# stichting mathematisch centrum



AFDELING INFORMATICA (DEPARTMENT OF COMPUTER SCIENCE) IW 176/81

OKTOBER

J.A. BERGSTRA & J.W. KLOP

PROVING PROGRAM INCLUSION USING HOARE'S LOGIC

Preprint

kruislaan 413 1098 SJ amsterdam

Printed at the Mathematical Centre, 413 Kruislaan, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

1980 Mathematics subject classification: 03D45, 03D80, 68B15, 03D35, 03D75, 68B10

ACM - Computing Reviews - category: 4.34, 5.24

Proving Program Inclusion Using Hoare's Logic \*)

Ъy

J.A. Bergstra \*\*) & J.W. Klop

# ABSTRACT

We explore conservative refinements of specifications. These form a quite appropriate framework for a proof theory for program inclusion based on a proof theory for program correctness.

We propose two formalized proof methods for program inclusion and prove these sound. Both methods are incomplete but seem to cover most natural cases.

KEY WORDS & PHRASES: data type specification, program correctness, conservative refinement, program inclusion, program equivalence, prototype proof, logical completion

<sup>\*)</sup> This report will be submitted for publication elsewhere.

<sup>\*\*)</sup> Department of Computer Science, University of Leiden, Wassenaarseweg 80, Postbus 9512, 2300 RA LEIDEN, The Netherlands

## **O. INTRODUCTION**

This paper aims at a detailed study of program equivalence, seen from the point of view of Hoare's logic for program correctness. Because program inclusion is just halfway program equivalence we can safely restrict our attention to program inclusion. This moreover has the advantage of connecting closely to the theory of programming using stepwise refinements as described in BACK [2].

Our work can be seen as belonging to the subject of axiomatic semantics for programs. Its novelty lies in the precise mathematical analysis of the situation, in addition to a rather strict adherence to first order proof systems and first order semantics for data type specifications.

Deriving program equivalence from program correctness properties is not a new idea, of course. It occurs in compiler correctness proofs, for instance HEMERIK [16], and RUSSELL [23], as well as in the general theory of program correctness HAREL, PNUELI & STAVI [15].

Because of our interest in a proper theoretical analysis, we try to minimize the semantical problems by working with <u>while</u>-programs only; this by no means trivializes the problem.

In the sequel of this introduction an intuitive account is given of the key definitions that underly the paper.

INTUITION. Suppose that for  $S_1, S_2 \in WP(\Sigma)$  we have

(i)  $Alg(\Sigma, E) \models S_1 \sqsubseteq S_2$  (semantical inclusion)

and that we wish to prove this fact. Now obviously, (i) implies

(ii)  $Alg(\Sigma,E) \models \{p\} S_{2} \{q\} \Rightarrow Alg(\Sigma,E) \models \{p\} S_{1} \{q\}, \text{ for all } p,q \in L(\Sigma).$ 

However, there is no reason to expect that the reverse implication (ii)  $\Rightarrow$  (i) will hold, since (ii) states only roughly that  $S_1 \sqsubseteq S_2$ , where 'roughly' refers to the limited expressive power of  $L(\Sigma)$ . (In fact, Remark 7.8(2) shows that indeed (ii)  $\neq$  (i).) Now consider

(iii)

 $\forall (\Sigma', E') \geq (\Sigma, E) \quad \forall p, q \in L(\Sigma')$ 

$$Alg(\Sigma',E') \models \{p\} S_{2} \{q\} \Rightarrow Alg(\Sigma',E') \models \{p\} S_{1} \{q\}.$$

Clearly (i)  $\Rightarrow$  (iii)  $\Rightarrow$  (iii). (For (i)  $\Rightarrow$  (iii), note that if  $(\Sigma', E') \ge (\Sigma, E)$ , then the reducts of  $(\Sigma', E')$ -algebras to  $\Sigma$  form a subset of Alg $(\Sigma, E)$ ; hence Alg $(\Sigma, E) \models S_1 \sqsubseteq S_2 \Rightarrow Alg(\Sigma', E') \models S_1 \sqsubseteq S_2$ .)

In fact, we will restrict our attention to a subclass of all refinements ( $\geq$ ) of ( $\Sigma$ ,E), namely to the *conservative* refinements ( $\geq$ ) of ( $\Sigma$ ,E), for reasons which will be clear later. So consider

(iv) 
$$\forall (\Sigma', E') \vDash (\Sigma, E) \forall p, q \in L(\Sigma')$$
  
Alg( $\Sigma', E'$ )  $\models \{p\} S_2 \{q\} \Rightarrow Alg(\Sigma', E') \models \{p\} S_1 \{q\}.$ 

Now we have (i)  $\Rightarrow$  (iii)  $\Rightarrow$  (iv)  $\Rightarrow$  (i;); and it turns out that (iv)  $\Rightarrow$  (i). (See Remark 7.8(3)). The conclusion is that one can treat the 'semantical' inclusion (i) by considering only first order properties of  $S_1, S_2$  (i.e. asserted programs {p}  $S_1$  {q}, i = 1,2), provided one is willing to consider not only ( $\Sigma, E$ ), but all its (conservative) refinements.

This observation prepares the way for an approach via Hoare's logic of proving asserted programs. First of all, define

(v) 
$$S_1 \sqsubseteq S_2$$
 iff  $\forall p,q \in L(\Sigma)(HL(\Sigma,E) \vdash \{p\}S_2\{q\} \Rightarrow$   
HL( $\Sigma,E$ )  $\vdash \{p\}S_1\{q\}$  (proof theoretical inclusion)  
and consider

and consider

(vi) 
$$\forall (\Sigma', E') \geq (\Sigma, E) \qquad S_1 \sqsubseteq S_2 \quad (derivable inclusion)$$
  
HL( $\Sigma', E'$ )

the proof-theoretical analogue of (iv). Indeed, it will turn out that this 'derivable inclusion', written as  $HL(\Sigma, E) \models S_1 \sqsubseteq S_2$ , implies the semantical inclusion (i). This is our first "proof system" for proving semantical inclusion; we will prove that (v), as a relation of  $S_1, S_2$ , is semi-decidable in E.

One more remark about why it is natural to consider (v), in casu the

quantification over all conservative refinements. The first reason of considering all (conservative) refinements of  $(\Sigma, E)$  is that only then one is able to give as refined as possible first order descriptions of  $S_1 \subseteq S_2$ . This holds already on the semantical level. In (v) there is moreover another reason: to *prove* {p} S {q} we need invariants for the <u>while</u>-loops in S. It may be the case that these invariants can not yet be expressed in the present specification, so we have to go 'higher-up'. If one attributes a defining power to statements S, namely to define the invariants of the <u>while</u>loops, then one could say that the defining power of S  $\in WP(\Sigma)$  is sometimes ahead of that of the assertion language  $L(\Sigma)$ .

Of course, the proof system given by (v) is sound, i.e.  $(v) \Rightarrow (i)$ ; otherwise it did not deserve the name. Some simple program inclusions that are in its scope, are program equivalences like 'loop-unwinding', and the kind of program equivalences considered in MANNA [20]. This proof system is not yet complete, however. In order to prove semantical inclusion (i) it is sufficient that (see figure) :

(vii) 
$$\exists (\Sigma', E') \vDash (\Sigma, E) \forall (\Sigma'', E'') \succeq (\Sigma', E') S_1 \sqsubseteq S_2$$
  
HL  $(\Sigma'', E'')$ 

(Notation :  $HL(\Sigma, E) \parallel S_1 \sqsubseteq S_2$ , in words : forced inclusion.)



The reason that (vii)  $\Rightarrow$  (i), is a simple consequence of the invariance of semantical inclusion (i), i.e. if  $(\Sigma', E') \succeq (\Sigma, E)$  and  $S_1, S_2 \in WP(\Sigma)$ , then :

$$Alg(\Sigma, E) \models S_1 \sqsubseteq S_2 \iff Alg(\Sigma', E') \models S_1 \sqsubseteq S_2$$
.

(This does not hold for  $\geq$  instead of  $\geq$ .) So in order to prove Alg( $\Sigma$ ,E)  $\models$  S<sub>1</sub>  $\sqsubseteq$  S<sub>2</sub> it is sufficient to find some ( $\Sigma'$ ,E')  $\geq$  ( $\Sigma$ ,E) where Alg( $\Sigma'$ ,E')  $\models$  S<sub>1</sub>  $\sqsubseteq$  S<sub>2</sub>.

The proofsystem embodied by (vii) is stronger than that of derivable inclusion (vi), and we will give some examples of program inclusion (which seem to have some practical interest, too) which require the extra strength of this last proof system.

Still, (vii) is not'complete' - although it seems hard to find a nonpathological example of a program inclusion which is semantical (i), but which cannot be forced (vii). One can prove, however, that the following 'cofinal' inclusion is equivalent to semantical inclusion:

(viii) 
$$\forall (\Sigma', E') \models (\Sigma, E) \exists (\Sigma'', E'') \models (\Sigma', E') \$_{l=HL(\Sigma'', E'')} \$_{2}$$

(The equivalence (i)  $\Leftrightarrow$  (viii) holds also when in (viii)  $\triangleright$  is replaced by  $\geq$ . However, for  $\triangleright$  we have (vii)  $\Rightarrow$  (viii), not so for  $\geq$ .)

One could suspect that there is a multitude of such relations obtained by repeated alternating quantification  $\forall \exists \forall \ldots$  from the basic relation  $\sqsubseteq_{\text{HL}}(\Sigma, E)$  (proof-theoretical inclusion). It is a pleasant surprise, suggesting the naturalness of the notions involved, that this possible hierarchy does in fact not exist, and that one has no more relations than in the figure on the next page.

As we have seen, conservative refinements ( $\triangleright$ ) are more natural for this theory than general refinements ( $\geq$ ). The technical reason is that for conservative refinements the 'Joint Refinement Property' holds, stating that (almost) every two refinements ( $\Sigma_i, E_i$ )  $\triangleright$  ( $\Sigma, E$ ) can be refined to a common refinement ( $\Sigma_3, E_3$ )  $\triangleright$  ( $\Sigma_i, E_i$ ) (i=1,2). (This is in fact a strengthened version of the well-known Robinson Consistency Theorem.) Also for conservative refinements we have a useful upward and downward invariance of the properties



 $Alg(\Sigma',E') \models \{p\} S \{q\} and Alg(\Sigma',E') \models S_1 \sqsubseteq S_2, for (\Sigma',E') \models (\Sigma,E).$ 

We will now give a survey of the paper.

# CONTENTS

# 0. INTRODUCTION

1. PRELIMINARIES

(about logic, programs, and Hoare's Logic)

2. CONSERVATIVE REFINEMENTS

(in which a criterion and a characterization of conservativity are given and Robinson's Consistency Theorem is stated )

3. DEFINABILITY

(Padoa's Method and some applications)

4. PROGRAM INCLUSIONS

(contains definitions of the various inclusions)

### 5. PROTOTYPE PROOFS

(this technical concept will be basic for the proof systems in the sequel )

## 6. COMPLETIONS

(a logical complete refinement is constructed for each specification) 7. PROVING PROGRAM INCLUSIONS

(one of the main theorems is proved, establishing the existence of two proof systems for  $\sqsubseteq$  )

# 8. ABACUS ARITHMETIC

(a prime example is considered to yield more insight in the relations between the various inclusions)

# 9. DOMAIN INCLUSION

(information about the domains of  $S_1, S_2$  can be converted to information about inclusion  $S_1 \sqsubseteq S_2$ .)

10. REFERENCES

## 1. PRELIMINARIES

In this section we will collect the necessary basic definitions and facts from logic in general as well as Hoare's logic.

1.1. Preliminaries about programs and logic.

The notions of first-order language, derivability  $(\vdash)$  and satisfiability  $(\models)$  are supposed known and we repeat them merely to fix the notations and terminology used in the sequel.

In this paper we will exclusively deal with  $WP(\Sigma)$ , the set of <u>while</u>programs S defined inductively as follows: S::= x:=t | S<sub>1</sub>;S<sub>2</sub> | <u>if</u> b <u>then</u>  $S_1 \underline{else} S_2 \underline{fi}$  | <u>while</u> b <u>do</u> S <u>od</u>, where t  $\epsilon$  Ter( $\Sigma$ ), the set of terms over the signature  $\Sigma$ , b is a boolean (i.e. quantifier free) assertion  $\epsilon$  L( $\Sigma$ ), the first-order language determined by  $\Sigma$ . In general, assertions  $\epsilon$  L( $\Sigma$ ) will be denoted by p,q,r. The signature says what 'non-logical' symbols we are considering; here equality (=) is considered as a logical symbol. We allow also infinite signatures. For a further definition of signatures and specifications, see Definition 2.1. Note that the signature as defined there,

is part of the alphabet of  $L(\Sigma)$ .

If  $(\Sigma, E)$  is a specification (see again Def.2.1), the algebras (or models) in Alg $(\Sigma, E)$  will be denoted by A = <A,...> where A is the underlying set of the algebraic structure A.

We will need the following well-known fact:

1.1.1. Gödel completeness theorem

 $(\Sigma, E) \models p \iff Alg(\Sigma, E) \models p, for all <math>p \in L(\Sigma)$ .

We will also need the

1.1.2. Computation Lemma . Let  $\vec{x} = x_1, \dots, x_k$  and  $\vec{y} = y_1, \dots, y_k$ . Let  $S = S(\vec{x}) \in WP(\Sigma)$  (i.e. S contains precisely the variables  $\vec{x}$ ).

Then for all  $n \in \mathbb{N}$  there is a quantifier free assertion  $\operatorname{Comp}_{S,n}(\vec{x}) = \vec{y}$  in  $L(\Sigma)$  such that for every  $A \in \operatorname{Alg}(\Sigma)$  and all  $\vec{a}, \vec{b} \in A$ :

 $A \models \operatorname{Comp}_{S,n}(\overrightarrow{a}) = \overrightarrow{b} \iff |S(\overrightarrow{a})| \le n \& S(\overrightarrow{a}) = \overrightarrow{b}.$ 

Here  $\underline{\vec{a}}$ ,  $\underline{\vec{b}}$  are constant symbols denoting  $\vec{a}$ ,  $\vec{b}$  and  $|S(\vec{a})|$  denotes the length of the computation of S on  $\vec{a}$ .

# 1.2. Preliminaries on Hoare's logic.

Let  $p,q \in L(\Sigma)$  and  $S \in WP(\Sigma)$ . Then the syntactic object  $\{p\} S \{q\}$  is called an 'asserted program'. If  $A \in Alg(\Sigma)$ , we define:  $A \models \{p\} S \{q\} \iff$  $\forall \vec{a}, \vec{b} \in A$ :  $S(\vec{a}) \neq \& S(\vec{a}) = \vec{b} \iff (A \models p(\vec{a}) \rightarrow q(\vec{b}))$ . Furthermore we define

$$A1g(\Sigma, E) \models \{p\} S \{q\} \iff \forall A \in A1g(\Sigma, E) A \models \{p\} S \{q\}.$$

Hoare's logic w.r.t.( $\Sigma$ ,E) is a proof system designed to prove facts like Alg( $\Sigma$ ,E) |= {p}S {q}. We will call this proof system HL( $\Sigma$ ,E). It has the following axioms and rules, by means of which we can derive asserted programs; notation: HL( $\Sigma$ ,E) |- {p}S {q}. (1) Assignment axiom :  $\{p[t/x]\}\ x:=t\ \{p\}$ 

(2) Composition rule : 
$$\frac{\{p\} S_{1} \{r\} \{r\} S_{2} \{q\}}{\{p\} S_{1}; S_{2} \{q\}}$$
(3) Conditional rule : 
$$\frac{\{p\land b\} S_{1} \{q\} \{p\land \neg b\} S_{2} \{q\}}{\{p\} if b then S_{1} else S_{2} fi \{q\}}$$
(4) Iteration rule : 
$$\frac{\{p\land b\} S \{p\}}{\{p\} while b do S od \{p\land \neg b\}}$$
(5) Consequence rule : 
$$\frac{p + p_{1} \{p\} S\{q_{1}\} q_{1} + q}{\{p\} S\{q\}}$$

where  $(\Sigma, E) \vdash p \rightarrow p_1$  and  $(\Sigma, E) \vdash q_1 \rightarrow q$ .

1.2.1. LEMMA. HL(
$$\Sigma$$
,E) is sound, i.e. for all p, S, q  $\in$  L( $\Sigma$ ):  
HL( $\Sigma$ ,E)  $\models$  {p} S{q}  $\Rightarrow$  Alg( $\Sigma$ ,E)  $\models$  {p} S{q}.

PROOF. See e.g. COOK [13].

1.2.2. <u>DEFINITION</u>. HL( $\Sigma$ ,E) is *logically complete* if for all p,S,q  $\in$  L( $\Sigma$ ): HL( $\Sigma$ ,E)  $\models$  {p} S{q}  $\iff$  Alg( $\Sigma$ ,E)  $\models$  {p} S {q}.

(In general,  $HL(\Sigma, E)$  is not logically complete. The notion of logical completeness is studied in BERGSTRA-TUCKER [7].)

From the axioms and rules of  $HL(\Sigma, E)$  one can derive the following useful rules:

1.2.3.

(i) Conjunction rule: 
$$\frac{\{p_1\} S\{q_1\} \{p_2\} S\{q_2\}}{\{p_1^{\land} p_2\} S\{q_1^{\land} q_2\}}$$

(ii) Disjunction rule : as (i) with  $\land$  replaced by  $\lor$ ,

(iii) Invariance rule : if the free variables in p are disjoint from the variables in S, then  $HL(\Sigma, E) \models \{p\} S \{p\}$ 

(iv)  $\exists - rule: \frac{\{p\} S \{r\}}{\{\exists z \ p\} S \{r\}}$  provided z does not occur in S.

## 2. CONSERVATIVE REFINEMENTS

In this section we will collect some facts concerning the notion of *refinement* and especially, *conservative* refinement. These notions will be of fundamental importance in the sequel. All the material in this section (and the next, on 'definability') is standard in Mathematical Logic and can be found (e.g) in SHOENFIELD [24] and MONK [21]. For easier reference and to conform to our notations, we will give a fairly extensive survey of the subject. Since the arguments used in the proofs are relevant for the sequel, we have included some of the proofs.

## 2.1. DEFINITION of signatures and specifications.

 (i) A signature Σ is a set of nonlogical symbols to be used in Predicate Logic. These may be constant-, function -, or predicate symbols; the arity of a function - or predicate symbol is the number of arguments it is supposed to have.

