate logic is invariant under sub­

stitutions cp(as in Def.5.6). 

5.8. PROPOSITION. Let O:,E) be a specification and p,q E L(E). Let ct, be a 

substitution of assertions p. for relation symbols r. , as in Def. 5. 6. 
1 1 

(The p. not necessarily in L(E).) Let <P(E) = {<P(p')I p'E E}. Then: 
1 

( i) E I- p => ct, (E) I- ct, (p) 

(ii) EI- p ➔ q ~ ct, (E) ~ cp(p) ➔ cp(q). 
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PROOF. ( i) A routine induction on the length of the derivation E I- p. ( ii) 

follows from (i), noting that <P(p+q) = <P(p) ➔ cp(q). D 

5.9 PROPOSITION. Let 'l"'o 'I' 'I' d Eo E ·c (S)) ,.. = ,.. u ,..7T ( S) an = u K 1r • 

0 0 Then (E ,E) ~f (E,E). 

PROOF. Take arbitrary p,q such that HL(E,E) I- {p} S{q}. (E.g. take q 

= true.) Let {p} s* {q} E. Pr(E,E) be the corresponding proof; we may suppose 

it matches 1r(S). 

Now let A E Alg(E,E), so by soundness of HL we have A I= {p}S{q}. 
-+ 

Further, it is not hard to see that the r.(x) can be interpreted in A just 
1 

like the matching assertions in {p} s* {q}. 

Hence every A E Alg(E,E) can be expanded to an AO E Alg(Eo,Eo). So by 

the conservativity criterium 2.7.1, we have (Eo,Eo) ~ (E,E). The finiteness 

is obvious. D 

0 0 . . + + 
5.10.LEMMA • . let E = E u E1r(S ) , E = E u K(1r(Sz)) and let r(x) , r' (x) be 

respectively the assertions al the head and at the tail of 1r(S2). 

Then the following are equivalent: 
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(i) HL(E,E) I- SI !~ S2 

(ii) HL(E,E) I-f SI ~ s2 

HL(r0 ,E0 ) I- ➔ ➔ 

(iii) {r(x)} s2 {r' (x)} => 

HL(t:0 ,E0) I- ➔ 
{ r (x) } 

➔ 
s 1 {r'(x)} 

(iv) HL(t:0 ,E0) I- ➔ { r (x) } SI { r' (;)}. 

PROOF. (i) => (ii) is trivial, (iii) follows from Prop. 5.9, and (iii)=> (iv) 

follows because it is obvious from the construction that 

HL(EOEO) 1- {rct)} s2 {r'(;)}. It remains to prove (iv)=> ( i). 
➔ * ➔ 0 0 Assume (iv); let {r0 (x)} SI {r 1(x)} E Pr(E ,E ) be the corresponding 

proof. Further, suppose for some (E' ,E') ~ (E,E), p,q E L(E') we have 

HL(E' ,E') I- {p} s2{q}. Let {p} s2* {q} E Pr(E' ,E') be the corresponding 

* proof, which we may suppose matching with n(S2). By Lemma 5.7, {p} s2 {q} 

is an instance of n(S2) via some substitution cp. 
➔ * ➔ * Now consider cp({r0 (x)} s 1 {r 1 (x)}) = {p} ct> (S 1){q}. From the construc-

tion and by Prop. 5.8 it follows that this is a proof in Pr(E',E'). Hence 

HL ( E I ' E I ) I- { p } SI { q }. □ 

5. I I. THEOREM. HL(E,E) I- s1 ~ s2 and HL(E,E) I- s1 - s2 , as prediaates of 

s1 ,s2 , are semi-deaidabfo in E. 

0 0 PROOF. This follow immediately by noting that (E ,E) can effectively by 

computed from s2 , given (E,E), and using the equivalence (i) <=> (iv) in 

Lennna 5.10. D 

6. COMPLETIONS 

In the next section we will need the possibility of taking, for given 

(E,E) , a refinement (E' ,E') I:::: (E,E) which is fogiaaUy aompZete (See 

Definition 1.2.2). Also we will use a refinement (E",E") t:: (E,E) which has 

an SP - aaZau.lus (see 6.3). The concepts and theorems thereabout, used below, 

are from BERGSTRA-TUCKER [9,10] and BERGSTRA-TERLOUW [6]. There however 

the following restriction is made: E must have only infinite models. Since 

we want to develop the present theory in full generality (also for e.g. 
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E = 0 ),we will extend the above mentioned results by some 'formal' construc­

tions which do not require the restriction on E, and which are made possible 

by the concept of a prototype proof w(S). The disadvantage is that in this 

way we will need an infinite signature extension r' ~ r , but for our pur­

pose here that is no objection. (Queetion: given a specification (E,E) such 

that E has finite models, is there a logical complete (Eut.,E') I?: (E,E) 

where t. is finite?) 

6.1. THEOREM. For> every (E,E) ther>e is a (E',E')I?: (E,E) such that (E',E') 

is logically complete. 

PROOF. The proof is by a construction of length 2 The first w steps w • are 

as follows. Enumerate WP (r) as {S In E :IN-} and let {(pn,qn) In E lN} be an n 
enumeration of the pairs of assertions E L (r). Now consider the sequence 

of asserted programs an = {p(n)o } S(n) 1 {q(n)o} where ( ) 0 , ~) 1 are the 

projections corresponding to the well-known bijection ( , ) : lN -+ JN. Note 

that every {p} S {q} occurs in this sequence. 

Now we define by induction on n the specification (r ,E ). n n 
B.asis·: (r0 ,E0) = (E,E). 

