
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

A. VAN WIJNGAARDEN

LANGUAGELESS PROGRAMMING

Preprint

~
MC

IW 181/81 NOVEMBER

kruislaan 413 1098 SJ amsterdam

Ptu.YL:te.d at :the. Ma.themmc.at Ce.nbz.e., 413 Kll.ll.,(,6.f.aa.n, Aw.,;tvul.am.

The. Ma.the.ma.tic.at Ce.nbz.e. , f,ounde.d :the. 11-;th of, Fe.b!UlCVty 1946, ..u., a. non
p1r.o f,il ,[nJ.,;t,l;tu,Uo n cu.mi.ng at ;the. pll.omotio n o 6 pwie. ma.themmc..6 a.nd liJ.:,
a.ppU.c.a;t,i,onJ.,. I;t ..u., .6ponJ.,oJr.e.d by ;the. Ne.:the.Jr.la.nd6 Gove.Jr.nme.YL:t :thll.ough :the.
Ne.:the.Jr.la.nd6 01r.ga.n,i,zmon f,oJr. ;the. Adva.nc.eme.YL:t of, Pwie. Rue.a.1r.c.h (Z.W.0.).

ACM-Computing Reviews-category: 5.23, 5.26, 4.20

LANGUAGELESS PROGRAMMING *

by

A. van Wijngaarden

ABSTRACT

This paper demonstrates that it is readily possible to express an algorithm through a two-level
grammar, with an ease comparable to but under avoidance of an intervening programming
language.

KEY WORDS & PHRASES: Two-level grammars, programming languages

* This paper is not for review; it will be published elsewhere.

1. INTRODUCTION

If a programmer wants to specify a process to be performed on data then (s)he writes a partic
ular program in some programming language, e.g., ALGOL 68. The particular program might be:

(INT n; read(n); print(("p(", whole(n,0), "):... - :_25:... = :...", whole(prime(n)- 25,0))))

where the marks are representations of the ALGOL 68 terminal symbols.

This particular program does not completely specify the. process to be performed for two rea
sons. First, RR68, i.e., the definition of ALGOL 68 [2] does not provide a declaration for prime. This
declaration might however be given in a particular prelude. Let us assume that this is the case and
that the call prime(n) delivers what the wording suggests, viz., the n-th prime number. The second
reason is that the call read(n) might assign a nonpositive value to n. Thus we must assume that
prime can cope with this situation in some way or another, or, otherwise, the programmer should
correct the particular program, e.g., by writing read(n); n: =ABSn+I instead of read(n). We shall as
sume the first possibility.

This particular program may be elaborated by a computer. Let us assume that read(n) has the
same effect as n:=125 would have had. Since the 125-rd prime number is, as well known, 691 the
result would be

p(125) 2 5 6 6 6

where the marks are from a totally different vocabulary, only partially defined by RR68.

The definition of the programming language, here ALGOL 68, obviously also belongs to the
specification of the process because, otherwise, the meaning of the program would be undefined.
This definition is given in RR68 partly in the English language and partly by means of a specific
two-level grammar with production rules like

program : strong void new closed clause.
where the marks are again from a totally different vocabulary.

The definition of the concept "two-level grammar" obviously also belongs to the specification
of the process because, otherwise, the meaning of the specific two-level grammar of the language
would be undefined. This definition was first given in [l] in a loose manner and later more ela
borately in [2]. A formal operational definition was given in [3] and is included here in section 2.

There are therefore, apart from the definition in the English language, at least four levels of
definition involved in the specification, viz., the definition of the two-level-grammar concept by the
tool maker; the specific two-level grammar of a language by the language designer; the particular
program in that language by the programmer; the output of that particular program by the comput
er.

This is a considerable hierarchy and, moreover, a voluminous one: RR68 contains more than
two hundred pages. The reward is only that ALGOL 68 programs can be elaborated by actual
present-day computers but still specification is poor; in effect the (truth) value of 0<0 is not better
defined by RR68 than by the loose remark 'usual mathematical meaning' and the (truth) value of
0-0=0 is not defined at all by RR68.

The reason for this deplorable situation is that we have on one hand the extreme definitional
power of two-level grammars and on the other hand a modest process that has to be defined. The
insertion between these two of a large programming language not specifically adapted to that pro
cess is - apart from that elaboration by an actual present-day computer - like the use of an
elephant to carry groceries home from the supermarket; the elephant may eat part of them.

