
AFDELI NG INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SC I ENCE)

A.H. VEEN

IW 179/81 OKTOBER

A FORMAL MODEL FOR DATA FLOW PROGRAMS W 1TH TOKEN COLOR I NG

Preprint

~
MC

kruislaan 413 1098 SJ amsterdam

PJUnt.e.d at :the. Mathe.ma.tic.al C etl.br.e, 41 3 Klll.U6laan, Am6:te.Juf.am.

The. Ma.the.ma.Uc.al Cetl.br.e , 6ou.nde.d :the. 11-:th 06 Fe.b11,,U£Vty 1946, ~ a. non
p1t.o 6U ,ln6;t,i..tu.;t,i_o n aimi.ng a.t :the. plt.omo.tlo n o 6 pu.Jt.e. ma.the.ma.tic.6 a.nd).;t,f,
a.ppU.c.a:UonJ.i. 1:t ~ .6pon1.>01t.e.d by :the. Ne:theJll.a.nd6 Gove.Jt.nme.nt. :thlt.ou.gh :the.
Ne:the.Jt.la.nd6 01t.ga.niza.tion 6 oil. :the. Adva.nc.e.me.nt. o 6 Pu.1t.e. Re.-6 e.a.1t.c.h (Z. W. 0.) •

1. 980 Mathematics suoject classification: 68B1 o·, 68C9:9

ACM-Computing Reviews-category: 4.12, 4.6, 5.24

A Formal Model for Data Flow Programs with Token Coloringt

by

Arthur H. Veen

ABSTRACT

A formal model is presented that is intended to be general enough to allow description of the execution
of programs on different types of data flow computers, including those that use token coloring to separate
activations of reentrant graphs. The model regards nodes and ports as basic domains and associates with each ·
node a firing rule which fully defines the behavior of the node including, for each firing, the destinations of its
output arcs. The behavior of non-functional and non-deterministic data fl.ow instructions and the dynamic
creation of data paths can be expressed in this model. It can be a useful vehicle for exploring semantic
properties of data flow programs, including conditions that guarantee deadlock-free, conflict-free and
deterministic execution. Some of these present thorny issues in the context of token coloring and dynamic data
paths. The model could also be used as a descriptive tool for a formal comparison of different data fl.ow
machines.

l{EY WORDS & PHRASES: data flow machines, data driven machines, machine models, data flow graphs,
safety

t1bis paper is not for review; it is intended for publication elsewhere.

1. INTRODUCTION

Most computC!s can reach pathological states, which all meaningful programs should avoid. Programs
for conventional computers should, for instance, not lead to infinite loops or to violations of array boundaries.
Programs for data flow machines should avoid deadlocks and conflicts. For conventional and data flow pro
grams alike, one would like to formulate properties that can be easily checked statically and that, if satisfied,
guarantee that the- computer never reaches such a state.

A formal approach is even more compelling for data flow programs than for conventional ones, as intui
tion, always a doubtful tool, is still less to be trusted when used to validate parallel processes. This became
painfully clear when one of the translation algorithms described in an earlier publication 7 was discovered to be
incorrect. The compiler described in that paper would translate a program with nested loops to a data flow
program that could bring the machine into a state where two tokens of the same color reside at the same port.
The machine that the compiler was intended for regards this situation as a fatal error. called a token clash.
More interesting than the incorrect graph itself is the fact that the error had been overlooked so easily. The
graph contains not even twenty nodes, so the oversight can hardly be blamed on its size. It confirms the im
pression that graphs that manipulate colors or that dynamically create arcs are often more complicated than
their appearance would suggest.

Before one can even begin to formulate properties, it is necessary to have a model of data flow programs
and their execution. A few of these models have been reported in the literature. Rumbaugh, who was the first
to publish a detailed description of a data flow machine, included in his thesis 6 an abstract model for a data
flow language, which is closely tailored to the machine he designed. He was able to prove implications of the·
form: "A well nested-graph guarantees conflict-free execution." Brock 1 defined a graph assembly language to
be able to describe data flow programs formally. This language can be seen as a limited but more readable
variation of our model. He presents a translation function from a simple high level single assignment language
to graphs and defines the semantics of his graphs. He is not concerned with safety, since he allows unbounded
queues of tokens to collect on the data paths. Jaffe 4 discusses the effects of bounded queues on the parallelism
of data flow programs. He presents a formal model, which resembles ours. The execution of his programs is
more deterministic than ours, however, since in h,is model the order of tokens on a queue is preserved. All of
these models describe the input programs for a data flow machine as directed graphs, with a node representing
a machine instruction and an arc representing the possible 6ow of data from the ancestor to the descendant.
Such models, however, do not allow the expression of input programs for computers like the Manchester Data
Flow Machine 3 ~ce they cannot handle the presence of colored tokens, the dynamic creation of data paths,
non-deterministic merging of data paths and non-functional behavior of nodes.

We therefore decided to develop a more sophisticated model, which is intended to cover a large class of
machines. The formulation of this model is the main topic of this paper. In addition a simple application of
the model is presented. This application concerns the safety of a graph, which is the property that during exe
cution no token clash can occur. For data flow machines without colors, safety implies that a data path holds
at most one token. We prove that graphs that satisfy a few easily checked conditions are safe. These condi
tions are rather severe since they exclude all graphs that manipulate colors or contain cycles. We present a for
mal description of a translation algorithm from a simple conventional language to data flow graphs and prove
that all graphs produced by the algorithm are safe.

After a few remarks on notation, this paper proceeds with the description of the model for a data flow
program. Usually each formal definition is preceded by a, hopefully more readable, informal description; In
section 3 the model for the execution of such a program is described and the safety concept is defined. Section
4 contains the theorCD}S on safe graphs. Section 5 describes the translation algorithm and the proof that it pro
duces safe graphs. The paper concludes with some suggestions for further research along the same lines. Full
proofs of the lemmas can be found in the appendix.

2

2. DATA FLOW NETS

2.1. Notation

In this paper we will use the notion of bags. A bag or multiset is like a set but it allows multiple oc
currences of identical elements. The ordering of the elements of a bag is irrelevant. The { ... } notation will be
used to denote a specific bag or a set. '.The notation 0 will be used for both the empty set and the empty bag.
Subbag, union (U) intersection (n) and difference (-) are defined on bags in the obvious way. 5 BAGS(T),
where T is a set, denotes the set of all countable bags whose elements are in T. I S I , where S is a bag or a
set, denotes the number of (different or identical) elements in S.

H C ~ A and/ a function defined on A then/ [CJ denotes the image of C.
N denotes the set of natural numbers.