Induction step: let (rn,En) be defined, and consider a.n+t· 

· Case I. Alg(r ,E) j,;, a. +I. Then (r +l'E 1) = (r ,E ). n n n n n+ n n 
Case 2. Alg(rn,En) ·1= a.n+l • Say the prototype proof w(S(n+l)I) has 

-+ } * -+ the form {r(x) S(n+l)i {r'(x)} and let (r',E') be the specification cor-

responding to w(S(n+l)
1
). Then define: 

(En+l'En+l) = (En,En) u (E',E' u{p(n)O-+ r(~), r'(~)-+q(n)O}) 

(The r-symbols in w(S(n+l)I) have to be fresh compared to previous r-symbols 

in (r ,E ).) n n 
Further, let (E ,E ) = U (r ,E ) . w w n n 

nEW 

CLAIM 1. ~ er ,E ) ~ ••• ~ er ,E ) • 
n n w w 

"PROOF 'OF 'CLAIM I. To show that (E ,E ) ~ (E I ,E I) for all n E w, we n n n+ n+ 
use the conservativity criterion 2.7. I. Since we know (in case 2 above) that 

an+l is true in every A E Alg(En,En), the newly added r-symbols can be 
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interpreted in A; that is, A can be expanded to an A' E Alg(E 1,E 1). . , n+ n+ 
To show that (E ,E ) :sJ (E ,E ) for all n E w, suppose E 1- p, for n n w w w 

some p E L(E ). Then for some finite D c E, D I- p. Hence for some m ~ n, 
n - w 

E I- p. Since (E ,E ) :51 (E ,E ) as just shown, E J- p. D m n n m m n 

Now that (E ,E) is constructed, the statements E WP (E) and assertions w w w 
E L(E) are again enumerated, and the procedure is repeated to yield ({t) , w w w 
(E) ) = (E 2,E 2). Likewise (E ,E ) is constructed, and we put w w w. w. w.n w.n 
(E',E') = U (E00 ,E ). nEw .n w.n 

CLAIM 2. (E ,E ) ~ (E',E'), for all nEw; and (E',E')is logically w.n w.n 
complete. 

PROOF OF CLAIM 2. The first part is as in the proof of Claim 1. The 

logical completeness is shown as follows. Let Alg(E' ,E') I= {p} S {q}, where 

{p} S{q} E L(E'). Then {p} S {q} EL(E ,E ) for some nEw, and w.n w.n 
Alg(E ,E ) I= {p} S{q} follows from Proposition 4.13. (Alternative w.n w.n 
argument: because no models were 'lost' in the construction, i.e. 

p (Alg(E',E') = Alg(E ,E . ) for the suitable reduction operator p.) w.n w.n 
Hence Ew.(n+l) contains K({p} 1T (S) {q}), that is: HL(Ew.(n+l)'Ew.(n+l)) 
I- {p} s {q}. D 

6. 2. COROLLARY. Let Alg(E ,E) I= SI t;_ s2 . Then: 

3(E',E') ~ (E,E) s1 ~ HL(E',E')S2 • 

PROOF. Let (E'E') be a logically complete refinement of (E,E); by the pre­

ceding theorem it exists. By Letmna 4.13, 

Alg (E,E) I= s1 ~ s2 -. Alg (E' ,E') I= s1 ~ s2• 

NowAlg (E',E') I= s1 ~s2 implies 

'v'p, q E L ( E ' ) (Alg ( E : E ' ) j= { p} S 2 { q} ,.. Alg ( E ' , E ' ) I= { p} S l { q}. ) 

Hence by logical completeness of (E',E'): 

'v'p,q E L (E') {HL(E' ,E') I- {p} s2 {q} ,_. HL (E' ,E.') f {p} s1{q} 

I.e. SI~ HL(r:E') s2. □ 

6.3. DEFINITION. Let (E,E) be a specification. We say that (r,E) has an 

SP-calculus (strongest postcondition calculus), if for each 
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p e: L(E) , S e: WP(E) there exists an assertion SP(p,S) e: L (E)' such that 

(i) HL(E,E) I- {p} s {SP(p,S)} 

(ii) if HL(E,E) I- {p} S {q} , then (E,E) I- q + SP (p,S). 

6.4. THEOREM. Let (E,E) be a speaifiaation without finite models. Then there 

is a aonservative refinement PA(E,E) of (E,E), aaZZed the Peano aompanion 

of (E,E), whiah has an SP-aaZaulus. 

PROOF. For the definition of PA(E,E) and the proof that it has an SP-calcu~ _ 

lus, see BERGSTRA-TUCKER [10] and BERGSTRA-TERLOUW [6]. 0 

6.4.1. REMARK. It is possible to construct a 'formal' companion having an 

SP-calculus, without the restriction on E, but at the cost of an infinite 

signature extension. For the sequel we will not need the full strength of 

an SP-calculus and we will be satisfied with the following proposition. 

6.4.2. PROPOSITION. Let p,q e: L (E) and Se: WP(E). 

(i) s Let p ~ .. -+- q abbreviate V (SP(p,S) -+ q) , where V denotes the uni-

versal closure. Then: 

PA O'.,E) I- {p" p .......L._. q} S{q} 

(a kind of 'S-modus ponens'). 

(ii) Let pl q abbreviate V(A K ({p} 1r (S) {q})), i.e. the universal closure 

of the conjunction of the consequences in {p} 1r(S) {q}. Let 

E' =Eu E1r(S). Then: 

s 
(E'' r/J ) I- { p " p ... q } s { q} • 

PROOF. 

(i) at once from the definitions. 

(ii) a tedious but routine verification by induction on S. 

D 
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PROVING PROGR.Al~ INCLUSION 

We are now in a position to prove one of the main theorems of this 

paper, viz. the equivalence of semantical and cofinal inclusion. After that 

we will show how this fact can be exploited to give formal proofs of program 

inclusion. 