In this paper it is shown how the language can be eliminated on the hand of a specific exam
ple. In fact, a set of metarules and a set of hyperrules is given whose power exceeds by far this ex-

2

ample and only the choice of a specific hyperrule for the startword restricts it to this example. In
some sense these sets of metarules and hyperrules may be regarded as a language but there is an
essential difference: the "grammarian", i.e., the person who specifies a process by means of a two
level grammar, never writes down a representation of a terminal letter; on the contrary, these
representations are equivalent with the marks that are written down by the computer introduced
above. The language is thereby completely eliminated.

The critical remarks on ALGOL 68 should not be misinterpreted; remarks on other languages
might very well have been much more critical indeed.

2. TWO-LEVEL GRAMMARS

A "vocabulary" is a set; its elements are termed "letters". A "word" over a vocabulary V is a
mapping [l:n]-➔ V, for any n EN0, and is thus a set of 11 ordered pairs (i,v,), for
i = 1. · · · ,n ,v; EV. Therefore, v; is termed the "i -th letter" and n the "length" of the word. If
n =O, then the word is the empty set, also termed the "empty word". For each vocabulary V, v•
denotes the set of words over V, and v+ the set of nonempty words over V. A "sentence" over a
vocabulary V is a word over the vocabulary whose letters are the words over V; hence v•• is the
set of sentences over V.

A "rule" is an ordered pair (v ,w) where v and w are words over certain vocabularies.

A "two-level grammar" VWG is an ordered sextuple (Vm,V0 ,V1 ,Rm,Rh,ws), where Vm, V0 , V1

are finite vocabularies, whose letters are termed "metaletters", "ortholetters" and "terminal letters"
respectively. Rm and Rh are finite sets of rules, termed "metarules" and "hyperrules" respectively,
and w., is some word over V0 , termed the "startword". Let v,,: = Vm U V0 • It is required that
Vm n V0 ={}. V1 CV/, Rm CVm Xv;, Rh CVi+X v;•, ws EV/.

The grammar VWG "produces" a sentence set L defined as follows:

Let R,m,: == Vm Xv;. R 00 : = V/ Xv;• and R51 : = {ws} Xv;. A set Rm' identical with Rm and
a set R,,' identical with R,, are introduced and then extended by applying, arbitrarily often, if possi
ble. the following extension, where at each application, out of the three alternatives separated by ','
and enclosed by '()', consistently either the first, or the second, or the third must be chosen:

Extension: To (Rm', R,, ', Rh') a rule is added, obtained by replacing, in a copy of some rule
(v,w)E(Rm', R,,', Rh') and for some rule (v',w')E(Rm'nRm0 , R,/nRmo• Rh'nR00), (some, each,
some) occurrence of v' in (w, v and w, w) by w '.

Then, L:=={w l(w5 ,w)ERh'nRs1 }.

The set of "terminal metaproductions" of a metaletter Mis the set { w I (M,w) ERm 'n Rmo }.

In this paper a metaletter is a conventional 'capital letter' possibly followed by one or more
times "' (apostrophe); an ortholetter is a conventional 'lower case letter', 'decimal digit', 'opening
parenthesis' or "closing parenthesis'. Four other letters play a role, viz., ':' (colon), '.' (point), ','
(comma) and';' (semicolon).

Letters are "written" one after the other in such a way that the order in which they have been
written is clear, in this paper conventionally to the 'right of' the letter lastly written before, or 'on
the next line' or 'on the next page', whatever this may mean.

A word is written when its writing starts by writing its first letter, if it exists, and, when its i -
th letter has beelll written by writing its (i + l)-th letter, if it exists.

A metarule (v ,w) is written by writing v, then writing twice a colon, then writing w and then
writing a point.

A hyperrulle (v ,w) is written by writing v, then writing a colon, then writing w and then writ
ing a point. Writing w, however, poses the problem that a sentence over V0 might later on be

3

misread. In natural languages this problem is overcome by separating the words of the sentence by
blanks. Here, traditionally, one separates the words by writing a comma after a word has been writ
ten and before the next word of the sentence is going to be written, which leaves open the use of
blanks for display purposes inside the words.

The grammar mechanism as defined so far is, however, not yet complete. The terminal letters
are words over V0 but this internal structure is of no relevance to the user. Therefore, V1 is mapped
onto another vocabulary W1 , the set of "representations" of the terminal letters, which may be
marks chosen by the user at his convenience as long as they differ from all letters mentioned above.

A terminal production of a VWG, i.e., an element of L, is represented by replacing each ter
minal letter in a copy of that element by its representation and taking out the comma that follows
it, if any.

A useful shorthand notation for rules is the following one: If two rules have the same left
hand side up to and including the colon or double colon, then they may be combined into one rule
consisting of the first rule in which the point has been replaced by a semicolon, followed by the
right-hand side of the second rule.

Thus H : : 9 ; 8 ; 7. stands for H : : 9. H : : 8. H : : 7 ..