2.2. Informal Description

We will need a definition for a data flow program or graph. The obvious model would be a directed
graph consisting of nodes and arcs. Tokens travel over the arcs and a function is associated with each node,
that describes how tokens are transformed when they pass the node. Since we want to model dynamically
created arcs this would not be a fruitful approach. Instead we define an entity called a data flow net, where a
node is a primitive concept, but where the connection between the nodes will be dynamically determined by the
functions that are associated with the nodes. To this end arcs will be replaced by more or less free-floating.
ports. The function associated with each node (henceforth called firing rule) describes which input tokens are
taken from which ports, which output tokens are produced and to which ports they are added. The input and
output ports of a node are thus defined by its firing rule. Nodes which can dynamically create arcs have as
output ports all those ports to which they can possibly direct their output tokens. In many cases this will be
the complete set of ports in the program. The following property is an important characteristic of our model:
a port can serve as a shared output port for many different nodes but as input port to only one node. Because
we want to include non-functional nodes, the firing rule can manipulate the state of a global memory. Because
we also want to describe non-deterministic behavior the firing rule is not a function but a relation. Collections
of tokens reside at the ports. Such a collection will be described by a bag. A tuple would not be appropriate
since we want the model to be insensitive to the order in which the tokens on an arc are produced (this insensi
tivity corresponds to the asynchronous communication networks of data flow machines). A set would not be
apP.ropriate either. because the model should be sensitive to multiple occurrences of the same token at a port.

We thus have the basic doinains tokens, states, nodes and ports. · entry and exit, two subsets of
ports , will be used later to describe interaction with other data flow nets. The function color is used to
differentiate between tokens. The function prog associates a firing rule with each node.

Although the definition is very general, some properties are built in. We already mentioned that the ord
er in which tokens arrive at a port is not preserved. Exit ports do not serve as input ports to any node, so the
tokens that reside at an exit port can be considered to have left the net. Input ports are not shared between
nodes. Firings are modest but not spontaneous, i.e. of each input port at most one token is absorbed and
there is at least one input port from which a token is absorbed. To include the notion of colored (or tagged or
labeled) tokens we .include in the definition a function color, which associates a color with each token, and put
two additional restrictions on the firing rule. The first restriction is that for each element of a firing rule all in
put tokens should have the same color. The second restriction is that if the firing rule accepts tokens of one
color it should accept tokens of all colors.

2.3. Formal Definition

A data flow net is a tuple
<tokens, states, nodes, ports, entry, exit, color, prog >

- tokens, states, nodes and ports are all disjoint and countable sets.
- entry and exit k ports.
- color': tokens ➔ N
- prog : nodes ➔ sets of firing elements

a firing element is a tuple
(<I, s >, <0, s' >)

with
- s, s' Estates
- I : ports ➔ (tokens U {NIL})
- 0 : ports ➔ BAGS(tokens)

3

The set prog(N) of firing elements for a node N is called the firing rule of N. Each firing element of a node
represents a possible firing. The s and s' indicate the state of the global memory before and after the firing.
I indicates from what ports what input tokens are absorbed; 0 indicates on what ports what output tokens
are produced. For a particular firing element, I (p) = t means that this firing removes token t from port p . If
l(p)= NIL no token is removed: p is not an input port for this element. Note that each firing can remove at
most one token from a port. The range of 0 however is bags of tokens, so a firing may add more than one
token to a port. If 0 (p) is an empty bag than the firing does not add any tokens top : p is not an output
port for this element.

As an aid in the further description we first define four functions. For a firing element, inel and outel
are the sets of ports from which a token is removed or to which tokens are added, respectively. For a port p,
I (p) is called an input token and elements of 0 (p) are called output tokens. For a node, in and out are the
unions of inel and outel over all firing elements. Elements of in and out are called input and output ports.

We define
- The functions inel and outel from the set of firing elements to sets of ports:

inel ((<I, s >, < 0, s' >)) = {p E ports I / (p) =t= NIL}
outel((<l, s >, <0, s'">)) = {p E ports I 0(p) =t= 0}

- The functions in and out from nodes to sets of ports:
in (N) = U inel(f)

{f Eprog(N)}

out(N) = U outel(f)
{f eprog(N)}

Certain conditions have to be satisfied before a tuple as described above deserves to be called a data flow net.
So the restrictions given below are part of the definition.

I Exit ports do not serve as input port to any node:
V"N E nodes : in (N) n exit = 0

2 Input ports are not shared between nodes:
V"N, KE nodes: in(N) n in(K) = 0, if N =t= K

We allow output ports to be shared between nodes. Such knots will be defined below.
3 Nodes cannot fire spontaneously:

V"N E nodes and f E prog(N): inel (/) =t= 0

4

4 All input tokens have the same color:

'vN E nodes and f E prog(N)
:3 CE N such that 'vp E inel(f)

co/or(I(p)) = c
f is said to have color c, so the color of a firing element is the color of its input tokens.

5 Whether a node will fire or not does not depend on the color of the input tokens as long as they are equal:

'vN E nodes and/ = (</1, s 1>, <01, s' 1>)E prog(N)
'v c E co/or[tokens]
:3/' = (<Ii, s1>, <02, s' 2>)E prog(N) of color c with

inel(f') = inel(f)

EXAMPLE
Throughout this paper we will use an almost trivial data flow net as the standard example. The net has
three nodes, four entry ports and one exit port. In the traditional way the net is modeled by the graph

EXIT

Ftguc-e t
SIMPLENET

in figure 1. The structure of the graph is identical to that of a program that would compute
(a + b) X (c + d), but for the sake of simplicity we will assume that each node sends a copy of one of its
input tokens to its output ports. The definition of the net is as follows:

SIMPLENET = <tokens, states, nodes,ports, entry, exit, co/or,prog>
where

- tokens is a countable set
states {so}

nodes

- ports

entry

exit

color

- prog

=
=

{Ni, N2, N3}

(pi,···, P1}

{p1,p2, p3,p4}

(p7}

tokens-+{0}

N 1-+[COPY FROM (p1,p2} TO (ps}],

N2-+[COPYFROM (p3,p4} TO (p6}],

N 3-+[COPY FROM (p5, p6} TO (p7}])

The shorthand notation

[COPY FROM inports TO outports]
is used to indicate a firing rule in which for each element

f = (<I, so>, <0, so>)
1 - inel (f) = inports
2 - outel (f) = outports
3 - Each output port receives exactly one copy of one of the input tokens.

2.4. Properties

5

In the sequel we will simply talk about a net when we mean a data flow net. In this section we will
define certain special properties of a particular net NET. Most of these properties we will need later when we
prove theorems.

The notions of static and dynamic arcs are described. We further define that a node is strict if it al
ways absorbs one token from each of its input ports. Since firings are not spontaneous, nodes with only one
input port are always strict. A knot is introduced, which is a port that is a destination for more than one
node. For loops and the merging of the branches of a condition the net either needs to have knots or to in
clude non-strict nodes. In order to simplify the separation between matching store and instruction store the
designers of the Manchester Data Flow Machine have chosen for strict nodes and knots. Most other designers
have made the other choice. Data flow nets can model both designs.