7.1. THEOREM. 8emantical and cofinal inclusion coincide; i.e. 

PROOF. (=>) Suppose Alg(E,E)j= s 1 ~ s 2 and consider (E',E')~ (E,E). By 

Theorem 6. I there is a (E" ,E") e: (E 1 ,E') which is logically complete. From 

Alg(E",E") I= s1 ~ s 2 we have 

Vp,q EL (r.") (Alg(E" ,E") .1= {p} s 2 {q} ,=:, Alg(E" ,E") I= {p} s 1 {q} ) . 

By the logical completeness we can replace "Alg(E",E") I=" by "HL(E",E") I-". 
Result: s 1 ~ HL(E",E")s2 • 

(<=) Let E have no finite models. (The case that E has finite models, can 

be dealt with analogously, as suggested by Proposition 6.4.2.) 

Suppose Alg(E,E) J{ s 1 ~ s 2 • Then also Alg(PA(E,E)) !=I s 1 ~ s 2 , by 

Lemma 4.14. So there is an A E Alg(PA(E,E)) such that A I=! s 1 ~ s 2 . Hence 
➔➔ I ➔ ➔ I ➔ ➔ for some a,b E A we have "A = s 1 (a) = b" but "A = s 2 (a) I- b" , par abus 

de language. These facts can properly be expressed by 

s 
➔ ➔ 2 ➔ ..J.➔ (➔a) ➔ 8 = (x=~ ~~ xrb) A Comp S = b 

n, I 

➔ ➔ 
for some n. (See the Computation Lennna 1.1.2.) The a, b are new constant 

symbols. Let A'~ A be the expansion of A with distinguished elements ~ , b, 
and let (E',E') be the conservative refinement of PA(E,E) obtained by adding 

1,t to the signature. (By Lemma 2.7.1 this is conservative indeed.) Now 

(i) HL(E' ,E') I- {8 A~= 1} s2 c; 'f i} 
( l.• 1.·) ( I I) If { ➔ ➔} {➔ ..J. ➔ } , HL E , E 0 Ax = ~ SI x r E._ , 



Ad(i) this is Proposition 6.4.2(i). 

Ad(ii) A' 17' {0A t=l}s/tr-b}, hence Alg(E',E') 17'{0A~=l} s 1 {~,'b}. 

By soundness of HL, (ii) follows. 
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Finally; we note that (i) also holds in refinements of (E,E'), trivi­

ally; and the same for (ii) by the downward invariance of Alg( , ) I= {p} S {q} 

(Proposition 4.13). Therefore, SI So::",E") s2 for all (E",E") ~ (E',E'). 0 

We Iiow know that 

S C S 
I -HL(E,E) 2 

~=========-----
(E,E) logical 
complete 

v'3 Alg(E,E) I= 
s1 C S ~ 

--:-HL(E,E) 2 SI ~ S2 

and we want to prove that, in general, all implications are displayed in 

this figure. First we will show in Examples 7.2 and 7.3 that ~ HL(E,E) and 

S Alg(E,E) are incomparable. (See also the following Venn-diagram.) Then, 

in Example 7.4, we s~ow that derivable inclusion is strictly stronger than 

forced inclusion, in general. (I.e. the proof system corresponding to de­

rivable inclusion proves less inclusions than the one corresponding to for­

ced inclusion.) Further, it will be shown in the next Section (Theorem 8.5) 

that forced inclusion and semantical inclusion are in general not equivalent. 

In other words, the proof system corresponding to forced inclusion is in­

complete. 

Finally, at the end of this Section in Remark 7.8, we will prove that 

the 'dotted' implication for logical complete (E,E) (see figure above) can 
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in general not be reversed; and we will prove some assertions in the part 

'Intuition' of the Introduction. 

Venn-diagram of the various notions of inclusion 

1. logical inclusion (i.e. HL(I:,0)1- s1 ~ s2 , see Ex. 7.6 and 7.7) 

2. derivable inclusion 

3. forced inclusion 

4. semantical inclusion= cofinal inclusion 

5. prooftheor,etic inclusion 

6. inclusion in some extension 

• Ex. 7 .3 

/ 

6 

/ 
/ 

/ 
/ 

--

JI Question: give a 

'natural' example 

of a semantical but 

not forced inclusion. 

,., 'II" Ex. 7 • 2 ( = 7 • 4) 

♦ Ex. 7. 5 

• E.g. 
'loop-unwinding' 

(Ex. 7.6) 
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7.2. EXAMPLE. Let A= (1N ,O,S,P) , the 'abacus-al8ebra' as in Section 8, and 

consider (rA,EA). Define: 

s 1 = y:=O S' where S' = while x;'O do y:= Sy; x:=Px od 

s 2 = y:=x; x:=O 

So Alg(EA,EA) I= SJ ~ Sr 

PROOF OF (ii): Suppose not (ii). Then HL(rA,EA) I;.. {x=z A y=O}S'{x=O A y=z}. 

Hence there must be an invariant r(x,y,z) such that EA ~. $J A $2 A $3 

where 

$J = x=z A y=O +r(x,y,z) 

$2 = 3x',y'[x';' 0 Ax= Px' A y= Sy' A r(x',y'z)] + r(x,y,z) 

$3 = x=O A r(x,y,z) + y=z. 

Also A I= $J A $2 A $3 • However, a simple proof shows then that 

A I= r(~,E_,~) .,.. a+b = c, in contradiction with the non-definability of 

+ in A, see Remark 8.3.J. and 3.3.2. D 

7 .3 •. EXAMPLE. ·Let N = (1N ,O,S,+,x) , r the signature of N and E = EN. Fur­

thennore, 

sl = x:= O; while x;'y do x:=x+J od 

S = x:=y 
2 

Then (i) SJ =m.(E,E)S2' but (ii) SJ iAlg(E,E)S2 . 

