
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

L.G.L.T. MEERTENS & J.C. VAN VLIET

~
MC

IW 180/81 OKTOBER

MAKING ALGOL 68+ TEXTS CONFORM TO AN OPERATOR-PRIORITY GRAMMAR

kruislaan 413 1098 SJ amsterdam

Pll,[nted a;t .the Ma:thematic.al Cen:tll.e., 413 K.1t!.U6laa.n, Arn6.tvu:Lam.

The Ma:themruUc.al Cen:tll.e , f,ou.nded .the 11-.th of, Febll.ua/l.y 1946, ,u., a. non
pJc.o 6U hu,b[.tu;tio n lWYl,[_YlfJ a;t .the pJc.omo:ti.o n o 6 pu.Jc.e ma:themati.C-6 a.nd .la
a.pplic.atioru.;. T.t ,u., J.ipon6oJc.ed by .the Ne.theJri.a.nd6 GoveJc.nment .thMu.gh .the
Ne.thelC.la.nd6 OJc.ga.n,i,zation f,oJc. .the Adva.nc.ement of, Pu.Jc.e Ruea.Jc.c.h (Z.W.O.).

r

1980 Matliematics subject classification: 68F25, 68B20

ACM-Computing R,~views-category: 5.23, 4.22, 4.12

Making ALGOL 68+ texts conform to an operator-priority grammar

by

L.G.L.T.Meertens & J.C. van Vliet

ABSTRACT

ALGOL 68+ is a superlanguage of ALGOL 68 which is powerful enough to
,describe the standard-prelude. An operator-precedence grammar can,
through a simple right-to-left transduction scheme, be made to be of type
LL(1). If, in addition, the grammar is an "operator-priority" grammar, an
easy and i~onsistent error-recovery mechanism can be applied. In an
earlier risport, an operator-priority grammar of ALGOL 68+ has been given.
The main difference between this grammar and an underlying context-free
grammar of ALGOL 68+ is that (i) symbols represented by the same mark
have been distinguished, and (ii) various symbols have been inserted in
the grammar. The present report gives a detailed account of how these
changes can be taken care of during the first phases of an ALGOL 68+
implementation.

KEY WORDS & PHRASES: ALGOL 68+, lexical analysis, syntax-directed
transduction

1. INTRODUCTION

ALGOL 68+ is a superlanguage of ALGOL 68 [1] which is powerful
enough to describe the standard-prelude. Besides this, ALGOL 68+ also
encompasses the official IFIP modules and separate-compilation facility
as given in [2]. The changes and additions to the language needed to be
able to process a version of the standard-prelude are of a fairly simple
nature; they are described in [3].

For an operator-precedence grammar, at most one of three
relationships (denoted by~,=, or~) may hold between each pair of
terminal symbols. These relationships are called the precedence

· relations. (For a formal treatment of operator-precedence grammars, see
[4].) For an operator-precedence grammar, it is possible to construct a
transducer [5] which, operating from right to left, brings the source
text in prefix form, only knowing the precedence relations between the
symbols.

In general, a number of entries in the table of precedence relations
is empty, i.e., there is no precedence relation between certain pairs of
terminal symbols. For correct input texts, this is no problem, since the
transducer will never need them. For incorrect input texts, however, the
transducer might well ask for them. In order to let the transducer work
for all input texts, it is therefore necessary to define precedence
relations for the empty spots as well. For an arbitrary operator
precedence grammar, it is not clear how to fill these empty spots in such
a way that a reasonably consistent treatment of incorrect input texts is
obtained. Therefore, some further restrictions on the grammar have been
introduced, leading to the notion of an operator-priority grammar. Such
an operator-priority grammar for ALGOL 68+ is given in [6].

In order to apply the above-mentioned right-to-left transduction
scheme, the parenthesis skeleton should be correct, for, if the
transduction scheme is applied bluntly to a source text with an incorrect
parenthesis skeleton, the result is in general unacceptable. To this end,
one can either try to repair the parenthesis skeleton during lexical
analysis if it turns out to be incorrect (e.g., using the algorithm given
in [10]), or decide to abort the parsing process altogether. In the
discussion below (and especially in section 2.8), it is assumed that all
parentheses match properly.

The right-to-left transduction scheme can also be applied to the
operator-priority grammar. Care has been taken to ensure that the
prefix-form of that grammar is of type LL(1). If a grammar is of type
LL(1), this easily leads to a parsing method for that grammar,
implemented by a set of mutually recursive routines, one for each non
terminal of the grammar. Using such a parser, there is no need to back
up, since it is decidable which rule to apply (i.e., which routine to
call) by looking at most one symbol ahead. A more formal treatment of
LL(1) grammars and parsers based on them can be found in [4].

2

This combined scheme (a syntax-directed transduction based on an
operator-priority grammar and a subsequent top-down syntax analysis),
together with the associated consistent treatment of erroneous input
texts, is further dealt with in [7]. The emphasis in this report is on
the derivation of an algorithm which transforms ALGOL 68+ texts into
sentences of the language produced by the operator-priority grammar.

The measures taken to make the grammar operator-priority can be
distinguished in four categories:
a. Trivial rearrangements of the syntax. This has mainly been done by

considering some notions as macr·os, to be replaced (conceptually) in
the productions in which they occur by their direct productions.
Obviously, this trick can only be used for nonrecursive notions. In
the grammar (see [6]), these notions are indicated by prefixing their
production rules with an asterisk.

b. Distinguishing symbols represented by the same mark. For instance, it
was necessary to distinguish between the up-to-/label-token, the
specification-token and the routine-token. For a complete list of this
category, see section 2 below.

c. Various symbols have been inserted between notions. For instance, a
"dectag-insert" is placed between a declarer and the following TAG
token in an identifier-declaration. Again, section 2 contains a
complete account of the modifications from this category.

d. Relaxations in the grammar. For instance, closed-clauses and
collateral-clauses are treated alike.

