
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

J.A. BERGSTRA & J.W. KLOP

IW 183/81

ALGEBRAIC SPECIFICATIONS FOR PARAMETRIZED DATA TYPES
WITH MINIMAL PARAMETER AND TARGET ALGEBRAS

Preprint

~
MC

NOVEMBER

kruislaan 413 1098 SJ amsterdam

Ptunted a:t :the Ma:thema.:tic.at Cen.tll.e, 413 KILU,,{,6laan, Amt>:teJLdam.

The Ma:thema.:ti..c.at Cen.tll.e , 6ounded :the 11-:th 06 FebJc.u..aJc.y 1946, .v.i a. non­
p-'l.o6U in6:tU.ut),on a.,i.m,i.ng a:t :the p-'l.omo:ti.on 06 pUll.e ma:thema.:ti..c..o a.nd w
appUc.a.:tion6. I:t .v.i J.ipon6o-'l.ed by :the Ne:the-'1.land6 Gove-'l.nment :th-'l.ough :the
Ne:the-'l.lancl6 0-'l.gan,i.za.:tion 60-'l. :the Advancement 06 PUite ReJ.iecvz.c.h (Z.W.O.).

1980 Mathematics subject classification: 03D45, 03D80, 68B15

ACM-Computing Reviews-category: 4.34

Algebraic specifications for parametrized data types with minimal parameter,,

and target algebras *)

by

**) J.A. Bergstra & J.W. Klop

ABSTRACT

We conceive a parametrized data type as a partial functor

<f>: ALG ('.E) ➔ ALG (6) , where 6 is a signature extending I: and ALG (I:) is the

class of minimal I: - algebras which serve as parameters.

We focus attention on one particular method of algebraically specifying

parametrized data types: finite specifications with conditional equations

using auxiliary sorts and functions provided with initial algebra semantics.

We introduce the concept of an effective parametrized data type. Asa­

tisfactory adequacy result is then obtained: each effective parametrized

data type possesses a finite algebraic specification under initial semantics.

KEYWORDS & PHRASES initial algebra specification, parametrized data type,

semi- computable data type

This report will be submitted for publication elsewhere.

**) Department of Computer Science, University of Leiden, Wassenaarseweg 80
2300 RA Leiden, The Netherlands

INTRODUCTION

The mathematical theory of parametrized data types was initially inves­

tigated in ADJ [13], [6], LEHMANN & SMYTH [IO], KAPHENGST & REICHEL [9] and

EHRICH [SJ. Central topics in these studies are specification methods and the

correctness problem for specifications and parameter passing mechanisms.

Reading through the growing litterature on parametrized data types one

observes small but important differences between the basic definitions used

by various authors; these variations resulting from differences in aims as

well as from differences concerning the general points of view.

Obviously this situation entails a difficulty for the theoretical de­

velopment of the subject. Rather than aiming at a unified theoretical frame­

work it is our intention to consider one single specification method and to

investigate that one in depth. This method is: initial algebra specifications

with conditional equations using auxiliary sorts and functions.

The relevance of our results should not only be measured against the im­

portance of the specification method that we analyze; it also indicates a

style of investigating specification mechanisms for data types in general.

The main idea is to connect specification methods to recursion theoretic con­

cepts; similar results for abstract data type specification were obtained in

BERGSTRA & TUCKER [2] and [3] •

A parametrized data type will be a partial functor~: ALG(I) +ALG(6),

for some signatures E,6 with E .=. 6. Here ALG(r) denotes the class of all

minimal algebras of signature r. (Remark on terminology: BURSTALL & GOGUEN

[4] call A E ALG(r) an algebra 'without junk'.)

Further, ~ is called pePsistent if ~(A) is an expansion of A for all

A E Dom(~). Apart from the requirement that parameter algebras be minimal

these definitions correspond to the original ones in ADJ [13].

All the constructions and arguments in the sequel will be modulo iso­

morphism of the minimal algebras we are dealing with. (Alternatively, one

may consider ALG(E), the class of minimal I-algebras, as consisting of term

algebras, i.e. quotients of the free term algebra over E.) In this way we

get around the difference between 'persistent' and 'strongly persistent' from

ADJ [13]. For generalizations of our results however, a more sophisticated

approach of this issue will be required.