Another useful convention stems from the fact that one frequently needs metarules differing
only in the left-hand side, because one wants to circumvent the effect of the, utterly necessary, word
'each' in the Extension. Therefore, by convention, it holds:

Let M stand for any element of Vm. Then any occurrence of M' in a VWG tacitly implies that
M' : : M. is an element of Rm.

Thus, the occurrence of V" implies the metarule V" : : V'., which implies the metarule V' : : V.,
so that V, V' and V" have the same terminal productions over V0 •

3. AN EXAMPLE OF A TWO-LEVEL GRAMMAR FOR LANGUAGELESS PROGRAMMING

The feasibility of languageless programming is shown by the following two-level grammar.

The metaletters are in first instance H, J, K, L, M, N, P, Q, R, V, W and, moreover, if M
stands for any metaletter a metaletter M' may be added.

The ortholetters are n, p, s, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, (,).

The metarules are in first instance
MI H : : 9 ; 8 ; 7 ; 6 ; 5 ; 4 ; 3 ; 2 ; 1 ; 0.
M2 J :: HJ;.
M3 K :: n; p.
M4 N :: nN;.
MS P :: pP;.
M6 M : : nN ; pP ; .
M7 Q : : HQ ; KQ ; .
M8 V :: sM.
M9 W : : sQ ; (R).
MIO L::VL;.
MII R :: WR;.

The terminal letters are terminal metaproductions of V.

The startword is s0.

The hyperrules are
HI L(R')R: LR'R.
H2 s0 : sp25sn8spPs Ins 10sn9sn2sn41sn2sp25s lns10sn2sn36sn2spPs50sp25s4 lslns 10sps64ps2.

4

H3 LsOOR:.
H4 LsKHJR : Lss0KHJR.
HS LVs0KHJR: LVspppppppppps42sOOKH0123456789s40s0KJR.
H6 LVs0KR : LVR.
H7 LsMOOKHH' JR : LsKMOOKHJR.
H8 LsMOOKHHJR : LsMR.
H9 LVslMR: LVss24s4sn41sMVs03ps9s01s01R.
HlO Ls01PsP'L's01NR: LsP'sp10s34s4(sP'sp10s41s9(s01pP)L~solN)

(sPss22s4(s01sPsP'L's01nN)(sP'L'snN))R.
HII LVs2R: V, LR.
HI2 LsKMs3M'R: LsMsKs4s3nM's3pM'R.
HI3 Lss3M'R : LsM'R.
HI4 LVs03KR : LVVs4()s3sKs4()s3R.
HIS LsPs4WW'R: LWR.
HI6 LsNs4WW'R : LW'R.
HI7 LVs5(WW'R')R: LVss32s4W(Vsps41s5(W'R'))R.
HI8 LVsS(W)R: LWR.
HI 9 Ls6pPVR : LVs6PR.
H20 Ls6pPs6HMWR : LR.
H2I LVV's6nNR: LVs6NV'R.
H22 Vs6nNLs6HMWR : VLR.
H23 Ls7WW'R : LWs4(W's7WW')()R.
H24 LVV'V"s8WW'R : LV'ss36s4sp(VV"V's4s32s34)VV'V"s8pWW'R.
H2S LsMVV'V"s8KWW'R : LsMs4(sKs4(WVV'V"s8n)(W'VV's40V'V"s8)WW')sKR,
H26 LVs9WR : LWVR.
H27 LVsl0R : LR.
H28 LVsllR: LVVR.
H29 LsMs12WR : LWMR.
H30 LVs13R : LVs4spsnR.
H31 LVV's20R: LVV's21slls3s21R.
H32 LVV's21R : LVV's24s4VV'R.
H33 LVV's22R : LVV's41s022R.
H34 LspPs022R : LspPR.
H3S LsNs022R : LsnNR.
H36 LVV's23R: LVR.
H37 LVV's24R : LV'Vs22R.
H38 LVV's25R : LV'R.
H39 LVV's26R : LVV's22VV's24s27R.
H40 LVV's27R : LVV's22s4VV'R.
H4I LVV's3HR : LVV's2Hs3R.
H42 LsMsM's40R: LsMM'R.
H43 LsnNpPR : LsNPR.
H44 LspPnNR : LsPNR.
H4S LVV's41R : LVV's3s40R.
H46 LVV's42R : LV'ss36s4s(V's4(VV'sps41s42Vs40)(VV's3s42s3))R.
H47 LVV's43R : LsVs03pV's03ps043Vs4(V's4()(sns64s3))(V's4(sns64ps3)s3)R.
H48 LsP"sPspP's043R : LsPspP's34s4(spP"sPspP's41spP's043)(sP''sP)R.
H49 LVsPs44R: LsPss36s4sp(VsPsps41s44Vs42)R.
HS0 LVV'spPs45R: LVV'V's40s03pspPs22s4(V's13s40)()R.
HSI LVV's40pPR: LVV's40R. .