(The function of the changes in categories a and c is to separate any two
notions in a production rule by at least one terminal symbol, which is
mandatory in an operator-precedence grammar. The changes in category b
serve to resolve clashes in the precedence relations. The changes in
category d mainly serve to fulfill the operator-priority requirements and
to allow for the top-do~n parsing method using the prefix-form of the
operator-priority grammar.)

When actually parsing ALGOL 68+ texts, the same modifications must
be made. Category a does not change the language generated, while
category d only enlarges the set of accepted sentences (which must then
again be catered for during further syntax-analysis). In this report, a
description is given of how the distinctions from category band the
insertion of additional symbols from category c can be handled.

Some of these changes can be dealt with quite easily during lexical
analysis. Others, however, require a more global knowledge of the input
text. For example, in a context like ".E. a;", a "dectag-insert" must be
placed between·".E." and "a" only if .E. is a mode-indication. Much more
complicated examples can be found when various constructs enclosed by the
symbols 11 (11 and")" are considered. In such cases, as much information as
possible is gathered during lexical analysis, and the final decision as
to which change applies can then be made in the input routine of the
actual transducer, by inspecting the various indicant tables. (The
indicant tables must be partly filled by the lexical analyzer with

information concerning defining occurrences of mode-indications, module
indications and operators. They may be pre-filled if pieces of a program
are compiled separately.)

3

The global (but very incomplete) scheme of the first three passes of
the parser now looks as follows:

PASS 1

A reading

1 tokens

global
parsing
algorithm

B

indicant
tables

A,B,C and Dare streams:

PASS 2

input

actual
transducer

PASS 3

LL(1)-parser

A contains the ALGOL 68+ input text;
B contains lexical units (like identifiers), and is the partly

transformed version of the input text;
C contains the completely transformed version, i.e., conforms to the

operator-priority grammar;
D contains the prefix-form of C and can thus be parsed top-down.

Taking the example II (E_ a) II ' the various streams might look as
follows:

A: (P a) •••
B: (p 'dectag(p) a) ...
C: (p 'dectag a) or (pa)
D: ('dectag .E. a) or (£ a)

Here, 11 'dectag (E_)" stands for: place the dectag insert 'dectag if .E. is a
mode-indication, and ignore this otherwise.

In the next section, a detailed analysis is given of how and where
the various changes and inserts should be effected. In order to be able
to fully appreciate this analysis, a fairly thorough knowledge of the
syntax of ALGOL 68+ is necessary. Section 3 combines the results of these
analyses into a global parsing algorithm to be included in the lexical
analyzer.

4

2. RECOGNIZING SPECIFIC TOKENS AND PLACING INSERTS

The adjustments to be made before the actual transduction scheme can
be applied are the following (see also [6]):

• On the lowest level, a distinction is made between
(as open-mark and as choice-start;
I as ch6ice-in and choice-out;
) as close-mark and as choice-finish;
= as is-defined-as-token, egg-defined-as-token and operator;

as colon-mark, specification~token and routine-token;
as skip-token and as operator.

• On the lowest level, a distiction is also made between defining
occurrences of operators (in priority- and operation-declarations) and
applied occurrences (in formulas and ldec-sources).

• Besides the and-also-token, which separates the individual elements of
a list, there is a variant, the separate-and-also-token, which
separates lists.

• The grammar contains inserts:
- the loop-insert marks the beginning of a loop;
- the ssecca-insert marks the end of the revelation of an access-

clause;
- the dectag-insert is placed between a declarer and the following

TAG-token in a declarative, FIELDS-portrayer or identifier
declaration;

- the opdec-insert is placed between the MODINE-plan and the following
defining-operator in an operation-declaration;

- the cast-insert is placed between the declarer and the ENCLOSED
clause of a cast;

- the clice-insert is placed between the primary and the actual
parameters-pack or indexer-bracket of a call or slice;

- the row-insert is placed between the ROWS-rower-bracket and the
following declarer of a ROWS-of-MODE-declarator;

- the formals-insert is placed between a PARAMETERS-joined-declarer
brief-pack or declarative-brief-pack and the following declarer of a
PROCEDURE-plan or routine-text;

- the invoke-insert is placed between the revelation and the following
ENCLOSED-clause in an access-clause.

5

2.1 Recognizing choice-symbols

Obviously, when an input-text of the form

(• • • I • • •)

is encountered, one can not decide that this concerns a choice-clause
until the symbol 11 111 is met. An easy way to solve this is to distinguish
choice-in-- and choice-out-symbols (both of which may be represented by
11 111) and to recognize the choice-finish-symbol represented by 11) 11 during
lexical analysis, which is straightforward. Since the transducer operates
from right-to-left, the 11 (11 can subsequently be recognized by its input
routine in a similar way.

2.2 Placing the loop-insert

The loop-insert marks the start of a loop-clause. A loop-clause may
start with one of the symbols for, from, by, to, while and do. Except for
the first one, all those symbols may also appear in the middle of a
loop-clause. If one of these symbols, say by, is encountered, we want a
simple procedure to decide which case applies. In a context like
" ••• ; ~[••• "it clearly marks the start of a loop-clause, while we
are obviously in the middle of one in the context 11 ••• +2 by ••• 11

In general, the following can be stated: the symbol by marks the
start of a loop-clause if it is the first symbol of an enclosed-clause,
and is thus preceded by a symbol which may appear just before an
enclosed-clause. Obviously, the same holds for the symbols from, to,
while and do.

On the other hand,· the symbol by does not mark the start of a loop
clause if it is preceded by a for-part or from-part, and thus by a tag or
a unit, respectively. Something similar holds for the symbols to and
while; the symbol from may only be preceded by a tag in this case. If the
symbol do does not indicate the start of a loop-clause, it must be
preceded by a tag, unit or enquiry-clause, the last one of which ends in
a unit again. It is therefore reasonable in all cases to test for symbols
which may mark the end of a unit.