We further give a definition of functionality and determinism . These two notions have frequently
been confused in the data flow literature. This is not at all surprising, since the input-output behavior of a
node does not give enough information to deduct whether the node is either non-functional or non
deterministic, unless one is able to initialize or inspect the state of the global memory.

A node N is called

- unitary if each firing adds at most one token to a port:

'v'pEports: IO(p)I ~ I
- static if each firing adds tokens to each output port:

'v'/ E prog(N): outel(f) = out(N)
- dynamic if it is not static

- strict if each firing removes one token from each input port:

'v'/ E prog(N): inel(f) = in(N)
- color preserving if all output tokens have the same color as the input tokens:

'v' f = (<I, s >, < 0, s' >) E prog (N), p E outel (f) and t E 0 (p)
t and f have the same color

- deterministic, if the firing rule is a function.

This means that there is only one firing for each combination of state and input tokens. The behavior

of non-deterministic nodes is influenced by factors that lie outside of our model, such as the creativity

of an interactive user or the order of updates in a shared data base.

- functional, if 'v'(<J, s >, <0, s' >)E prog(N): s =s'
This means tllat the node has no effect on the state of the global memory. For functional nodes we

will often omit all occurrences of states and we will denote a firing element of such a node simply with

<1,0>.

A port p is called

- a knot if it is an output port for more than one node:

there are different nodes N and K such thatp E (out(N) n out(K))

6

2.5. Example

We can make the following statements about SIMPLENET:
- All nodes are strict, unitary, static, deterministic, functional and color preserving.
- The net is free of knots.

3. MARKINGS -

We will describe the execution of a net as a collection of state transitions. To prevent confusion with the
state of the global memory and to emphasize the analogy with Petri nets we will call the state of a net a mark
ing. A marking assigns bags of tokens to ports and a state to the global memory. A firing of a node is a pair
of markings, such that the transition from the first marking to the second is consistent with the firing rule of
the node. This is equivalent with saying that a firing of a node transforms one marking into another by remov
ing tokens from input ports of the node, adjusting the state of the global memory and adding the result tokens
to output ports. An execution path is a series of markings in which each subsequent pair is a firing.

3.1. Definitions

A marking M of NET is a pair <Mstate, M,okens >
- Ms,ate E states
• M,okens : ports ---+ BAGS(tokens)

If p E ports we will use the notation M (p) as shorthand for M,okens (p).

A firing of node N of NET is a pair <M, M' >
where M and M' are markings of NET such that

:3firing element/ = <(/, s), (0, s')>E prog(N) with

I· Mstate = S

2 • M'state = s'
3 • '-.::7' p E ine/ (/)

- I (p) E M (p) (the enabling condition)

- M'(p) = M(p) LJ O(p) - {/(p)}
4 - ""'v'p E (ports - inel(f))

M'(p) = M(p) LJ -O(p)
s and s' are the states of the global memory before and after the firing. The input tokens are removed

from input ports and the output tokens added to output ports. Note that for most ports p, 0 (p) = 0.

We will say that <M, M' > has the same color as/.

An execution path is a series of markings <Mi, ... , Mn > where

- n > 1
• "-::?'i<n• <M;, M;+ 1> is a firing of a nodeE NET

3.2. Properties of Mm:"-ings
Now that we can describe the execution of a net we can formulate dynamic restrictions for a certain

machine by declaring certain markings illegal. Among the interesting restrictions are:

Freedom from Deadlock
The net cannot get into a state from which no more output can be produced.

Cleanliness
Each series of firings will eventually leave all non-exit ports of the net empty.

7

Deterministic Execution

Safety

For each set of inputs there is only one set of outputs.

The net cannot get into a state where more than one token of the same color resides at a port. If all to
kens have the same color this degenerates to the restriction that a port contains at most one token.

In order to prove·that certain nets obey these restrictions we will first have to define these notions precisely. In
this paper we will concentrate on safety. We define a reachability relation between markings and we call a
net safe if no unsafe marking is reachable from any safe input marking.

A marking M of a net NET is called

- safe with respect top, if p is a port such that
there are no two tokens E M (p) of the same color

- safe, if 'vp E ports
M is safe with respect top

- input, if there are only tokens on entry ports:

'vp E (ports - entry)
M(p) = 0

So we do not require that there are tokens on all entry ports.
- output, if there are only tokens on exit ports:

'vp E (ports - exit)
M(p) = 0

- reachable from a marking M', if
:3 execution path <M' , ... , M >

Note that the reachability relation between markings is not necessarily reflexive.

A net is called
- safe, if for all safe input markings M1 , all markings M that are reachable from M1 are safe.

It may come as a. surprise that in a model for such a parallel machine as a data flow machine, no mention is
made of parallel execution. It turns out however that due to the enabling condition and the asynchronous na
ture of data flow nets, sequentializing the parallel firing of nodes does not influence the set of reachable mark
ings. This is proven in appendix I.

3.3. Example

In the following descriptions of markings of SIMPLENET the component Mstate and the mappings
from ports to empty bags are omitted.

- M;n = (p1➔{ti},p2➔{t2},p3➔{t3},p4➔{t4}) is a safe input marking
- M 1 = (p3➔{t3},p4➔{t4},p5➔{t1}) is reachable from M;n since <M;n, M 1> is a firing of N 1.
- M 2 = (p7➔{ t 1}) is an output marking reachable from M;n .

4. THEOREMS

In this section we will prove that nets that satisfy certain conditions are safe. This will be done in two
steps. In the first step nets will be considered that are free of knots, only contain unitary, strict, color preserv
ing nodes and in which no entry port serves as output port to any node (i.e. tokens do not enter the net on a
path between nodes). The most severe of these restrictions is the absence of knots and non-strict nodes. This
combination outlaws dynamic nodes. Loops, conditional flow and procedure calls can therefore not be imple
mented by these nets. Simple programs without these constructs can however be modeled. In the second step
nets are considered for which the restriction on knots is somewhat relaxed and which allow conditional flow.

8

For loops and procedure calls, the restriction on color preservation has to be relaxed, but this will be a topic
for future research. In the next section we will describe a translation scheme from a simple multiple assign
ment language into nets that (not by coincidence) satisfy exactly these conditions.

For lemmas only a proof outline is given. Complete proofs can be found in Appendix II.

4.1. Nets without.Knots

We first define a partial distance function from a set of ports Jo descendant nodes:

If S is a set of ports and N a node than

0, iff in(N) c; S
dist (S ,N) = n, iff n is the smallest integer such that

'vp E (in(N) - S), =ILE nodes such that
1 p E out(L)
2 dist(S,L) < n

If for some p there is no such L than dist(S, N) is undefined.