H52 LVV's41pPR : LVV's41R.
H53 L VV's42pPR : L VV's42spPs60s43spPs60s45R.
H54 L VV's43pPR : LV spPs60s42V's43spPs60s45R.
H55 LVV's44pPR : LV'ss36s4(spPs60)(V's4(VV'sps41s44pPVs42pP) (spPs60VV's3s44pPs43pP))R.
H56 LspPs50R : LspPsppspps050R.
H57 LspPsppP'sppP"s050R: LsppP'sppP"s43sns64s10ss22 s4(spPsppP'spppP"s050)

(sppP'sppP"s22s4(spPspppP'spps050)(spPsps22s4(sPspppP'spps050)sppP'))R.
H58 LsM's6HMWR : sM'ss22s4(s6M'L)(Ls6M')s6HMWR.
H59 LVs6L's60R: LVL'VR.
H60 LVs6L'V's61R: LV'L'R.
H61 Ls6L'V's62R: LV'L'R.
H62 Ls6L's63KR : LsKs4L'LL'R.
H63 LVs6L's64MWR : LVWsMss36s4(L')(s6ML's64MW)R.

4. INTERPRETATIONS

5

A two-level grammar defines a formal play with letters without the need of an interpretation.
We might, therefore, leave the reader with the lists of metarules and hyperrules without comment.
However, he may wonder what they are good for and he may find it hard to understand their effect.
Therefore, we shall help him with some "interpretations", in this section, and "explanations", in sec
tion 5, but he should keep in mind that these interpretations and explanations have no defining
power, they are just comment.

The terminal productions of W are termed "syllables". A syllable is either a "value" or an
"operator". Values are the terminal productions of V. They are therefore

... , snnn , snn , sn , s , sp , spp , sppp , ...

and operators are therefore, e.g.,

s23, s3n, sp25, spppnn, (sns64s10) .

Each, possibly empty, sequence of syllables is a terminal production of R (for right) and, more
specifically, each, possibly empty, sequence of values is a terminal production of L (for left). The
idea is that a "word" typically consists of a, possibly empty, sequence of values, followed by an
operator, the "first operator", followed by a, possibly empty, sequence of syllables. Hyperrules the
define how the word produces another word due to the first operator in its context. The location of
the first operator is specified by the "name" F; the location of any value to the left of the first
operator is specified by a name which "refers to" the value at that location. These names are, count
ing from the left to the right, Sp , Spp , Sppp , ... , F and also, counting from the right to the left, ...
, Snnn , Snn , Sn , S , F . Each value to the left of the first operator is therefore referred to by two
names, a "positive" one and a "nonpositive" one. A pair formed by a name and the value to which
that name refers is a "variable". A variable with a positive name is a "declared" variable, i.e., a
variable whose name does not depend on the location specified by F; a variable with a nonpositive
name is a "stack" variable, i.e., a variable whose name does depend on that location.

Values may be "interpreted", e.g., in the sense of ALGOL 68, i.e., integers, real numbers, truth
values, names, etc. The interpretation of the above sequence of values as integers is

... , -3, -2, -l,O,l,2,3, ...

The interpretation as real numbers is

... , -3/B, -2/B, -l!B,O!B,l!B,2!B,3!B, ...

where B, the "base", stands for some integer greater than one.

6

The interpretation as truth values in a many-valued logic is

... '!ff, fj; f, u, t, tt, ttt, ...

where f suggests FALSE, t TRUE and u UNDEFINED.

For a givelll word the interpretation as names is

... , Snnn , Snn , Sn , S , Sp , Spp , Sppp , ...

names which have been defined above.

Which of these interpretations is in a given case the most appropriate one depends on the first
operator and its context.