· PROOF. (i) HL is relatively complete for N, i.e: 

N I= {p} s {q} .... llL(E,E) I- {p} s {q} • 

Now N I= SJ = s 2 implies Vp,q N I= {p} SJ {q} .,.. N I= {p} s 2 {q} or equi­

valently Vp,q HL(E,E) I- {p} SJ {q}.,.. HL (E,E) I- {p} s 2 {q}, i.e. 

sl =m.cr,E)s2. Since in our case indeed NI= SJ= s2, we have (i). 

(ii) However, in a nonstandard model N* E Alg(E,E), SJ will diverge when 

y is nonstandard. So ~J* l=I SJ = s 2 , hence Alg(E,E) j;' SJ = s 2 

7.4. EXAMPLE. Back to Example 7.2, which shows moreover that 

HL(r,E) I- sJ ~ s 2 + HL(r,E) I~ sJ c s 2 • 
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From SJ~ HL(EA,EA)s2 it follows trivially that s 1 ~ s2 is not derivable. 

However, for (E' ,E') = (EA"EA 1·) where A' = ( lN ,O,S,P,+) we do have 

The proof of(*) is by the method of prototype proofs, as follows. Consider 

'1T(S2) : this is 

{r0(x,y)} {rJ (x,x)} y:=x {rJ(x,y)} {r2 (0,J) }x:=O {r2 (x,y)} {r3(x,y)}. 

So we have to find a proof of {r0(x,y)} SJ {r3(x,y)} 

in the theory EA' u {r0(x,y) + rJ(x,x), 

rJ(x,y) + r 2 (0,y), 

r 2 (x,y) + r 3(x,y)}.-

This is indeed possible: 

y := 0 

{r3(0,x) A y = 0} 

{3x0 [r3(o,x0) .A x=x0 Ay = OJ} 

{3xo [r3(0,xo) A x+y = XO J} 

while x:fO do 

{3xo [r3(0,xo) A x+y = XO A x#OJ} 

{3xo [r3 (O,xo) A Px+Sy = XO A x ::J OJ} 

y := Sy 

{3xo [r3 (O,xo) A Px +y = XO A x #0]} 

x := Px 

od 
{3xo Cr/0,xo) A x+y = XO J} 
{3x0 [r3(0,x0) A x+y = XO J A X = 0} 

{3xo [r3(0,xo) A y= XO A x =OJ} 

{r3 (x,y)}. 

The above concepts and theorems generalize without any effort (other 

than notational) to the case of rrruZti-sorted signatures and algebras. To 

substantiate this claim, we give the following example. 



7.5. EXAMPLE. Let Ebe the multi-sorted signature consisting of 

domains 

aonstants 

funations 

va:riab"les 

NUM, VEC, FUN 

o, 1 e: NUM, 0 e: VEC 

+- : NUM X. NUM -+ NUM 
. : NUM X NUM -+ NUM 

AP: VEC X NUM -+ VEC 

INP: VEC X VEC -+ NUM 

ROW: FUN X NUM-+ VEC 

EVAL: FUN x NUM-+ NUM 

x,y,z e: NUM 

X,Y,Z e: VEC 

a, B e: FUN 

The specification (E,E) we are interested in, has the following axioms, 

describing how the inproduct between two vectors should behave: 

E = { Peano + all induction axioms 

INP(0,Z) = INP(Z,0) = 0 

INP(AP(Z,x),AP(Z',x')) = INP(Z,Z') + x.,x' 

AP(Z,x) = AP(Z',x')-+ Z=Z' A x=x' 

ROW(a,O) = 0 
ROW(a, x+J) = AP(ROW(a,x), EVAL(a, x+J)) 

Vx EVAL(a,x) = EVAL(S,x)-+ a= B} 

Furthermore, let s1,s2 e: WP (E) be the following programs, both computing 

the inproduct of two vectors: 

SJ= A:=~, B:=0; z:=O; x:=O; 

while x,/y do x:= x+J ; 

z:= z+EVAL(a,x)• EVAL(S,x) 

od x:=O. 

s2 = A:= ROW(a,y) ; B:= ROW(S,y) ; z:= INP(A,B);­

x:=O; A:=0; B:=f. 
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Now we want to prove that Alg(E,E) I= SJ r;_ s2• (The reverse does not 

hold by the presence of nonstandard models in Alg(E,E).) This can be done 

by proving that HL(E,E) ~ s 1 C s2, using the method of prototype proofs, 
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as follows. First we write down rr(S 2): 

{r0 (x,y,z, A,B)'} 

A:= ROW(a.,y) 

B:= ROW(E:,y) 

z:= INP(A,B) 

x;= 0 

A:= 0 

B:= 0 

{ r l ( x , y , z , R('lW ( a. , y) , B) } 

{r1(x,y,z,A,B)} 

{r2 (x,y,z,A,ROW(8,y))} 

{r2 (x,y,z, A,B) } 

{r3 (x,y, INP(A,B), A, B)} 

{r3 (x,y,z, A, B) } 

{r4 (O,y,z, A, B) } 

{r4 (x,y,z, A, B)} 

{r5 (x,y,z, ¢, B)} 

{r5 (x,y,z, A, B).} 

{r6 (x,y,z, A,:¢) } 

{r6 (x,y,z, A, B) } 

{r7 (x,y,z, A,B) } 

So K(rr(S2)), the set of consequences used in rr(S 2), entails the following 

implications: 

ro (x,y,z,A,I:i) ➔ 

rl ( x , y , z , ROW ( a. , y ) ' B ) ➔ 

r2 (x;y,z, ROW(a.,y), ROW(B,y)) ➔ 

r3 (x,y, INP ( ROW ( a. , y) " ROW ( 8 , y) ) , ROW (a.,y) , ROW (8 ,y) ) ➔ 

r4 (O,y, INP (ROW(a.,y), ROW(S;y)), ROW (a.,y), ROW (8,y) ) ➔ 

rs (O,y, INP(ROW(a.,y), ROW(B,y)), rJJ . , ROW ( 8 , y) ) ➔ 

r6 (O,y, INP(ROW(a.,y), ROW ( 8,y)), (/J , . ~) ➔ 

r7 (O,y, INP (ROW (a., y) , ROW ( 8 , y) ) , 0 , ~) 