A node N is covered by a set of ports S if dist(S ,N) is defined.

Intuitively, this distance dist(S ,N) is equal to the minimum number of firings that is needed before tokens on
a port in S have percolated to all input ports of N. If tokens are present at all ports of S but at no other
ports and all nodes are strict than only those nodes that are covered by S will eventually fire. This is formal
ized in the following lemma:

Lemma Al:
If M I is a marking of a net with only strict nodes than for each node K holds
if there is an execution path <Mi, ... , Mm> with <Mm -1, Mm> a firing of K
then K is covered by { p I M 1(p) =/=- 0 }

Proof outline:
Let <M1, ••• , Mm> be an execution path with <Mi, Mi+I> a firing of node Ni and
S = { p I M 1(p) =/=- 0 }. By induction on i the following properties are proven

A - dist(S ,Ni)< i
B-'v'Kenodes: dist(S,K)>i ~ :3pEin(K)withMi+l(p)= 0.

The basis of the induction (firing of N 1) is trivial.
The induction step considers the firing of N n + 1 assuming that properties A and B hold for i E;; n .

Induction assumption B combined with the strictness of Nn +I implies property A for i = n + 1.
A node is then considered which has all its input ports loaded in Mn +2 • It follows from property A

for i E;; n + 1 that the distance of this node to S is less than n + 2. This implies property B

fori = n+l.
Property A imp~es that all Ni are covered by S. D

In a strict, knot-free net there are interesting correlations between dist and the execution of the net on a
parallel data fl.ow machine. The maximum of dist (entry, N) is a measure of the minimum execution time of
the program. The maximum number of nodes with the same dist (entry, N) is an indication of the maximum
number of processors that can be used concurrently.

In the proof of the above mentioned theorem we will make extensive use of the property of a net that for
each safe input marking each node will fire each color at most once. We define this formally:

For a node K in NET, ONCE (K) holds iff

there is no safe input marking M1 , and execution path <M1 , ... , M >
with two separate firings of K with the same color.

9

The follow~g lemma states that_ all nodes of nets of the type we are considering will fire each color at
most once.

Lemma A2:
If NET is such that
l NET is free of knots

2 all nodes are strict, unitary and color preserving

3 'v K E nodes : out (K) n entry = 0
than ONCE(K) holds 'vK E nodes.
Proof outline:
The proof is split into the following steps:
l - According to lemma Al nodes not covered by entry will not fire for any input marking.
2 - ONCE (K) holds for all remaining nodes by induction on dist (entry, K).

a For all nodes K with only entry ports ONCE (K) holds. This follows from restriction 3 and the
strictness of K

b Suppose ONCE(K) and dist(entry ,K) ~ n. Now consider a node L with

dist(entry,L) = n +1. Suppose ONCE(L) does not hold. Because Lis strict, at least two
different tokens of the same color must have passed through one of its input ports. Since the
net is free of knots, both tokens must have been produced by one node N. It follows that

dist (entry, N) ~ n . But since N is unitary and color preserving, it must have fired at least
one color twice, contrary to the induction hypothesis. D

We now get to the safety theorem for simple, tree-like nets:

Theorem A:
If NET is such that
l - NET is free of knots
2 - all nodes are unitary, strict and color preserving

3 - 'vK E nodes: out(K) n entry = 0
than NET is safe.
Proof:
Let M be a marking of NET reachable from some safe input marking M1 . Let q be a port.
If q E entry than

q is not an output port to any node, so M(q) (: M 1 (q). This implies that Mis safe with respect
to q.

If q fi!. entry than
Since NET is free of knots, there is exactly one node K such that q E out(K). Since
- ONCE(K) holds according to lemma A2
- K is unitary and color preserving
M is safe with respect to q.

So M is safe. D

It is interesting to note that this theorem is equally valid for nets with non-functional, non-deterministic and
dynamic nodes as long of course the dynamic arcs do not end in knots.

IO

4.2. Nets with Conditional Constructs

We will now prove a second theorem, which relaxes the restriction on knots somewhat. These nets allow
the kind of data flow programs that are usually suggested to implement conditional statements.2, 6, 7, 8 We will
need an additional tool to describe the structure of a net, with the effect that if we can call a node insulated
from a set of ports by a second set of ports than no token residing in a port in the first set can reach the node
without passing through a port in the second set. We define this structural concept as follows:

A node N is insulated from the set of ports A by the set of ports B iff for all input ports p of N
1-pfi!A
2 - N covered by B
3 - Either p E B or °'v" L E nodes : p E out (L) ~ L is insulated from A by B

Note that insulation implies coverage. The intended property of insulation is embodied in the following lem
ma, which states that if in a color preserving net a node that is covered by a set of ports fires then a token of
the same color must have passed through one of those ports.

Lemma Bl:
For each execution path EP = <M 1, ... , Mm> and set of ports S in a color preserving net with

- M I an input marking
- <Mm_ 1, Mm > a firing with color C of a node insulated by S from entry

:3 M; E EP and a p E S, such that M; (p) contains a token of color C.
Proof outline:
For each node K it is proven that for some p E S, M; (p) contains a token with color C by induction

ondist(S,K).
The basis of the induction is trivial.
In the induction step nodes K with dist (S, K) = n + 1 are considered. It is shown that K must have
received a token of color C from some node L. Since dist (S, L) ..;;; n the induction hypothesis implies
the correctness of the lemma. D

. For the de:scription of conditional nets the concept of a multiswitch is introduced, which is a set of
switching nodes controlled by a common node. The intuitive function of such a multiswitch is to send its input
tokens to one of two sets of ports (called destination sets), depending on the output of the controlling node.
A knot is synchronized by such a multiswitch, if it is an output port of two nodes, each of which is insulated
by one of the two destination sets. The theorem then states that nets with only such synchronized knots and
which also satisfy restrictions 2 and 3 of theorem A are safe. Theorem A of course follows directly from this
second theorem.

MS C nodes is called a multiswitch with control node CN and destination sets A and B , iff
1 - ports in the destinations sets can receive tokens only through the multiswitch:

°'<:::T p E (A U B) and L E nodes :
p E out (L) ~(L E MS or L insulated from entry by A or B)

2 - All tokens produced by a firing of the control node are identical:

'vt'f E:: prag(CN), :3 t E tokens such that 'vt'p E outel(f): O(p) = {t}
3 - Each node of the multiswitch has a control port which only receives tokens from the control node.

The tokens on these control ports determine the destination set to which all output tokens are sent:

:3 true C tokens, such that 'vt'N E MS and f E prog(N), :3 p E inel (f), such that

I C A , if I (p) E true
1 - out el (f) = C B, otherwise

2 - °'v" K E nodes : p E out (K)iffN = CN
Note that A or B may be empty.