The terminal letters of the grammar are certain values if they stand on their own, i.e., not as
syllables of a larger word. Strictly speaking, an interpretation of the terminal letters is unnecessary
since the grammarian never writes down the representation of the terminal letters, in contrast to the
situation that a programmer writes a program in some programming language where he writes only
representations of the terminal letters of the grammar defining that language. It is, however, more
helpful to provide a list of representations in order to show an interpretation of the terminal letters.
In the list we write for the terminal letter consisting of s followed by, e.g., 25 times p simply sp25
and for s followed by, e.g., 8 times n simply sn8. This is not so sloppy as it might seem at first sight
since, according to the hyperrules H4-H8, the operator sp25 indeed produces s followed by 25 times
p and the operator sn8 indeed produces s followed by 8 times n. The list might then run as follows:

sn42 X sn41 sn40 + sn36 sn34 ;;;-,,
sn32 ,;;;• sn29 } sn28 { sn26 =I= sn24 <
sn22 > sn19 l sn18 [sn17 "' sn16 I
sn15 I sn13 - sn12 - snll t snlO t
sn9) sn8 (sn7 sn6 sn5
sn4 (newpage) sn3 (newline)
snn (blank space) sn (invisible)
s 0 sp I spp 2 sp3 3 sp4 4
sp5 5 sp6 6 sp7 7 sp8 8 sp9 9
splO a spll b sp12 C sp13 d sp14 e
sp15 f sp16 g sp17 h sp18 sp19 j
sp20 k sp21 I sp22 m sp23 n sp24 0

sp25 p sp26 q sp27 r sp28 s sp29
sp30 u sp31 V sp32 w sp33 X sp34 y
sp35 z sp36 A sp37 B sp38 C sp39 D
sp40 E sp41 F sp42 G sp43 H sp44 I
sp45 J sp46 K sp47 L sp48 M sp49 N
sp50 0 sp51 p sp52 Q sp53 R sp54 s
sp55 T sp56 u sp57 V sp58 w sp59 X
sp60 y sp61 z

The choice of the representations of s up to sp61 is obvious. The representations of the
remaining terminal letters are partially chosen for mnemonic reasons. Since, e.g., s40 is the operator
that performs the addition of two integers, + is chosen as representation of sn40.

7

5. EXPLANATIONS

We now start to explain the effect of the hyperrules for the operators in some detail. We shall
not follow the order in which they are given in Section 3 but shall deal with them in such an order
that on the right side only operators occur that have been dealt with already or that are under dis
cussion. That this is possible proves at the same time that the grammar does not contain viciously
circular definitions.

It often occurs that in a hyperrule W occurs whereas in a certain application of that hyperrule
we actually like to replace that W not by one syllable but by a sequence of syllables, e.g., sns64s10.
We then replace it instead by a "compound operator", in this case (sns64s10), which is a terminal
production of W, i.e., a syllable, but not of V, i.e., not a value and hence an operator. If this opera
tor becomes the first operator then the general rule
HI L(R')R : LR'R.
decomposes it into a sequence of its constituent syllables, after which the hyperrule for the new first
operator takes over control.

In the context LVs4WW'R the operator s4 "chooses" between W and W' roughly as IF V
THEN W ELSE W' FI does:
HIS LsPs4WW'R : LWR.
HI6 LsNs4WW'R : LW'R.

Here the obvious interpretation of V is a truth value. Since our logic is many-valued, V may
be s, interpreted as UNDEFINED, and then both hyperrules are applicable, leaving it undefined whether
W or W' is chosen.

In the context LVs3R the operator s3 "negates" V, i.e., it transforms s followed by a number
of times p resp. n into s followed by the same number of times n resp. p. If V is interpreted as an
integer or a real number then this negation means a change of the sign of V, whereas if Vis inter
preted as a truth value then it means logical negation. Its definition is an application of the operator
s4:
HI2 LsKMs3M'R: LsMsKs4s3nM's3pM'R.
HI3 Lss3M'R : LsM'R.

The operator s3 might also have been defined without using the operator s4. This would cost
four hyperrules instead of two, and our strategy is always to minimize the number of hyperrules.

In the context LVs03KR the operator s03p delivers ABS V and the operator s03n delivers
-ABS V:
HI4 LVs03KR: LVVs4()s3sKs4()s3R.

In the context LVs9WR the operator s9 "swaps" V and W:
H26 LVs9WR : LWVR.

In the context LVsl0R the operator sl0 "voids" V:
H27 LVsl0R : LR.

In the context LVsllR the operator sll "duplicates" V:
H28 LVsllR : LVVR.

In the context LsMs12WR the operator s12 "adorns" W:
H29 LsMs12WR: LWMR.

In the context LVs13R the operator s13 "projects" V onto sK:
H30 LVs13R: LVs4spsnR.

An application of this projection is the transformation of many-valued logic into Boolean log
ic, but see also H50.

8

We now turn to the simplest arithmetic operations on integers.

In the context LVV's40R the operator s40 delivers V + V':
H42 LsMsM's40R: LsMM'R.
H43 LsnNpPR : LsNPR.
H44 LspPnNR : LsPNR.

In the context LVV's41R the operator s41 delivers V-V':
H45 LVV's41R :: LVV's3s40R.