Using these implications together with the theory E, we can prove 

{r0 (x,y,z, A,B)} s1 {r7 (x,y,z, A, B)} (and by Letmlla 5.10 this proves 

HL(r,E) I- s 1 ~ s2) 



A:= O; 

B:= O; 

z:= _O; 

x:= O; 

{r0 (x,y,z, A,B)} 

{r7 (0,y,INP(ROW(a,y),ROW(S,y)), 0,0)} 

{r7 (0,y,INP(ROW(a,y),ROW(S,y)) ,A ,O)} 

{r7 (0,y,INP(ROW(a,y),ROW(8,y)) ,A,B)} (abbreviation:r7) 

{r' 
7 

Az=OAx=O} 

{r' 
7 

A z= INP(ROW(a,x),ROW(S,x))} 

_w_h_i_lE_! x:/:y do 

{ r 7 A z = INP ( ROW (a' X) , ROW ( 8 'X) ) A xiy } 

x:= :ii:+ 1; 

{r7 A 3x'(z= INP(ROW(a,x'),ROW(S,x')) A x=x'+l Ax':/: y)} 

z:= z+ EVAL(a,x). EVAL(S,x) 

{r' A 3x',z'(z'=INP(ROW(a,x'),ROW(S,x') Ax= x'+l 
7 

Ax':/: y A z = z'+ EVAL(a,x). EVAL(B,x))} 

(Now use E : ) 

fr7 A 3x' (z. = INP(ROW(a,x'+l), ROW(B,x'+l)) A 

X = x'+l Ax':/: y)} 

{r7 A z = INP(ROW(a,x) , ROW(f3,x))} 

od 

x:=O 

{r7 A z = INP(ROW(a,x) ,ROW(f3,x)) A x=y} 

{r7 (0,y,z,A,B)} 

7.6. EXAMPLE. Define (as a special case of derivable inclusion) 'logiaal 

inalusion' of s1 in s2 as follows: HL(E,(ll) I- s1 ~ s2 • Now the following 

well-known equivalences are 'logical' • 

47 
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(i) (Loop-unwinding) 

s 1 = while b do Sod; D (D = x:=x) 

s 2 = if b then while b do Sod; D else D 

The proof that lll..(E,0) I- s 1 C s 2 follows iDllllediately by computing 

n(S 1) and using the thus obtained set of consequences K(n(S 1)): 

r 0 (x)-+ r 1(x) 

r 1 (x) Ab-+ r 2 (0) 

r 2 (x) -+ r 1 (x) 

r 1 (x) A 7 b -+ r 3 (x) 

to prove that {r0(x)} s 2{r3(x)}. Likewise for the reverse inclusion. 

(ii) Another example of logical inclusion, which is equally simple to verify: 

s 1 = while true do Sod 

s 2 arbitrary. 

Then lll..(E,0) ~ s 1 ~ s 2• This example is from DE BAKKER [4], p.93, as 

well as the next: 

(iii) s 1 = while b1 v b2 do S od 

s2 = while b1 do Sod; while b2 do S; while bl do Sod od. Also 

here a simple computaion yields the logical equivalence of s 1,s2• 

7.7. EXAMPLE. MANNA [20], p.251, p.259 gives several examples of program 

equivalence which are all. 'logical' : 

(i) SJ = x2 := f(x 1); x2 := g(xl ,x3) 

s2 = x2 := g(xl ,x3) 

(ii) SJ = while p(x2) do x 1 := g(x1 ,x3) od D 

s2 = if p(x2) than DIV else D fi -
Here DIV = while x=x do x := x , and D = x := x. 

(iii) s 1 = x := y+l; if x =1 then z := 0 else y := y+l ; 

if y=l then z := 1 else z := 2 fi fi 

s 2 = x := y+l; if x= 1 then z :=0 else y :=y+l; 

z := 2 fi. 

(Adapted from MANNA [20] p.252. Note that s 1 contains a useless branch.) 

7.8. RE.MARK. (1) Abbreviate 

Vp,q € L(r) Alg(E,E) I= {p} s 1 {q} ... Alg(E,E) I= {p} s 2 {q} 
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by: s 1 ~ PC(E,E)s2• (PC for partial correctness~) 

Then, for (E,E) logically complete, it follows at once from the de-

finition (1.2.2) that C lil..(E,E) and C PC(E,E) coincide. 

Since S1 C Alg(E,E) s 2 implies s 1 C PC(E,E) s 2 (trivially) for all 
O:: ,E), we have therefore for logical complete (E ,E): 

The reverse implication does not hold. Counterexample: 

SI = x := 0, y := 0 

s 2 = while x ::j y do x := x+I od ; x :=O; y := O 

(E,E) = (EN, EN ) where N = (lN ,0, I ,+ 1x'). _ 

Now (E,E) is logical complete (see BERGSTRA-TUCKER [7]) and ~L is relatively 

complete for N (see DE BAKKER [4], Ch.3). From the last fact it follows 

that s 1 =m..(E,E)s2• However, due to the presence of nonstandard models in 

Alg(E,E), we have s 1 ,Alg(E,E)s2• 

(2) Note that (I) also establishes that (ii)+. (i) (i.e. 