(E.g.  $\Sigma = \{\underline{0}, S, P, <\}$  is a signature where  $\underline{0}$  is a constant symbol, S and P are unary function symbols and < is a binary predicate symbol.)  $L(\Sigma)$  denotes the set of assertions in which only nonlogical symbols  $\pi, \sigma \in \Sigma$  occur.

(ii) If  $E \subseteq L(\Sigma)$ , the pair ( $\Sigma, E$ ) is called a specification.

(iii) Alg( $\Sigma$ ) is the class of all  $\Sigma$  - algebra's.

(E.g.  $A = (\mathbb{N}, 0, s, p, k) \in Alg(\Sigma)$ , where  $\Sigma$  is as in the example above. Here 0 is a constant of A, s and p unary functions and k a binary relation. We will also write  $S^A$  for the *interpretation* or *semantics* of S in A, in casu s; for convenience we will often neglect to distinguish notationally the symbol from its interpretation.)

(iv) Alg( $\Sigma$ , E) is the class of  $\Sigma$  - algebra's A such that A = E.

(v)  $Alg(\Sigma, E) \models p$  means: for all  $A \in Alg(\Sigma, E)$ ,  $A \models p$ .

- 2.2. DEFINITION of refinements
- (i) If Σ'⊃ Σ and Ē'⊃ Ē we write (Σ', E') ≥ (Σ, E) and call (Σ', E') a refinement of (Σ, E). Here Ē = {p ∈ L(Σ) | E | p}. We will always suppose that E, E' are consistent.
- (ii) If  $(\Sigma', E')$  is finite (i.e. both  $\Sigma'$  and E' are finite), then we write  $(\Sigma \cup \Sigma', E \cup E') \ge_{f} (\Sigma, E)$ .
- (iii) Let A be some algebra. Then  $\Sigma_A$  is the *signature of* A and  $E_A$  is the *theory of* A :  $E_A = \{p \in L(\Sigma_A) \mid A \models p\}$ . Note that A  $\models p \iff Alg(\Sigma_A, E_A) \models p$ .
- (iv) Let  $(\Sigma, E)$  be a specification. Then E is *complete* if  $\forall p \in L(\Sigma)$ ,  $E \models p$  or  $E \models \neg p$ .
- 2.3. DEFINITION (conservative refinements)
- (i) Let (Σ',E') ≥ (Σ,E) be a refinement such that: ∀p ∈ L(Σ) E' |- p ⇔ E |-p. In other words, such that E' ∩ L(Σ) = E. Then this refinement is called *conservative* over (Σ,E). (So a conservative refinement does not yield more theorems in the 'original' language L(Σ).) Notation: (Σ',E') ≥ (Σ,E)

(ii) 
$$(\Sigma', E') \models_{f} (\Sigma, E) \iff (\Sigma', E') \models (\Sigma, E) \& (\Sigma', E') \geq_{f} (\Sigma, E).$$

2.3.1. Note that if E is complete :  $(\Sigma', E') \ge (\Sigma, E) \Rightarrow (\Sigma', E') \ge (\Sigma, E)$ .

- 2.4. <u>DEFINITION</u> (Expansions and restrictions) Let  $\Sigma' \geq \Sigma$ .
- (i) If (Σ',E') is a specification, then the *restriction* of (Σ',E') to the signature Σ is (Σ,E) where E = E' ∩ L(Σ).
   We write ρ<sub>Σ</sub><sup>Σ'</sup>(Σ',E') = (Σ,E).
- (ii) If A'  $\epsilon$  Alg( $\Sigma', E'$ ), then the *restriction* of A' to  $\Sigma$  is obtained by deleting all constants, functions, predicates in A' corresponding to symbols in  $\Sigma' \Sigma$ . We write  $\rho_{\Sigma}^{\Sigma'}(A') = A$  for this restriction. A is also called a *reduct* of A'; and A' is called an *expansion* of A. We will also write  $A \leq A'$ .
- (iii) Let  $X \subseteq A$ . Then  $A_X$  is the expansion of A obtained by adding the  $a \in X$ as designated constants. Instead of  $A_A$  we write A. <u>Example</u>: for A as in Def. 2.1. (iii),  $A = (\mathbb{N}, 0, 1, 2, 3, ..., s, p, k)$ . (So in  $L(\Sigma_A$  one can refer to all elements of A by name.)

2.4.1. <u>REMARK</u> Note that if  $A' \ge A$ , then  $(\Sigma_{A'}, E_{A'}) \ge (\Sigma_{A}, E_{A})$ .

(i)  $A \equiv B$  (A,B are elementary equivalent) iff  $E_A = E_B$ .

(ii) Let  $A \subseteq B$ . Then :  $A \preccurlyeq B$  iff  $A \equiv B_A$ .

(A is an elementary sub-algebra of B, or: B is an elementary extension of A.)

2.5.1 REMARK Note that  $A \preccurlyeq B \Rightarrow A \equiv B$ .

2.5.2. <u>PROPOSITION</u>.  $A \preccurlyeq B \iff B_A \models E_A$ .

PROOF. See SHOENFIELD [24] p. 74.

In the sequel we will mostly deal with conservative refinements ( $\succeq$ ). They have the pleasant property that two refinements  $(\Sigma_i, E_i) \vDash (\Sigma, E)$  (i=1,2) can be joined to a refinement  $(\Sigma_1 \cup \Sigma_2, E_1 \cup E_2) \trianglerighteq (\Sigma, E)$ , provided the obviously necessary requirement that  $\Sigma_1 \cap \Sigma_2 = \Sigma$  is satisfied. This is a (strong) form of A. Robinson's Consisting Theorem (RCT). The version we will need is slightly stronger than the usual statement of RCT. For that reason we include part of the proof. We start with the very useful Joint Consistency Theorem (JCT); for the (hard) proof we refer to SHOENFIELD [24], p. 79. From JCT the remaining theorems in this section follow easily. In MONK [21] another order of presentation is followed.

# 2.6. Joint Consistency Theorem (Craig- Robinson)

Let  $(\Sigma, E)$  and  $(\Sigma', E')$  be specifications. Then  $E \cup E'$  is inconsistent iff there is a closed assertion  $p \in L(\Sigma_1 \cap \Sigma_2)$  such that  $E \models p$  and  $E' \models \neg p$ .

2.6.1. <u>COROLLARY</u> (Craig Interpolation Lemma). Let p and q be closed assertions such that  $\vdash p \rightarrow q$ . Then there is a closed assertion r such that (i)  $\vdash p \rightarrow r$  and  $\vdash r \rightarrow q$ (ii) every nonlogical symbol occurring in r, occurs in both p and q.

<u>PROOF</u>. Clearly the specification  $\{p, \neg q\}$  is inconsistent:  $\{p\} \cap \{\neg q\} \vdash p, p \rightarrow q, q, \neg q, \underline{false}$ . Hence by Theorem 2.6 there exists a

<sup>2.5. &</sup>lt;u>DEFINITION</u> (Elementary equivalence and elementary extensions) Let A,  $B \in Alg(\Sigma)$ . Then:

closed assertion  $p \in L(\{p, \neg q\})$  such that  $\{p\} \vdash r \text{ and } \{\neg q\} \vdash \neg r$ . By the Deduction Theorem:  $\vdash p \rightarrow r$  and  $\vdash \neg q \rightarrow \neg r$ .  $\Box$ 

2.6.2. COROLLARY (Robinson's Consistency Theorem).



Let  $(\Sigma_{i}, E_{i}) \ge (\Sigma_{0}, E_{0})$ , i = 1, 2, such that  $\Sigma_{1} \cap \Sigma_{2} = \Sigma_{0}$ . Then (i)  $E_{1} \cup E_{2}$  is consistent, and moreover (ii)  $(\Sigma_{1} \cup \Sigma_{2}, E_{1} \cup E_{2}) \ge (\Sigma_{0}, E_{0})$  and even (iii)  $(\Sigma_{1} \cup \Sigma_{2}, E_{1} \cup E_{2}) \ge (\Sigma_{i}, E_{i})$ , i = 1, 2. PROOF. follows immediately from (ii), which follows by tra

PROOF. follows immediately from (ii), which follows by transitivity of perform (iii).

(iii): Suppose  $E_1 \cup E_2 \models p$  for a closed assertion  $p \in L(\Sigma_i)$ .

Therefore  $\{e_1, e_2\} \vdash p$  for some closed assertions  $e_i \in L(\Sigma_i)$ , i = 1, 2, such that  $E_i \models e_i$ . By the Deduction Theorem :

$$|-e_2 \rightarrow (e_1 \rightarrow p)$$
.

By Craig's Interpolation Lemma 2.6.1:

$$|-e_2 \rightarrow r$$
 (\*) and  
 $|-r \rightarrow (e_1 \rightarrow p)$  (\*\*)

for some  $r \in L(\Sigma_1 \cap \Sigma_2) = L(\Sigma_0)$ . By  $(*): E_2 \models r$ . Hence  $E_0 \models r$ , since  $(\Sigma_2, E_2) \models (\Sigma_0, E_0)$ . So by  $(**): E_0 \models e_1 \rightarrow p$ . Therefore  $E_1 \models p$ ; and this proves  $(\Sigma_1 \cup \Sigma_2, E_1 \cup E_2) \models (\Sigma_1, E_1)$ . Likewise for  $(\Sigma_2, E_2)$ .

Next, we will give a characterization of the conservativity of refinements. For many purposes, however, the following criterion for conservativity is sufficient.

2.7. <u>DEFINITION</u> Let  $(\Sigma', E')$  be a refinement such that every  $A \in Alg(\Sigma, E)$  can be expanded to an  $A' \in Alg(\Sigma', E')$ . Then this refinement is called *simple*. (See figure below).

2.7.1. <u>PROPOSITION</u> (Criterion for conservativity). Simple refinements are conservative.

<u>PROOF</u>. Suppose  $(\Sigma', E')$  is a simple refinement of  $(\Sigma, E)$ , i.e.  $\forall A \in Alg(\Sigma, E) \quad \exists A' \in Alg(\Sigma', E') A' \geq A$ . Let  $E \not\models p$  for some closed assertion p. Then by Gödel's Completeness Theorem,  $A \not\models p$  for some  $A \in Alg(\Sigma, E)$ . So there is an  $A' \in Alg(\Sigma', E')$  such that  $A' \geq A$ . Hence  $A' \models \neg p$ ; and reasoning backwards we have  $E' \not\models p$ .  $\Box$ 



In general, the situation is more complicated. If  $(\Sigma', E') \ge (\Sigma, E)$ , it may be the case that some  $A \in Alg(\Sigma, E)$  cannot be expanded to an  $A' \in Alg(\Sigma', E')$ . So we may 'lose' models when taking a refinement. However, such a 'lost' model A is always an elementary substructure of (and hence elementary equivalent to) an A' which is not 'lost'; see the next theorem.

2.7.2. <u>EXAMPLE</u>. (From SHOENFIELD [24], p. 96). Let  $\Sigma'$  contain the constant symbols  $c_0, c_1, c_2, \ldots$  and let  $E' = \{c_i \neq c_j \mid i \neq j\}$ . Let  $(\Sigma, E)$  be obtained by omitting  $c_0$  and let A be  $(\mathbb{N} - \{0\}, 1, 2, 3, \ldots)$ . Then A cannot be expanded to an A'  $\epsilon$  Alg $(\Sigma', E')$ , since there is no "room" for (an interpretation of)  $c_0$ .



2.7.3. THEOREM (Characterization of conservativity). Let  $(\Sigma', E) \ge (\Sigma, E)$ . Then the following are equivalent:

- (Σ',E') ⊵ (Σ,E) (i)
- (ii)  $\forall A \in Alg(\Sigma, E) \quad \exists A' \in Alg(\Sigma, E), A'' \in Alg(\Sigma', E')$  such that  $A \preccurlyeq A' \leq A''$
- (iii)  $E' \cup E_A$  is consistent, for all  $A \in Alg(\Sigma, E)$ (iv)  $E' \cup E_A$  is consistent, for all  $A \in Alg(\Sigma, E)$ .

<u>PROOF</u>. (ii)  $\Rightarrow$  (i): Suppose E  $\not\models p$ ,  $p \in L(\Sigma)$ . Then A  $\not\models p$  for some A  $\in$  Alg( $\Sigma, E$ ). Now there are A'  $\epsilon$  Alg( $\Sigma$ ,E) and A''  $\epsilon$  Alg( $\Sigma$ ',E') such that A  $\preccurlyeq$  A'  $\leq$  A''. By Remark 2.5.1,  $A \equiv A'$ . Hence also  $A' \models \neg p$ . Therefore  $A'' \models \neg p$ ; so  $E' \not\models p$ .

(i)  $\Rightarrow$  (iii). Let  $(\Sigma', E') \geq (\Sigma, E)$  and suppose: for some  $A \in Alg(\Sigma, E)$ ,  $E' \cup E_A$  is inconsistent. By Theorem 2.6, there is a closed assertion  $p \in L(\widetilde{\Sigma}' \cap \Sigma_A) = L(\Sigma)$  such that  $E' \models p$  and  $E_A \models \neg p$ . By conservativity,  $E \models p$ . Hence  $A \models p$ ; contradiction with  $E_A \models \neg p$ , because  $E_A \models \neg p \iff A \models \neg p$ . (iii)  $\Rightarrow$  (ii). Suppose  $E' \cup E_A$  is consistent. Then there is a B" such that  $B'' \models E' \cup E_A$ . Let B' be the reduct of B'' to the signature  $\Sigma'$ , and let B be the reduct of B'' to  $\Sigma$ . Then  $B_A \models E_A$ , so by Proposition 2.5.2,  $A \preccurlyeq B$ ; and trivially  $B \le B'$ . (iii)  $\Rightarrow$  (iv) trivial. (iv)  $\Rightarrow$  (iv) trivial.

(iv)  $\Rightarrow$  (iii): Suppose E'U  $E_A$  is inconsistent. Then by Theorem 2.6, E'  $\vdash p$ and  $E_A \vdash \neg p$ , for some  $p \in \widetilde{L}(\Sigma' \cap \Sigma_A) = L(\Sigma)$ . Now  $E_A \vdash \neg p \Rightarrow E_A \vdash \neg p$ , since  $\widetilde{E}_A$  is complete. Hence E'U  $E_A$  is inconsistent.  $\Box$ 

2.7.3.1. <u>EXAMPLE</u> Let  $N = (\mathbb{IN}, 0, 1, +, \mathbf{x})$  and let  $N^*$  be some non-standard model of arithmetic, so  $N^* \equiv N$ . Then  $(\Sigma_N^*, E_N^*) \succeq (\Sigma_N^*, E_N)$ . Proof:  $E_N^* \cup E_A$  is consistent for every  $A \in \operatorname{Alg}(\Sigma_N^*, E_N^*)$  (i.e. every A such that  $A \cong N$ ) because  $E_A = E_N \subseteq E_N^*$ . (Note that this refinement is not simple).

## 3. DEFINABILITY

We now turn to a special kind of simple conservative refinement (the definitional refinement), collect some material about definability, and use this to prove that '+' is not definable in the algebra  $(\mathbb{N}, 0, S, P)$  which will play an important role later on.

3.1. <u>DEFINITION</u> Let  $\Delta \subseteq \Sigma$  and consider ( $\Sigma$ , E). An n-ary predicate symbol  $\pi \in \Sigma - \Delta$  is *definable in terms of*  $\Delta$  *in* E, if there is an assertion  $p \in L(\Delta)$  such that

$$E \models \pi(x_1, \ldots, x_n) \leftrightarrow p$$

(where  $x_1, \ldots, x_n$  are distinct variables). An n-ary function symbol  $\phi \in \Sigma - \Delta$  is definable in terms of  $\Delta$  in E if there is an assertion  $p \in L(\Delta)$ such that

$$E \vdash \phi(x_1, \dots, x_n) = y \leftrightarrow p$$

(where  $x_1, \ldots, x_n$ , y are distinct variables).

3.2. <u>DEFINITION</u>  $(\Sigma', E') \vDash_d (\Sigma, E)$ , in words:  $(\Sigma', E')$  is a definitional refinement of  $(\Sigma, E)$ , if  $(\Sigma', E') \trianglerighteq (\Sigma, E)$  and every symbol  $\epsilon \Sigma' - \Sigma$  is definable in terms of  $\Sigma$  in E'.

3.3. <u>THEOREM</u> (Padoa's method). Let  $(\Sigma \cup \{\tau\}, E)$  be a specification where  $\tau \notin \Sigma$ . Then  $\tau$  is not definable in terms of  $\Sigma$  in E, if there are two models A,  $E \in Alg (\Sigma \cup \{\tau\}, E)$  such that A = B and  $\sigma^{A} = \sigma^{B}$  for every nonlogical symbol  $\sigma \in \Sigma$ , but  $\tau^{A} \neq \tau^{B}$ .

<u>PROOF</u>. Let  $\tau$  be a predicate symbol. (The proof for function symbols, including the constant symbols which can be considered as 'O-ary' function symbols, is similar.) Suppose A, B exist as in the theorem, and suppose that  $\tau$  is definable in terms of  $\Sigma$  in E. That is:

 $E \vdash \tau (\stackrel{\rightarrow}{x}) \leftrightarrow p$ ,

for some assertion  $p \in L(\Sigma)$ . Then for  $\vec{a} \in A$  we have:  $\vec{a} \in \tau^A \iff A \models p [\vec{a}] \iff B \models p [\vec{a}] \iff \vec{a} \in \tau^B$  (where the middle equivalence follows since  $p \in L(\Sigma)$  and A, B have the same interpretation for every symbol in  $\Sigma$ ). Hence  $\tau^A = \tau^B$ , contradiction.  $\Box$ 

# 3.3.1. REMARK

(i) A much stronger theorem results when in Theorem 3.3, 'if' is replaced by 'iff': Beth's Definability Theorem (BDT).

(ii) Write  $(\Sigma', E') \ge^{1} (\Sigma, E)$  iff  $\Sigma' - \Sigma$  is a singleton. Then the version of BDT as indicated in (i) can be paraphrased as:  $(\Sigma', E') \ge^{1}_{d} (\Sigma, E) \iff$  the mapping  $\rho_{\Sigma}^{\Sigma'}$ : Alg  $(\Sigma', E')$  is injective.

A slightly stronger version of BDT as e.g. in SHOENFIELD [24], p. 81, says the same for  $\succeq_d$  instead of  $\succeq_d^1$ .