Now that we have subtraction of integers at our disposal we turn to operators that deal with
relations between values that can be interpreted as truth values, integers or real numbers at will. For
some of them the interpretation as truth values and for other ones the interpretation as integer or
real numbers is more obvious. Anyhow, we start from the sixteen Boolean operators and drop then
the restriction that the two arguments and the result be two-valued. We follow their natural order
and number them from s20 up to s27 and from s30 up to s37. We shall treat them in a different
order so that the reader does not need to look ahead. The context is always LVV's2HR resp.
LVV's3HR.

The operator s22 delivers V>V':
H33 LVV's22R : LVV's41s022R.
H34 LspPs022R : LspPR.
H35 LsNs022R: LsnNR.

The operator s24 delivers V<V':
H37 LVV's24R : LV'Vs22R.

The operator s21 delivers V AND V' or min(V,V'):
H32 LVV's21R : LVV's24s4VV'R.

The operator s27 delivers V OR V' or max(V,V'):
H40 LVV's27R : LVV's22s4VV'R.

The operator s20 delivers (V AND V') AND NOT (V AND V'); i.e., FALSE of some size:
H3 l LVV's20R : LVV's21s11s3s21R.

The operator s23 delivers V, its first operand:
H36 LVV's23R: LVR.

The operator s25 delivers V', its second operand:
H38 LVV's25R : LV'R.

The operator s26 delivers V=f:V':
H39 LVV's26R : LVV's22VV's24s27R.

The operator s3H delivers NOT (VV's2H):
H41 LVV's3HR : LVV's2Hs3R.

The operators s20, s21, s23, s25, s27, s30, s31, s35 and s37 can deliver s, i.e., UNDEFINED,

whereas s22, s24, s26, s32, s34 and s36 cannot.

We now consider operators which have to do with names. In the context LsM's6HMWR,
where the syllable sM' can best be interpreted as a name which refers to SM', the operator s6HM
generates an ope:rator s6M' and takes out sM' but not itself; an operator s6pP is inserted to the left
of Sp, an operator s6N is inserted to the right of S:
H58 LsM's6HMWR : sM'ss22s4(s6M'L)(Ls6M')s6HMWR.
An inserted operator s6pP steps over the value on its right losing one p at that step and an inserted
operator s6nN steps over the value on its left losing one n at that step. In doing so, an inserted
operator s6M' either comes to rest as s6 at the right of SM' or, if it threatens to step out of L, it
disappears together with s6HMW:

Hl9 Ls6pPVR: LVs6PR.
H20 Ls6pPs6HMWR : LR.
H21 LVV's6niNR: LVs6NV'R.
H22 Vs6nNLs6HMWR : VLR.
What happens after the operator s6 has come to rest, to the right of SM', depends on Hand M.

In the context LsM's60R the operator s60 "dereferences" sM':
H59 LVs6L's160R : LVL'VR.

In the context LV'sM's61R the operator s61 "assigns" V' to sM':
H60 LVs6L'V's61R: LV'L'R.

In the context LV'sM's62R the operator s62 "inserts" V' to the right of SM':
H61 Ls6L'V's62R: LV'L'R.

9

In the context LsM's63KR the operator s63p duplicates the part of L to the right of SM' and
the operator s63n duplicates the part of L that ends with SM':
H62 Ls6L's63KR : LsKs4L'LL'R.

In the context LsM's64MWR the operator s64 makes the operator W operate on SM' whereas
the operators s64p resp. s64n make W operate on SM' and all syllables of L to the right resp. to the
left of it:
H63 LVs6L's64MWR : LVWsMss36s4(L')(s6ML's64MW)R.

Now that we have relations and operations concerning names at our disposal we can continue
defining operations on integers.

In the context LVV's42R the operator s42 delivers VXV':
H46 LVV's42:R : LV'ss36s4s(V's4(VV'sps41s42Vs40)(VV's3s42s3))R.

In the context LVV's43R the operator s43 delivers the quotient V--;- V' followed by the
remainder V ~- XV':
H47 LVV's43R : LsVs03pV's03ps043Vs4(V's4()(sns64s3))(V's4(sns64ps3)s3)R.
H48 LsP"sPspP's043R : LsPspP's34s4(spP"sPspP's41spP's043)(sP"sP)R.

In the context LVsPs44R the operator s44 delivers VjsP:
H49 LVsPs44R : LsPss36s4sp(VsPsps41s44Vs42)R.

In the context LVV'spPs45R the operator s45 "rounds" V if 2 XABSV'>spP:
HS0 LVV'spPs45R : LVV'V's40s03pspPs22s4(V's13s40)()R.