An enclosed-clause may be preceded by one of the following symbols:

: : l : =: l : ~: 1 = 1

' ; [1 @ 1 begin
if then elif else case in ouse out of 1 from 1

by l to1 while do -(- -, -1:- TT def postlude
operatorl mode-indication module-indication

6

Remarks:
1) The symbols with superscript 1 may only precede a SORT MODE ENCLOSED

CLAUSE. Since a loop-clause is only allowed in a (strong-) void
context, they are disallowed here. Therefore, the symbol-, when used
to represent the operator not, is not allowed in this context •

. 2) A program [8] was used to determine the above set of symbols from the
context-free grammar of ALGOL 68+ as given in [9]. The set of symbols
with superscript 1 was determined manually by inspecting the original
syntax of ALGOL 68+.

3) It should be noted here that pragmats are not taken into account. In
ALGOL-68 terminology this means ·that we consider 'tokens', rather than
'symbols'.

A unit may end with one of the following symbols:

end
tag

fi esac
format-text

] nil
denotation

od) skip{-}
mode-indication.

Taking remark 1 into account, the two sets may be called disjoint,
except for the mode- and module-indication (which can not be
distinguished at this level). In order to give a decisive answer in the
case of a mode- or module-indication; a more complicated reasoning is
needed.

Given the context at hand (a bold word followed by, say, to), there
are three possibilities:

i) we are concerned with an access-clause, as in"··· access!!!. to ••• 11 ;

ii) we are concerned with a cast, as in"··· ; !!!. to ••• ";
iii) we are concerned with a generator, as in"··• loo!!!. to···"·

In the first two cases, the start of a loop-clause is indicated; in
the latter case we are inside a loop-clause. It is possible to decide
which case applies by considering the symbol immediately preceding the
bold word.

In the case of an access-clause, the module-indication is preceded
by one of the following symbols

access

In the case of a cast, the mode of the declarer of that cast is
VOID, so the declarer consists of a single mode-indication. That mode
indication therefore is the first symbol of the cast, and is preceded by
a symbol which may immediately precede a cast. The symbols that may
precede a cast are the same as those that may precede an enclosed-clause,
with the exception of the close-symbol, mode-indication and module
indication.

7

In the case of a generator, the set of symbols which may precede the
mode-indication consists of the symbols loc and heap, plus those symbols
which may immediately precede a mode-indication in an actual-MODE
declarer. By inspecting section 4.6.1 of the Revised Report, we arrive at
the following set:

loc ref)] flex

In this way, the loop-insert can be placed at the symbol-level
during lexical analysis, by expecting the two preceding symbols. In case
one cannot give a decisive answer (i.e., there is an error in the input
text, as in the case of"•·· op by ••• 11), we have decided to place a
loop-insert provisionally. Duringan eventual correction phase of the
parenthesis skeleton (see [10]), this provisional insert can be removed
again, if such comes out better.

2.3 Recognizing the separate-and-also-token

The separate-and-also-token serves to separate common-declarations,
common-declaratives, common-portrayers and module-calls. To be able to
distinguish these, it is necessary to know which of the bold words that
are defined in the program are mode-indications, module-indications and
operators, respectively. Since this is in general not known until at the
end of the lexical phase, this problem can most easily be dealt with in
(the input routine of) the next phase.

An and-also-token must then be changed into a separate-and-also
token if it is followed by one of the symbols mode, op, prio, module, pub
and 'ldec, or a construct of the form

declarer, dectag insert, identifier.

This last case can be recognized if some additional information (viz.,
the fact that a dectag-insert has been placed) is obtained from the
actual transducer. The joined-module-call must be treated in a special
way; it can easily be dealt with during the input routine of the
transduction phase (see section 2.4 below).

2.4 Ssecca-insert and invoke-insert

In a context like

module a= access£,~ def ••• fed, module d = •••

both and-also-tokens will be transformed into a separate-and-also-token.
However, they occur at different levels in the parse tree. So, in order
to let the transducer work properly, we must ensure that the first and
also-token is viewed to occur within some nested parenthesized construct.

8

We may consider a parenthesized construct of the form
access ••• def ••• fed. Since the revelation of a module-text (the part
"access b, c") is optional, we then have to recognize the start of a
module-text-; just like we had to recognize the start of a loop-clause
(section 2.2 above).

Revelations may also appear in ENCLOSED-clauses, for instance in a
context

inti= access~'~ (•••), real z:= •••

Again, both and-also-tokens will be transformed into a separate
and-also-token, and again they occur at different levels in the parse
tree. If we consider a construct of the form "access ••• (•••)" as one
parenthesized construct, it will be necessary to recognize the start of
almost every parenthesized construct, which is clearly undesirable.

We therefore decided to introduce an explicit closing parenthesis to
match access (and termed it ssecca-insert). This in turn leads to
problems with regard to the operator-precedence requirements. Therefore,
an additional invoke-insert is placed after the ssecca-insert.

Both inserts can be placed already during lexical analysis. However,
technical complications then arise when trying to place some of the other
inserts between parenthesized constructs. We therefore decided to place
only the ssecca-insert during lexical analysis, and to incorporate the
invoke-insert in the scheme used to handle sequences of parenthesized
constructs (see section 2.8 below).

2.5 Recognizing the egg-defined-~-token

The egg-defined-as-token is the equals-mark from the stuffing
definition (see [2]). Therefore, the equals-mark must be recognized in a
context like

~ "a" = •• •

This can easily be accomplished during lexical analysis.

2.6 Dectag-insert, opdec-insert and is-defined-~-token

These are all concerned with the begin pieces of "declarations"
(which also includes declaratives and portrayers). The dectag-insert is
placed between a declarer and the following identifier in a declarative,
portrayer, identity- and variable-declaration. The opdec-insert is placed
immediately after the MODINE-plan in an operator-declaration. The is
defined-as-token replaces the equals-mark when it is used as such in the
grammar of ALGOL 68+ (except in a stuffing-definition; see section 2.5
above).