Noting further that  $\nvDash_d$  implies  $\nvDash_s$ , we have the following model theoretic characterization of definitional refinements:

$$(\Sigma', E') \vDash_{d} (\Sigma, E) \iff$$
  
 $\rho_{\Sigma}^{\Sigma'}: Alg (\Sigma', E') \rightarrow Alg (\Sigma, E) \text{ is injective } \iff$   
 $\rho_{\Sigma}^{\Sigma'}: Alg (\Sigma', E') \rightarrow Alg (\Sigma, E) \text{ is bijective.}$ 

3.3.2. <u>APPLICATION</u> In the sequel we will reed the following fact: Let  $A = (\mathbb{N}, 0, S, P)$ . Then the function + is not definable in A. <u>PROOF</u>, by Padoa's method. (For another proof, using elimination of quantifiers, see section 8.) Suppose + is definable in A; i.e. for some assertion r we have  $A \models r [a,b,c] \iff a + b = c$ . Now let  $A' = (\mathbb{N}, 0, S, P)$ so  $A' \models r (x,y,z) \iff x + y = z$ . Hence  $E_{A'} \models r(x,y,z) \iff x + y = z$ , so the symbol + is definable in terms of  $\Sigma_A$  in  $E_{A'}$ .

To show that this is contradictory, we use Padoa's method (3.3): we will try to find  $N_1, N_2, \epsilon$  Alg  $(\Sigma_A, E_A')$  such that  $N_1 = N_2, \sigma^{N_1} = \sigma^{N_2}$  for all  $\sigma \neq +$ , but  $+ N_1 \neq + T$  Two such models are readily obtained; we have to take 'non-standard' models:

$$N_{i} = (\mathbb{N} \times \{0\}) \cup (\mathbb{Z} \times \mathbb{N}^{+}), 0_{0}, S, P, +_{i}) \quad (i=1,2)$$

where  $\mathbb{N}^+ = \mathbb{N} - \{0\}$ , and where we write  $a_b$  instead of (a,b). Further,  $S(n_m) = (n+1)_m$ ,  $P(n+1)_m$ ) =  $n_m$ ,  $P(0_0) = 0_0$ , and  $n_m + i_m n'_m = (n+n')_{i(m+m')}$  (i=1,2).

(Intuitively: the  $n_0$  are the standard numbers; there are nonstandard numbers divided in copies of Z, indexed by positive integers. The point is that these indices are so to speak indiscernible for the specification in question, so there is considerable liberty in defining '+' on the non-standard part.)

3.3.3. EXAMPLE Some reducts of arithmetic. In the following schema most of the above concepts are illustrated. Upward lines denote conservative refinements (of the theory of the structure in question); the 'clusters' of structures are equivalence classes w.r.t. the equivalence generated by  $\mathbb{P}_d$ . Simple refinements are indicated with 's'. The most remarkable facts

here are the definability of exponentiation from  $0,1, +, \times$ , which is well-known; and less well-known, the definability of + in terms of 0, S,  $\times$ , by the following:

$$i + j = k \iff (i'k'')'(j'k'')' = ((i'j')'(k''k''))'$$

where x' = Sx, x'' = S(Sx). (See BOOLOS-JEFFREY [11] p. 219.)



### 4. PROGRAM INCLUSIONS

We will now introduce the various notions of inclusion  $\sqsubseteq$  between statements  $S_1, S_2 \in WP(\Sigma)$  which we will study, and prove some elementary facts about them.

4.1. <u>DEFINITION</u> (i) Let  $S \in WP(\Sigma)$  and  $A = (A,...) \in Alg(\Sigma,E)$ . Let S contain the variables  $x_1, \ldots, x_n$  ( $n \ge 1$ ). Then  $S^A : A^n \to A^n$  is the partial function determined by S; i.e.

 $S^{A}(a_{1},\ldots,a_{n}) = \begin{cases} (b_{1},\ldots,b_{n}) & \text{if } S \text{ converges with input} \\ (a_{1},\ldots,a_{n}) & \text{and yields } (b_{1},\ldots,b_{n}); \\ \text{undefined else.} \end{cases}$ 

<u>REMARK</u> The restriction to functions  $f : A^n \rightarrow A^n$  is not essential. Instead of e.g.  $f(x_1, x_2, x_3) = x_1 \cdot x_2$  one may use  $f'(x_1, x_2, x_3) = (x_1 \cdot x_2, 0, 0)$ .)

4.2. <u>DEFINITION</u> of semantical inclusion. Let  $S_1, S_2 \in WP(\Sigma)$ . Then:

(i) Alg 
$$(\Sigma, E) \models S_1 \sqsubseteq S_2 \iff S_1^A \subseteq S_2^A$$
, for all  $A \in Alg (\Sigma, E)$ .

This inclusion is said to be *semantical*. Instead of the LHS we will also use the notation:  $S_1 \stackrel{\square}{=} Alg(\Sigma, E) S_2$ . (ii) *Semantical equivalence* w.r.t.( $\Sigma, E$ ) is defined by:

$$Alg(\Sigma, E) \models S_1 \equiv S_2 \iff Alg(\Sigma, E) \models S_1 \sqsubseteq S_2 & Alg(\Sigma, E) \models S_2 \sqsubseteq S_1.$$

4.3. DEFINITION of proof theoretical inclusion.

(i)  $S_1 \sqsubseteq S_2 \quad \text{iff for all } p,q \in L(\Sigma):$ HL( $\Sigma,E$ )  $\vdash \{p\} \quad S_2 \quad \{q\} \Rightarrow \text{HL}(\Sigma,E) \quad \mid \neg \{p\} \quad S_1 \quad \{q\}.$ 

(Note the direction of the implication. Intuitively:  $S_1$  is less defined than  $S_2$  so {p}  $S_1$  {q} is more often trivially true.) (ii)  $S_1 \equiv \frac{1}{HL(\Sigma, E)}S_2$  is the corresponding equivalence. 4.4. DEFINITION of derivable inclusion.

(i) 
$$\operatorname{HL}(\Sigma, E) \models \operatorname{S}_1 \sqsubseteq \operatorname{S}_2 \iff \forall (\Sigma', E') \triangleright (\Sigma, E) \operatorname{S}_1 \sqsubseteq_{\operatorname{HL}(\Sigma', E')} \operatorname{S}_2$$
.

(The terminology 'derivable' and the choice of the notation '|-' is motivated by the sequel: it will be proved that derivable inclusion w.r.t. ( $\Sigma$ ,E) is semi-decidable in E.) As before we define  $HL(\Sigma,E)$  |-  $S_1 \equiv S_2$  derivable equivalence w.r.t. ( $\Sigma$ ,E).

(ii) 
$$\operatorname{HL}(\Sigma, E) \models_{\mathbf{f}} S_1 \sqsubseteq S_2 \iff \forall (\Sigma', E') \succeq_{\mathbf{f}} (\Sigma, E) S_1 \bigsqcup_{\operatorname{HL}(\Sigma', E')} S_2.$$

4.5. DEFINITION of forced inclusion

$$\operatorname{HL}(\Sigma, E) \models \operatorname{s}_{1} \sqsubseteq \operatorname{s}_{2} \iff \exists (\Sigma', E') \models (\Sigma, E) \operatorname{HL}(\Sigma', E') \models \operatorname{s}_{1} \sqsubseteq \operatorname{s}_{2}.$$

As before, forced equivalence w.r.t.  $(\Sigma, E)$  is defined.

4.6. <u>DEFINITION</u> of cofinal inclusion. The inclusion  $S_1 \sqsubseteq S_2$  is cofinal, iff

$$\forall (\Sigma', E) \vDash (\Sigma, E) \exists (\Sigma'', E'') \succeq (\Sigma', E') S_1 \sqsubseteq_{HL(\Sigma'', E'')} S_2.$$

It is clear that all inclusions  $(\sqsubseteq)$  defined above are partial orders and that all equivalences  $(\equiv)$  are equivalence relations, except for forced and cofinal inclusion resp. equivalence. For the last case, 'cofinal', we will eventually prove that 'cofinal  $\Leftrightarrow$  semantical', hence cofinal inclusion is indeed transitive. We will now prove that also forced inclusion is transitive - hence it is a partial order and forced equivalence is an equivalence relation indeed. First we need a simple proposition about renaming of symbols.

4.7. <u>DEFINITION</u>  $(\Sigma_1, E_1) \cong (\Sigma_2, E_2)$   $((\Sigma_1, E_1)$  and  $(\Sigma_2, E_2)$  are *isomorphic* specifications) if  $(\Sigma_1, E_1)$  can be obtained from  $(\Sigma_2, E_2)$  by renaming some of the nonlogical symbols; distinct symbols must be replaced by distinct symbols.

4.7.1. <u>REMARK</u> So Robinsons Consistency Theorem 2.6.2 says (see figure) that if  $(\Sigma_1, E_1) \ge (\Sigma, E)$ , i = 1,2, then for some variant  $(\Sigma'_2, E'_2) \cong (\Sigma_2, E_2)$ such that  $(\Sigma'_2, E'_2) \ge (\Sigma, E)$ , there exists a  $(\Sigma_3, E_3) \ge (\Sigma_1, E_1)$ ,  $(\Sigma'_2, E'_2)$ .



4.7.2. <u>PROPOSITION</u> Let  $S_1, S_2 \in WP(\Sigma)$ . Suppose

 $(\Sigma', E'), (\Sigma'', E'') \ge (\Sigma, E),$  $(\Sigma', E') \cong (\Sigma'', E''), \text{ and}$  $\Sigma' \cap \Sigma'' = \Sigma.$  Then

(i) 
$$S_1 \stackrel{\sqsubset}{=} HL(\Sigma', E') S_2 \Leftrightarrow S_1 \stackrel{\sqsubseteq}{=} HL(\Sigma'', E'') S_2$$

(ii) 
$$\operatorname{HL}(\Sigma', E') \models S_1 \sqsubseteq S_2 \iff \operatorname{HL}(\Sigma'', E'') \models S_1 \sqsubseteq S_2.$$

PROOF. (i) routine; (ii) at once from (i)  $\square$ 

4.8 <u>PROPOSITION</u> Let  $S_1, S_2, S_3 \in WP$  ( $\Sigma$ ). Then:

 $\operatorname{HL}(\Sigma, E) \Vdash S_1 \sqsubseteq S_2 & \operatorname{HL}(\Sigma, E) \Vdash S_2 \sqsubseteq S_3 \Rightarrow \operatorname{HL}(\Sigma, E) \Vdash S_1 \sqsubseteq S_3.$ PROOF. The assumptions are

$$\exists (\Sigma_{i}^{!}, \mathbb{E}_{i}^{!}) \vDash (\Sigma, \mathbb{E}) \quad \forall (\Sigma_{i}^{"}, \mathbb{E}_{i}^{"}) \trianglerighteq (\Sigma_{i}^{!}, \mathbb{E}_{i}^{!}) \quad S_{i} \sqsubseteq HL(\Sigma_{i}^{"}, \mathbb{E}_{i}^{"}) S_{i+1} \quad (i=1,2)$$

(see figure)

Now consider such  $(\Sigma'_1, E'_1)$ , i = 1, 2. By Proposition 4.7.2. we may suppose that  $\Sigma'_1 \cap \Sigma'_2 = \Sigma$ . Now by Robinsons Consistency Theorem,  $(\Sigma', E') = (\Sigma'_1 \cup \Sigma'_2, E'_1 \cup E'_2) \ge (\Sigma, E)$ . Also, by transitivity of  $\sqsubseteq_{HL}$ , in the 'upper cone' of  $(\Sigma', E')$  we have  $S_1 \sqsubseteq_{HL} S_2$ . Hence  $(\Sigma, E) \models S_1 \sqsubseteq S_3$ .



Another corollary of Robinson's Consistency Theorem 2.6.2 is: 4.9 <u>PROPOSITION</u>. Forced inclusion implies cofinal inclusion.

<u>PROOF</u>. Suppose  $HL(\Sigma, E) \Vdash S_1 \sqsubseteq S_2$ , i.e.:

$$\exists (\Sigma', E') \geq (\Sigma, E) \forall (\Sigma', E'') \geq (\Sigma', E') S_1 \sqsubseteq_{\operatorname{HL}(\Sigma'', E'')} S_2$$
(1)

Π

To prove:



Take  $(\Sigma', E')$  as in (1), and consider a  $(\Sigma'_1, E'_1)$  as in (2). By Prop. 4.7.2. (ii) we can 'shift'  $(\Sigma', E')$  to an isomorphic variant  $(\Sigma'^*, E'^*)$  such that  $\Sigma'^* \cap \Sigma' = \Sigma$ , and still having the property that  $S_1 \sqsubseteq_{HL} S_2$  in all refinements.

Then take  $(\Sigma''_1, E''_1)$  in (2) as the union of  $(\Sigma'_1, E'_1)$  and  $(\Sigma'^*, E'^*)$ ; by RCT 2.6.2. this is possible.  $\Box$ 

4.9.1. REMARK. For ≥ instead of ≥ the above proposition fails. E.g. take

$$S_1 = x := 0$$
  
 $S_2 = \frac{if}{1} 0 > 1 \frac{then}{1} x := 0 \frac{else}{1} x := 1 fi$ 

Let  $\Sigma = \{0,1,<\}$ , E = the theory of partial order,  $E_1 = E \cup \{0 < 1\}$  and  $E_2 = E \cup \{0 > 1\}$ . Then  $HL(\Sigma, E_2)$  " |-"  $S_1 \equiv S_2$ , hence  $HL(\Sigma, E)$  "|-"  $S_1 \equiv S_2$ . However, for all  $(\Sigma', E') \ge (\Sigma, E_1)$ ,  $S_1 \not\equiv_{HL}(\Sigma', E')^{S_2}$ .

(2)

4.10. <u>REMARK</u>. All inclusions introduced above, except semantical inclusion, were obtained by quantification over the 'basic' proof theoretical inclusion  $\Box_{\rm HL}$ . This suggests looking at all inclusions of the following general form:

$$s_{1} \sqsubseteq \overset{\forall \exists \forall \dots \exists}{\operatorname{HL}(\Sigma, E)} s_{2} \iff \forall (\Sigma_{1}, E_{1}) \vDash (\Sigma, E) \exists (\Sigma_{2}, E_{2}) \trianglerighteq (\Sigma_{1}, E_{1})$$
$$\forall (\Sigma_{3}, E_{3}) \trianglerighteq (\Sigma_{2}, E_{2}) \cdots \exists (\Sigma_{2n}, E_{2n}) \trianglerighteq (\Sigma_{2n-1}, E_{2n-1})$$
$$s_{1} \sqsubseteq \operatorname{HL}(\Sigma_{2n}, E_{2n}) \overset{s_{2}}{\operatorname{S}}$$

and likewise  $S_1 \subseteq \overset{\forall \exists \forall \ldots \forall}{HL(\Sigma, E)} S_2$ , and the dual notions obtained by interchanging  $\exists, \forall$ . (Note that only alternating strings of quantifiers are interesting, since obviously  $-\forall \forall -- = --\forall --$  and likewise for  $\exists$ .) So derivable inclusion w.r.t.( $\Sigma, E$ ) is  $\sqsubseteq^{\forall =}_{-HL(\Sigma, E)}$ , forced inclusion is  $\sqsubseteq^{\exists \forall}_{-HL(\Sigma, E)}$ , and cofinal inclusion is  $\sqsubseteq^{\forall \exists}_{-HL(\Sigma, E)}$ . (In the sequel we will also consider 'inclusion in some refinement':  $\sqsubseteq^{\exists HL(\Sigma, E)}_{-HL(\Sigma, E)}$ .

Now between these generalized inclusions there are a priori the following implications; see the figure where an implication is downward. (Only the quantifiers of  $\Box_{HL(\Sigma,E)}^{\forall \exists --}$  are mentioned.)



However, this hierarchy of inclusions 'collapses' because

(i)

$$\frac{\Box}{\Box} \frac{H\Gamma(\Sigma, E)}{AA} = \frac{\Box}{\Box} \frac{H\Gamma(\Sigma, E)}{AA}$$

(ii) 
$$\begin{array}{c} & \stackrel{\forall 3}{=} & \stackrel{\forall 3}{=} \\ & \text{HL}(\Sigma, E) &= \\ & \stackrel{\Box}{=} & \text{HL}(\Sigma, E) \end{array}$$

To see the nontrivial direction of (i), note that it was proved already in Proposition 4.9. By a similar argument also (ii) follows.

Now  $\exists \forall \exists \forall = \exists \forall = \exists \forall$ ,  $\forall \exists \forall \exists \forall = \exists \forall = \exists \forall$ , etc. Hence the only inclusions are those displayed in the following figure:



(Remark: we did not prove that  $\subseteq_{HL(\Sigma,E)}^{\exists}$  is a partial order. Question: is it?)

4.11. <u>REMARK</u> (*Contexts*) All inclusions that are defined above exhibit the desirable property of staying valid in a context: let  $S_1$ ,  $S_2 \in WP(\Sigma)$  and let C [] be a '*context statement*'(also in  $\Sigma$ ), i.e. a statement with a 'hole'. Then

$$s_1 \sqsubseteq s_2 \iff \forall c [] c [s_1] \sqsubseteq c [s_2].$$

The proof follows in a straightforward manner by observing that

$$\forall p,q \in L(\Sigma) \quad HL(\Sigma,E) \models \{p\} S_{2} \{q\} \Rightarrow HL(\Sigma,E) \models \{p\} S_{1} \{q\}$$

implies

$$\forall p,q \in L(\Sigma) \quad \text{HL}(\Sigma,E) \models \{p\} C [S_{2}] \{q\} \Rightarrow \text{HL}(\Sigma,E) \models \{p\} C [S_{1}] \{q\}.$$

4.12. <u>REMARK</u>. (*Invariances*.) For a better insight in what happens inside the 'cone of refinements', we will investigate whether the notions

- (1)  $A1g(\Sigma, E) \models p \qquad E \models p$
- (2)  $Alg(\Sigma,E) \models \{p\} S \{q\} ; HL(\Sigma,E) \models \{p\} S \{q\}$
- (3)  $\operatorname{Alg}(\Sigma, E) \models S_1 \sqsubseteq S_2$ ;  $S_1 \sqsubseteq_{\operatorname{HL}}(\Sigma, E) S_2$

are invariant under 'shifting  $(\Sigma, E)$  upward or downward'. <u>Ad (1)</u>. Upward and downward invariant (i.e.  $\forall (\Sigma', E') \not\models (\Sigma, E)$   $(Alg(\Sigma, E) \models p \iff Alg(\Sigma', E') \models p))$ ; this follows simply from Gödels Completeness Theorem and the definition of conservativity. <u>Ad (2)</u>. Here the situation is already somewhat more complicated:  $Alg(, ) \models \{p\} S \{q\}$  is upward and downward invariant ; see Proposition 4.13. However, for HL(, )  $\models \{p\} S \{q\}$  we have only the (trivial) upward invariance , i.e.:

 $\forall (\Sigma', E') \vDash (\Sigma, E) \quad \operatorname{HL}(\Sigma, E) \models \{p\} S \{q\} \Rightarrow \operatorname{HL}(\Sigma', E') \models \{p\} S \{q\}.$ 

That here " $\Leftarrow$ " does not hold , is because an invariant needed for the proof of  $\models$  {p} S{q} may be available in ( $\Sigma$ ',E') but not yet in ( $\Sigma$ ,E). <u>Ad (3)</u>. Again the semantical notion, Alg (,)  $\models$  S<sub>1</sub>  $\sqsubseteq$  S<sub>2</sub>, is invariant in both directions. For 'upward' this is trivial; for 'downward' certainly not - see the next Lemma (4.14).