S1 C PC(E,E)s2 +. S1 C Alg(E,E)S2), as claimed in the Introduction. For 
another counterexample, see BERGSTRA-TUCKER [5] ,Theorem 5.8. 

(3) As claimed in the Introduction: 

Alg(E,E) I= SI ~ s2 <==O, V(r ',E') ~ (E,E) SI C PC(E!E')s2. 
Here(,.) is trivial. Proof of (~): assume the RHS, and suppose 

Alg(E,E) ~ s 1 C s 2• Then since semantical and cofinal inclusion coincide 

(Theorem 7.1): 

3(E',E') I?: (E,E) V(E",E") I?: (E',E') S r1 S 
I ~ lll..(E" ,E") 2 • 

Now consider such a (E',E'), and a (E",E") which is logically complete. 

Then by the assumption of the RHS, s 1 C PC(E",E")s2 ; and by logical com­

pleteness, s 1 C m..(r",E")s2 • 

Contradiction. D 
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8. ABACUS ARITHMETIC. 

In this section we will consider our paradigm algebra A = (JN ,0,S,P). 

It is useful by the following two well-known facts (already mentioned in 

Example 3.3.3): 

8.1. PROPOSITION. (i} EA is a decidable theory, and (ii) every partial re­

cursive function can be computed in A by some S E WP O:: A ) • 

Using this proposition we will calculate the degrees in the arithmet­

ical hierarchy of the various inclusions s1 !;_ s2 (as predicates of s1,s2) 

w.r.t. O::A,EA). 

For a proof of 8.1. (ii), see e.g. BO0L0S-JEFFREY [II], Ch.6,7, where 

results from LAMBEK [19] are presented. The proof there uses in fact not 

while-programs, but flow-diagrams composed of only two operations: 

assignments x := S(x) (n= 0,1,2, ••• ) 
n n 

branching operations 

X = 0 ? 
n 

(As pointed out in LAMBEK [ 19] , such a flow-diagram is in fact computing 

on an 'infinite abacus'. Variables as in such a diagram are known as coun­

ters.) Combined with the equally well-known fact that for every flow-diagram 

there is an equivalent while-program ( see e.g. MANNA [ 19 J ) we have 8. I. (ii). 

For the sake of completeness, we will now outline a proof of 8. I. (i) , 

as given in ENDERTON [ 14] . 

8.2. DEFINITION. Let A be some set and let R c An be an n-ary relation. 

Let a 1, .•• ,an-I E, A be fixed. Then {x EA I R(a 1, •.• ,ai_1,x,ai , ••• ,an-I)} 

is called a section of R (where I .:o; i < n) • 

8.3. PROPOSITION. (a) Let A' = (lN ,0,S). Then: 

(i) EA' is decidable, 

(ii) EA' admits elimination of quantifiers, 

(iii) a subset X c lN is definable in A' iff Xis finite or cofinite (i.e. 

lN -Xis finite}. More general: every definable n-ary relation 



R .=. :IN n has only finite or cofinite sections. 

(b) The same as in (a) holds for A= (lN ,O,S,P), 

(c) and likewise for (:ll ,O,S,P). 

PROOF. (a) See ENDERTON [14]. (i) is proved there by considering the fol­

lowing axiomatization of EA: 

S(x) :/, 0 

S (X) = S (y) -+ X = y 

y =I O -+ 3x(y= S (x)) 

S(x) :/, x, S(S(x)) # x, ••• , Sn(x) :/, x, ••• (all· n). 
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Using the Los-Vaught Test it is proved that this axiomatization is complete. 

Obviously it is also decidable. Hence EA ~s decidable. 

(ii) As demonstrated in ENDERTON [14], for every assertion p € L(rA) there 

is a quantifier-free assertion q such that EA, I- p +-+ q. (This 'elimina­

tion of quantifiers' yields another proof of (i).) 

(iii) Routine from (ii).· 
(b) Note that P is definable in A' = (lN ,O, S) , by: 

P(x) = y +-+ x=y =O v S(y) = x. Now use (a). 

(c) A routine adaptation of (b). 0 

8.3.1. REMARK. Note that Proposition ?.3 (b) (iii) yields an alternative 

proof of the non-definability of+ in A. For, using a supposed definition 

of + one could define the set X of even numbers in A ; a contradiction 

since X and its complement are both infinite. 

8.4. APPLICATION. The following is an example of s1 ,s2 such that the domain 

inclusion Dom (S 1) C Dom (s2) is not derivable but can be forced. (See 

Section 9, Ex.9.5 (ii). 

Let A be (:ll ,O,S,P) and (r,E) = (rA,EA). 

Let s1 = y := 0; while x # y do y:= S(y) od ; 

y := 0; while x :/, y do y:= P(y) od 

d S O .f O th else DIV f1· an 2 = y:= ; 2:._ x = ~ x:= x 

where DTV = while x =x do x:=x od. 
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Clearly, s 1 and s 2 converge on x =O and nowhere else. 

Now HL(I:,E) I- {x ,'O} s 2 {false}, as can easily be proved; however 

HL (I:,E) If {x ,' 0} s 1 {false}. This can be made plausible by considering 

an informal proof of {x ,' 0} s 1 {false} ; then somehow one must mention the 

ordering < on 2'l • However, < is not present in r, and not even definable in 

(r,E). (The non-definability of< in (r,E) can easily be proved using 

Padoa's method 3.3, by permuting some of the non-standard copies of 2'l in 

a non-standard model of (r,E); cfr. 3.3.2.) 

That HL(E,E) It {x,'O} s 1 {false} can be made precise as follows. 