2

Keeping in mind that the application of a parametrized data type on

a parameter algebra is to be effectively performed in a computational process,

the following class of effective parametrized data types seems to be of in­

trinsic importance. A parametrized data type¢ is called effective iff there

exists a computable transformation (y,£) that transforms a finite input spe­

cification (I' ,E') for a parameter algebra A into a finite specification

(y(I' ,E'), £(I' ,E')) = (I",E") for a target algebra HA). In both cases the

specifications are allowed to use auxiliary sorts and functions.

An attractive transformation mechanism for specifications is the fol­

lowing one:

(y(I',E'), E(I',E')) = (I'ur,E'uE)

for some fixed finite specification (r,E). If such (f,E) can be found, the

parametrized data type¢ is said to have a finite algebraic specification.

Our main interest is the following question: to what extent are algebraic

specifications available for effective parametrized data types. For this

question we are interested in parametrized data types with a domain consis­

ting of semi-computable algebras only, because other algebras have no finite

specification. We are then able to prove the following adequacy theorem

(where SCA(I) denotes the class of semi-computable I-algebras):

THEOREM 3.1. Let¢: ALG(I)-+ ALG(L':.) be a persistent parametrized data type

such that Dom(¢)= ALG(I,E) n SCA(I) for some finite E. Then¢ is effective

iff it has a finite algebraic specification.

The proof is quite involved and uses a detour via an auxiliary notion,

viz. that of a (effectively) continuous parametrized data type. A continuous

parametrized data type¢ can be represented by an element Fin the Graph

model Pw for the A-calculus; an effectively continuous one by a recursively

enumerable FE Pw. Now it turns out that a parametrized data type has a

(finite) algebraic specification iff it is (effectively) continuous.

For further information about parametrized data types the reader is

referred to [7], [8] and [14].

3

I. SPECIFICATION OF PARAMETER AND TARGET ALGEBRAS

In thi:s section we will collect several definitions of preliminary

notions and some facts about them.

I.I. Algebras.

A signature I is a triple consisting of three listings, one of sorts,

one of functions and one of constants.

EXAMPLE. sorts INT BOOL

functions sue: INT ➔ INT , 7 : BOOL ➔ BOOL

constants OE INT , true E BOOL.

Thus I determines the type of constants and functions declared 1.n it. The

meaning of I .=_ r , I u r , I n r is clear.

A I - algebra A consists of a non-empty set A
s

for each sorts in I and

f . fA unctions : As x ••• x As ➔ A for each function name f E I of type
k SA

s I x ••• x sk ➔ s and a constant c E As for each constant name c of type s 1.n

L

For each sort s E I there are variables x~ 1. E w The sets Ter (I) of 1. s
terms for sort s EI are defined by the following simultaneous induction.

For each s:

(i) the constants of sorts are 1.n Ter (I);
s

(ii) x~ E Ter (I), i Ew; 1. s
(iii) if T T j E er s j (I) , J = I, ... , k, and f E I is

s 1x ... x sk ➔ s then f(, 1, •.. ,,k) E Ter 8 (I)

Furthermore, Ter (I) = U {Ter (I) I s in I} .
s

A closed term contains no variables. Terc(I)

a function of type

1.s the set of closed I-

terms. An equation (of sorts) 1.s an expression of the form T =,'where

,,T 1 E Ter (I). A closed equation 1.s an equation between closed terms. A
s

conditional equation is a construct of the form

where,.,,! E Ters_(I)
1 1 1

4

The free term algebra T(E) is obtained by taking as A (see above) the
s

sets Terc (I) and interpreting functions and constants 'by themselves'.
s

A E-algebra A is minimal if it has no proper E-subalgebras. If r J E

and A is some r - algebra , then A IE is the reduct of A of signature E which

results by forgetting sorts, constants and functions not named in L By

<A>E we denote the minimal E - subalgebra of A I E • If Al E = <A> = B E , we

write (A) E = B and call A an enrichment of B.

With ALG(E) we denote the class of minimal E-algebras. For a set E of

conditional equations, ALG(E,E) denotes the class of algebras A E ALG(E)

with A I= E.

To each A E ALG(E) we can associate the congruence = A , that is the

set of all closed equations true in A. Note that A Sa T(E)/ =A (A is isomor­

phic to the factor algebra obtained from the free term algebra by dividing

out its congruence).

If K ~ ALG(E), then I(K) denotes the initial algebra of K, if it exists.

(This is the algebra A from which all BEK are homomorphic images; A is

determined up to isomorphism.)