Finally,  $S_1 \sqsubseteq_{HL}(,) S_2$  is neither upward, nor downward invariant. One can even show that it may happen that  $S_1 \bigsqcup_{HL}(,) S_2$  is alternatingly true and false while following some upward path  $(\Sigma_0, E_0) \trianglelefteq (\Sigma_1, E_1) \backsim \ldots$ .

4.13. <u>PROPOSITION</u>. Let  $(\Sigma', E'') \leq (\Sigma, E)$ , p,q  $\in L(\Sigma)$  and S  $\in WP$  ( $\Sigma$ ). Then Alg  $(\Sigma, E) \models \{p\} S \{q\} \iff Alg(\Sigma', E') \models \{p\} S \{q\}$ .

<u>PROOF</u>.  $(\Rightarrow)$  is trivial. To prove the reverse, we use Theorem 2.7.3, which says that for every  $A \in Alg(\Sigma, E)$  there is an  $A' \in Alg(\Sigma, E)$  and an  $A'' \in$  $Alg(\Sigma', E')$  such that  $A \leq A' \leq A''$ . By Remark 2.5.1, we have  $A \equiv A'$ . Now the result follows by the following Lemma from BERGSTRA-TUCKER [7]: "Let  $A \equiv A'$ . Then  $A \models \{p\} S \{q\} \Leftrightarrow B \models \{p\} S \{q\}$ ".

4.14. LEMMA. Let 
$$(\Sigma', E') \models (\Sigma, E)$$
. Then for all  $S_1, S_2 \in WP(\Sigma)$ :  
Alg $(\Sigma, E) \models S_1 \sqsubseteq S_2 \iff Alg(\Sigma', E') \models S_1 \sqsubseteq S_2$ .

<u>PROOF</u>. ( $\Rightarrow$ ) is easy: take A'  $\epsilon$  Alg( $\Sigma', E'$ ). Then  $\rho_{\Sigma}^{\Sigma'}(A') = A \epsilon$  Alg( $\Sigma, E$ ). So  $A \models S_1 \sqsubseteq S_2$ . But then trivially also A'  $\models S_1 \sqsubseteq S_2$ , since the extra structure on A' does not play a role.

( $\Leftarrow$ ). Proof by contraposition: take  $A \in Alg(\Sigma, E)$  such that  $A \not\models S_1 \sqsubseteq S_2$ . Then there are  $\vec{a} = a_1, \ldots, a_n \in A$  and  $\vec{b} = b_1, \ldots, b_n \in A$  such that, par abus de language:

$$A \models S_1(\vec{a}) = \vec{b}$$
 and  $A \not\models S_2(\vec{a}) = \vec{b}$ 

More precisely: for some n, and for all m:

$$A \models \phi_n (\vec{a}, \vec{b}) \land \neg \psi_m (\vec{a}, \vec{b}),$$
  
where  $\phi_n (\vec{a}, \vec{b}) = \operatorname{Comp}_{S_1, n} (\vec{a}) = \vec{b}$   
and  $\psi_m (\vec{a}, \vec{b}) = \neg \operatorname{Comp}_{S_2, m} (\vec{a}) = \vec{b}.$   
Let  $\Gamma$  be the set of assertions  $\{\phi_n(\vec{a}, \vec{b})\} \cup \{\psi_m(\vec{a}, \vec{b}) \mid m \in \mathbb{N}\}.$   
 $\underline{CLAIM}.$  For some  $B: B \models E' \cup \Gamma$ . So  $B \not\models S_1 \sqsubseteq S_2$ , hence  
 $Alg(\Sigma', E') \not\models S_1 \sqsubseteq S_2$  and we are through.  
PROOF OF THE CLAIM. Suppose there is no such  $B$ , i.e.  $E' \cup \Gamma$  is the set of th

<u>PROOF OF THE CLAIM</u>. Suppose there is no such  $\mathcal{B}$ , i.e.  $\mathsf{E}' \cup \Gamma$  is inconsistent. Then for some finite  $\Delta \subseteq \Gamma$ , we have that  $\mathsf{E}' \cup \Delta$  is already inconsistent. Say  $\Delta = \{\phi_n, \neg \psi_0, \ldots, \neg \psi_{k-1}\}$ . So  $\mathsf{E}' \models \neg (\phi_n \land \bigwedge \psi_i), i < k$ 

hence

$$E' \models \neg \exists \vec{x}, \vec{y} (\phi_n(\vec{x}, \vec{y}) \land \underset{i < k}{M} \psi_i(\vec{x}, \vec{y})).$$

By the conservativity of E' over E, we can replace E' here by E. However, this contradicts the fact that

$$A \models \exists \vec{x}, \vec{y} (\phi_n(\vec{x}, \vec{y}) \land \underset{i < k}{M} \psi(\vec{x}, \vec{y})).$$

# 5. PROTOTYPE PROOFS.

Let us abbreviate the implication

$$\operatorname{HL}(\Sigma', E') \models \{p\} S_{2}\{q\} \Rightarrow \operatorname{HL}(\Sigma', E') \models \{p\} S_{1}\{q\}$$

by  $\Phi(\Sigma', E', p, q)$ . So by definition,  $HL(\Sigma, E) \models S_1 \sqsubseteq S_2$  is equivalent to:  $\phi(\Sigma', E', p, q)$  for all  $(\Sigma') \nvDash (\Sigma, E)$  and all  $p, q \in L(\Sigma')$ . Now it turns out that among all these  $\Phi(\Sigma', E', p, q)$  there is a 'generic' one,  $\Phi(\Sigma^0, E^0, r(\vec{x}), r'(\vec{x}))$ . I.e.:

$$\Phi(\Sigma^{0}, E^{0}, r(\vec{x}), r'(\vec{x})) \iff$$

$$\forall (\Sigma', E') \geq (\Sigma, E) \forall p, q \in L(\Sigma') \Phi (\Sigma', E', p, q).$$

The situation is even further simplified, since the generic implication has an antecedent  $\operatorname{HL}(\Sigma^{0}, E^{0}) \models \{r(\vec{x})\} S_{2}\{r'(\vec{x})\}$  which is always true. This reduces checking whether  $\operatorname{HL}(\Sigma, E) \models S_{1} \sqsubseteq S_{2}$  or not, to checking whether  $\operatorname{HL}(\Sigma^{0}, E^{0}) \models \{r(\vec{x})\} S_{1}\{r'(\vec{x})\}$ , which is semi-decidable. (Hence our choice of the notation  $\models$  in  $\operatorname{HL}(\Sigma, E) \models S_{1} \sqsubseteq S_{2}$ .)

Finding this generic implication is based on the observation that every proof  $\operatorname{HL}(\Sigma', E') \models \{p\} S \{q\}$  can be viewed as an instantiation of a "prototype proof"  $\pi(S)$ . In order to define this concept, we need an efficient notation for proofs of asserted programs. One method is to consider a proof as a proof tree; a second way is to consider a proof as a flowdiagram with assertions written at the cut-points. We will use a more workable *linear* notation of proofs which will be introduced now. First we will define the concept 'interpolated statement' which can be viewed as the flowdiagram corresponding to the statement plus some assertions written at some cutpoints.

5.1. <u>DEFINITION</u>. The class IStat( $\Sigma$ ), with typical elements  $S^*, S_1^*, S^*, \cdots$ , of *interpolated* statements is inductively defined by

 $S^* ::= S/\{p\} S^* / S^*\{p\} / \underline{if} b \underline{then} S_1^* \underline{else} S_2^* \underline{fi} / \underline{while} b \underline{do} S^* \underline{od}.$ 

Here S  $\in$  WP( $\Sigma$ ). So the class of interpolated statements contains next to the usual statements also asserted statements and statements interlaced

with assertions in an arbitrary way; but it contains also *proofs* of asserted statements. These will be singled out by means of the following extended proof rules.

5.2. <u>DEFINITION</u>. By means of the following axions and extended proof rules we can derive proofs of asserted statements:

(1) Assignment axiom scheme:

 ${p(t)}$  x:=t  ${p}$ 

(2) Extended composition rule:

$$\frac{\{p\} S_1^* \{r\} \{r\} S_2^* \{q\}}{\{p\} S_1^* \{r\} S_2^* \{q\}}$$

(3) Extended conditional rule:

(4) Extended iteration rule:

{p^b} 
$$S^*$$
 {p}  
{p} while b do {p^b}  $S^*$  {p} od {p^b}

(5) Extended consequence rule:

$$p \rightarrow p, \{p_1\} S^* \{q_1\} q_1 \rightarrow q$$
  
 $\{p\} \{p_1\} S^* \{q_1\} \{q\}$ 

# 5.3. DEFINITION and NOTATION.

Let Pr (Σ,E) be the class of proofs (interpolated statements) which can be derived using this axiom scheme and extended proof rules, such that in (5) only implications provable from E are used.

(ii) If  $S^* \in IStat(\Sigma)$ , then  $\sigma(S^*)$  will denote the underlying statement obtained by erasing all  $\{p\}$  in S<sup>\*</sup>. (So  $\sigma$  can be inductively defined as follows:

> $\sigma(S) = S \text{ for } S \in WP(\Sigma)$  $\sigma(S^{*}\{p\}) = \sigma(\{p\} S^{*}) = \sigma(S^{*})$  $\sigma(\underline{\text{if } b } \underline{\text{then }} S_1^* \underline{\text{else }} S_2^* \underline{\text{fi}}) = \underline{\text{if } b } \underline{\text{then }} \sigma(S_1^*) \underline{\text{else }} \sigma(S_2^*) \underline{\text{fi}}$  $\sigma(\underline{\text{while } b } \underline{\text{do }} S^* \underline{\text{od}}) = \underline{\text{while }} b \underline{\text{do }} \sigma(S^*) \underline{\text{od.}})$

- (iii) If  $S^* \in Pr(\Sigma, E)$ , then  $\kappa(S^*)$  will denote the set of consequences  $p \rightarrow p'$ used in the derivation of S<sup>\*</sup>. Note that these consequences can be read of directly from  $S^*$ :  $\kappa(S^*) = \{p \rightarrow p' \mid \{p\} \{p'\} \subseteq S^*\}$ . (Here " $\subseteq$  " denotes the relation of being contained as a 'subword'.)
- If  $S^* \in Pr(\Sigma, E)$  and  $S^* = \{p\} S_1^* \{q\}$ , then pre  $(S^*) = p$  and post  $(S^*)$ (iv) = q.
- Let  $S^* \in Pr(\Sigma, E)$ . Then  $S^*$  is called a *reduced* proof, iff it contains (v) no occurrence of a triple {p} {q} {r}. (By the transitivity of  $\rightarrow$ , every proof may be supposed reduced, up to equivalence.)

5.4. DEFINITION. (1) Two interpolated statements S\*, S\*\* such that  $\sigma(S^*) = \sigma(S^{**}) = S$  are called *matching* if at every place the same number of assertions occur in S<sup>\*</sup>, S<sup>\*\*</sup>. (Notation:  $S^* \sim S^{**}$ ) To be precise: (i)  $S \sim S$  for  $S \in WP(\Sigma)$ (ii)  $S^* \sim S^{**} \implies \{p\} S^* \sim \{q\} S^{**}$  and  $S^* \{p\} \sim S^{**} \{q\}$ (iii)  $S_1^* \sim S_1^{**}$ ,  $S_2^* \sim S_2^{**} \Rightarrow$   $\underbrace{\text{if } b \text{ then } S_1^*}_{\text{S}^*} \sim S_2^{*} \underbrace{\text{if } b \text{ then } S_1^*}_{\text{S}^*} = S_2^* \underbrace{\text{fi}}_{\text{S}^*} \xrightarrow{\text{if } b \text{ then } S_1^*}_{\text{S}^*} \underbrace{\text{else } S_2^* \underbrace{\text{fi}}_{\text{S}^*} \sim \underbrace{\text{if } b \text{ then } S_1^{**}}_{\text{S}^*} \underbrace{\text{else } S_2^* \underbrace{\text{fi}}_{\text{S}^*} \sim \underbrace{\text{if } b \text{ then } S_1^{**}}_{\text{S}^*} \underbrace{\text{else } S_2^* \underbrace{\text{fi}}_{\text{S}^*} \xrightarrow{\text{if } b \text{ then } S_1^*}_{\text{S}^*} \underbrace{\text{else } S_2^* \underbrace{\text{fi}}_{\text{S}^*} \xrightarrow{\text{if } b \text{ then } S_1^*}_{\text{S}^*} \underbrace{\text{else } S_2^* \underbrace{\text{fi}}_{\text{S}^*} \xrightarrow{\text{if } b \text{ then } S_1^*}_{\text{S}^*} \underbrace{\text{else } S_2^* \underbrace{\text{fi}}_{\text{S}^*} \xrightarrow{\text{fi}}_{\text{S}^*} \xrightarrow{\text{fi}}_{\text{Fi}} \xrightarrow{\text{fi}}_{\text{S}^*} \xrightarrow{\text{fi}} \xrightarrow{\text{fi}}_{\text{Fi}} \xrightarrow{\text{fi}}_{\text{Fi}$ 

while b also  $S^*$  od ~ while b do  $S^{**}$  od.

(2) Let  $S^* = -- \{p\}$  -- be an interpolated statement containing  $\{p\}$ . Then  $S^{**} = -- \{p\} \{p\}$ -- is called a *trivial expansion* of  $S^{*}$ .

5.5. DEFINITION. In the following definition we will use a set of n-ary relation symbols {r<sub>i</sub> | i  $\in \omega$  }. If S<sup>\*</sup>  $\in$  IStat contains some of these

r-symbols,  $[S^*]_{j}$  will be the result of replacing each occurrence of  $r_{i}$  in  $S^*$  by  $r_{(i,j)}$  where (,):  $\mathbb{N}^2 \to \mathbb{N}$  is the usual byective pairing function. (This device merely serves to 'refresh' the r-symbols where necessary.)

(i) Let S  $\in WP(\Sigma)$  involve the variables  $\overrightarrow{x}$  (=x<sub>1</sub>,...,x<sub>n</sub>). By induction on the structure of S we define  $\pi'(S)$  as follows:

(1) 
$$\pi'(x_i:=t) = \{r_0(\vec{x}) [t/x_i]\} x_i := t \{r_0(\vec{x})\}.$$

(2) 
$$\pi(s_1;s_2) = [\pi'(s_1)]_0 [\pi'(s_2)]_1.$$

(That is,  $\pi'(S_1)$  and  $\pi'(S_2)$  are concatenated, without infix. Moreover, the r-symbols in  $[\pi'(S_1)]_0$  are made distinct from those in  $[\pi'(S_2)]_1$ .)

(3) 
$$\pi'(\underline{if} \ b \ \underline{then} \ S_1 \ \underline{else} \ S_2 \ \underline{fi}) =$$

$$\{r_{0}(x)\} \underline{if} \ b \ \underline{then} \ \{r_{0}(\vec{x}) \land b\}[\pi'(S_{1})]_{2} \ \{r_{1}(\vec{x})\}$$

$$\underline{else} \ \{r_{0}(\vec{x}) \land \neg b\}[\pi'(S_{2})]_{3} \ \{r_{1}(\vec{x})\}$$

$$\underline{fi} \ \{r_{1}(\vec{x})\}.$$

(4)  $\pi'(\underline{while} \ b \ \underline{do} \ S \ \underline{od}) =$ 

 $\{r_0(\vec{x})\} \underline{while} b \underline{do} \{r_0(\vec{x}) \land b\} S^* \underline{od} \{r_0(\vec{x}) \land \neg b\} \{r_1(\vec{x})\}$ 

where 
$$S^* = [\pi^*(S)]_{\mu}$$
 and  $r_0(\vec{x}) = \text{post}(S^*)$ .

(ii) Now 
$$\pi(S) = \{r_0(\vec{x})\}[\pi'(S)]_0 \{r_1(\vec{x})\}.$$

 $\pi(S)$  is called the prototype proof of S.

5.5.1. <u>EXAMPLE</u>. Let S be  $x_1 \coloneqq 0$ ;  $x_2 \coloneqq 1$ ; while  $x_2 > x_3$  do if  $x_1 = 0$  then  $x_3 \coloneqq 0$  else  $x_1 \coloneqq x_2 + 1$  fi od;  $x_1 \coloneqq x_1 + x_2$ . Then  $\pi(S) =$ 

|                  |            | $\{r_1(x_1, x_2, x_3)\}$                                                                                                           |
|------------------|------------|------------------------------------------------------------------------------------------------------------------------------------|
|                  |            | $\{r_{2}(0,x_{2},x_{3})\}$                                                                                                         |
| x,               | :=         | 0                                                                                                                                  |
| 1                |            | $\{r_{2}(x_{1},x_{2},x_{3})\}$                                                                                                     |
|                  |            | $\{r_{2}(x_{1},1,x_{2})\}$                                                                                                         |
| x,               | :=         | 1                                                                                                                                  |
| 2                |            | $\{r_{2}(x_{1},x_{2},x_{3})\}$                                                                                                     |
|                  |            | $\{r_{c}(x_{1},x_{2},x_{2})\}$                                                                                                     |
| whi              | lle        | $x_{0} > x_{0} do$                                                                                                                 |
|                  |            | $\begin{cases} 2 & 3 - \\ r_{c}(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{2}) \land \mathbf{x}_{2} > \mathbf{x}_{2} \end{cases}$ |
|                  |            | $\{r_{1}(x_{1},x_{2},x_{3})\}$                                                                                                     |
| if               | x          | = 0 then                                                                                                                           |
| <u> </u>         | <b>^</b> 1 | $\{\mathbf{r} (\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}) \land \mathbf{x} = 0\}$                                               |
|                  |            | $\{r (v v 0)\}$                                                                                                                    |
| v                | • =        | <sup>1</sup> 5 <sup>1</sup> , <sup>2</sup> 2 <sup>,0</sup> , <sup>1</sup>                                                          |
| ^3               | •-         |                                                                                                                                    |
|                  |            | $\begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}$                                                                                     |
| - 1 -            |            | (1, 2, 3)                                                                                                                          |
| <u>ers</u>       | <u></u>    |                                                                                                                                    |
|                  |            | $\{r_4(x_1, x_2, x_3) \land   x_1 = 0\}$                                                                                           |
|                  |            | $\{r_{7}(x_{2}^{+1}, x_{2}^{-1}, x_{3}^{-1})\}$                                                                                    |
| $\mathbf{x}_{1}$ | :=         | x <sub>2</sub> +1                                                                                                                  |
|                  |            | ${r_7(x_1, x_2, x_3)}$                                                                                                             |
|                  |            | ${r_6(x_1, x_2, x_3)}$                                                                                                             |
| <u>fi</u>        |            |                                                                                                                                    |
|                  |            | ${r_6(x_1, x_2, x_3)}$                                                                                                             |
| od               |            |                                                                                                                                    |
|                  |            | $\{r_6(x_1, x_2, x_3) \land \exists x_2 > x_3\}$                                                                                   |
|                  |            | $\{r_8(x_1+x_2,x_2,x_3)\}$                                                                                                         |
| x <sub>1</sub>   | :=         | $x_{1}^{+x_{2}}$                                                                                                                   |
|                  |            | $\{r_{1}(x_{1},x_{2},x_{3})\}$                                                                                                     |
|                  |            | $\{r_{1}(x_{1},x_{2},x_{3})\}$                                                                                                     |
|                  |            | -91,2,3/                                                                                                                           |

5.5.2. <u>PROPOSITION</u>. Let r be a 'new' relation symbol occurring in  $\pi(S)$ . Then r has an occurrence in  $\pi(S)$  of the form  $\{r(\vec{x})\}$ , i.e. the arguments are all variables.