9

Since it is generally not known during lexical analysis whether a
bold word is used as mode-indication, module-indication or operator, both
the dectag-insert and the is-defined-as-token are in general placed
conditionally. In the input routine of the next phase, this condition is
known and the decision can be taken.

In a number of cases the decision can be taken on the basis of the
immediate context:

; real!
modem=

-->
-->

; real 'dectag a
modem 'idat

In other cases, like" ••• , i - ••• ", the input text (and especially
declarations) must be analyzed globally. A precise description of this
parsing algorithm is given in section 3 below.

2.7 Recognizing the specification-token and routine-token

The specification-token is the colon-mark from the specification of
a choice-using-UNITED-clause; the routine-token is the colon-mark from a
routine-text. The specification-token can not be recognized until the
transduction phase, since the type of the parenthesized construct just
preceding it determines whether or not it concerns a specification (see
also section 2.8 below). The routine-token is in general placed
conditionally during lexical analysis. The condition here is: is the bold
word just preceding it a mode-indication? If it is preceded by a
"visible" declarer (like, e.g., real) the routine-token can be placed
during lexical analysis unconditionally.

2.8 Cast-insert, clice-insert, row-insert, formals-insert and
invoke-insert

The cast-insert serves to separate the declarer and the enclosed
clause of a cast, like in 11 real(x) 11 • The clice-insert is placed between
the primary and the actual-parameters-pack or indexer-bracket of a call
or slice, like in "sin(3.14) 11 or "a[1]". The row-insert separates the
ROWS-rower-bracket and the following declarer of a ROWS-of-MODE
declarator, as in "[1:3] inti". The formals-insert is placed between a
PARAMETERS-joined-declarer-brief-pack and the subsequent declarer of a
PROCEDURE--plan or routine-text, as in "(real x) void: p". Finally, the
invoke-insert serves to separate a revelation from the following
enclosed-clause in an access-clause, like in "access! (•••) 11 •

Thesie inserts have two aspects in common: Firstly, they are all
concerned with parenthesized constructs. In general, a sequence of
parenthesized constructs must be considered, and a sequence of (possibly
different) symbols must be inserted. For example, in

ref[] real (•••) [•••]

10

a row-insert, a cast-insert and a clice-insert must be placed, in the
order from left to right.

Secondly, the precise types of the inserts to be placed often depend
on the fact whether a given bold word is a mode-indication or not.
Consider, for example, an input text of the form

Depending on the type of E and g, different combinations of symbols must
be inserted at the places indicated by x, y and z:

i) if both E and g are mode indications, then: x=formals-insert,
Y=Z=row-insert;

ii) if Eis an operator and g is a mode-indication, then:
x=y=z=row-insert;

iii) if E and g are both operators, then: x=y=clice-insert,
z=empty;

iv) if Eis a mode-indication and g is an operator, or any of
E and g is a module-indication, then the input-text is erroneous.

The type of the various bold words is in general not known during
lexical analysis. In order to preclude the very complicated situations
that may arise because of this, these inserts will be placed by the input
routine of the transduction phase. The information necessary to decide
which inserts must be placed once the type of each bold word is known, is
gathered during lexical analysis and placed after the sequence of
parenthesized constructs. For each sequence of parenthesized constructs
P1 ••• Pn' this information consists of:

i) The "protostate" just prior to P1, and
ii) The "prototype" of each P. , 1 < i < n.

J. - -

The prefix 11 proto11 serves to emphasize that the information depends
on the type of the bold words involved. These types are known at the
start of the next phase, so its input routine can immediately turn each
11 protostate11 and "prototype" into a "state" and 11 type 11 , respectively. The
finite-state automaton given below is driven by the states and types thus
obtained.

Given the initial state b1, and types p1, ••• , p for P1, ••• , P ,
a sequence a 1, ••• ,a 1 of inserts will now be determ£ned by a finite-n
state automaton as fo£iows: The tuple (b 1, p1) determines the insert a 1
and a new state b2 • Subsequently, the tuple lb2 , p2) determines the
insert a2 and a new state b, and so on. Finally, the state b 1
determines the insert a ~. 3For 1 < i < n, a. will be inserteH+Just prior
to P~; a 1 will be insgtted just after P', ~here P~ is the result of
applYingnthe transduction to P. n 1

J. •

11

In the sequel, the term "pack" will be used, rather than
"parenthesized construct". It will be used to denote any construct of the
form

,
access ssecca
def fed
'looI~ od
if fi
case esac
begin end
-(-- TIT
[]
par

Remarks:
1) The single parallel-symbol is considered as a pack. This leads to a

reasonably simple, albeit somewhat ad hoc, treatment.
2) The constructs struct (•••) and union (•••) are supposed to be

transformed into some kind of mode-standard during lexical analysis;
they are not taken into account by the scheme developed here.

3) A pack of the form "def fed" will be termed a "module-pack" in the
sequel..

If, ln the underlying context-free grammar of ALGOL 68+ [9] and in
the corresponding operator-priority grammar [6], each parenthesized
construct occurring in the right-hand-side of a production rule is
replaced by some terminal symbol, regular languages Land L' are
obtained, respectively. The finite-state automaton given below is
precisely the automaton which transforms L into L'. In the discussion
below, only the various possible states and types will be given, together
with the transition-matrix which drives the finite-state automaton. Most,
if not all, of these transitions will be obvious.

As concerns the state just prior to the pack-sequence, the following
cases are distinguished:

i) "cliceable", i.e., there occurs a simple primary: an identifier or a
string-denotation;

ii) "decl", i.e., there occurs a mode-indication (which includes the
mode-standards!);

iii) "decpref", i.e., we are clearly about to start a declarer, as for
instance after loc or heap;

iv) "modtext", i.e., we are about to start a module-text, the right
hand-side of a module-declaration;

v) "rest", all other cases (which also includes the possibility that we
are about to start a declarer which is not yet recognized as such).