Next we: consider operations on real numbers. The mathematical interpretation of a value as a
real number is its interpretation as an integer divided by the "base", i.e., some positive integer
greater than one, e.g., 10jl8. The operator s4HpP interprets syllable SpP as that base.

In the context LVV's40pPR the operator s40pP delivers V + V':
HS I LVV's40pPR : LVV's40R.

In the context LVV's41pPR the operator s41pP delivers V-V':
H52 LVV's4lpPR : LVV's41R.

In the context LVV's42pPR the operator s42pP delivers VXV':
H53 LVV's42'.pPR: LVV's42spPs60s43spPs60s45R.

In the context LVV's43pPR the operator s43pP delivers V /V':
H54 LVV's43pPR: LVspPs60s42V's43spPs60s45R.

In the context LVV's44pPR the operator s44pP delivers VjV', where V' is interpreted as an in
teger:
HS 5 L VV' s44pPR : L V' ss36s4(spPs60)(V' s4(VV' sps41s44pPV s42pP) (spPs60VV' s3s44pPs43pP))R.

So far, we have discussed only operators of general and widely applicable character like those
in the standard-prelude of ALGOL 68. We shall now give one example of a very specific operator
like one that one might expect in a particular-prelude of ALGOL 68.

In the context LspPs50R the operator s50 delivers the spP-th prime number:
HS6 LspPs50R : LspPsppspps050R. .
HS7 LspPsppP'sppP"s050R: LsppP'sppP"s43sns64s10ss22 s4(spPsppP'spppP"s050)

(sppP'sppP"s22s4(spPspppP'spps050)(spPsps22s4(sPspppP'spps050)sppP'))R.

Rule HS6 introduces two new values both set to two, the first of which is a candidate for be
ing a prime number and the second of which is a trial divisor to investigate whether the candidate is
actually a prime number, and a new operator s050. Rule HS7 determines the remainder of the can
didate upon division by the trial divisor; if this remainder is positive then the trial divisor is not a
divisor of the candidate and the next trial divisor is tried; if the remainder is zero then the rule
determines whether the candidate is greater than the trial divisor; if this is so then the candidate is a
composite number and the next candidate is investigated starting again with a trial divisor two; oth
erwise, the candidate is a prime number and the rule investigates the number of prime numbers that
were still to be found; if this number is greater than one then that number is diminished by one and
the next candidate is investigated; otherwise, the candidate is the sought prime number.

Next we define some ALGOL 68-like constructs.

In the context LVsS(WR')R the operator sS "selects" a syllable from the sequence WR' rough
ly as CASE VIN W, R' ESAC does:
Hl7 LVsS(WW'R')R: LVss32s4W(Vsps41s5(W'R'))R.
HIS LVsS(W)R: LWR.

Here the obvious interpretation of V is an integer. The syllables of WR' are counted from O up
to k, say; if V,s;;;O then Wis selected, if V~k then syllable k and, otherwise, syllable Vis selected.

In the context Ls7WW'R the operator s7 "repeats" W' subject to the condition W like
WHILEW DOW' OD does:
H23 Ls7WW'R: LWs4(W's7WW')()R.

In the context LVV'V"s8WW'R the operator s8 repeats W' subject to a bound test and the
condition W like FROM V BY V' TO V" WHILE W DOW' OD does:
H24 LVV'V"s8WW'R : LV'ss36s4sp(VV"V's4s32s34)VV'V"s8pWW'R.
H2S LsMVV'V"s8KWW'R: LsMs4(sKs4(WVV'V"s8n)(W'VV's40V'V"s8)WW')sKR.

In contrast to the ALGOL 68 clause a non-void result is delivered, viz., sp when the test on V
and sn when the test on W failed.

Now we consider operators that perform the transition from conventional decimal notation to
our unary notation and vice versa.

In the context LsKHJR the operators spHJ resp. snHJ deliver s followed by HJ times p resp.
n:
H4 LsKHJR: LssOKHJR.
HS LVsOKHJR : LVspppppppppps42sOOKH0123456789s40sOKJR.
H6 LVsOKR : LVR.
H7 LsMOOKHH' JR : LsKMOOKHJR.
H8 LsMOOKHHJR : LsMR.