PROOF. Evident by inspection of the definition of  $\pi(S)$ .  $\Box$ 

5.6. <u>DEFINITION</u>. Let  $S^* \in IStat (\Sigma)$  contain the n-ary relation symbol r, and let  $p = p(x_1, \dots, x_n) \in L(\Sigma)$ . (Note: p may contain other variables than those displayed.)

Then  $\phi_r^p$  (S<sup>\*</sup>) is the result of replacing each r(t<sub>1</sub>,...,t<sub>n</sub>), occurring in S<sup>\*</sup>, by p(t<sub>1</sub>,...,t<sub>n</sub>). Likewise we define  $\phi_{r_1,...,r_n}^{p_1,...,p_r}$  (S<sup>\*</sup>).

5.6.1. <u>REMARK</u>. One can think of the prototype proof  $\pi(S)$  as an initial object in the category of proofs {p} S<sup>\*</sup> {q} (where  $\sigma(S^*) = S$ ); morphisms between proofs are the substitutions  $\phi$ .

5.7. LEMMA. Let  $S^* \in Pr(\Sigma, E)$  be a reduced proof such that  $\sigma(S^*) = S$ . Then  $\phi: \pi(S) \to S^*$  for some substitution  $\phi$  as in Def. 5.6. (So every proof is an instance of the prototype proof.)

<u>PROOF</u>. Consider S,S<sup>\*</sup> as in the lemma. We may suppose that S<sup>\*</sup> and  $\pi(S)$  are matching; if not, only some trivial expansions (Def. 5.4) of S<sup>\*</sup> are required.

We will construct by induction on the structure of S a substitution  $\phi: \pi(S) \rightarrow S^*$ .

Case 1. S = x :=  $t(\vec{y}, x, \vec{z})$ , where all variables in t are displayed. Now

$$\pi(S) = \{r_1(\vec{y}, x, \vec{z}, )\} \{r_2(\vec{y}, t, \vec{z})\} x: = t \{r_2(\vec{y}, x, \vec{z})\} \{r_3(\vec{y}, x, \vec{z})\}$$

and

$$S^* = \{p_1\} \{p_2[t/x]\} x := t \{p_2\} \{p_3\}.$$

So the substitution will be  $\phi$ :  $r_i(\vec{y},x,\vec{z}) \Rightarrow p_i(i=1,2,3)$ .

By induction hypothesis we have substitutions

$$\phi_{1} : \pi(S_{1}) \rightarrow \{p_{1}\} S_{1}^{*}\{p_{2}\}$$
  
$$\phi_{2} : \pi(S_{2}) \rightarrow \{p_{2}\} S_{2}^{*}\{p_{3}\}.$$

Now

where  $---- = \pi(S_1)$  and  $---- = \pi(S_2)$ . From this it is evident how to construct the desired  $\phi$ . (<u>Remark</u>: the arity of the new r-symbols in  $\pi(S_1)$ , i= 1,2, is that of S (i.e. n if S has the variables  $x_1, \dots, x_n$ ).)

$$\frac{\text{Case 3. S} = \text{if b then } S_1 \text{ else } S_2 \text{ fi}}{\text{Then } \pi(S) \text{ and } S^* \text{ are as follows:}}$$

$$\pi(S) = \{r_0(\vec{x})\} \{r_1(\vec{x})\} \text{ if b then } \{r_1(\vec{x}) \land b\} \pi'(S_1)\{r_2(\vec{x})\} \text{ else } \{r_1(\vec{x}) \land \neg b\} \pi'(S_2)\{r_2(\vec{x})\} \text{ else } \{r_2(\vec{x})\} \{r_3(\vec{x})\}$$

$$S^{*} = \{p_{0}\} \{p_{1}\} \underbrace{\text{if } b \ \underline{\text{then}}}_{e1se} \{p_{1} \land b\} S_{1}^{*} \{p_{2}\} \\ \underbrace{e1se}_{f1} \{p_{1} \land \neg b\} S_{2}^{*} \{p_{2}\} \\ \underbrace{fi}_{p_{2}} \{p_{3}\}.$$

Again  $\phi$ :  $r_i(\vec{x}) \Rightarrow p_i(i=0,1,2,3)$ ; the induction hypothesis takes care of the correspondence between  $\pi'(S_i)$  and  $S_i^*(i=1,2)$ .

<u>Case 4</u>. S = <u>while</u> b <u>do</u> S' <u>od</u>. (In the following 'r' stands for 'r<sub>i</sub>( $\vec{x}$ )'.)

Here  $r_1 = \text{post}(\pi'(S'))$  and  $p_1 = \text{post}(S')$ .

In the sequel we will need a simple proof-theoretical fact, stating that derivability in first order predicate logic is invariant under substitutions  $\phi(as \text{ in Def.5.6})$ .

5.8. <u>PROPOSITION</u>. Let  $(\Sigma, E)$  be a specification and  $p, q \in L(\Sigma)$ . Let  $\phi$  be a substitution of assertions  $p_i$  for relation symbols  $r_i$ , as in Def. 5.6. (The  $p_i$  not necessarily in  $L(\Sigma)$ .) Let  $\phi(E) = \{\phi(p') | p' \in E\}$ . Then:

(i)  $E \models p \Rightarrow \phi(E) \models \phi(p)$ 

(ii) 
$$E \vdash p \rightarrow q \Rightarrow \phi(E) \vdash \phi(p) \rightarrow \phi(q).$$

<u>PROOF</u>. (i) A routine induction on the length of the derivation  $E \models p$ . (ii) follows from (i), noting that  $\phi(p \rightarrow q) = \phi(p) \rightarrow \phi(q)$ .

5.9 <u>PROPOSITION.</u> Let  $\Sigma^0 = \Sigma \cup \Sigma_{\pi(S)}$  and  $E^0 = E \cup \kappa(\pi(S))$ . Then  $(\Sigma^0, E^0) \succeq_f (\Sigma, E)$ .

<u>PROOF</u>. Take arbitrary p,q such that  $HL(\Sigma,E) \models \{p\} S\{q\}$ . (E.g. take q = <u>true</u>.) Let  $\{p\} S^* \{q\} \in Pr(\Sigma,E)$  be the corresponding proof; we may suppose it matches  $\pi(S)$ .

Now let  $A \in Alg(\Sigma, E)$ , so by soundness of HL we have  $A \models \{p\}S\{q\}$ . Further, it is not hard to see that the  $r_i(\vec{x})$  can be interpreted in A just like the matching assertions in  $\{p\}S^*\{q\}$ .

Hence every  $A \in Alg(\Sigma, E)$  can be expanded to an  $A^0 \in Alg(\Sigma^0, E^0)$ . So by the conservativity criterium 2.7.1, we have  $(\Sigma^0, E^0) \succeq (\Sigma, E)$ . The finiteness is obvious.

5.10. LEMMA. Let  $\Sigma^0 = \Sigma \cup \Sigma_{\pi(S_2)}$ ,  $E^0 = E \cup \kappa(\pi(S_2))$  and let  $r(\mathbf{x})$ ,  $r'(\mathbf{x})$  be respectively the assertions at the head and at the tail of  $\pi(S_2)$ . Then the following are equivalent: (i)  $HL(\Sigma, E) \models s_1 \sqsubseteq s_2$ 

(ii)  $HL(\Sigma, E) \models_f S_1 \sqsubseteq S_2$ 

(iii) 
$$HL(\Sigma^{0}, E^{0}) \models \{r(\vec{x})\} S_{2}\{r'(\vec{x})\} \Rightarrow$$
$$HL(\Sigma^{0}, E^{0}) \models \{r(\vec{x})\} S_{1}\{r'(\vec{x})\}$$

(iv) 
$$HL(\Sigma^{0}, E^{0}) \models \{r(\vec{x})\} S_{1}\{r'(\vec{x})\}.$$

<u>PROOF</u>. (i)  $\Rightarrow$  (ii) is trivial, (iii) follows from Prop. 5.9, and (iii)  $\Rightarrow$  (iv) follows because it is obvious from the construction that HL( $\Sigma^0 E^0$ )  $\mid -\{r(\vec{x})\} S_2\{r'(\vec{x})\}$ . It remains to prove (iv)  $\Rightarrow$  (i).

Assume (iv); let  $\{r_0(\vec{x})\} S_1^* \{r_1(\vec{x})\} \in \Pr(\Sigma^0, E^0)$  be the corresponding proof. Further, suppose for some  $(\Sigma', E') \models (\Sigma, E)$ , p,q  $\in L(\Sigma')$  we have  $HL(\Sigma', E') \models \{p\} S_2^{\{q\}}$ . Let  $\{p\} S_2^* \{q\} \in \Pr(\Sigma', E')$  be the corresponding proof, which we may suppose matching with  $\pi(S_2)$ . By Lemma 5.7,  $\{p\} S_2^* \{q\}$  is an instance of  $\pi(S_2)$  via some substitution  $\phi$ .

Now consider  $\phi(\{\mathbf{r}_0(\mathbf{x})\} \mathbf{S}_1^* \{\mathbf{r}_1(\mathbf{x})\}) = \{\mathbf{p}\} \phi(\mathbf{S}_1^*)\{\mathbf{q}\}$ . From the construction and by Prop. 5.8 it follows that this is a proof in  $Pr(\Sigma', E')$ . Hence  $HL(\Sigma', E') \models \{\mathbf{p}\} \mathbf{S}_1 \{\mathbf{q}\}$ .  $\Box$ 

5.11. <u>THEOREM</u>.  $HL(\Sigma, E) \models S_1 \sqsubseteq S_2$  and  $HL(\Sigma, E) \models S_1 \equiv S_2$ , as predicates of  $S_1, S_2$ , are semi-decidable in E.

<u>PROOF</u>. This follow immediately by noting that  $(\Sigma^0, E^0)$  can effectively by computed from S<sub>2</sub>, given  $(\Sigma, E)$ , and using the equivalence (i)  $\iff$  (iv) in Lemma 5.10.

## 6. COMPLETIONS

In the next section we will need the possibility of taking, for given  $(\Sigma, E)$ , a refinement  $(\Sigma', E') \models (\Sigma, E)$  which is *logically complete* (See Definition 1.2.2). Also we will use a refinement  $(\Sigma', E'') \models (\Sigma, E)$  which has an SP - calculus (see 6.3). The concepts and theorems thereabout, used below, are from BERGSTRA-TUCKER [9,10] and BERGSTRA-TERLOUW [6]. There however the following restriction is made: E must have only infinite models. Since we want to develop the present theory in full generality (also for e.g.

 $E = \emptyset$  ), we will extend the above mentioned results by some 'formal' constructions which do not require the restriction on E, and which are made possible by the concept of a prototype proof  $\pi(S)$ . The disadvantage is that in this way we will need an infinite signature extension  $\Sigma' \geq \Sigma$ , but for our purpose here that is no objection. (Question: given a specification ( $\Sigma$ ,E) such that E has finite models, is there a logical complete  $(\Sigma \cup \Delta, E') \triangleright (\Sigma, E)$ where  $\triangle$  is finite?)

6.1. THEOREM. For every  $(\Sigma, E)$  there is a  $(\Sigma', E') \ge (\Sigma, E)$  such that  $(\Sigma', E')$ is logically complete.

<u>PROOF</u>. The proof is by a construction of length  $\omega^2$ . The first  $\omega$  steps are as follows. Enumerate  $\mathcal{WP}(\Sigma)$  as  $\{S_n | n \in \mathbb{N}\}$  and let  $\{(p_n,q_n) | n \in \mathbb{N}\}$  be an enumeration of the pairs of assertions  $\epsilon$  L ( $\Sigma$ ). Now consider the sequence of asserted programs  $\alpha_n = \{p_{(n)_0}\} S_{(n)_1} \{q_{(n)_0}\}$  where ()<sub>0</sub>, ()<sub>1</sub> are the projections corresponding to the well-known bijection (,):  $\mathbb{N}^2 \rightarrow \mathbb{N}$ . Note that every {p} S{q} occurs in this sequence.

Now we define by induction on n the specification  $(\Sigma_n, E_n)$ . <u>Basis</u>:  $(\Sigma_0, E_0) = (\Sigma, E)$ . Induction step: let  $(\Sigma_n, E_n)$  be defined, and consider  $\alpha_{n+1}$ .

Case 1.  $\operatorname{Alg}(\Sigma_n, E_n) \not\models \alpha_{n+1}$ . Then  $(\Sigma_{n+1}, E_{n+1}) = (\Sigma_n, E_n)$ . Case 2.  $\operatorname{Alg}(\Sigma_n, E_n) \models \alpha_{n+1}$ . Say the prototype proof  $\pi(S_{(n+1)_1})$  has the form  $\{r(\vec{x})\} \stackrel{*}{S_{(n+1)_1}^*} \{r'(\vec{x})\}\$ and let  $(\Sigma', E')$  be the specification corresponding to  $\pi(S_{(n+1)_1})$ . Then define:

$$(\Sigma_{n+1}, E_{n+1}) = (\Sigma_n, E_n) \cup (\Sigma', E' \cup \{p_{(n)_0} \rightarrow r(\vec{x}), r'(\vec{x}) \rightarrow q_{(n)_0}\})$$

(The r-symbols in  $\pi(S_{(n+1)_1})$  have to be fresh compared to previous r-symbols in  $(\Sigma_{n}, E_{n}).)$ 

Further, let  $(\Sigma_{\omega}, E_{\omega}) = \bigcup_{n \in \omega} (\Sigma_n, E_n)$ .

$$\underline{\text{CLAIM 1}}. \qquad (\Sigma_0, E_0) \leq (\Sigma_1, E_1) \leq \ldots \leq (\Sigma_n, E_n) \leq \ldots \leq (\Sigma_{\omega}, E_{\omega}).$$

<u>PROOF OF CLAIM 1</u>. To show that  $(\Sigma_n, E_n) \leq (\Sigma_{n+1}, E_{n+1})$  for all  $n \in \omega$ , we use the conservativity criterion 2.7.1. Since we know (in case 2 above) that  $\alpha_{n+1}$  is true in every  $A \in Alg(\Sigma_n, E_n)$ , the newly added r-symbols can be

interpreted in A; that is, A can be expanded to an A'  $\epsilon$  Alg( $\Sigma_{n+1}, E_{n+1}$ ).

To show that  $(\Sigma_n, E_n) \trianglelefteq (\Sigma_{\omega}, E_{\omega})$  for all  $n \in \omega$ , suppose  $E_{\omega} \models p$ , for some  $p \in L(\Sigma_n)$ . Then for some finite  $D \subseteq E_{\omega}$ ,  $D \models p$ . Hence for some  $m \ge n$ ,  $E_m \models p$ . Since  $(\Sigma_n, E_n) \oiint (\Sigma_m, E_m)$  as just shown,  $E_n \models p$ .  $\Box$ 

Now that  $(\Sigma_{\omega}, E_{\omega})$  is constructed, the statements  $\in WP(\Sigma_{\omega})$  and assertions  $\in L(\Sigma_{\omega})$  are again enumerated, and the procedure is repeated to yield  $((\Sigma_{\omega})_{\omega}, (E_{\omega})_{\omega}) = (\Sigma_{\omega,2}, E_{\omega,2})$ . Likewise  $(\Sigma_{\omega,n}, E_{\omega,n})$  is constructed, and we put  $(\Sigma', E') = \bigcup_{n \in \omega} (\Sigma_{\omega,n}, E_{\omega,n})$ .

<u>CLAIM 2</u>.  $(\Sigma_{\omega,n}, E_{\omega,n}) \leq (\Sigma', E')$ , for all  $n \in \omega$ ; and  $(\Sigma', E')$  is logically complete.

<u>PROOF OF CLAIM 2.</u> The first part is as in the proof of Claim 1. The logical completeness is shown as follows. Let  $Alg(\Sigma', E') \models \{p\} S\{q\}$ , where  $\{p\} S\{q\} \in L(\Sigma')$ . Then  $\{p\} S\{q\} \in L(\Sigma_{\omega,n}, E_{\omega,n})$  for some  $n \in \omega$ , and  $Alg(\Sigma_{\omega,n}, E_{\omega,n}) \models \{p\} S\{q\}$  follows from Proposition 4.13. (Alternative argument: because no models were 'lost' in the construction, i.e.  $\rho$  ( $Alg(\Sigma', E') = Alg(\Sigma_{\omega,n}, E_{\omega,n})$  for the suitable reduction operator  $\rho$ .) Hence  $E_{\omega,(n+1)}$  contains  $\kappa(\{p\} \pi(S) \{q\})$ , that is:  $HL(\Sigma_{\omega,(n+1)}, E_{\omega,(n+1)})$  $\mid - \{p\} S\{q\}$ .  $\Box$ 

6.2. COROLLARY. Let 
$$Alg(\Sigma, E) \models S_1 \sqsubseteq S_2$$
. Then:  
 $\exists (\Sigma', E') \triangleright (\Sigma, E) \qquad S_1 \sqsubseteq HL(\Sigma', E')^{S_2}$ .