12

As concerns the type of a pack, the following cases are distinguished:

i) "par", for a pack consisting of a single parallel-symbol;
ii) "formals", for a pack consisting of a list of declarers, portrayers

or declaratives, surrounded by an open- and close-mark;
iii) "brief pack", for any other construct surrounded by an open- and

close-mark;
iv) "subbus", for a construct surrounded by a brief-sub- and brief-bus

symbol;
v) "revel", for a revelation, i.e., a construct of the form

access ••• 'ssecca;
vi) "deffed", for a module-pack, i.e., a construct of the form

def ••• fed;
vii) "bold pack", for any other pack.

In certain cases, this information obviously depends on the type of
a given bold word. In such cases, the bold word is included in the
information to be passed on to the input routine of the transduction
phase, which then determines the actual state or type. This in fact means
that the state "decl" and the type "formals" are conditional. If the bold
word in question turns out to be an operator or module-indication, they
will be transformed into the state "rest" and type "brief pack",
respectively.

From the five possibilities given above for the state just prior to
the pack-sequence, only the state "cliceable" is left as a possible state
after the pack P1• The other four possibilities only serve as possible
entries for the automaton. However, seven new possibilities occur as a
possible state after the first pack of the pack-sequence:

i) "par", i.e., we have just treated a single parallel-symbol;
ii) "rower", i.e., starting with a state "decpref" we have processed a

rower (a pack with type "subbus" or "brief pack");
iii) "formals", i.e., we have just treated a pack with type "formals";
iv) "cliceable or rower" (or "cor" for short), i.e., we cannot yet

decide between "cliceable" and "rower". The final decision will
depend on the fact whether or not the pack-sequence is followed by a
mode-indication. A temporary insert 'clicerow' is placed; we will
come back to this case later on;

v) 11 acliceable", i.e., we have just treated a revelation; eventually,
there has to follow a call or slice, but any number of revelations
is allowed in between;

vi) "deffed", i.e., we have just treated the revelation of a module
declaration;

vii) "done", i.e., the pack-sequence should be ended; we will come into
this state after a pack following par, and after a module-pack.

type of pack->
state

I

decl

rest

decpref

modtext

cliceable

par

rower

formals

cor

par (real a)
par formals

'cast
par

e: e:
par formals

e:
formals

(a;b)
brief pack

,
cast

cliceable

e:
cor

e:
rower

'clice
cliceable

e:
done

'row
rower

'formals
rower

'clicerow
cor

[] begin end access a ---subbus bold pack revel

,
cast 'cast

cliceable acliceable

e: e: e:
cor cliceable acliceable

e:
rower

e:
deffed

'clice
cliceable

e:
done

,
row

rower

'formals
rower

'clicerow
cor

acliceable ~invoke 'invoke 'invoke 'i.nvoke

deffed

done

-

par cliceable cliceable aclicf:able

For each entry, the top line indicates the insert to be placed,
while the bottom line gives the new state

def ••• fed
deffed

£

done

'invoke
done

~
I-'
ID

....

\

-w

14

The finite-state automaton which, given an initial state b1 and
types p1, ••• , p, determines the inserts a 1 , ••• , a, is driven by the
transition matrixngiven in Table 1. The insert a 1 isndetermined in a
special way from the final state b 1; this willn6e further dealt with
below. Obviously, this automaton ig+only capable of handling pack
sequences which are correct at this level; a slight modification which
allows a reasonable treatment of erroneous pack-sequences is given at the
end of this ·section. Entries in Table 1 which are marked with an e
indicate that no insert is placed; this is only possible when it concerns
the insert just prior to the pack-sequence, or after a parallel-symbol.

For the tuple ("rest", "subbus"), Table 1 indicates a transition to
the state "cor". However, it is sometimes possible to distinguish between
states "cliceable" and "rower" here. We have decided not to make this
refinement; rather, the decision on which insert is to be placed is based
on whether or not the pack-sequence is followed by a mode-indication.
This probably leads to a better treatment of incorrect input texts.
Suppose the input contains something like

; [3):= x;

Using the scheme of Table 1, and the algorithm for determining the final
insert a 1 and for refining the temporary c1icerow-inserts, which is
given be~6w, the above text will be treated as

; 'wrongtag 'clice [3):= x;

This type of error-recovery needs further investigation.

What remains now is the algorithm to determine the insert a 1 from
the final state b 1 • We may end in any state except the ones thRt serve
as an entry to thR+automaton: "cliceable", "par", "rower", "formals",
"cor", "acliceable", "deffed" and "done".

If the final state is "done", there is no symbol to be inserted
after the pack-sequence, so a 1 = e. n+

Ending in one of the states "par", "deffed" and "acliceable" means
that there definitely is something wrong: there should at least have
followed yet another pack. The further treatment of these cases should be
done during syntax analysis, and a 1 = e. n+

If the final state is "cliceable", there also is no symbol to be
inserted after the pack-sequence, so a 1 = e. . n+

If the final state is "rower", an additional row-insert must be
placed: a 1 = 'row. n+

15

If the final state is "formals", three cases are distinguished:

i) The pack-sequence is followed by a mode-indication or otherwise
visible declarer (like "ref ••• 11). It then obviously concerns a
procedure-plan or routine text, and a 1 = 'formals;

. ii) When the pack-sequence is followed byn~ colon-symbol, it concerns a
specification, so a 1 = e. Moreover, that colon-symbpl must be
transfo·rmed into a gpecification-token (see also section 2.7);

iii) In all other cases there is something wrong. One (reasonable)
possibility is to assume that a mode-indication is missing, so
an+ 1 = 'formals.