MS

A B

Figure 2
A Multis'w'itch

An example of a multiswitch is depicted in figure 2.

A knot p, which is output port for exactly two nodes K and L, is called synchronized by MS iff

I - MS is a multiswitch with destination sets A and B
2 - (K insulated by A from entry) or (KE MS)
3 - (L insulated by B from entry) or (L E MS)

11

The following lemma is a relaxed form of lemma A2. It states that if all knots are synchronized than each node
will still fire each color only once.

Lemma B2:

If NET is such that
I - each knot is synchronized by a multiswitch
2 - all nodes are unitary, strict and color preserving

3 - VK E nodes: out(K) n entry = 0
then ONCE (K) holds for all nodes K.

Proof outline:
The proof is identical to that of lemma A2 with the addition of the special case that an input port of

node K is a knot. Since this knot is synchronized by a multiswitch it must be an output port for two
different nodes that are insulated by the destination sets of the multiswitch. According to lemma B 1 to
kens of the same color must have passed through both destination sets. This implies that the control
node of the multiswitch must have fired one color twice, contrary to the induction hypothesis. D

12

TheoremB:
H NET is such that

1 - each knot is synchronized by a multiswitch
2 - all nodes are unitary, strict and color preserving

3- 'vKE_nodes: out(K) n entry = 0
then NET is safe.

Proof:
The proof is identical to that of theorem A with the addition of the proof for the case that q is a knot
synchronized by a multiswitch with control node CN. The same argument as used in the previous proof

implies that non-safety of q would imply that ONCE(CN) does not hold. This would contradict lemma
Bl.□

S. TRANSLATION

As an illustration of the use of the model we will describe in this section the translation of a convention
al program into a data flow net and we will prove that it will only produce safe nets. For the sake of brevity
the description is kept slightly less forinal than in the previous chapters. The language considered is a very
simple version of an expression oriented programming language with variables and (multiple) assignments.
The basic algorithm is described in section 5.1 and proved to be safe in 5.3. An extension of the algorithm that
can handle conditional constructs is treated in the last two sections.

Since we are not interested here in the process of parsing we simply assume that the program is available
in the form of a parse tree. Each node of the parse tree corresponds to a (sub)expression of the program and
the root corresponds to the complete program. The translation algorithm defines a function T, which associ
ates a data flow net with each node of the parse tree and thus with each (sub)expression of the program. Tiie
net associated with the root of the parse tree is thus the translation of the program. Each (sub)expression in
the program delivers a value, which will be available in the exit port of the corresponding data flow net.

The algorithm defines two more functions DEF and USE, which are concerned with multiple assign
ment. They keep track of the places where variables are defined and used, such that each use can be correctly
connected to the corresponding definition:

DEF associates with an expression the output bindings that are defined after the evaluation of the expression.
An output binding is an association between a variable and the port that will hold the value of that
identifier. An output binding corresponds to an assignment in the program.

USE makes similar associations, but this time for input bindings: associations between a variable and the
ports that need to receive the value of the variable. An input binding corresponds to the occurrence of a
variable on the right hand side of an assignment.

S.1. Basic Translation Algorithm

Let us first consider the translation of a very simple language into data flow nets. The syntax of the
language is:

SYNTAX1:
<expr> : : = <identifier> I

<identifier> : = <expr>
<expr> <op> <expr>
(<expr>·)

<op> ::= ; I +I* 1-11 I=

The semantics of the binary operators are irrelevant in the present context since our prime concern is with the
safety of the generated nets. We assume an expression oriented language so we can treat the semicolon as an
ordinary binary operator. We assume that for each program in this language a parse tree is available with
three types of nodes:

13

(1) Leaves that represent a reference to a variable on the right hand side of an assignment (a use).

(2) Nodes that represent an assignment (a definition). Such nodes have only one descendant, viz. the node
that corresponds to the right hand side of the assignment.

(3) Nodes that represent a binary operation. Such nodes have two descendants, corresponding to the two
subexpressions that are connected by the binary operator.

An example of a parse tree is shown in 'figure 3. The type of each node is indicated to its right.

E ! I l

ftgur-e 3
Par-se tree of x := {a+b) • Cc+d)

The sets tokens, states and color are identical for all nets and will not be defined any further. For
each net the set entry is the image of the function USE : each entry port corresponds to a use of a variable
that is not yet linked to its appropriate definition. The translation function T and the bookkeeping functions
DEF and USE are defined with the aid of so called templates. There is one template for each type of parse
tree node:

(1) In the template for the use of a variable (figure 4), T delivers a net with no nodes and only one port.
This port is meant to receive the value of the variable and is bound in USE to the variable name to in
dicate that later a data path is to be created from the most recent definition. This port is also the exit
port of the expression.

TEMPLATE (X):
T(N).exit T(N).ports = {p}
T(N).nodes 0

T(N).prog = DEF(N) = undefined

l{p},ifX=Y
USE (N)(Y) = 0 , otherwise

14

Net

ENTRY

p • USEIXl

EXIT

Figur-e
generated by

4
template (1)

(2) The template for the definition of a variable is illustrated in figure 5. T delivers a net that is the net
corresponding to its only descendant plus one new node and two new ports. The new node copies the
value delivered by the right hand side to the two new ports. One of these is the exit port of the expres
sion. The other port is bound in DEF to the variable name and will serve as the input port of a node
that is to be created later to deliver the value to subsequent uses of the variable. These definitions and
uses will be linked by the next template. The reason that two ports have to be created is that input ports
cannot be shared between nodes.

Ftgur-e 5
Net gener-ated by template (2)

TEMPLATE (X: =) with descendant node A:
T(N).ports = T(A).ports U {p, q} p, q Ji! T(A).ports
T (N).nodes = T (A).nodes U { K} K Ji! T (A).nodes
T(N).prog = T(A).prog U (K-FR 1)
wher'? FR 1 = [COPY FROM T (A).exit TO {p, q }]
T(N).exit = {p}
USE(N) USE(A)

l{q}
DEF(N)(Y) - DEF(A)(Y) , otherwise

, if X= Y

15

(3) Figure 6 illustrates the binary operator template. Here T delivers a net that is the union of the nets
corresponding to the two descendant nodes plus a series of new nodes and ports. One new node (K) im
plements the binary operator. It has the exit ports of the two descendants as input ports and one new
port (p) as output port. This last port is the exit port of the expression. Since within the scope of this
paper, we are not interested in the semantics of the translated program, we simply program K with a
COPY firing rule. Programming it with a more realistic firing rule would not affect the safety of the net.
The sets LN, LP and LF denote the nodes, ports and firing rules that are created to link correspond
ing definitions and uses of a variable in the two descendants. These sets will be specified later.