<u>PROOF</u>. Let  $(\Sigma'E')$  be a logically complete refinement of  $(\Sigma, E)$ ; by the preceding theorem it exists. By Lemma 4.13, Alg  $(\Sigma, E) \models S_1 \sqsubseteq S_2 \iff Alg (\Sigma', E') \models S_1 \sqsubseteq S_2$ . Now Alg  $(\Sigma', E') \models S_1 \sqsubseteq S_2$  implies  $\forall p, q \in L (\Sigma') (Alg (\Sigma', E') \models \{p\} S_2 \{q\} \Rightarrow Alg (\Sigma', E') \models \{p\} S_1 \{q\}.)$ Hence by logical completeness of  $(\Sigma', E')$ :  $\forall p, q \in L (\Sigma') (HL(\Sigma', E') \models \{p\} S_2 \{q\} \Rightarrow HL (\Sigma', E') \models \{p\} S_1 \{q\}$ I.e.  $S_1 \sqsubseteq HL(\Sigma', E') \searrow S_2$ .

6.3. <u>DEFINITION</u>. Let  $(\Sigma, E)$  be a specification. We say that  $(\Sigma, E)$  has an SP-calculus (strongest postcondition calculus), if for each

 $p \in L(\Sigma)$ ,  $S \in WP(\Sigma)$  there exists an assertion  $SP(p,S) \in L(\Sigma)$  such that

(i) 
$$HL(\Sigma, E) = \{p\} S \{SP(p, S)\}$$

(ii) if  $HL(\Sigma, E) \models \{p\} S \{q\}$ , then  $(\Sigma, E) \models q \rightarrow SP (p, S)$ .

6.4. <u>THEOREM</u>. Let  $(\Sigma, E)$  be a specification without finite models. Then there is a conservative refinement  $PA(\Sigma, E)$  of  $(\Sigma, E)$ , called the Peano companion of  $(\Sigma, E)$ , which has an SP-calculus.

<u>PROOF</u>. For the definition of  $PA(\Sigma, E)$  and the proof that it has an SP-calculus, see BERGSTRA-TUCKER [10] and BERGSTRA-TERLOUW [6].

6.4.1. <u>REMARK</u>. It is possible to construct a 'formal' companion having an SP-calculus, without the restriction on E, but at the cost of an infinite signature extension. For the sequel we will not need the full strength of an SP-calculus and we will be satisfied with the following proposition.

6.4.2. PROPOSITION. Let 
$$p,q \in L(\Sigma)$$
 and  $S \in WP(\Sigma)$ .

(i) Let  $p \xrightarrow{S} q$  abbreviate  $\forall$  (SP(p,S)  $\Rightarrow$  q), where  $\forall$  denotes the universal closure. Then:

PA 
$$(\Sigma, E) \models \{p \land p \xrightarrow{S} q\} S\{q\}$$

(a kind of 'S-modus ponens').

(ii) Let  $p \stackrel{S}{\Rightarrow} q$  abbreviate  $\forall (\Lambda \kappa (\{p\} \pi (S) \{q\}))$ , i.e. the universal closure of the conjunction of the consequences in  $\{p\} \pi (S) \{q\}$ . Let  $\Sigma' = \Sigma \cup \Sigma_{\pi(S)}$ . Then:

$$(\Sigma', \emptyset) \models \{p \land p \xrightarrow{S} q\} S \{q\}.$$

## PROOF.

(i) at once from the definitions.

(ii) a tedious but routine verification by induction on S.

## PROVING PROGRAM INCLUSION

We are now in a position to prove one of the main theorems of this paper, viz. the equivalence of semantical and cofinal inclusion. After that we will show how this fact can be exploited to give formal proofs of program inclusion.

# 7.1. THEOREM. Semantical and cofinal inclusion coincide; i.e.

$$Alg(\Sigma, E) \models S_1 \sqsubseteq S_2 \iff \forall (\Sigma', E') \not\models (\Sigma, E) \exists (\Sigma''E'') \not\models (\Sigma', E') S_1 \sqsubseteq HL(\Sigma'', E'') S_2$$

<u>PROOF</u>. ( $\Rightarrow$ ) Suppose Alg( $\Sigma, E$ ) = S<sub>1</sub>  $\sqsubseteq$  S<sub>2</sub> and consider ( $\Sigma', E'$ )  $\triangleright$  ( $\Sigma, E$ ). By Theorem 6.1 there is a ( $\Sigma'', E''$ )  $\triangleright$  ( $\Sigma', E'$ ) which is logically complete. From Alg( $\Sigma'', E''$ ) = S<sub>1</sub>  $\sqsubseteq$  S<sub>2</sub> we have

$$\forall \mathbf{p}, \mathbf{q} \in L(\Sigma'') \text{ (Alg}(\Sigma'', \mathbf{E}'') \models \{\mathbf{p}\} S_2\{\mathbf{q}\} \Rightarrow \text{Alg}(\Sigma'', \mathbf{E}'') \models \{\mathbf{p}\} S_1\{\mathbf{q}\} \text{ ).}$$

By the logical completeness we can replace "Alg( $\Sigma$ ", E") |=" by "HL( $\Sigma$ ", E") |-". Result:  $S_1 \sqsubseteq_{HL}(\Sigma$ ", E")  $S_2$ .

(=) Let E have no finite models. (The case that E has finite models, can be dealt with analogously, as suggested by Proposition 6.4.2.)

Suppose Alg( $\Sigma$ ,E)  $\not\models S_1 \sqsubseteq S_2$ . Then also Alg(PA( $\Sigma$ ,E))  $\not\models S_1 \sqsubseteq S_2$ , by Lemma 4.14. So there is an A  $\epsilon$  Alg(PA( $\Sigma$ ,E)) such that A  $\not\models S_1 \sqsubseteq S_2$ . Hence for some  $\vec{a}, \vec{b} \in A$  we have "A  $\models S_1(\vec{a}) = \vec{b}$ " but "A  $\models S_2(\vec{a}) \neq \vec{b}$ ", par abus de language. These facts can properly be expressed by

$$\theta = (\vec{x} = \underline{\vec{a}} \xrightarrow{S_2} \vec{x} \neq \underline{\vec{b}}) \wedge \operatorname{Comp}_{n,S_1} (\underline{\vec{a}}) = \underline{\vec{b}} ,$$

for some n. (See the Computation Lemma 1.1.2.) The  $\vec{a}$ ,  $\vec{b}$  are new constant symbols. Let  $A' \ge A$  be the expansion of A with distinguished elements  $\vec{a}$ ,  $\vec{b}$ , and let  $(\Sigma', E')$  be the conservative refinement of  $PA(\Sigma, E)$  obtained by adding  $\vec{a}$ ,  $\vec{b}$  to the signature. (By Lemma 2.7.1 this is conservative indeed.) Now

(i)  $HL(\Sigma',E') \models \{\theta \land \vec{x} = \vec{a}\} S_2 \{ \vec{x} \neq \vec{b} \}$ 

(ii) 
$$HL(\Sigma', E') \not\models \{\Theta \land \vec{x} = \vec{a}\} S, \{ \vec{x} \neq \vec{b} \}.$$

Ad(i) this is Proposition 6.4.2(i).

Ad(ii) A'  $\not\models \{\theta \land \vec{x} = \vec{a}\} S_1\{\vec{x} \neq \vec{b}\}$ , hence Alg( $\Sigma', E'$ )  $\not\models \{\theta \land \vec{x} = \vec{a}\} S_1\{\vec{x} \neq \vec{b}\}$ . By soundness of HL, (ii) follows.

Finally, we note that (i) also holds in refinements of  $(\Sigma, E')$ , trivially; and the same for (ii) by the downward invariance of Alg(,)  $\models$  {p} S{q} (Proposition 4.13). Therefore, S<sub>1</sub>  $\sqsubseteq_{(\Sigma'', E'')}$  S<sub>2</sub> for all  $(\Sigma'', E'') \succeq (\Sigma', E')$ .  $\Box$ 

We now know that



and we want to prove that, in general, all implications are displayed in this figure. First we will show in Examples 7.2 and 7.3 that  $\subseteq_{HL(\Sigma,E)}$  and  $\subseteq_{Alg(\Sigma,E)}$  are incomparable. (See also the following Venn-diagram.) Then, in Example 7.4, we show that derivable inclusion is strictly stronger than forced inclusion, in general. (I.e. the proof system corresponding to derivable inclusion proves less inclusions than the one corresponding to forced inclusion.) Further, it will be shown in the next Section (Theorem 8.5) that forced inclusion and semantical inclusion are in general not equivalent. In other words, the proof system corresponding to forced inclusion is incomplete.

Finally, at the end of this Section in Remark 7.8, we will prove that the 'dotted' implication for logical complete ( $\Sigma$ , E) (see figure above) can

in general not be reversed; and we will prove some assertions in the part 'Intuition' of the Introduction.

Venn-diagram of the various notions of inclusion

- 1. logical inclusion (i.e.  $HL(\Sigma, \emptyset) \models S_1 \sqsubseteq S_2$ , see Ex. 7.6 and 7.7)
- 2. derivable inclusion
- 3. forced inclusion
- 4. semantical inclusion = cofinal inclusion
- 5. proof theoretic inclusion
- 6. inclusion in some extension



7.2. EXAMPLE. Let  $A = (\mathbb{N}, 0, S, P)$ , the 'abacus-algebra' as in Section 8, and consider  $(\Sigma_A, E_A)$ . Define:

 $S_1 = y:=0$ ; S' where S' = while  $x\neq 0$  do y:= Sy ; x:=Px od  $S_2 = y:=x$ ; x:=0

So Alg $(\Sigma_A, E_A) \models S_1 \sqsubseteq S_2$ . However,  $S_1 \nvDash HL(\Sigma_A, E_A) S_2$  because

(i) 
$$HL(\Sigma_A, E_A) \models \{x=z\} S_2 \{x=0 \land y=z\}$$

(ii) 
$$HL(\Sigma_A, E_A) \not\models \{x=z\} S_1 \{x=0 \land y=z\}.$$

<u>PROOF OF (ii)</u>: Suppose not (ii). Then  $HL(\Sigma_A, E_A) \models \{x = z \land y = 0\} S' \{x = 0 \land y = z\}$ . Hence there must be an invariant r(x, y, z) such that  $E_A \models \phi_1 \land \phi_2 \land \phi_3$  where

$$\begin{split} \phi_1 &= x = z \land y = 0 \Rightarrow r(x, y, z) \\ \phi_2 &= \exists x', y' [x' \neq 0 \land x = Px' \land y = Sy' \land r(x', y'z)] \Rightarrow r(x, y, z) \\ \phi_3 &= x = 0 \land r(x, y, z) \Rightarrow y = z . \\ Also A &\models \phi_1 \land \phi_2 \land \phi_3 . However, a simple proof shows then that \\ A &\models r(\underline{a}, \underline{b}, \underline{c}) \iff a + b = c, in contradiction with the non-definability of \\ + in A, see Remark 8.3.1. and 3.3.2. \Box$$

7.3. EXAMPLE. Let  $N = (\mathbb{N}, 0, S, +, \times)$ ,  $\Sigma$  the signature of N and  $E = E_N$ . Furthermore,

 $S_{1} = x := 0; \quad \underline{\text{while }} x \neq y \quad \underline{\text{do }} x := x+1 \quad \underline{\text{od}}$   $S_{2} = x := y$ Then (i)  $S_{1} \equiv_{\text{HL}(\Sigma, E)} S_{2}, \quad \text{but (ii) } S_{1} \notin_{\text{Alg}(\Sigma, E)} S_{2}.$ 

<u>PROOF</u>. (i) HL is relatively complete for N, i.e:  $N \models \{p\} S \{q\} \iff \operatorname{HL}(\Sigma, E) \models \{p\} S \{q\}.$ Now  $N \models S_1 \equiv S_2$  implies  $\forall p, q \ N \models \{p\} S_1 \{q\} \iff N \models \{p\} S_2 \{q\}$  or equivalently  $\forall p, q \ \operatorname{HL}(\Sigma, E) \models \{p\} S_1 \{q\} \iff \operatorname{HL}(\Sigma, E) \models \{p\} S_2 \{q\},$  i.e.  $S_1 \equiv_{\operatorname{HL}(\Sigma, E)} S_2$ . Since in our case indeed  $N \models S_1 \equiv S_2$ , we have (i). (ii) However, in a nonstandard model  $N^* \in \operatorname{Alg}(\Sigma, E), S_1$  will diverge when y is nonstandard. So  $N^* \not\models S_1 \equiv S_2$ , hence  $\operatorname{Alg}(\Sigma, E) \not\models S_1 \equiv S_2$ .

7.4. EXAMPLE. Back to Example 7.2, which shows moreover that  $HL(\Sigma, E) \models S_1 \sqsubseteq S_2 \notin HL(\Sigma, E) \models S_1 \sqsubseteq S_2$ .

From  $S_1 \not\sqsubseteq HL(\Sigma_A, E_A) S_2$  it follows trivially that  $S_1 \sqsubseteq S_2$  is not derivable. However, for  $(\Sigma', E') = (\Sigma_A, E_A)$  where  $A' = (\mathbb{N}, 0, S, P, +)$  we do have

$$\operatorname{HL}(\Sigma_{A^{\prime}}, E_{A^{\prime}}) \models S_1 \sqsubseteq S_2 \quad (*)$$

The proof of (\*) is by the method of prototype proofs, as follows. Consider  $\pi(S_2)$ : this is

$$\{r_{0}(x,y) \} \{r_{1}(x,x)\} y := x \{r_{1}(x,y)\} \{r_{2}(0,y) \} x := 0 \{r_{2}(x,y)\} \{r_{3}(x,y)\} .$$
  
So we have to find a proof of  $\{r_{0}(x,y)\} S_{1} \{r_{3}(x,y)\}$   
in the theory  $E_{A}, \cup \{r_{0}(x,y) \neq r_{1}(x,x), r_{1}(x,y) \neq r_{2}(0,y),$ 

This is indeed possible:

$${r_0(x,y)} {r_1(x,x)} {r_2(0,x)} {r_3(0,x)}$$

 $r_2(x,y) \rightarrow r_3(x,y)$ 

y := 0  $\{r_{3}(0,x) \land y = 0\}$   $\{\exists x_{0} [r_{3}(0,x_{0}) \land x=x_{0} \land y = 0]\}$   $\{\exists x_{0} [r_{3}(0,x_{0}) \land x+y = x_{0} ]\}$   $while x\neq 0 do$   $\{\exists x_{0} [r_{3}(0,x_{0}) \land x+y = x_{0} \land x\neq 0]\}$   $\{\exists x_{0} [r_{3}(0,x_{0}) \land Px+Sy = x_{0} \land x\neq 0]\}$  y := Sy  $\{\exists x_{0} [r_{3}(0,x_{0}) \land Px+y = x_{0} \land x\neq 0]\}$  x := Px  $d \{\exists x_{0} [r_{3}(0,x_{0}) \land x+y = x_{0} ] \land x=0\}$   $\{\exists x_{0} [r_{3}(0,x_{0}) \land x+y = x_{0} ] \land x=0\}$   $\{\exists x_{0} [r_{3}(0,x_{0}) \land y= x_{0} \land x=0]\}$   $\{r_{3}(x,y)\}.$ 

The above concepts and theorems generalize without any effort (other than notational) to the case of *multi-sorted signatures and algebras*. To substantiate this claim, we give the following example.

7.5. EXAMPLE. Let  $\Sigma$  be the multi-sorted signature consisting of domains : NUM, VEC, FUN constants: 0, 1  $\epsilon$  NUM,  $\phi \epsilon$ VEC functions : + : NUM  $\times$  NUM  $\rightarrow$ NUM • : NUM × NUM  $\rightarrow$ NUM AP: VEC  $\times$  NUM  $\rightarrow$  VEC INP: VEC  $\times$  VEC  $\rightarrow$  NUM ROW: FUN  $\times$  NUM  $\rightarrow$ VEC EVAL: FUN  $\times$  NUM  $\rightarrow$  NUM variables : x,y,z  $\in$  NUM  $X, Y, Z \in VEC$  $\alpha$ ,  $\beta \in FUN$ 

The specification  $(\Sigma, E)$  we are interested in, has the following axioms, describing how the inproduct between two vectors should behave:

$$E = \{ \text{ Peano } + \text{ all induction axioms} \\ \text{INP}(\emptyset, Z) = \text{INP}(Z, \emptyset) = 0 \\ \text{INP}(AP(Z, x), AP(Z', x')) = \text{INP}(Z, Z') + x \cdot x' \\ AP(Z, x) = AP(Z', x') \rightarrow Z = Z' \land x = x' \\ \text{ROW}(\alpha, 0) = \emptyset \\ \text{ROW}(\alpha, x+1) = AP(\text{ROW}(\alpha, x), \text{EVAL}(\alpha, x+1)) \\ \forall x \text{ EVAL}(\alpha, x) = \text{EVAL}(\beta, x) \rightarrow \alpha = \beta \}$$

Furthermore, let  $S_1, S_2 \in WP(\Sigma)$  be the following programs, both computing the inproduct of two vectors:

 $S_{1} = A := \emptyset, B := \emptyset; z := 0; x := 0;$ <u>while</u>  $x \neq y$  <u>do</u> x := x+1;  $z := z + EVAL(\alpha, x) \cdot EVAL(\beta, x)$ <u>od</u> x := 0.

 $S_2 = A := ROW(\alpha, y)$ ;  $B := ROW(\beta, y)$ ; z := INP(A, B); x := 0;  $A := \emptyset$ ;  $B := \emptyset$ .