If the final state is 11 cor11 , two cases are distinguished:

i) The pack-sequence is followed by a mode-indication or otherwise
visible declarer. We may then decide that it concerns a rower, so
a 1 = 'row. Moreover, each clicerow-insert must be changed into a
r8~-insert;

ii) In all other cases we may assume that it concerns a call or slice,
so a 1 = e. Now each clicerow-insert is replaced by a clice-insert. n+

As mentioned earlier, the transition scheme given in Table 1 is only
capable of handling correct pack-sequences. The changes needed to handle
incorrect pack-sequences also are fairly simple, however. It is
reasonable, and in any case consistent, to partition the pack-sequence
P1 ••• P into two sequences P1 ••• P. 1 and P .••• P as soon as no
transitioR is possible for a state b. ind type~-, whePe b. and p. are
the state arrived at after pack P. j 1 and the typ~ of pack P., 1

respectively. We may then act as follows: 1

1) The sequence P1 ••• P._ 1 must be finished off, i.e., we must decide on
a final insert a .• Th~ algorithm for determining the final insert
a 1, as given a5ove, can be applied here. In the final states
11 P6rmals" and 11 cor" we now have to choose a. = 'formals (case iii) and
a. = e (case ii), respectively. If i = 1, i:e., the entry state is
w~ong already, there is no need to place a final insert;

2) The sequence P .••• P is further treated, starting in a state "rest",
since there is1 no fureher information.

The above scheme can be implemented straightforwardly. It is also
possible to fill in the empty entries from the transition matrix in such
a way that the effect is the same. For each empty entry (b, p), the
inserts follow from the algorithm above, and the new state is that given
in Table 1 for the entry ("rest", p), with the addition that
(b, "deffed") leads to a state "done" for each b. The thus adjusted
scheme is given in Table 2.

type of pack->
state

I

decl

rest

decpref

modtext

cliceable

par

rower

,

par
par

cast
par

E

par

E

par

E

par

E

par

E

par

,
row

par

formals 'formals
par

cor E

par

acliceable 'invoke
par

deffed E

par

done E

par

(real a) (a;b) [] begin end access a
formals brief pack subbus bold pack revel

E
,
cast

,
cast 'cast E

formals cliceable cor cliceable acliceable

E E E E E

formals cor cor cliceable acliceable

E E E E E

formals rower rower cliceable acliceable

E E E E E

formals cor cor cliceable deffed

E 'clice 'clice E E

formals cliceable cliceable cliceable acliceable

E E E E E

formals done cor done acliceable

,
row

,
row

,
row

,
row

,
row

formals rower rower cliceable acliceable

'formals 'formals 'formals 'formals 'formals
formals rower rower cliceable acliceable

E 'clicerow 'clicerow E E

formals cor cor cliceable acliceable

E 'invoke E 'invoke 'invoke
formals cliceable cor cliceable aclict::c:.l')le

E E E E E

formals cor cor cliceable acliceable

E E E E E

formals cor COT' cliceable acliceable

The transition scheme, capable of handling incorrect
pack-sequences also.

def ••• fed -- --deffed

E
done

E

done

E

done

E

done

E

done

E

done

,
row

done

-formals
done

E

done

E

done

'invoke
done

E

done

i
I-'
CD

N

a-

17

3. THE GLOBAL PARSING ALGORITHM

In this section, the global parsing algorithm to be included in the
lexical analysis phase of the compiler is described in some detail. The
loose ends of it, such as the various mode-declarations, input- and

-output~routines, are not given; they suggest themselves quite easily from
the given texts.

Many routines, like 'go on token', will return true if the symbol(s)
suggested by the name of the routine appear next in the input stream, and
false otherwise. If the routine returns true, the lexical unit(s) it
stands for will be copied to the output stream. As a consequence, a
routine like 'pack sequence' will consume a complete pack-sequence, etc.

One of the tasks of the algorithm is to collect information on
mode-definitions, operator- (& priority-) definitions and module
definitions. This information is collected in "indicant tables", which
are subsequently inspected (and amplified) by the following phases of the
compiler. During lexical analysis, minimal information on these defining
occurrences is collected:

- for each bold word or operator defined, it is recorded whether it is a
mode-indication, module-indication_ or operator. For operators, the
priority is recorded as well. For modes and operators, it is recorded
whether they are declared public. Finally, the module-indications in a
revelation are recorded together with their publicity.

- for each of these, the range in which they occur is recorded.

The range is not really determined; rather, for each opener or
middler a new range is started. The precise structure of the indicant
tables, and therefore the body of routines like 'put in mode table', is
not given. It is easy to verify that the above information is sufficient
to associate the proper defining occurrence with each applied occurrence
of an operator, mode- or module-indication during the subsequent phases
of the compiler.

The most important entity that must be paid attention to is the
pack-sequence. As has been explained in section 2.8, information on the
state just prior to the pack-sequence and the type of each of its packs
must be gathered. Assuming that some output stream is produced which
contains the tokens recognized, this information might as well be
incorporated in the output stream also. Since the transducer processes
that stream in reverse order, it is convenient to output the information
in reverse order as well. This leads to:

PROC pack sequence= (STATE state) BOOL:
IF TYPE p; pack(p)
THEN treat remaining sequence;

leave info(p); leave info(state); TRUE
ELSE FALSE
FI;

18

PROC treat remaining sequence= VOID:
IF TYPE p; pack(p)
THEN trieat remaining sequence; leave info(p)
FI;

Inside a pack, it is necessary to recognize declarations. In the
scheme given below, a pack is viewed as a series of entities, separated
by middlers (symbols like "I"), completion-tokens, colon-tokens, go-on
tokens and postlude-tokens, and surrounded by parentheses. Each of these
entities then potentially is a declaration, and may be described as a
"unit-list or declaration".

A declaration can be further partitioned into COMMON-declarations.
This partitioning cannot easily be accomplished during lexical analysis.
It is not necessary either, as long as we partition a declaration into
pieces separated by and-also-tokens and keep track of some information
which determines the type of COMMON-declaration we are concerned with.
(In parsing a text "i = int" in a context "moder= real, i = int", it is
important to know that it concerns a mode-declaration.)By-partitioning
"unit-list or declaration" into smaller entities, separated by and-also
tokens, each of these smaller entities may be considered as a "unit or
definition".