TEMPLATE (<op>) with descendant nodes A and B:
T(N).ports = T(A).ports U T(B).ports U LP U {p} (these four sets are disjoint)
T(N).nodes = T(A).nodes U T(B).nodes U LN U {K} (these four sets are disjoint)
T(N).prog = T(A).prog U T(B).prog U (LN -LF) U (K -FR2)

where FR 2 = [COPY FROM (T(A).exit U T(B).exit) TO {p }]
T(N).exit = {p}

Since we are dealing with an expression oriented language, definitions and uses of variables can occur in both
descendants and the semicolon can be treated the same as any other binary operator. The major part of this
template is therefore concerned with the creation of the links between corresponding definitions in the left
operand and uses in the right operand. Readers not accustomed to expression oriented languages might prefer
to think of the expression "A ; B ". · For each link to be established a node in LN and a port in LP is creat
ed. The functions P and M associate port and node with the corresponding variable name. The linkage node
has as input port the binding in DEF and as output ports the bindings in USE and the newly created port.
The latter is now bound to the variable name in DEF instead of the old binding to prevent that a port will be
used as input port to more than one node. The corresponding bindings in USE are removed.

LN is a set of nodes
LP is a set of ports
LF is a set of firing rules
such that,

I - there is a partial function P from identifiers to LP
for each identifier X, P(X) is defined iff DEF(A)(X) and USE(B)(X) are defined

2 - there i; an injective function M from LN to identifiers

'vLE LN
I - P (M (L)) is defined

2 - prog(L) = FR 3 E LF
where FR 3 = [COPY FROM DEF(A)(M(L)) TO (USE(B)(M(L)) U {P(M(L))})]

16

TCAl T(Bl

· LP
.. • .. • • • • • • •••••••I

TCNl

~XIT

Figure 6
Net generated by template (3)

DEF(N) and USE(N) are such that for all identifiers X
P(X) , if P(X) defined and DEF(B)(X) = 0

1 - DEF(N)(X) = DEF(B)(X) , if DEF(B)(X) =/= 0
DEF(A)(X) , otherwise

I
USE(A)(X) , if P(X) defined

2 - USE(N)(X) = USE(A)(X) U USE(B)(X) , otherwise

5.2. Example

SIMP LEN ET, depicted in figure I, is a translation of the program (a + b) X (c + d), which corresponds
to node B in figure 3. The parse tree contains four leaves corresponding to the uses of the variables and three
nodes for the three binary operators. At the leaves template (I) is applied, which leads to the creation of ports
p1, pz, p3 and p4. At parse tree node C template (3) is applied, which creates node N I with p 1 and p 2 as
input port and p s as output port. At parse tree node D node N 2 and port p 6 are created. At node B final
ly N 3 and exit port P1 are added.

5.3. Proof of Safety

Theorem C:
For each program P generated by SYNTAX I, T(P) is safe.
Proof:

17

The proof is a straightforward application of Theorem I. It is easy to see that for each node N of the
parse tree, T (N) satisfies the three groups of conditions of the theorem:
I - T(N) is free of knots. FR 1 and FR 2 define only new ports as output ports so they cannot produce

a knot. The output ports defined by FR 3 are either in the image of P, which is LP and consists
only of new ports, or in USE. To prove that the latter case does not produce a knot we prove that
each template leaves the following properties invariant:
II - USE(N) contains only bindings to ports that do not serve as output port to any node.
12 - in USE (N) no two identifiers are bound to the same port.

2 - The only firing rules mentioned in the templates are those of unitary, strict, color preserving nodes.
3 - The only entry ports that are created are ports that appear in USE and, according to invariant II,

USE contains only bindings to ports that are not output port to any node. D

5.4. Translation of Conditionals

We will extend the translation function T to one that can handle a language that includes condi
tional statements. The syntax for this new language is:

SYNTAX2:
<expr> : : = <identifier> I <identifier> : = <expr> I

<expr> <op> <expr> I (<expr>) I
if <expr> then <expr> fi

<op> : : = ; I + I * I - I I I = ·

An expression of the form 'if A then B fi' is equivalent with the expression 'value-of -condition : = A ;
if value-of -condition then B fi' where value-of -condition is a reserved identifier. Without loss of

. generality we· can therefore assume that the parse tree contains in addition to the three types of nodes
mentioned in the previous section only one more type:

(4) A node that represents the simplified condition (if value-of -condition then). This node has as
only descendant the node that corresponds to the then branch.

The templates for the first three types of nodes remain the same and we only have to define the template
for the conditional node.

(4) In this template two sets of ports DP and CP and a set of nodes SN are created. Each such node
acts as a switch node with an element of CP as the control port and an element of DP as the data
input port. For each identifier that is used or defined in the then branch of the condition one such
switch riode is created. The functions SDP, SCP and S define the correspondence between ports
and nodes on the one hand and identifiers on the other hand. The new nodes are programmed with
a SWITCH type firing rule such that if value -of -condition is true the tokens arriving at ports in
DP will be send to the USE ports of the then branch and otherwise to the DEF port. At this
latter port a knot is formed that is synchronized by the switch node.

We will use the notation
[SWITCH CONTROLLED BY control -port FROM data -in -port
IF TRUE TO true -out-ports IF FALSE TO false -out -ports J

to indicate a firing rule of a dynamic node in which for each firing element f :

18

I - ine/ (f) = {control-port, data -in -port}

I true -out -ports , if I (control-port) E true
2 - outel(f) = Valse-out-ports , otherwise

3 - Each output token is a copy of I (data -in -port)

data-in-port

contc-ol-port

(a specific subset of tokens)

false-out-poc-ts tc-ue-out-ports

Figure 7
S~ITCH firing rule

TEMPLATE (if value-of -condition then) with descendant node A :
T(N).ports = T(A).ports U DP U CP (these three sets are disjoint)
T(N).nodes = T(A).nodes U SN (these two sets are disjoint)
T(N).prog = r(A).prog U (SN ---+ SF)
T(N).exit = T(A).exit

DP and CP are sets of ports . ·
SN is a set of nodes
SF is a set of firing rules
sµch that,
I - there are two partial functions SDP and SCP from identifiers to DP and CP respectively

For each identifier X:
SDP(X) and SCP(X) are defined iJf USE(A)(X) or DEF(A)(X) is defined

2 - There is an injective function S from SN to identifiers

'vNE SN
I - SDP(S(N)) and SCP(S(N)) are defined
2-prog(N) = FR4E SF

where
FR4 = [SWITCH CONTROLLED BY SCP(S(N)) FROM SDP(S(N))

IF TRUE TO USE(A XS(N)) IF FALSE TO DEF(A XS(N))]
Note that USE(AXS(N)) or DEF(AXS(N)) can be empty.

DEF(N) = DEF(A)
{SDP(X)} , if SDP(X) defined

USE(NXX) = CP , if X = value-of-condition
0 , otherwise

'
, tdenttfte~s :
~ .. x :

DPA.. ~P--················
p

TCN)

TCA)

Figure 8
Net generated by template (4)

S.S. Proof of Safety

TheoremD:
For each program P generated by SYNTAX2, T(p) is safe.