If HL(I:,E) I- {x :;'O} s 1 {false}, then, using x = S(y) ++ P(x) = y, one 

shows easily that the two invariants r 1(x,y), r 2 (x,y) in s 1 must satisfy: 

1) xiO-+ r 1 (x,O) 

2) x r/zy A r 1 (x,y) -+ r 1 (x,S(y)) 

3) r 1(x,x)-+ r 2 (x,O) 

4) x ,'y A r 2 (x,y) -+ r 2(x,P(y)) 

5) 7 r 2 (x,x) 

2 
There are several "solutions" for r 1 ,r2 as subsets of 2'l However, using 

1)-5) we have r 1(1,0); hence r 1(1,1); hence r 2(1,0); hence r 2 (1,n) for all 

n ~ 0. Moreover, from 4),5) : 7 r 2(t,m) for all m ~ 1. Therefore every so­

lution r 2 has a section which is neither finite nor cofinite; so, by 

Proposition 8.3(c)(iii), r 2 is not definable. 

As promised in Section 7, we will show now that semantical inclusion 

and forced inclusion are in general not equivalent. 

8.5. THEOREM. The proof system HL(I:,E) Ir SI C s2 is in general not com­

plete for SI ~ Alg(I:,E)s2. 

PROOF. Let r be the signature of A=< JN,O,s,P·>. From Proposition 8.3.(b) 

we know that E = EA is decidable. Let r 7 . :WP(r) -+ 10- be an effectiv~ coding of 

programs; we will write s for 'S1 • R and r are:4:-.o relations on pairs of 

codes of programs as follows: 
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The incompleteness of 11- for C Alg is shown by considering the specif ica­

tion (r,E) and demonstrating that RI r. It turns out that Rand r have 

different positions in the arithmetical hierarchy. As a matter of fact r is 

r~ but R is complete JI~ , and a fortiori r and R must differ. 

We will first consider r. Working from its formal definition we ob­

tain 

.,.. 3(r' ,E') ~ (r,E) cm. ( r,E? I- s 1 c s2 J 

( 1) 
3(r' ,E') J2: (r,E) [(r,E) consistent & HL(r,E) 1- s 1 C s2J 

(2) 
.,.. 3(r' ,E*)f .. ·t [r' ::i r & (r' ,E* u E) consistent 1n1 e 

SteR (1) is justified by the completeness of (r,E) which entails that each 

consistent refinement of -it is a conservative one. Step (2) follows from 

LeDDna 5.10. (ii) which says that the refinement in the definition of Ir· 
* can be taken finite if one wants. Because "(r',E u E) is consistent" is a 

IT~ predicate and HL(r' ,E* u E) I- St C s2 is r~ (due to Theorem 5. 11 and 

the decidability of E), r must be r~ • 

Then consider R. s 1 ~ Alg(r.E)s2 is in general IT~ in E, R is at most 

IT~. To show that it is complete IT~. A well-known example of a complete 

IT~ relation is the following one: t(s) ..,. S computes a total function on 

A. (For more information see ROGERS [22]). We show that tis 1-1 reducible 

to R. Let XS= {x1, ••• xk(S)} be the set of variables occurring in S. For 

x e: XS , H(x) abbreviates the program while x 'I= 0 do x := P(x) od. 

H(X8) abbreviates: H (x1) H(x2) ; ••• ,; H(xk(S)): The reduction oft to R 

works as follows: 

t( rs 7 ) ... R < r H <x ) 7 , r s s 
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To see(<=), assume H(XS) ~ Alg(E,E)S; H(XS) ; then in A: 
~ S ; H(XS) ; because H(XS) is total on A, S must be total on A as 

r r 7 i.e. t( S 7 ) holds. On the other hand assume t( S ). Let BE Alg 

(E,E) ; clearly A is isomorphic to a substructure of B. As H(XS) and S; 

H(XS) can only produce output O it is sufficient to show 

Dom (H(XS)) ~ Dom CS; HCXS)). Dom CHCXS)) = AkCS), thus Sis defined on 

Dom (H(XS)) and yields values in Ak(S) on such arguments ; on these values 

in turn, HL(XS) is defined. D 

9. DOMAIN INCLUSION. 

In this section we will show that given some additional information 

about the domains of SI,s2 , semantical inclusion and forced inclusion 

SI ~ s 2 coincide. 

9. I . DEFINITION. 

(i) (Semantical inclusion of domains) 

Let SI ,s2 E WP (E). Then Alg(E,E) f Dom(SI) ~ Dom (S2 ) 

if for all A E AlgCE,E) , Domain cs/) ~ Domain cs/). 

Note that: Alg(E,E) I= Dom (SI) ~ Dom (S 2) implies: 

Alg(E,E) I= {p} s2 {false} => Alg(E,E) I= {p} SI {false}. 

(ii) (HL - inclusion of domains) 

HLCE,E) 1- {p} s2 {false} => 

HL(E,E) I- {p} SI {false} , for all p E L(E). 

(iii) (Der-ivabZ.e inclusion of domains) 
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(iv) (Foroed inclusion of domains) 

9.1.1. REMARK. The mathematical theory of domain inclusion is quite com­

plicated in fact. For instance a pentagon of inclusion relations similar 

to the one after Theorem 7.1, can be constructed and will turn out to have 

analogous properties. 

In order to prove the main theorem of this Section, we need the fol­

lowing proposition. 

9.2. PROPOSITION. Let s1,s2 E WP(r) contain both the variables x 1, ... ,xn 

and suppose Alg(I,E) I= s1 ~ s2• Then there is a (r',E') I:::: (r,E) such that 

r' ~ r u {f 1, ••• ,fn}, where f 1, ••• ,fn are 'fresh' n-ary function symbols, 

and such that 

➔ 

f(z)}, i= I , 2 • 

PROOF. Let r" = r u {fl' ••. ,fn} and E" =Eur where r = 

{Compn,S. c1) = ~ ➔ ~ = f(1) I n ~ 0, i = 1,2} • 
i 

(For 'Comp', see Lemma 1.1.2.) 