The following "types" of a "unit or definition" are distinguished:

i) "mode" i.e., something of the form "mode ••• II •

' ' ii) "op" '
i.e., something of the form "op ••• ";

iii) "prio" i.e., something of the form "prio ••• II •

' ' iv) "module" i.e., something of the form "module ... II •

' ' v) "decl" i.e., something of the form II d ... " where "d II has been
' ' recognized as a declarer;

vi) "m" i.e., something of the form "m ... II where "m" is a bold
' word whose type is yet unknown. Eventually, this will reduce to case

v) or vii);
vii) "rest", for all other cases, i.e., it concerns a unit.

The information which is transported from one "unit or definition"
to the next can be viewed as the status in which we are going to parse
it. It is manipulated as follows:

1) At the start of a pack, and at a middler, completion-token, colon
token, go-on-token or postlude-token, it is set to "rest";

2) At an and-also-token, the status is updated if the "unit or
definition" just treated has a type which is not "rest". (This is not
surprising since we have to parse "i = z" in a status "decl" in the
context "real a, b, i = z", though the type of the entity just treated
("b") is "rest".)

We now arrive at the following (in which, for the sake of
legibility, an obvious extension of the ALGOL 68 case-clause is used):

PROC pack= (REF TYPE p) BOOL:
IF parallel token THEN p:: "par"; TRUE
ELIF opener
THEN BOOL no decl pack:= FALSE;

UDTYPE status:= rest, type;
II UDTYPE stands for "unit or definition type" II

WHILE
WHILE unit or definition(status, type);

IF and also token
THEN (type~ "rest" I status:= type); TRUE
ELSE public:= FALSE;

mode token ahead OR operator token ahead OR
priority token ahead OR module token ahead

FI
DO SKIP OD;
IF middler OR completion token OR colon

OR postlude token
THEN status:= rest; no decl pack:= TRUE
ELSE FALSE
FI

DO SKIP OD;
p:: CASE closer IN

II [II

11 'secca"
"fed"

"subbus",
"revel",
"deffed",

token OR go on token

">" : IF no decl pack THEN "brief pack"
ELIF (type~ "rest" I status:= type);

status= "decl"

OUT "bold pack"
ESAC;

TRUE
ELSE FALSE
FI;

THEN "formals"
ELIF is bold word(status) THEN status

·ELSE "brief pack"
FI

19

As has been mentioned before, we must keep track of the openers,
middlers and closers, in order to associate the various defining
occurrences of mode- and module-indications and operators with the range
in which they occur. To this purpose, it is convenient to maintain a
stack of "open" ranges. With each entry of this stack, a list of
definitions in the corresponding range is associated. At each opener or
middler, a new elemant is pushed on the stack with an initially empty
list. For each defining occurrence of a mode- or module-indication or
operator, the list associated with the topmost element of the stack is
updated. This is taken care of by the routines 'put in mode table', 'put
in priority table', 'put in operator table' and 'put in module table'. At
each middler or closer, one or more elements are popped off the stack.

20

The number of elements popped off depends on the contruct at hand: in a
context like

IF ••• THEN ••• ELIF ••• THEN ••• ELSE ••• FI,

. three elements must be popped off when the symbol "fi" is encountered.
This number can easily be determined if for each entry the middler or
opener that the corresponding range started with is maintained as well.

· Then elements can be popped off up to and including the first opener
encountered. Obviously, the corresponding lists must somehow be saved for
later use.

This stack manipulation can be taken care of by the routines
'opener', 'middler' and 'closer'. The routine 'opener' can also take care
of the "ssecca insert": if the topmost element of the stack conforms to a
revelation and the next input symbol is an opener, then a ssecca-insert
is "inserted" in the input stream (and the routine returns false). In a
similar way, it can take care of the loop-insert. The routines 'middler'
and 'closer' can deal with the transformation of choice-symbols, as
described in section 2.1 above. These routines largely have a clerical
task; their bodies will not be given here.

As can be seen from the text of the routine 'pack' above, the
symbols "mode", ".2£", "prio" and "module" are intercepted at a high
level. These symbols are considered extremely important; even in an
erroneous input text, they will be treated as starting symbols of a
declaration.

The next important routine is 'unit or definition'. Its main task is
to have a close look at the first part of such an entity; the remaining
part is only very globally analyzed. The first part determines whether it
concerns a (potential) definition. To this end, the following patterns
are recognized:

i)
ii)

iii)
iv)
v)

vi)

vii)

viii)

ix)

"mode m = ... II ---"prio + = ... "
".2.E + = ... "
"module m = ... II
"loc ma= •••" or "'ldec ma= " ...
"real-a = ••• 11 , "real: •• •", "real(•••)",
nC::.)!_a= ••• n;nc ... >!!! :-:-:-,;, "(•••)_!(•••)"
"m = ••• ", when the status is "mode", "op", "prio" or "module",
"-ma - " "m· " "m()" - - ... ' -· ... ' - ...
"a= ••• " when the status is "decl" or"!!!",
"a" {since it may concern a call or slice}
II~ ttatt : • • •"

We thus arrive at the following:

PROC unit or definition= (UDTYPE status, REF UDTYPE type) VOID:
BEGIN

PROC idat = BOOL:
(input symbol="=" I skip symbol; leave(is defined as token); TRUE

I FALSE);

PROC idat cond = (TYPE m) BOOL:
(input symbol="=" I skip symbol; leave(is defined as token);

leave(m); TRUE
FALSE);

PROC mode definition= VOID:
IF type:= "mode"; bold(m)
THEN put in mode table(m, public);

(idat I state:= "decpref")
FI;

PROC priority definition= VOID:
IF type:= "prio"; operator(m)
THEN put in priority table(m, public, (idat I priority unit I 1))
FI;

PROC operation definition= VOID:
IF type:= "op"; operator displayety(m)
THEN put in operator table(m, public); idat
FI;

PROC module definition= VOID:
IF type:= "module"; bold(m)
THEN put in module table(m, public);