1.2. Recursion theory and coding.

We use the notation W (of ROGERS [JI]) for recursively enumerable (r.e)
z

subsets of w; z EW is called an r.e. -index.
r l

Often we will use a bijective and effective coding S ➔ w for a
C

set S of syntactic constructs, e.g. S = Ter (E). Decoding l J :w ➔ Sis

given by the inverse function. It is left to the reader to give a detailed
r 1 r 1 {rt1 I } . • construction of If T c S , then T = t ET ; likewise LA J, for

A~ w , is defined.

Let A E ALG(E). Then A is called semi-computable iff r =A 7 is r.e. (iff
r 1 •

3z =A = W2). The set of semi-computable minimal E-algebras is denoted by

SCA(E) .

Let r 7 : TERc (E) x Terc (E) ➔ w be a bijective coding of all closed

E - equations, with L J as decoding function. Now an arbitrary L W2_J need

not yet be a congruence; it is after closure under logical derivability:

LW J •
z

5

7 ' Coding again it is not hard to see that W
L z .J

c : w ➔ w. So Wc(z) codes

gram in section 1.3.)

= Wc(z) for some recursive

z E w. (See also the dia-a congruence, for all

1.3. Initial algebra specifications.

Let A E ALG(I:), and I:'::> L Then (I:' ,E') is a specification of A using

auxiliary sorts and functions if A= (I(ALG(I:' ,E')))I: • For brevity we will

use the notation: (I:' ,E')[=A. To employ in diagrams, we use the alterna­

tive notation:

(I:' ,E') A •

Note that I(ALG(I:' ,E')) always exists. However, (I(ALG(I:',E')))I: is not

for all (I:' ,E') and I:'~ I: defined (see the definition of enrichment in 1.1).

Note that if E' is finite, I(ALG(I:' ,E')) E SCA(['). In fact we have:

1.3. 1. LEMMA. A E SCA(I:) ~A= (I:' ,E')I: for some I:'~ I: and finite E'.

This is proved in BERGSTRA & TUCKER [1]. In fact it is proved there

that from an r.e.-index z for r=A7 one can uniformly find a finite (I:' ,E')

specifying A; see the diagram below.

Finite specifications (I:',E') for A can be thought of as 'indices' just

like z is an r.e.-index for =A(= W) after coding. Indeed, the following
L Z_j

diagram asserts that both kinds of indices can effectively be translated

into each other:

A E SCA([)

effective
finite

6

2. PARAMETRIZED DATA TYPES, DESCRIPTIONS AND SPECIFICATIONS

In this section we explain our definition of a parametrized data type,

and explain what it means for a parametrized data type to be: effeatively

given, aZgebraiaaZZy speaified, aontinuous or effeatively aontinuous.

2. I Parametrized data types.

A parametrized data type is a partial functor$: ALG(E) + ALG(6) where

E c 6 , i.e.

3 horn. 6

B

which satisfies the following condit::.on : for each A E Dom($) there is a

surjective homomorphism a.: A+ HA) IE.

If, moreover, for each A E Dom($) we have: A ~ HA) IE then $ is persis­

tent.

2.2. $ is effective given($ is effective)

if Dom($)~ SCA(E) and there is a pair (y,E) of computable operations,

acting on finite specifications, that produces a specification

(y(E',E'), E(E',E')) of $(A) for each specification (E',E') of some

A E Dom($) •

In a diagram :

finite (E' ,E') __ c_om_p_ • ...;.(y.:...::..,E_);......(y(E',E') , E(E' ,E')) = (E",E"), finite

semi-computable A E Dom($) -----------------~B, semi-comp.

In a different notation: $((E',E')r) = (y(E',E'), E(E',E')) 6 •

7

2.3. ~ has an algebraic specification

if there is a specification (r ,E) such that for all A e: Dom(~):

(E' ,E')------- (E' ur,E'uE)

If (f,E) is finite, then~ has a finite algebraic specification; in that

case~~ SCA(E) is effectively given with y(E',E') = E'ur and e(E',E') = E'uE.

Here it is required that E 'n r c E •

Notation: so the diagram states:

E (r,E)6 (E',E')r = (E'ur,E'uE)6.

Note the following composition rule (provided r'n f=6)

(r',F)~ o(f,E)~ = (r'ur,FuE)~.

2.4. Representing parametrized data types in reflexive domains.

2.4.I. Let r 7 f be a bijective coding of closed r-equations, and L ~r the

corresponding decoding. We will omit the r when no confusion is likely to

arise.