Proof:
This proof is a straightforward application of theorem B.

19

1 - Each knot is synchronized by a multiswitch. In the proof of theorem C we already showed that
firing rules FR 1, FR 2 and FR 3 produce no knots and that the templates (1), (2) and (3) leave

properties II and 12 invariant. It is easy to see that the new template (4) also leaves 11 and 12

invariafl.t. FR 4 however may produce a knot on port DEF(A)(S(N)). We will prove that

the set of nodes SN is a multiswitch that synchronizes this knot:

Consider template (4). We can prove that each node in T (A) is insulated by USE (A) from

USE (N) and eventually from entry. This follows directly .from a third property

13 - each node in T(N) is covered by USE(N)
which can easily be seen to be left invariant by all four templates.

The direct ancestor of a conditional node is a ; binary operator node which creates the linkage

nodes between DEF s in the condition part and USE in the then branch. It can be seen

20

that the linkage node VOC which links definition and uses of value-of -condition turns
SN into a multiswitch with destination sets USE (A) and DEF(A) and control node
voe, since it fulfills the three properties of a multiswitch:

1 - Ports in USE (A) are output port only of nodes in SN. Ports in DEF (A) are output

ports of nodes in SN or of nodes in T (A) which are all insulated from entry by
USE (A) as we have seen.

2 - The control node voe is programmed with a COPY firing rule.

3 - Ports in CP are output port only for the control port. The other components of this
property follow directly from the definition of the SWITCH firing rule.

Say p = DEF(A XS(N)) is a knot since it is output port for some node KE SN and
some node L E T (A). Since L is insulated by USE (A) from entry it follows that p is
synchronized by SN.

2 - All firing rules are unitary, strict and color preserving.
3 - entry ports are always in USE and these are not output port for any node.□

6. DISCUSSION

We have formulated a general model for data flow programs that can serve as a vehicle for
the study of unresolved issues concerning token coloring and dynamically created data paths. We
have shown that rigorous proofs can be given for simple theorems. Although the proofs are often
cumbersome they have helped to gain some insight in fundamental properties of safe data flow
graphs. We have used the model to validate a non-trivial translation algorithm.

The main value of the work reported in this paper lies in the formulation of the model,
since equivalent versions of the theorems that we have proven so far have been given elsewhere.
This work is intended to lay a sound foundation for more interesting analysis. We mention a few
directions into which the work can be fruitfully extended.

• The types of graphs that are proven to be safe need to be extended. So far we have limited
ourselves to color preserving graphs, with a severely limited type of dynamic arcs. Restric
tions need to be formulated on the way a net manipulates colors and creates dynamic arcs.
These restrictioJ1S should be simple enough to make a rigorous proof feasible, but they
should not be so stringent as to exclude common and sound translation schemes.

• The only property that has been considered so far is safety. Other properties of nets such
as freedom from deadlock, cleanliness and deterministic execution also merit attention. We
expect the analysis for these properties to proceed basically along the same lines as that for
safety.

• For deadlock free and deterministic nets the function that maps input markings to output
markings can be called the meaning of the net. If a meaning function for source programs
is also available, the translation of a source program into a net is proven semantically
correct if it is proven that the net is deadlock free and deterministic and that the meaning
of the net matches that of the program.

• The model can be tailored to a particular machine by stating a number of restrictions. It
could then be used to compare different machines by comparing the restrictions, which
would give an abstract but clear view of the functional differences between these machines,
without being obscured by implementation details or differences in terminology.

21

ACKNOWLEDGEMENTS
Wim Bohm, Jan Heering, Paul Klint and Marleen Sint struggled their way through
earlier versions of this paper and provided many helpful suggestions. I am also grate
ful to Arie de Bruin, without whose help and encouragement my first steps in this
alien territory would have been my last.

REFERENCES

[l] Brock, J. D., "Operational Semantics of a Data Flow Language," Technical Memoran
dum 120, MIT/Laboratory for Computer Science (Dec 1978).

[2] Glauert, J. R. W., "A Single Assignment Language for Data Flow Computing,"
Dissertation, Dept. of Computer Science - Victoria University of Manchester (Jan
1978).

[3] Gurd, John and Ian Watson, "A Data Driven System for High Speed Parallel Com
puting," Computer Design 9(6 & 7), pp.91-100 & 97-106 (June & July 1980).

[4] Jaffe, J., "The Use of Queues in the Parallel Data Flow Evaluation of "if-then-while"
Programs," Technical Memorandum 104, MIT /Laboratory for Computer Science
(May 1978).

[5] Manna, Z., Lecture Notes on the Logic of Computer Programming, 1980.

[6] Rumbaugh, J., "A Parallel Asynchronous Computer Architecture for Data Flow Pro
grams," Technical Report 150, MIT /Project Mac (May 1975).

[7] Veen, Arthur, "Reconciling Data Flow Machines and Conventional Languages,"
Proceedings of CONPARBJ, Conference on Analysing Problem Classes and Program
mingfor P(lral/el Computing (June 1981).

[8] Whitelock, P. J., "A Conventional Language for Data Flow Computing," Dissertation,
Dept. of Computer Science - Victoria University of Manchester (Oct 1978).

22

APPENDIX I

Equivalence of Parallel and Sequential Firings

The definition of the reachability relation is based on a sequence of firings of single nodes.
The -question arises whether a definition which would allow simultaneous firings would lead to
different reachability sets. A general definition of a simultaneous firing is problematic since it is
not obvious how to treat simultaneous updates of the global memory. If we restrict ourselves
however to firings which do not affect the global memory the definition becomes analogous to
that of a simple firing:

A functional parallel firing of a set of nodes {N 1, ••• , Nn } is a pair <M, M' >
where M and M' are markings of NET, such that there is a set of firing elements

{f I, ••• , J n } with

I - Mstate = M' state
2 - 'v'1,s;;;,s;;n /; = <(I;, Mstate), (O;, Mstate)> E prog(N;)
3 - 'v'p E ports

- U R; (p) C M (p) (the enabling condition)
J,s;;;,r;;;n

- M'(p) = M(p) U U O;(p) - U R;(p)
J,s;;;,s;;n J,s;;;,s;;n

1
0 , if I; (p) = NIL

where R; (p) = { I; (p)} , otherwise

The following lemma states that functional parallel firings are elements of the reachability rela
tion:

Lemma Sl:
If <M, M' > is a functional parallel firing of {N 1, ••• , Nn } then M' is reachable
fromM.
Proof:
We will proof that the markings that would be produced if the nodes fire sequential are all
reachable and that the last marking thus reached is M'.
Let f;, I;, O; and R; be defined as above and let E = <Mo, ... , Mn > be a series
of markings with