Now every A E Alg(I,E) can be expanded to an A' E Alg(r",E"), since 

Alg(I,E) I= s1 ~ s2. Choose for the interpretation fA an arbitray total 

function extending the partial function s2A (which extends itself s1A).) 

Therefore, by the criterion for conservativity 2.7.I, (r",E") I?: (I,E). 

I= ➔ ➔ ➔ ➔ 
Clearly, Alg(r",E") {x=z} S. {x=f(z)}, i = 1,2. 

i 

Now lP.t (r',E') be a logical completion of (r",E"). (By Theorem 6.1. 

this exists.) fhen Alg(r' ,E') I= {~ = 1} S. {~ = f(1)}, i = 1,2; and by the 
i 
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logical completeness we have: 

9.3. THEOREM. Buppose HL(E,E) I~ Dom (S 1) ~ Dom (S 2). Then 

PROOF. (<=) is already done in Section 7. 

(*). Let s 1,s2 E W~(E) be such that HL(E,E) I~ Dom (S 1) ~ Dom s 2) and 

Alg(E,E) I= s 1 ~ s 2 • Let;= x 1 , •.• ,xn be the variables occurring in s 1 ,s2 • 

Step I. Extend I: to 1: 1 containing n-ary function symbols f 1 , ••• ,fn and 

I ➔ ➔ ➔ ➔ 
E to E 1 such that (E 1,E 1) I?. (E,E) and HL(I: 1 ,E 1) - {x=z} Si {x = f(z)}, 

i = 1,2. This is possible by Proposition 8.2. 

By assumption, there is a (E 2 ,E2 ) ~ (E,E) such that HL(E 2 ,E2 ) 

I- Dom (S 1) ~ Dom (S 2). We may suppose I: 2 n I: 1 = I: (cf.4.7.2), hence by 

Robinson's Consistency Theorem 2.6.2 , (I:' ,E') = (E 1u 1:2 , E1 u E2 ) is a con­

servative refinement of (E,E). 

CLAIM. HL(E',E') I- s 1 ~ s 2 • Then we are through. 

PROOF OF THE CLAIM. Consider a refinement (E",E") ~ (E',E') such that 

To prove: 

HL(E" ,E") I- {p} s 2 {q}. 

HL(E" ,E") I- {p} SI {q} (O). 

• ➔ ➔ . ➔ ➔ 
Obviously, since q [f(x) / x] v 7 q [f(x) / x] is a tautology, 

(0) is equivalent with (I) & (2) as follows: 

(1) 

(2) 

I ➔ ➔ 
HL(E",E") - {p /\ q [f(x) / x ]} SI {q} 

I ➔ ➔ 
HL(E",E") - {p A 7 q [f(x) / x]} s 1 {q}. 

Proof of (1). By the rule of consequence, it is sufficient to prove that 

HL(E" ,E") I- ➔ 
{q [f(x) 

➔ 
/ x]}s 1 {q}. 

We know HL(E I ,E1) I- ➔ ➔ ➔ ➔ 
{x= z} s 1 {x= f(z) }, hence 

trivially HL(E" ,E") I- ➔ ➔ 
{x=z}S 1 

➔ ➔ 
{x =f(z)}. 
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By Proposition 1.2.3 : 

-+ -+ -+ -+ -+ -+ -+ -+ 
HL(E",E") I- {x= z A q[f(z) /z]} s 1 {x=f(z) A q[f(z)/z]}. 

Hence indeed HL(E",E") I- {q [f(;) /:it]} SI {q}. 

Proof of (2). We know that HL(E" ,E") I- {p} s 2 {q}. So, by the conjunction 

rule (I.2.3 (i))and invariance rule (1.2.3 (iii)): 

I -+ -+ -+ -+ -+ -+ -+ 
HL(E",E") - {x = z A p A 7 q [f(z) /x ]} s2 {q A x = f(z) A 7 q [f(z) /x]} 

where the postcondition obviously implies {false}. By the assumption 

HL(E 2 ,E 2) I- Dom (SI) S Dom (S 2) we have therefore the same for SI: 
I-+-+ :h-+ HL(E",E") 1- {x=z A p A 7q[f(z1 /x]} s 1 { false}. 

By the rule of consequence: 

HL ( E", E") I- { t = i A p A 7 q [ f (!) / i J} SI { q} • 

By Proposition 1.2.3 (iv): 

HL(E",E") I- {3i(i=! A p A 7q[f(i) /l]} SI {q}. 

I.e. indeed HL(E",E") I- {p A 7q[f(t) /l]} s1 {q}. D 

9.4._ COROLLARY. Let s 1 ,s2 E WP (L) and suppose that s2 is everywhere con­

verging, for all A E Alg(I,E). 

Then: 

PROOF. ($=) already proved in Section 7. (~) By the soundness of HL(Lermna 

1.2.1), we see that HL(E,E) if {p} s 2 {false} for all p E L(E). 

Hence trivially HL(E,E) I- {p} s2 {false} ~ HL(E,E) I- {p} s 1 {false} , 

i . e. HL ( E , E) I- Dom (SI ) S Dom ( S 2) • 

Therefore, also trivially, HL(E,E) I~ Dom (S 1) C Dom (S 2). 

Now apply the preceding theorem. D 

9.5. EXAMPLE. (i) Let SI,s2 be as in Example 7.5. Then 

HL(ZA,EA) I~ s 1 S s 2 and s2 is always converging. Hence by 8.4, 

Alg(EA,EA) I= SI S s 2 • (ii) In Ex. 9.5. (i) the domain inclusion is already 
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derivable. An example where domain inclusion is not derivable but can be 

forced, was given in 8.4. 
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