For a parametrized data type ~: ALG(E)-+ ALG(6) , let

- r , r , The mapping~ : Dom(~) -+ Range(~) is introduced by

8

A B

2.4.2. A reflexive domain. The Graph model Pw is the structure consisting

of the powerset of wand an application operator• on it. Application is

defined as follows: for A,B E Pw,

A•B = {ml3 nE w (n,m) EA & D c B} where (,): wxw ➔ w is a bijec­n-
tive and effective pairing function and D is the finite set with 'canonical

n
index' n defined as follows: D0 = QI; if n = 2a1 + ••• +2 8 k, a 1< ••• <~, then

Dn = {al, ••• , ak}.

A mapping F: Pw ➔ Pw is continuous if for all XE Pw:

F(X) = U{F(D)ID c X}. For the next Lemma, see SCOTT [12]. n n-

2.4.2.1. LEMMA. Let F: Pw ➔ Pw. Then:

Fis continuous <==> 3F E Pw VX E Pw F(X) = F•X.

2.4.2.2. DEFINITION. (i) The parametrized data type~ is continuous if~

is the restriction to rDom(~)' of some continuous mapping F: Pw ➔ Pw.

(ii) Moreover,~ is called effectively continuous if~ is the restriction

of a continuous F which is represented in Pw by an r.e. element F E P w.

(I.e. Fis an enwneration operator, in the sense of ROGERS [II].)

2.4.2.3. Write RE for the set of r.e. subsets of Pw. Let~= RE ➔ RE. Then

~ is called effective if for some computable f:

We need the following version of the Theorem of Myhill and Shepherdson (see

ROGERS [11]),as stated in SCOTT [12]:

2.4.2.4. THEOREM. If~= RE-+ RE is effective, then for some r.e. eZement

F of Pw:

VX e: RE ~(X) = F • X •

Consequently~ as in the Theorem can be extended to a continuous operator

(viz. AX. F •X). On the other hand of course: if Fe: RE, then

AX e: RE. F • X is effective.

3. SPECIFICATION THEOREMS

9

The main result of this paper is Theorem 3.1 which essentially asserts

that effective parametrized data types have finite specifications, provided

their domain is reasonably well-behaved. We expect that 3.1 (ii)~(iii) will

have many generalizations; for instance, removing the condition that input

algebras are minimal seems quite worth-wile. Other specification methods,

such as working with requirements (see EHRIG [7J)or with final algebras,

lead to similar questions.

Theorems 3.2 and 3.3 provide exact characterizations of the persistent

parametrized data types that can be specified, without any condition on the

domains involved.

3.1. THEOREM. Let~: ALG(E)-+ ALG(6) be a persistent parametrized data type

with Dom(~)= ALG(E,E) n SCA(E), for some finite E. Then the foZZowing are

equivaZent:

(i) ~ is effectiveZy continuous;

(ii) ~ possesses a finite aZgebraic specification;

(iii)~ is effective.

3.2. THEOREM. Let~= ALG(E)-+ ALG(6) be a persistent parametrized data type.

Then the foZZowing are equivaZent:

(i) ~ is continuous;

(ii) ~ has an aZgebraic specification.

3.3. THEOREM. Let¢: ALG(E) ➔ ALG(~) be a persistent parametrized data type.

Then the foUowing are equivalent:

(i) ¢ is effectively continuous;

(ii) ¢ has a finite algebraic specification.

Since the proofs are rather involved we will make some remarks about

their structure. (See also fig. 1 below.) First we will prove the continuity

properties for all three theorems; i.e. all upward arrows in fig. 1,2,3. This

is done in section 4. In section 5 we prove an important trio of lemma's

enabling us to prove (i) => (ii) for the three theorems above. The proofs

of these specification lemma's require some theory of 'lifting of specifi­

cations' which is of a technical nature. In order not to obscure the main

line of the arguments, this technical part is given in an Appendix. Section

6 contains the combination of the three specification lemma's which yields

the remaining parts of the proofs of Theorems 3.1, 3.2 and 3.3.