Now we want to prove that  $Alg(\Sigma, E) \models S_1 \sqsubseteq S_2$ . (The reverse does not hold by the presence of nonstandard models in  $Alg(\Sigma, E)$ .) This can be done by proving that  $HL(\Sigma, E) \models S_1 \sqsubseteq S_2$ , using the method of prototype proofs, as follows. First we write down  $\pi(S_2)$ :

 $\{r_0(x,y,z,A,B)\}$  $\{r_1(x,y,z, ROW(\alpha,y),B)\}$ A:=  $ROW(\alpha, y)$  $\{r_1(x,y,z,A,B)\}$  $\{r_2(x,y,z,A,ROW(\beta,y))\}$ B:= ROW( $\beta$ , y)  $\{r_2(x,y,z,A,B)\}$  ${r_3(x,y, INP(A,B), A,B)}$ z := INP(A, B) ${r_3(x,y,z, A, B)}$  ${r_{(0,y,z, A, B)}}$  $\mathbf{x} := \mathbf{0}$  ${r_4(x,y,z, A, B)}$  $\{r_{5}(x,y,z, \emptyset, B)\}$ A:= Ø  $\{r_{5}(x,y,z,A,B)\}$  $\{r_6(x,y,z,A,\emptyset)\}$ B:= Ø  ${r_6(x,y,z,A,B)}$  ${r_7(x,y,z,A,B)}$ 

So  $\kappa(\pi(S_2))$ , the set of consequences used in  $\pi(S_2)$ , entails the following implications:

 $\begin{array}{ll} r_{0} & (x,y,z,A,B) \rightarrow \\ r_{1} & (x,y,z,ROW(\alpha,y),B) \rightarrow \\ r_{2} & (x,y,z,ROW(\alpha,y),ROW(\beta,y)) \rightarrow \\ r_{3} & (x,y,INP(ROW(\alpha,y),ROW(\beta,y)), ROW(\alpha,y), ROW(\beta,y)) \rightarrow \\ r_{4} & (0,y,INP(ROW(\alpha,y),ROW(\beta,y)), ROW(\alpha,y), ROW(\beta,y)) \rightarrow \\ r_{5} & (0,y,INP(ROW(\alpha,y),ROW(\beta,y)), & , ROW(\beta,y)) \rightarrow \\ r_{6} & (0,y,INP(ROW(\alpha,y),ROW(\beta,y)), & , & , & , \\ r_{7} & (0,y,INP(ROW(\alpha,y),ROW(\beta,y)), & , & , & , \\ \end{array}$ 

Using these implications together with the theory E, we can prove  $\{r_0(x,y,z,A,B)\} S_1 \{r_7(x,y,z,A,B)\}$  (and by Lemma 5.10 this proves  $HL(\Sigma,E) \models S_1 \sqsubseteq S_2$ ):

 $\{r_0(x,y,z,A,B)\}$  ${r_7(0,y, INP(ROW(\alpha,y), ROW(\beta,y)), 0, 0)}$ A := 0; $\{r_7(0,y,INP(ROW(\alpha,y),ROW(\beta,y)),A,0)\}$ B:= 0;{ $r_7(0,y, INP(ROW(\alpha,y), ROW(\beta,y)), A, B$ } (abbreviation: $r_7'$ ) z:= 0;  $\{\mathbf{r}_7^* \land \mathbf{z} = 0\}$ x := 0; $\{\mathbf{r}_{7}^{\dagger} \land \mathbf{z} = 0 \land \mathbf{x} = 0\}$  $\{r_7' \land z = INP(ROW(\alpha, x), ROW(\beta, x))\}$ <u>while</u> x≠y do { $\mathbf{r}_7' \land \mathbf{z} = \text{INP}(\text{ROW}(\alpha, \mathbf{x}), \text{ROW}(\beta, \mathbf{x})) \land \mathbf{x} \neq \mathbf{y}$  } x := x+1; $\{r'_7 \land \exists x'(z= INP(ROW(\alpha, x'), ROW(\beta, x')) \land x=x'+1 \land x' \neq y)\}$  $z := z + EVAL(\alpha, x)$ .  $EVAL(\beta, x)$  $\{r'_7 \land \exists x', z'(z'=INP(ROW(\alpha, x'), ROW(\beta, x') \land x = x'+1)\}$  $\land x' \neq y \land z = z' + EVAL(\alpha, x) \in EVAL(\beta, x))$ (Now use E:) { $r'_7 \land \exists x'(z = INP(ROW(\alpha, x'+1), ROW(\beta, x'+1)) \land$  $\mathbf{x} = \mathbf{x'+1} \land \mathbf{x'\neq y} \}$  $\{r_7' \land z = INP(ROW(\alpha, x), ROW(\beta, x))\}$ od  $\{r'_7 \land z = INP(ROW(\alpha, x), ROW(\beta, x)) \land x=y\}$  ${r_7(0,y,z,A,B)}$ x:=0  ${r_7(x,y,z,A,B)}.$ 

Hence Alg( $\Sigma$ , E)  $\models$  S<sub>1</sub>  $\sqsubseteq$  S<sub>2</sub>.

7.6. <u>EXAMPLE</u>. Define (as a special case of derivable inclusion) '*logical* inclusion' of  $S_1$  in  $S_2$  as follows:  $HL(\Sigma, \emptyset) \models S_1 \sqsubseteq S_2$ . Now the following well-known equivalences are 'logical'.

(i) (Loop-unwinding)  $S_1 = while b do S od ; D (D = x:=x)$  $S_2 = if b then while b do S od ; D else D$ The proof that  $HL(\Sigma, \emptyset) \models S_1 \sqsubseteq S_2$  follows immediately by computing  $\pi(S_1)$  and using the thus obtained set of consequences  $\kappa(\pi(S_1))$ :  $r_0(x) \rightarrow r_1(x)$  $r_1(x) \wedge b \rightarrow r_2(0)$  $r_2(x) \rightarrow r_1(x)$  $r_1(x) \land \neg b \rightarrow r_3(x)$ to prove that  $\{r_0(x)\} S_2\{r_3(x)\}$ . Likewise for the reverse inclusion. (ii) Another example of logical inclusion, which is equally simple to verify:  $S_1 = while true do S od$ S<sub>2</sub> arbitrary. Then  $HL(\Sigma, \emptyset) \models S_1 \sqsubseteq S_2$ . This example is from DE BAKKER [4], p.93, as well as the next: (iii)  $S_1 = while b_1 \vee b_2 do S do S$  $S_2 = \underline{while} b_1 \underline{do} S \underline{od}; \underline{while} b_2 \underline{do} S; \underline{while} b_1 \underline{do} S \underline{od} \underline{od}.$  Also here a simple computation yields the logical equivalence of  $S_1, S_2$ . 7.7. EXAMPLE. MANNA [20], p.251, p.259 gives several examples of program equivalence which are all 'logical': (i)  $S_1 = x_2 := f(x_1); x_2 := g(x_1, x_3)$  $S_2 = x_2 := g(x_1, x_3)$ (ii)  $S_1 = \underline{while} p(x_2) \underline{do} x_1 := g(x_1, x_3) \underline{od} D$  $S_2 = \underline{if} p(x_2) \underline{than} DIV \underline{else} D \underline{fi}$ Here DIV = while x=x do x := x, and D = x := x. (iii)  $S_1 = x := y+1$ ; if x = 1 then z := 0 else y := y+1; <u>if</u> y=1 then z:=1 else z:=2 fi fi  $S_2 = x := y+1; if x=1 then z := 0 else y := y+1;$ z := 2 fi.

(Adapted from MANNA [20] p.252. Note that S<sub>1</sub> contains a useless branch.)

7.8. REMARK. (1) Abbreviate

$$\forall \mathbf{p}, \mathbf{q} \in \mathcal{L}(\Sigma) \quad \mathrm{Alg}(\Sigma, \mathbf{E}) \models \{\mathbf{p}\} \; \mathbf{S}_1 \; \{\mathbf{q}\} \Rightarrow \mathrm{Alg}(\Sigma, \mathbf{E}) \models \{\mathbf{p}\} \; \mathbf{S}_2 \; \{\mathbf{q}\}$$

by:  $S_1 \subseteq PC(\Sigma, E) S_2$ . (PC for partial correctness.)

Then, for  $(\Sigma, E)$  logically complete, it follows at once from the definition (1.2.2) that  $\sqsubseteq_{HL}(\Sigma, E)$  and  $\sqsubseteq_{PC}(\Sigma, E)$  coincide.

Since  $S_1 \sqsubseteq Alg(\Sigma, E) S_2$  implies  $S_1 \sqsubseteq PC(\Sigma, E) S_2$  (trivially) for all  $(\Sigma, E)$ , we have therefore for logical complete  $(\Sigma, E)$ :

$$S_1 \sqsubseteq Alg(\Sigma, E) S_2 \Rightarrow S_1 \sqsubseteq HL(\Sigma, E) S_2$$
.

The reverse implication does not hold. Counterexample:  $S_1 = x := 0, y := 0$   $S_2 = while x \neq y \text{ do } x := x+1 \text{ od } ; x := 0; y := 0$   $(\Sigma, E) = (\Sigma_N, E_N) \text{ where } N = (\mathbb{N}, 0, 1, +, \times).$ Now  $(\Sigma, E)$  is logical complete (see BERGSTRA-TUCKER [7]) and HL is relatively complete for N (see DE BAKKER [4], Ch.3). From the last fact it follows that  $S_1 \equiv_{HL(\Sigma, E)} S_2$ . However, due to the presence of nonstandard models in  $Alg(\Sigma, E)$ , we have  $S_1 \notin_{Alg(\Sigma, E)} S_2$ .

(2) Note that (1) also establishes that (ii)  $\neq$  (i) (i.e.

 $S_1 \subseteq PC(\Sigma,E) S_2 \neq S_1 \subseteq Alg(\Sigma,E) S_2$ , as claimed in the Introduction. For another counterexample, see BERGSTRA-TUCKER [5], Theorem 5.8.

(3) As claimed in the Introduction:

Alg( $\Sigma, E$ )  $\models S_1 \sqsubseteq S_2 \iff \forall (\Sigma', E') \trianglerighteq (\Sigma, E) S_1 \sqsubseteq PC(\Sigma; E')^S_2$ . Here ( $\Rightarrow$ ) is trivial. Proof of ( $\Leftarrow$ ): assume the RHS, and suppose Alg( $\Sigma, E$ )  $\not\models S_1 \sqsubseteq S_2$ . Then since semantical and cofinal inclusion coincide (Theorem 7.1):

 $\exists (\Sigma', E') \vDash (\Sigma, E) \forall (\Sigma', E'') \succeq (\Sigma', E') S_1 \not\sqsubseteq HL(\Sigma'', E'') S_2.$ 

Now consider such a  $(\Sigma', E')$ , and a  $(\Sigma'', E'')$  which is logically complete. Then by the assumption of the RHS,  $S_1 \sqsubseteq_{PC}(\Sigma'', E'')S_2$ ; and by logical completeness,  $S_1 \sqsubseteq_{HL}(\Sigma'', E'')S_2$ . Contradiction.

### 8. ABACUS ARITHMETIC.

In this section we will consider our paradigm algebra  $A = (\mathbb{N}, 0, S, P)$ . It is useful by the following two well-known facts (already mentioned in Example 3.3.3):

8.1. <u>PROPOSITION</u>. (i)  $E_A$  is a decidable theory, and (ii) every partial recursive function can be computed in A by some S  $\in WP(\Sigma_A)$ .

Using this proposition we will calculate the degrees in the arithmetical hierarchy of the various inclusions  $S_1 \subseteq S_2$  (as predicates of  $S_1, S_2$ ) w.r.t.  $(\Sigma_A, E_A)$ .

For a proof of 8.1. (ii), see e.g. BOOLOS-JEFFREY [11], Ch.6,7, where results from LAMBEK [19] are presented. The proof there uses in fact not while-programs, but flow-diagrams composed of only two operations:

assignments  $x_n := S(x_n)$  (n= 0,1,2,...) branching operations



(As pointed out in LAMBEK [19], such a flow-diagram is in fact computing on an '*infinite abacus*'. Variables as in such a diagram are known as *counters*.) Combined with the equally well-known fact that for every flow-diagram there is an equivalent <u>while</u>-program (see e.g. MANNA [19]) we have 8.1.(ii).

For the sake of completeness, we will now outline a proof of 8.1.(i), as given in ENDERTON [14].

8.2. <u>DEFINITION</u>. Let A be some set and let  $R \subseteq A^n$  be an n-ary relation. Let  $a_1, \ldots, a_{n-1} \in A$  be fixed. Then  $\{x \in A \mid R(a_1, \ldots, a_{i-1}, x, a_i, \ldots, a_{n-1})\}$  is called a *section* of R (where  $1 \le i < n$ ).

8.3. <u>PROPOSITION</u>. (a) Let  $A' = (\mathbb{N}, 0, S)$ . Then: (i)  $E_{A'}$  is decidable,

(ii)  $E_A$ ' admits elimination of quantifiers,

(iii) a subset  $X \subseteq \mathbb{N}$  is definable in A' iff X is finite or cofinite (i.e.  $\mathbb{N} - X$  is finite). More general: every definable n-ary relation  $R \subseteq \mathbb{N}^n$  has only finite or cofinite sections.

(b) The same as in (a) holds for  $A = (\mathbb{N}, 0, S, P)$ ,

(c) and likewise for  $(\mathbb{Z}, 0, S, P)$ .

<u>PROOF</u>. (a) See ENDERTON [14]. (i) is proved there by considering the following axiomatization of  $E_{A}$ :

```
S(x) \neq 0

S(x) = S(y) \rightarrow x = y

y \neq 0 \rightarrow \exists x(y=S(x))

S(x) \neq x, S(S(x)) \neq x,..., S^{n}(x) \neq x,...(all n).
```

Using the Los - Vaught Test it is proved that this axiomatization is complete. Obviously it is also decidable. Hence  $E_A$  is decidable.

(ii) As demonstrated in ENDERTON [14], for every assertion  $p \in L(\Sigma_A)$  there is a *quantifier-free* assertion q such that  $E_A$ ,  $\mid -p \leftrightarrow q$ . (This 'elimina-tion of quantifiers' yields another proof of (i).)

(b) Note that P is definable in  $A' = (\mathbb{N}, 0, S)$ , by:

 $P(x) = y \iff x=y=0 \lor S(y) = x$ . Now use (a).

(c) A routine adaptation of (b).  $\Box$ 

8.3.1. <u>REMARK</u>. Note that Proposition 8.3 (b) (iii) yields an alternative proof of the non-definability of + in A. For, using a supposed definition of + one could define the set X of even numbers in A; a contradiction since X and its complement are both infinite.

8.4. <u>APPLICATION</u>. The following is an example of  $S_1, S_2$  such that the domain inclusion Dom  $(S_1) \sqsubseteq Dom (S_2)$  is not derivable but can be forced. (See Section 9, Ex.9.5 (ii).

Let A be  $(\mathbb{Z}, 0, S, P)$  and  $(\Sigma, E) = (\Sigma_A, E_A)$ . Let  $S_1 = y := 0$ ; while  $x \neq y$  do y := S(y) od; y := 0; while  $x \neq y$  do y := P(y) od

and  $S_2 = y:=0$ ; <u>if</u> x=0 <u>then</u> x:=x <u>else</u> DIV <u>fi</u> where DIV = while x=x <u>do</u> x:=x <u>od</u>. Clearly,  $S_1$  and  $S_2$  converge on x = 0 and nowhere else. Now  $HL(\Sigma, E) \models \{x \neq 0\} S_2 \{ \underline{false} \}$ , as can easily be proved; however  $HL(\Sigma, E) \not\models \{x \neq 0\} S_1 \{ \underline{false} \}$ . This can be made plausible by considering an informal proof of  $\{x \neq 0\} S_1 \{ \underline{false} \}$ ; then somehow one must mention the ordering < on  $\mathbb{Z}$ . However, < is not present in  $\Sigma$ , and not even definable in  $(\Sigma, E)$ . (The non-definability of < in  $(\Sigma, E)$  can easily be proved using Padoa's method 3.3, by permuting some of the non-standard copies of  $\mathbb{Z}$  in a non-standard model of  $(\Sigma, E)$ ; cfr. 3.3.2.)

That  $HL(\Sigma, E) \not\models \{x \neq 0\} S_1 \{\underline{false}\}\ can be made precise as follows.$ If  $HL(\Sigma, E) \not\models \{x \neq 0\} S_1 \{\underline{false}\}\$ , then, using  $x = S(y) \leftrightarrow P(x) = y$ , one shows easily that the two invariants  $r_1(x, y)$ ,  $r_2(x, y)$  in  $S_1$  must satisfy:

> 1)  $x \neq 0 \rightarrow r_1(x,0)$ 2)  $x \neq y \wedge r_1(x,y) \rightarrow r_1(x,S(y))$ 3)  $r_1(x,x) \rightarrow r_2(x,0)$ 4)  $x \neq y \wedge r_2(x,y) \rightarrow r_2(x,P(y))$ 5)  $\neg r_2(x,x)$

There are several "solutions" for  $r_1, r_2$  as subsets of Z<sup>2</sup>. However, using 1)-5) we have  $r_1(1,0)$ ; hence  $r_1(1,1)$ ; hence  $r_2(1,0)$ ; hence  $r_2(1,n)$  for all  $n \le 0$ . Moreover, from 4),5) :  $\neg r_2(1,m)$  for all  $m \ge 1$ . Therefore every solution  $r_2$  has a section which is neither finite nor cofinite; so, by Proposition 8.3(c)(iii),  $r_2$  is not definable.

As promised in Section 7, we will show now that semantical inclusion and forced inclusion are in general not equivalent.

8.5. <u>THEOREM</u>. The proof system  $HL(\Sigma, E) \models S_1 \subseteq S_2$  is in general not complete for  $S_1 \subseteq Alg(\Sigma, E)^S_2$ .

<u>PROOF</u>. Let  $\Sigma$  be the signature of  $A = \langle \mathbb{N}, 0, S, P \rangle$ . From Proposition 8.3.(b) we know that  $E = E_A$  is decidable. Let  $\neg : WP(\Sigma) \rightarrow w$  be an effective coding of programs; we will write s for  $\lceil S \rceil$ . R and r are two relations on pairs of codes of programs as follows:

$$r(s_1, s_2) \iff HL(\Sigma, E) \mid - s_1 \sqsubseteq s_2$$

$$R(s_1, s_2) \iff S_1 \sqsubseteq ALG(\Sigma, E) S_2$$

The incompleteness of |- for  $\sqsubseteq_{Alg}$  is shown by considering the specification ( $\Sigma$ , E) and demonstrating that R  $\neq$  r. It turns out that R and r have different positions in the arithmetical hierarchy. As a matter of fact r is  $\Sigma_2^0$  but R is complete  $\Pi_2^0$ , and a fortiori r and R must differ.

We will first consider r. Working from its formal definition we obtain :

$$r(S_{1},S_{2}) \iff \exists (\Sigma',E') \vDash (\Sigma,E) [HL (\Sigma,E) \vdash S_{1} \sqsubseteq S_{2}]$$

$$\stackrel{(1)}{\iff} \exists (\Sigma',E') \trianglerighteq (\Sigma,E) [(\Sigma,E) \text{ consistent & } HL(\Sigma,E) \vdash S_{1} \sqsubseteq S_{2}]$$

$$\stackrel{(2)}{\iff} \exists (\Sigma',E^{*})_{\text{finite}} [\Sigma' \supseteq \Sigma \& (\Sigma',E^{*} \cup E) \text{ consistent}$$

$$\& HL(\Sigma',E^{*} \cup E) \vdash S_{1} \sqsubseteq S_{2}]$$

Step (1) is justified by the completeness of  $(\Sigma, E)$  which entails that each consistent refinement of it is a conservative one. Step (2) follows from Lemma 5.10. (ii) which says that the refinement in the definition of ||-can be taken finite if one wants. Because " $(\Sigma', E^* \cup E)$  is consistent" is a  $\Pi_1^0$  predicate and  $\operatorname{HL}(\Sigma', E^* \cup E) \models S_1 \sqsubseteq S_2$  is  $\Sigma_1^0$  (due to Theorem 5.11 and the decidability of E), r must be  $\Sigma_2^0$ .