-Mo= M
- for 0..;;;;i:,;;;;;n : M;+ 1(p) = M;(p) U O;(p) - R;(p)
It follows from the enabling condition for a parallel firing that

'v' 1 c;;; ,s;;n R; (p) c; M (p) = M o(p). Since in the sequence M 0(p), ... , Mj (p) only
elements of R;(p) for },s;;;i ..;;;;J have been removed it follows that R;(p) c; M;- 1(p). So
the enabling condition for normal firing has been satisfied, <M; _ 1, M; > is a firing of N;
anll E is an execution path. By induction on i it is easy to see that

Mn(p) = Mo(p) U U O;(p) - U R;(p)
Jc;;;,r;;;n J,s;;;,s;;n

SoM' = Mn. □

23

Wfi now define an alternative reachability relation based on parallel firings and we proof that it is
a subset of the sequentialized reachability relation:

A marking M of NET is parallel reachable from a marking M' iff

there is a series of markings <M 1, ••• , Mn> with
1-M1 =M'
2-Mn = M
3 - 'v-"1..;;..;n <M;, M;+ 1> is a parall~l firing of

some subset of nodes

The following theorem states that this notion of parallel reachability is equivalent with the notion
of ireachability as used in the rest of this article.

Sequentialization theorem:
If a marking M' is parallel reachable from M then M' is reachable from M.
Proof:
The proof is a straightforward application of lemma S1 and the associative property of the
reachability relation. D

Note that the enabling condition is essential to this result.

24

APPENDIX II

Proofs of Lemmas

Proof of lemma Al:
Let <M :t., ••• , Mm > be an execution path with <M;, M; + 1 > a firing of node N; and

S = {p IM1(p) =/=- 0}.
We will prove by induction on i the following properties

A - dist(S ,N;) < i

B-'vKe nodes: dist(S,K) > i ~ 3pe in(K)withM;+ 1(p) = 0.
Induction basis i = 1:

<Mi, M 2> is a firing of N 1 • Since N I is strict and M I is 0 outside of S property A
holds for i = 1 :

dist(S ,N 1) = 0
It follows from the definition of dist that each node K that has all its input ports loaded in
M 2 must have dist (S, K):s;;; 1 which implies property B for i = 1:

'vKe nodes: dist(S,K)>1~3pe in(K)withM2(p)=0
Induction step:

Assume properties A and B hold for i :s;;;n. Consider the firing <Mn+ 1, Mn +2> of node
Nn + 1 • It follows from induction hypothesis B that

dist(S,Nn+1) > n ~3p E in(Nn+1) with Mn+i(p)= 0
Because N n + 1 is strict property A holds for i = n + 1 :

dist(S,Nn+1)<n +I
Let K be a node such that 'vp E in (K):

I - Mn+2(p)=/=-0
2-pE (SU U out(Nj))

lc;;jc;;n +I

Since property A holds for j :s;;;n + 1 it follows that dist(S ,K):s;;;n + 1 which proves
property B for i = n + 1.

Property A implies that all N; are covered by S. □

Proof of lemma Al:
Lemma Al implies that a node K that is not covered by entry will never fire. So ONCE (K)
holds for these nodes. We will prove that ONCE(K) holds for each node K that is covered by
entry, by induction on dist(entry, K):
Basis of induction:

To prove: dist(entry,K) = 0 implies ONCE(K).
Say there is an input marking M 1, an execution path <M1, ... , Mn> and a color C,
such that <Mj, Mj+t> and <Mk, Mk+1> are firings of K with color C and k >J. We
will prove that M1 cannot be a safe marking:
'vq E in(K)
I - since q is not an output port for any node

M1(q) ;;;) Mj(q) ;;;) Mj+1(q) ;;;) Mk(q)
2 - since K is strict and the firings are both of color C

(Mj(q)-Mj+ 1(q)) and (M~(q)-Mk+i(q)) both contain a token of color C
So M1 (q) holds at least two tokens of color C.

Induction step:

Induction hypothesis: ONCE(L) holds for all nodes L with dist(entry ,L)~n.
To prove: ONCE(K) holds for all nodes K with dist(entry ,K)=n + I.

25

Say there is an input marking M1, an execution path <M1, ... , Mn > and a color C,
such that <Mj, Mj+t> and <Mk,Mk+t> are firings of K with color C and k >j.
v'q E in(K): .
- since K is strict and the firings are both of coior C: :3t1E (Mj(q) - Mj+1(q)) and

t2E (Mk(q) - Mk+1(q)) both of color C
- since NET contains no knot there is exactly one node L such that q E out (L). L is unitary so

there must have been two separate firings of L that have put t 1 and t 2 on q . L is color

preserving so both firings must have been of color C. This contradicts the induction hypothesis so

ONCE(K) holds.□

Proof of lemma Bl:
Let EP be an execution path <M 1, ••• , Mm > with M I an input marking and .<Mm_ 1, Mm >
a firing with color C of a node K insulated by S from entry. We will prove that there is a M; and a

p E S such that M; (p) contains a token with color C by induction on dist (S, K).
Basis of induction: dist(S ,K)=O.

Because <Mm_ 1, Mm > is a firing of K with color C there must be a p E in (K) such that

Mm-i(p) contains a token of color C. Since dist(S ,K)=O it follows thatp ES.
Induction step:

Assume that the lemma holds for all nodes N with dist(S,N)~n. Let dist(S,K)=n +I.
Since <Mm-1, M~> is a firing of K with color C there must be a p E in(K) such that

Mm _ 1 (p) contains a token t of color C. The net is color preserving and from the definition of

insulation it follows that p % entry, so there must be markings Mk and Mk+ 1 in EP such that

<Mk, Mk+i> is a firing with color C of some node L producing token t. Fromp Eout(L)
and dist(S ,K)=n + I it follows that dist(S ,L)~n.
It follows from the induction hypothesis that the lemma holds for K □

Proof of lemma Bl:
The proof is identical to that of lemma A2 with the addition of the special case that the input port q
of node K is a knot. Because q is synchronized there must be two nodes L and M with

q E (out(L) n out(M)) and a multiswitch MS with destination sets A and B, such that L and M
are either E MS or insulated from entry by A and B respectively.

Sincedist(entry,L) < dist(entry,K) = n
and dist(entry ,M) < dist(entry ,K) = n
and L and M are color preserving

it follows that L and M have both fired with color C.
H L E MS ilien q E A and there is at least one marking Ma in the execution path such that

Ma (q) contains a token of color C.
H L % MS then lemma Bl implies that there must have been a port a EA and a marking Ma such

that Ma(a) contains a token of color C.
The same holds for a port b E B and a marking Mb .
From the definition of a multiswitch it then follows that the control node CN of MS must have fired
twice with color C. □