Theorem 3. I

A.
p
p

E
N
D
I
X

¢:ALG(I)+(ALG(6)is persistent and Dom(¢)

fi)¢ 1s effectively continuous

=>II Countable specification
_ij,Lemma (CSL) 5. I

= i Compression Lemma (CL)

= =>II Finite Specification jj, Lemma (FSL) 5. 3

5.2

(ii)¢ has a finite
algebraic specification trivial

._ _____________ _

ALG(I,E) n SCA(I)

(iii)

for some finite E

Theorem of
Myhill-Shepherdson

4,3

¢ is effective

fig. I

Theorem 3.2

Theorem 3.3

4. PROVING CONTINUITY

<j, persistent

(i)
<j, is continuous

CSL 5.1

<j, has an algebraic
specification

<j, persistent

f1l is effectively continuous

n CSL 5. I

$ CL 5.2

FSL 5.3

(ii) <P has a finite algebraic
specification

l l

4. I

fig.2

4.2

fig.3

We will now prove (iii),.. (ii) of Theorem 3.1 and (ii),.. (i) of Theorems

3.2, 3.3. First the easier two implications:

4.1. Proof of Theorem 3.2 (ii),.. (i).

1 7 Let and L ~ be bijective coding and decoding functions for closed

I: - equations, and likewise Ir 71 , IL J for closed A-equations.
I:

Suppose that t has a specification, say (f,F). So t(A) = (f,F)A (A),

for A E Dom(t). Noting that A= (E,=A)E, we have

<P (A)

12

Now let A = { (n,m) IF u LDn.J I- tt.. m.JI } , A E Pw. Then for A E Dom(cj,):

. r _ 7 = { m I 3 Dn _c r =A , (n, m) E A } =
a • =A

Hence cp is continuous (by Def. 2.4.2.2 and Lennna 2.4.2.l). D

4.2. Proof of Theorem 3.3 (ii)=> (i).

If in the above proof Fis finite, then obviously A is r.e ••

Hence cp is effectively continuous. D

4.3. Proof of Theorem 3.1 (iii)=> (ii).

Let (Y,E) be an effective transformation of specifications that de-

scribes cp. Consider We will construct an effective operator (see

2. 4.2.3) o: RE-+ RE that extends ~. Then it follows by the Theorem of Myhill

& Shepherdson (2.4.2.4) that o can be extended to an enumeration operator

(2.4.2.2(ii)), which innnediately implies that cp is effectively continuous.

In order to define o, consider the domain ALG(E,E) n SCA(E) of cp • Let

Wd(z) be the coded congruence of an algebra in ALG(E,E) n SCA(E) which is

generated by W (cfr. W () in diagram in 1.3; there E = 0). To be precise,
Z C Z

let d be a recursive function such that for all z:

Such a function d exists because Eis finite.

Further, let (h 1,h2) be as in the diagram in 1.3, and let

(E'(z), E'(z)) = (h 1(d(z)), h2 (d(z)). Now define:

o(W) = {D"el l<r(E'(z),E'(z)), e:(E'(z),E'(z))) 1- e,
z

e is a closed A - equation}

for an appropriate computable function g.

One easily verifies that o is an effective operator. Moreover, o ex-
- r_ 7

tends~: let A€ Dom(~) and =A = W. Then W = Wd() and thus
I: z z z A

(E'(z),E'(z)-+- A and (y(E'(z),E'(z)), e:(E'(z),E'(z))) - HA) which

13

r 1 - r 7
implies Wg(z) = =~(A) . Hence o(Wz) = ~(=A). D

5. THREE SPECIFICATION LEMMA'S

Since the proof of Theorem 3.l(ii).,. (iii) is trivial and since Theorem

3.1 (i) => (ii) follows from the more general implication 3~3 (i) .,. (ii), it

remains to establish (i).,. (ii) for Theorems 3.2 and 3.3. This is done as

follows.

Given a continuous parametrized data type~, we have an F € Pw repre­

senting~. Now the Countable Specification Lemma (5.1) transforms this Fin­

to a countable specification EF for~ consisting of closed conditional equa­

tions. This proves already Theorem 3.2 (i).,. (ii).

If moreover~ is effectively continuous, Fis r.e •• Then the Finite

Specification Lemma (5.3) is able to convert the countable specification

EF into a finite one; but first EF has to be 'preprocessed' by the Compression

Lennna (5.2) to an EF containing only closed conditional equations e ➔ e' with

precisely one condition.

5.1. COUNTABLE SPECIFICATION LEMMA. Let~: ALG(E) ➔ ALG(A) be a persistent

and continuous parametrized data type. Then~ has a specification (6,E)

with E containing closed conditional equations onZy.