Then consider R.  $S_1 \sqsubseteq Alg(\Sigma, E) S_2$  is in general  $\Pi_2^0$  in E, R is at most  $\Pi_2^0$ . To show that it is complete  $\Pi_2^0$ . A well-known example of a complete  $\Pi_2^0$  relation is the following one:  $t(s) \iff S$  computes a total function on A. (For more information see ROGERS [22]). We show that t is 1-1 reducible to R. Let  $X_S = \{x_1, \dots, x_{k(S)}\}$  be the set of variables occurring in S. For  $x \in X_S$ , H(x) abbreviates the program while  $x \neq 0$  do x := P(x) od.  $H(X_S)$  abbreviates:  $H(x_1)$ ;  $H(x_2)$ ;...,;  $H(x_{k(S)})$ : The reduction of t to R works as follows:

 $t(\lceil S \rceil) \iff R (\lceil H(X_S) \rceil, \lceil S ; H(X_S) \rceil).$ 

To see ( $\Leftarrow$ ), assume  $H(X_S) \sqsubseteq_{Alg(\Sigma,E)} S$ ;  $H(X_S)$ ; then in A:  $H(S_X) \sqsubseteq S$ ;  $H(X_S)$ ; because  $H(X_S)$  is total on A, S must be total on A as well, i.e.  $t(\lceil S \rceil)$  holds. On the other hand assume  $t(\lceil S \rceil)$ . Let  $B \in Alg$ ( $\Sigma,E$ ); clearly A is isomorphic to a substructure of B. As  $H(X_S)$  and S;  $H(X_S)$  can only produce output  $\vec{O}$  it is sufficient to show Dom  $(H(X_S)) \subseteq Dom (S; H(X_S))$ . Dom  $(H(X_S)) = A^{k(S)}$ , thus S is defined on Dom  $(H(X_S))$  and yields values in  $A^{k(S)}$  on such arguments ; on these values in turn,  $HL(X_S)$  is defined.  $\Box$ 

9. DOMAIN INCLUSION.

In this section we will show that given some additional information about the domains of  $S_1, S_2$ , semantical inclusion and forced inclusion  $S_1 \sqsubseteq S_2$  coincide.

9.1. DEFINITION.

(i) (Semantical inclusion of domains) Let  $S_1, S_2 \in WP$  ( $\Sigma$ ). Then  $Alg(\Sigma, E) \models Dom(S_1) \sqsubseteq Dom(S_2)$ if for all  $A \in Alg(\Sigma, E)$ , Domain  $(S_1^A) \subseteq Domain (S_2^A)$ . Note that  $Alg(\Sigma, E) \models Dom(S_1) \sqsubseteq Dom(S_2)$  implies:

 $Alg(\Sigma,E) \models \{p\} S_2 \{\underline{false}\} \Rightarrow Alg(\Sigma,E) \models \{p\} S_1 \{\underline{false}\}.$ 

(ii) (HL - inclusion of domains) Dom  $(S_1) \sqsubseteq HL(\Sigma, E)$  Dom  $(S_2)$  iff:

 $\operatorname{HL}(\Sigma, E) \models \{p\} S_2 \{\underline{false}\} \Rightarrow$ 

HL(
$$\Sigma$$
,E) |- {p} S, {false}, for all  $p \in L(\Sigma)$ .

(iii) (Derivable inclusion of domains)

 $\begin{aligned} & \operatorname{HL}(\Sigma, E) \models \operatorname{Dom}(S_1) \sqsubseteq \operatorname{Dom}(S_2) & \operatorname{iff:} \\ & \forall (\Sigma', E') \triangleright (\Sigma, E) & \operatorname{Dom}(S_1) \sqsubseteq_{\operatorname{HL}(\Sigma', E')} & \operatorname{Dom}(S_2) & . \end{aligned}$ 

(iv) (Forced inclusion of domains)

$$\operatorname{HL}(\Sigma, E) \models \operatorname{Dom}(S_1) \sqsubseteq \operatorname{Dom}(S_2)$$
 iff:

 $\exists (\Sigma', E') \vDash (\Sigma, E) \quad HL(\Sigma', E') \models Dom (S_1) \sqsubseteq Dom (S_2).$ 

9.1.1. <u>REMARK</u>. The mathematical theory of domain inclusion is quite complicated in fact. For instance a pentagon of inclusion relations similar to the one after Theorem 7.1, can be constructed and will turn out to have analogous properties.

In order to prove the main theorem of this Section, we need the following proposition.

9.2. <u>PROPOSITION</u>. Let  $S_1, S_2 \in WP(\Sigma)$  contain both the variables  $x_1, \ldots, x_n$ and suppose Alg( $\Sigma, E$ )  $\models S_1 \sqsubseteq S_2$ . Then there is a ( $\Sigma', E'$ )  $\triangleright$  ( $\Sigma, E$ ) such that  $\Sigma' \ge \Sigma \cup \{f_1, \ldots, f_n\}$ , where  $f_1, \ldots, f_n$  are 'fresh' n-ary function symbols, and such that

$$HL(\Sigma',E') \models \{\vec{x} = \vec{z}\} S, \{\vec{x} = f(\vec{z})\}, \quad i=1,2.$$

(Here  $\vec{x} = f(\vec{z})$  abbreviates:  $x_1 = f_1(x_1, \dots, x_n), \dots, x_n = f_n(x_1, \dots, x_n).$ ) <u>PROOF</u>. Let  $\Sigma'' = \Sigma \cup \{f_1, \dots, f_n\}$  and  $E'' = E \cup \Gamma$  where  $\Gamma =$ 

$$\{\operatorname{Comp}_{n,S_{i}}(\overrightarrow{z}) = \overrightarrow{x} \rightarrow \overrightarrow{x} = f(\overrightarrow{z}) \mid n \ge 0, i = 1,2\}$$

(For 'Comp', see Lemma 1.1.2.)

Now every  $A \in Alg(\Sigma, E)$  can be expanded to an  $A' \in Alg(\Sigma'', E'')$ , since  $Alg(\Sigma, E) \models S_1 \sqsubseteq S_2$ . Choose for the interpretation  $f^A$  an arbitray total function extending the partial function  $S_2^A$  (which extends itself  $S_1^A$ ).) Therefore, by the criterion for conservativity 2.7.1,  $(\Sigma'', E'') \triangleright (\Sigma, E)$ . Clearly,  $Alg(\Sigma'', E'') \models \{\vec{x} = \vec{z}\} S_i \{\vec{x} = f(\vec{z})\}, i = 1, 2$ .

Now let  $(\Sigma', E')$  be a logical completion of  $(\Sigma'', E'')$ . (By Theorem 6.1. this exists.) Then Alg $(\Sigma', E') \models \{\vec{x} = \vec{z}\} S_i \{\vec{x} = f(\vec{z})\}, i = 1, 2;$  and by the

logical completeness we have:

$$HL(\Sigma',E') \mid - \{\vec{x} = \vec{z}\} S_i \{\vec{x} = f(\vec{z})\}. \square$$

9.3. THEOREM. Suppose  $HL(\Sigma, E) \models Dom(S_1) \sqsubseteq Dom(S_2)$ . Then

$$Alg(\Sigma, E) \models S_1 \sqsubseteq S_2 \iff HL(\Sigma, E) \models S_1 \sqsubseteq S_2.$$

PROOF. (=) is already done in Section 7.

( $\Rightarrow$ ). Let  $S_1, S_2 \in WP(\Sigma)$  be such that  $HL(\Sigma, E) \models Dom (S_1) \sqsubseteq Dom S_2$ ) and Alg( $\Sigma, E$ )  $\models S_1 \sqsubseteq S_2$ . Let  $\vec{x} = x_1, \dots, x_n$  be the variables occurring in  $S_1, S_2$ . Step 1. Extend  $\Sigma$  to  $\Sigma_1$  containing n-ary function symbols  $f_1, \dots, f_n$  and E to  $E_1$  such that  $(\Sigma_1, E_1) \nvDash (\Sigma, E)$  and  $HL(\Sigma_1, E_1) \models \{\vec{x} = \vec{z}\} S_1 \{\vec{x} = f(\vec{z})\},$ i = 1, 2. This is possible by Proposition 8.2.

By assumption, there is a  $(\Sigma_2, \mathbb{E}_2) \ge (\Sigma, \mathbb{E})$  such that  $\operatorname{HL}(\Sigma_2, \mathbb{E}_2)$   $\mid - \operatorname{Dom}(S_1) \sqsubseteq \operatorname{Dom}(S_2)$ . We may suppose  $\Sigma_2 \cap \Sigma_1 = \Sigma$  (cf.4.7.2), hence by Robinson's Consistency Theorem 2.6.2,  $(\Sigma', \mathbb{E}') = (\Sigma_1 \cup \Sigma_2, \mathbb{E}_1 \cup \mathbb{E}_2)$  is a conservative refinement of  $(\Sigma, \mathbb{E})$ .

<u>CLAIM</u>. HL( $\Sigma', E'$ ) - S<sub>1</sub> - S<sub>2</sub>. Then we are through.

PROOF OF THE CLAIM. Consider a refinement  $(\Sigma'', E'') \ge (\Sigma', E')$  such that

 $HL(\Sigma'',E'') \models \{p\} S_{2} \{q\}.$ 

To prove:  $HL(\Sigma'', E'') \models \{p\} S_1 \{q\}$  (0).

Obviously, since  $q [f(\vec{x}) / \vec{x}] \vee \neg q [f(\vec{x}) / \vec{x}]$  is a tautology,

(0) is equivalent with (1) & (2) as follows:

(1) HL( $\Sigma'', E''$ ) - {p  $\land q [f(\vec{x}) / \vec{x}]$ } S<sub>1</sub> {q}

(2) HL( $\Sigma'', E''$ )  $\vdash \{p \land \neg q [f(\vec{x}) / \vec{x}]\} S_1 \{q\}.$ 

Proof of (1). By the rule of consequence, it is sufficient to prove that

 $HL(\Sigma",E") \models \{q [f(\vec{x}) / \vec{x}]\} S_{1} \{q\}.$ 

We know  $HL(\Sigma_1, E_1) \models \{\vec{x} = \vec{z}\} S_1 \{\vec{x} = f(\vec{z})\}, \text{ hence}$ 

trivially  $HL(\Sigma'', E'') \models \{ \vec{x} = \vec{z} \} S_1 \{ \vec{x} = f(\vec{z}) \}.$ 

By Proposition 1.2.3 :

 $\operatorname{HL}(\Sigma'', E'') \models \{ \overrightarrow{x} = \overrightarrow{z} \land q[f(\overrightarrow{z}) / \overrightarrow{z}] \} S_1 \{ \overrightarrow{x} = f(\overrightarrow{z}) \land q[f(\overrightarrow{z}) / \overrightarrow{z}] \}.$ 

Hence indeed HL( $\Sigma$ ", E") |- {q[f( $\vec{x}$ ) / $\vec{x}$ ]} S<sub>1</sub> {q}.

Proof of (2). We know that  $HL(\Sigma'',E'') \models \{p\} S_2 \{q\}$ . So, by the conjunction rule (1.2.3 (i)) and invariance rule (1.2.3 (iii)) :

HL( $\Sigma'', E''$ )  $\vdash \{\vec{x} = \vec{z} \land p \land \neg q[f(\vec{z}) / \vec{x}]\} S_2 \{q \land x = f(\vec{z}) \land \neg q[f(\vec{z}) / \vec{x}]\}$ where the postcondition obviously implies  $\{\underline{false}\}$ . By the assumption HL( $\Sigma_2, E_2$ )  $\vdash$  Dom (S<sub>1</sub>)  $\sqsubseteq$  Dom (S<sub>2</sub>) we have therefore the same for S<sub>1</sub>: HL( $\Sigma'', E''$ )  $\vdash \{\vec{x} = \vec{z} \land p \land \neg q[f(\vec{z}) / \vec{x}]\} S_1 \{\underline{false}\}$ . By the rule of consequence:

HL( $\Sigma$ ", E") |- { $\vec{x} = \vec{z} \land p \land \neg q [f(\vec{z}) / \vec{x}]$ } S<sub>1</sub> {q}.

By Proposition 1.2.3 (iv):

HL( $\Sigma'', E''$ )  $\models \{ \exists \vec{z} \ (\vec{x} = \vec{z} \land p \land \neg q [f(\vec{z}) / \vec{x}] \} S_1 \{q\}.$ I.e. indeed HL( $\Sigma'', E''$ )  $\models \{ p \land \neg q [f(\vec{x}) / \vec{x}] \} S_1 \{q\}.$ 

9.4. <u>COROLLARY</u>. Let  $S_1, S_2 \in WP$  ( $\Sigma$ ) and suppose that  $S_2$  is everywhere converging, for all  $A \in Alg(\Sigma, E)$ . Then:

men.

$$Alg(\Sigma, E) \models S_1 \sqsubseteq S_2 \iff HL(\Sigma, E) \models S_1 \sqsubseteq S_2.$$

<u>PROOF</u>. (=) already proved in Section 7. (=) By the soundness of HL(Lemma 1.2.1), we see that HL( $\Sigma$ ,E) |/ {p} S<sub>2</sub> {false} for all  $p \in L(\Sigma)$ . Hence trivially HL( $\Sigma$ ,E) |- {p} S<sub>2</sub> {false}  $\Rightarrow$  HL( $\Sigma$ ,E) |- {p} S<sub>1</sub> {false}, i.e. HL( $\Sigma$ ,E) |- Dom (S<sub>1</sub>)  $\sqsubseteq$  Dom (S<sub>2</sub>). Therefore, also trivially, HL( $\Sigma$ ,E) || Dom (S<sub>1</sub>)  $\sqsubseteq$  Dom (S<sub>2</sub>). Now apply the preceding theorem .

9.5. <u>EXAMPLE</u>. (i) Let  $S_1, S_2$  be as in Example 7.5. Then HL $(\Sigma_A, E_A) \models S_1 \sqsubseteq S_2$  and  $S_2$  is always converging. Hence by 8.4, Alg $(\Sigma_A, E_A) \models S_1 \sqsubseteq S_2$ . (ii) In Ex. 9.5. (i) the domain inclusion is already derivable. An example where domain inclusion is not derivable but can be forced, was given in 8.4.

REFERENCES

- [1] APT, K.R., Ten years of Hoare's logic, a survey in F.V. JENSEN,
   B.H. MAYOH & K.K. MØLLER (eds.) Proceedings from 5th Scandinavian Logic Symposium, Aalborg University Press, Aalborg, 1979, 1-44.
- [2] BACK R.J., Correctness preserving Program refinements : Proof Theory and Applications, Mathematical Centre Tracts 131 Amsterdam 1980.
- [3] DE BAKKER, J.W., Recursive procedures, Mathematical Centre Tracts 24, Mathematical Centre, Amsterdam, 1973.
- [4] DE BAKKER, J.W., Mathematical theory of program correctness, Prentice-Hall International, London, 1980.
- [5] BERGSTRA, J.A., J. TIURYN & J.V. TUCKER, Floyd's principle, correctness theories and program equivalence, Mathematical Centre, Department of Computer Science Research Report IW 145, Amsterdam, 1980. (To appear in Theoretical Computer Science.)
- [6] BERGSTRA, J.A. & J. TERLOUW, A Characterisation of Program Equivalence in terms of Hoare's Logic, to appear in the proceedings of the G.I. Jahrestagung München 1981.
- [7] BERGSTRA, J.A. & J.V. TUCKER, Expressiveness and the completeness of Hoare's logic, Mathematical Centre, Department of Computer Science Research Report IW 149, Amsterdam, 1980.
- [8] BERGSTRA, J & J.V. TUCKER, On the refinement of specifications and Hoare's logic, Mathematical Centre, Department of Computer Science Research Report IW 155, Amsterdam, 1980.
- [9] BERGSTRA, J.A. & J.V. TUCKER, Hoare's logic and Peano's arithmetic, Mathematical Centre, Department of Computer Science Research Report IW 160, Amsterdam, 1981.

- [10] BERGSTRA, J.A. & J.V. TUCKER, Two theorems about the completeness of Hoare's logic, Mathematical Centre, Department of Computer Science Research Report IW 165, Amsterdam 1981.
- [11] BOOLOS, G.S. & R.C. JEFFREY, Computability and Logic, Cambridge University Press (1974,1980).
- [12] CLARKE, E.M., Programming language constructs for which it is impossible to obtain good Hoare-like axioms, J. Association Computing Machinery 26 (1979) 129-147.
- [13] COOK, S.A., Soundness and completeness of an axiom system for program verification, SIAM J. Computing 7 (1978) 70-90.
- [14] ENDERTON, H.B., A mathematical introduction to logic, Academic Press 1972.
- [15] HAREL, D. A., PNUELI & J. STAVI, A complete axiom system for proving deduction about recursive programs, in Proc.9th ACM Symp. Theory of Computing, Boulder, 1977.
- [16] HEMERIK, C., Relaties tussen taal definitie en taal implementatie, in Colloquium Capita Implementatie van Programmeertalen, J.C. van Vliet (red.) MC. Syllabus 42 Amsterdam 1980.
- [17] HOARE, C.A.R. & P. LAUER, Consistent and complementary formal theories of the semantics of programming languages, Acta Informatica 3 (1974), 135-155.
- [18] HOARE, C.A.R., An axiomatic basis for computer programming, Communications ACM 12 (1967), 576-580.
- [19] LAMBEK, J., How to program an infinite abacus, Canadian Mathematical Bulletin 4 (1961), 295-302.
- [20] MANNA, Z., Mathematical theory of computation, McGraw-Hill, New York, 1974.
- [21] MONK, J.D., Mathematical Logic, Springer-Verlag (1976).
- [22] ROGERS, H., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.

- [23] RUSSELL, B., Correctness of the Compiling process Based on Axiomatic Semantics, Acta Informatica 14, 1-20,1980.
- [24] SHOENFIELD, J., Mathematical Logic, Reading: Addison-Wesley (1967).
- [25] WAND, M., A new incompleteness result for Hoare's system, J. Association Computing Machinery, 25 (1978) 168-175.

an it is a straight a

ONTVANGEN 2 8 OKT. 1981