Rule H4 introduces s, i.e., zero as preliminary result, and the new operator sOKHJ. Rule HS
multiplies the preliminary result by ten, applies the operator sOOKH0123456789 to add the number
"suggested" by the leading decimal digit H with the sign as given by K, and then deals with the next
digit of J, if any, by a repeated_ application of rule HS. The rules H7 and H8 deal with this new
operator. Notice that this operator in HS has zero letters p or n between s and 00 and that H is fac-

11

ing the digit 0. Application of rule H7 inserts a letter p or n after s, so that there is now one letter
p or n between s and 00 and the digit O that H was facing is taken out so that H is now facing the
digit 1. In gellleral, after a number of applications of rule H7 the number of letters p or n between s
and 00 equals the number suggested by the digit H' that H is facing. Repeated application of the
rule H7 eventually leads to a blind alley, the only one in our grammar, because H is no longer fac
ing a digit H'. However, in this process H will necessarily face itself once and then rule H8 delivers
the desired result, i.e., the value suggested by H. When all digits of HJ have been dealt with in this
way rule H6 delivers the final result.

The operator sKHJ enables the grammarian to enter constants in his grammar like, in decimal
notation, 125 resp. - 256 by writing sp125 resp. sn256.

In the context LVslMR the operator s1M translates V, in our unary notation, into a sequence
of values, viz., the sign of V, the successive decimal digits of V and an indication of the number of
digits obtained:
H9 LVslMR : LVss24s4sn41sMVs03ps9s0Is0IR.
H 10 Ls0IPsP'L's0INR : LsP'spI0s34s4(sP'sp10s4Is9(s01pP)L's01N)

(sPss22s4(s0 IsPsP'L' s0 InN) (sP'L' snN)) R.

If V is negative then the sign is sn4I; if V is nonnegative then the sign is sM. This enables the
grammarian to choose, e.g., between the plus mark sn40, the blank-space mark snn or the invisible
mark sn by writing sn40s12sI, s1nn or sin respectively. Rule H9 first determines the sign and then
swaps the absolute value of V between the operators s01 and s01. Rule HlO then decomposes V
gradually into a sequence of decimal digits, in unary notation, of course, thereby using the first sOl
as portmanteau for intermediate values of the quotient upon division by ten and the second s01 as
portmanteau for intermediate values of the indication of the number of decimal digits obtained. The
final indication is then the negation of that number. The reason for not building up that number it
self will soon become clear. Anyhow, if the grammarian does not want the indication he can void it
immediately by means of s10.

In the context LVs2R the operator s2 "outputs" V:
Hll LVs2R: V, LR.

It is our only hyperrule in which the comma occurs. Since V is a member of the terminal vocabulary
V1 it plays no further role in the production process and it can be replaced by its representation.
This is our equivalent of output in a programming language.

Since LVsIMR produces a sign followed by a number of decimal digits followed by the nega
tion of that number, LVsIMs64ps2R outputs Vin decimal notation; hence, Lsp25s2R outputs p and
Lsp25s1ns64ps2R outputs 25.

In the context LsOOR the operator s00 "finishes" the production process:
H3 LsOOR:.

In the context s0, at last, the operator s0, i.e., the startword, produces the specific problem
that the grammarian has in mind. A very specific hyperrule is, by way of example:
H2 s0 : sp2Ssn8spPs Ins IOsn9sn2sn4 Isn2sp25s1ns1 0sn2sn36sn2spPs50sp25s4 ls Ins 1 Osps64ps2.

First we observe that on the right-hand side the metaletter P occurs which does not occur on the
left; hence its terminal metaproduction can be freely chosen. This is our equivalent of 'input' in a
programming language. Suppose that we choose a sequence of one hundred and twenty four times
the letter p for that terminal production. Then the operators on the right-hand side are harmless
ones like sp25 that delivers s followed by twenty five times p, and sn8 that delivers s followed by
eight times n .. The first interesting combination is spPsinsIO, which produces snspsppsppppp. The
second interesting combination is spPsSO which produces s followed by six hundred and ninety one
times p because the 125-rd prime number is 691, which follows from rule H56. Hence the combina-

12

tion spPs50sp25s41s1ns10 produces sppppppsppppppspppppp because 691 - 25 = 666. At last, the
combination sps64ps2 selects the left-most syllable and outputs it together with all its right-hand
side syllables. This then produces

p(125) - 25 = 666

a result which is the same as that of the ALGOL 68 particular program in the introduction but, of
course, now rigorously defined.

6. REFERENCES

[1) WIJNGAARDEN, A. VAN, Orthogonal design and description of a formal language,
Mathematical Centre, Amsterdam, MR76 (1965).

[2] WIJNGAARDEN, A. VAN et al., eds., Revised Report on the algorithmic language ALGOL 68,
Acta Informatica 5 (1975) 1-234.

[3] WIJNGAARDEN, A. VAN, Thinking on two levels, in Proc. Bicentennial Congress of the
Wiskundig Genootschap, part 2, P.C. Baayen, D. van Dulst & J. Oosterhoff, eds., Mathemati
cal Centre, Amsterdam, Mathematical Centre Tracts, Vol. 101 (1979) 417-428.