If moreover~ is effectively continuous, then E aan be taken to be an

r.e. set.

14

PROOF. Let~ be continuous. Let FE Pw represent i(i.e. F extends i) •

Let I 7 , L _J , Ir 1I and IL JI be as in 4. 1 •

Now there is a nice correspondence between (m,n) E F and closed con­

ditional equations, as follows: to each (m,n) E F we associate the conditional

equation

e () = M D ➔ IL n.JI m,n IL m _J

These closed conditional equations turn out to be the desired specification:

where EF = {e(m,n) I (m,n) E F}.

We will now prove that (*) indeed holds. In order to do so, we need a

proposition expressed in the following claim. There the following notation
0 •

is used: if Eis a set of conditional equations , E is the set of all

closed equations logically derivable from E.

CLAIM. Let ~,F and EF be as above. Then:
0

(i) A E Dom(~) => (EF u '=A) c =HA) ,

(ii) if~ is pePsistent:

A E Dom(~) => (EF u '=A) 0 = =~(A) •

Proof of the claim.

(i)

(ii)

is obvious from the construction of EF.

It suffices to show that HA) I= EF u '=A •

That HA) I= '=A is obvious since (HA)) E

homomorphic image of A • Also ~ (A) I= EF

for, let e(m,n) E EF. Assume ~(A) I=
M D • Then also (HA))~ I= M Dm •

Lm.J ,., L. ~

By persistency A= (~(A))E, hence

A I=
A I=

• Now

is a

D
L mJ ~ = A .,.

r = , __
D c: -A ...,.

m -r.- 1 n e: =HA) ...

lnJI € =cf>(A) ...

cf>(A) F · u_nJ •

The ref ore !/> (A) I=

So if(/> is persistent, then for A e: Dom((/>):

M LDmj -+ ln 11 (= e) :..u (m,n)

(by the claim)

Now(*) follows by the Standard Application Lenuna (App. 7.2). D

15

In the next two lenuna's the concept (r',E') ~ (r,E) (the specification

(r',E') is a lifting of (r,E)) is employed. The precise definition and the

proof of the 'Lifting Lenuna' are given in the Appendix. The intuitive idea

is simply that a lifting (r',E') of (r,E) is some kind of extension of the

specification (r,E) such that they specify the same parametrized data types:

I:
= (f,E)/J.

(In fact we must be slightly more precise - see the Appendix.)

5.2. COMPRESSION LEMMA.

Let (f,E) be a specification with E containing closed conditional equa­

tions only. Then there is a lifting (r',E') of (r,E) with E' containing

closed conditional equations of the form e-+ e' only.

Moreover, if Eis r.e. then so is E'.

16

PROOF. Consider the following extension r u 11 of r:

the signature /1 has sorts NAT, LINK

functions S: NAT ➔ NAT

L: NAT X NAT + LINK

constants 0 E NAT

We use the abbreviation k for the k
term S (O) of sort NAT (kEw).

Let E = {s 1=t 1 A ••• As = t + s! = t'.liEw} be a (not necessarily
mi mi 1 1

effective) enumeration of E, for some function i 1+ m .• We may suppose
l

m. c I (by prefixing a dummy condition if necessary).
l

Consider e.: s 1 = t 1 A ••. As = tm + s! = t~ (m.cl). We will replace
l m. . l l l

h E d .l. 11 . h h . 1 e. byte set . of m. + I con 1t1ona equations eac aving on y one con-
1 l l

dition:

s I = ti ➔ L (i_, _Q_) = L(i_,J_)

s2 = t2 ➔ L (i_, 1) = L(i_,2)

/ l s m.

L(~,_Q_)

tm. ➔ L(i_,k-1) = L(i_,l)
l

=.L(i_,l) + s! = t'.
l . l

(Note that using these cond. equations:

s 1 = t 1 A . • • A s m. = t m • + L (i_, 0) = L (i_, I) = L (i_, 2) = • • • = L (i_, l) +

Now (r',E') wl11 be1 (rul1,.U E) • The verification that indeed
lEW l

s!=
l

t ! .)
1

(r',E') ~ (r,E) is left to the reader.

If Eis r.e., it is not hard to see that E' is r.e. too.

5.3. FINITE SPECIFICATION LEMMA.

Let (r,E) be a specification with E an r.e. set of conditional equations

of the form e + e' .

Then (r,E) has a lifting (r' ,E') with E' finite.