(idat I pack sequence(11modtext11))

FI;

PROC tag equals= (TYPE m) BOOL:
IF tag ahead
THEN leave(dectag insert); leave(m); tag;

(idat cond(m) I SKIP I state:= "cliceable");
type:= m; TRUE

ELSE FALSE
FI;

STATE state:= "rest", f initial state for pack sequence f
type:= "rest";

IF public token THEN public:= TRUE;
BOOL ldec = ldec token;

IF mode token THEN mode definition
ELIF priority token THEN priority definition
ELIF operator token

21

22

THEN
(NOT operator displayety ahead I pack sequence("decpref"); declarer);
leave(opdec insert); operation definition

ELIF module token THEN module definition
ELIF leap token OR ldec
THEN declarer;

IF tag ahead
THEN leave(dectag insert); tag; idat; type:= decl
FI

ELIF
IF visible declarer
THEN m:= "decl"; TRUE
ELIF pack sequence("rest")
THEN (visible declarer or bold(m) I SKIP Im:= "rest"); TRUE
ELSE FALSE
FI

THEN
IF tag equals(m) OR routine token(m) OR pack sequence(m)
THEN SKIP
ELSE type:= m
FI

ELIF bold ahead OR operate~ displayety ahead
THEN

IF status= "mode" THEN mode definition
ELIF status= "prio" THEN priority definition
ELIF status= "op" THEN operation definition
ELIF status= "module" THEN module definition
ELIF NOT bold(m)
THEN SKIP
ELIF tag equals(m) OR routine token(m) OR pack sequence(m)

OR in revelation(public, m)
'in revelation' just inspects the previously mentioned

stack of open ranges. If the topmost element corresponds to
a revelation, the module indication mis recorded together
with its publicity#

THEN SKIP
ELSE type:: m
FI

ELIF tag
THEN

IF ((status = "decl" I TRUE I bold(status: = m))
idat cond(status) I FALSE)

THEN type:= status
ELSE type:= "rest"; state:= "cliceable"
FI

ELIF egg token
THEN denoter(SKIP); egg defined as token
FI;
WHILE junk(state) DO state:= "rest" OD

END# unit or definition#;

The routine 'junk' treats the remaim.ng part of a 'unit or
definition'. It has to watch for pack-sequences, calls or slices, and
declarers; the remaining symbols are just copied to the output stream.

PROC junk= (STATE state) BOOL:
IF pack sequence(state) THEN TRUE
ELIF DENTYPE t; denoter(t)
THEN (t = "string" OR t = "char" I pack sequence(cliceable)); TRUE
ELIF tag THEN pack sequence(cliceable); TRUE
ELIF STATE m; visible declarer or bold(m)
THEN (pack sequence(m) I SKIP I routine token(m)); TRUE
ELIF leap token THEN declarer; TRUE
ELIF ope1ra tor THEN TRUE

fl Note that this will be a non-bold operator fl
ELIF format text THEN TRUE
ELIF becomes token THEN TRUE
ELIF at token THEN TRUE
ELIF idem ti ty relater THEN TRUE
ELIF nil token THEN TRUE
ELIF skip token THEN TRUE
ELIF of token THEN TRUE
ELIF go to token THEN TRUE
ELIF code token THEN TRUE
ELIF formal nest token THEN TRUE
ELSE FALSE
FI;

23

Most of the remaining routines are of no interest to the algorithm
under discussion. If we assume that a routine 'visible declarer' exists
which is able to cope with declarers that start with one of the symbols
ref, proc, flex, union,·struct or .J:., or consist of a single mode
standard, then the two remaining routines which affect the algorithm are
'declarer' and 'visible declarer or bold':

PROC declarer= VOID:
BEGIN pack sequence(decpref);

visible declarer or bold(LOC STATE)
END;

PROC visible declarer or bold= (REF STATE m) BOOL:
(visible declarer Im:= "decl"; TRUE I bold(m));

24

REFERENCES

[1] VAN WIJNGAARDEN, A. et al, Revised Report on the Algorithmic
Language ALGOL 68, Acta Informatica 2 (1975), pp. 1-236 •

. [2] LINDSEY, C.H. & H.J. BOOM, A modules and separate compilation
facility for ALGOL 68, ALGOL Bulletin 43 (1978), pp. 19-53.

[3] MEERTENS, L.G.L.T. & J.C. VAN VLIET, ALGOL 68+, a superlanguage of
ALGOL 68 for processing the standard-prelude, Report IW 168/81,
Mathematical Centre, Amsterdam, 1981.

[4] AHO, A.V. & J.D. ULLMAN, The Theory of Parsing, Translation and
Compiling, Vol I: Parsing, Prentice-Hall, 1972.

[5] LEWIS II, P.M. & R.E. STEARNS, Syntax-directed transduction, JACM
12., 3 (1968), pp. 465-488.

[6] MEERTENS, L.G.L.T. & J.C. VAN VLIET, An operator-priority grammar
for ALGOL 68+, Report IW 173/81, Mathematical Centre,
Amsterdam, 1981.

[7] MEERTENS, L.G.L.T. & J.C. VAN VLIET, On top-down parsing of ALGOL
68+, Mathematical Centre, Amsterdam, to appear.

[8] VAN VLIET, J.C. The programs "Relations concerning a cf-grammar" and
11LL(1)-checker", Report IN 4/73, Mathematical Centre,
Amsterdam, 1974.

[9] MEERTENS, L.G.L.T. & J.C. VAN VLIET, An underlying context-free
grammar of ALGOL 68+, Report IW 171/81, Mathematical Centre,
1981.

[10] MEERTENS, L.G.L.T. & J.C. VAN VLIET, Repairing the parenthesis
skeleton of ALGOL 68 programs: proof of correctness, in G.E.
Hedrick(Ed.), Proceedings of the 1975 International Conference
on ALGOL 68, Oklahoma State University, Stillwater, June 10-12,
1975 (also registered as Mathematical Centre Report IW 52/75).