PROOF. Let E = {e. + e! Ii E w} be an effective enumeration of E. Let E(s,t)
l 1- S S t t

contain all the conditional equations in E of the form , 1 = , 2 + , 3 = , 4 ,

for every pair of sorts (s,t) in r. So E = U{E(s,t) ls,t sorts in r}.

17

r l
Let , be bijective coding and decoding functions of the closed

L J (st)
r - terms. Since Eis r.e., each E ' is r.e.; hence for each pair (s,t)

there are recursive functions g. (s,t) , i= 1, ••• , 4 such that
l.

E (s' t) = { () () + g3 (n) = g4 (n) I n E w } •
L gl n J = L g2 n _J L J L J

Now we could give the desired (r' ,E') ~ (f,E) at once; however for a

better understanding, and as an anticipation of the proof of~ , we will

consider first the following expansion of A E ALG(r).

First we define an algebra E, determined by E. Let * r * be a sig-r+

nature morphism making a disjoint copy of r. So to each constant c, resp.

function fin r there corresponds c* , f* in r*. We will extend* in the

obvious way to Ter(r).

The signatu:t'e of E, called EE, is:

r* u sorts : NAT

functions: S: NAT + NAT

G.(s,t): NAT+ r* (for each s,t E sorts(r) and
l.

i = 1, ••• , 4)

constants : 0
k (as before, ~ abbreviates S (O), for k E w.)

The congruence =Eis generated by the recursive set of closed EE-equa­

tions:

= ~s,t)(k) * lkEw, s,t E sorts (r)}
tgl. J

So E = (EE,G)E Clearly Eis a semi-computable (even a computable) algebra.

Hence by LemmaEl.3.1 it has a finite specification (~,F) for some~.=. EE
and F.

Next, Eis "glued" to A, by means of homomorphisms hs: T(r*) + A (note

that (E)r* = T(r*)) for every sorts in r, satisfying the finite set Hof

equations:

18

H = hs(c*) = C for every c E constants (r)
'

s(* ••• 'xk))
$1 sk

h f (x I, = f (h (x 1) , ... , h (xk))

for every f E functions (r) of type s I X • • •

s * * (So the h remove the of r - symbols.)

Let A@ Ebe the result , see figure 4.

Q, ~,3_ ••••

(s,t)
G.

1

,v \ I

,.
'I

*
hs

' C / C

T(f*)
' /

""- ~ Fig. 4

E A

Now consider the finite set of conditional equations

JE = {e(s,t)I s,t E sorts (r)} where

(s,t)
e :

x sk ➔ s

Evidently, if A @ E f JE, then A f E • So using E the infinite E can be re­

placed by the finite]E •

It is now clear what the desired (r' ,E'), such that (r',E') ~(f,E),

should be:

(f' ,E') = (r u fl u { hs I s E sorts (r)} , JE u F u H).

The proof that (r',E') ~ (f,E) is routine; the expansion requirement (see

Def. App. 7.3(iii)) is clearly fulfilled since every A E ALG(E,E) can be ex­

panded to A@ E' E ALG(f'E') where E' = I(ALG(fl,F)). 0
'

19

6. PROOF OF THEOREM 3.2 (i) ~ (ii) AND 3.3 (i) ~ (ii).

Clearly 3.2 (i) ~ (ii) is a consequence of the Countable Specification

Lennna (CSL) 5.1.

The other implication requires some argument. Let~: ALG(r) ➔ ALG(6)

be persistent and effectively continuous. According to CSL 5.1 it has a

specification (6,E) with E r.e. and containing closed conditional equations

only. According to the Compression Lennna (5.2) this specification can be

lifted to a specification (r,F) with F r.e. and containing closed conditional

equations of the form e ➔ e' only.

Then, using the Finite Specification Lennna (5.3), (f,F) is lifted to

(r',F') with F' finite. By transitivity of lifting, (r',F') ~ (6,E).

Finally, by the Lifting Lennna (App. 7.4) we may conclude from

~ c (6,E)~ to~ c (r',F')~, i.e. ~ possesses a finite specification. D

7. APPENDIX: LIFTINGS OF SPECIFICATIONS

Before we state the definition of lifting and prove its main property,

we need some preparation.

7.1. JOINT EXPANSION LEMMA.

Let Ai E ALG(ri) , i = 0,1,2, be such that Ll n Lz = Lo and

<A1)ro =Ao= <Az)r •
Then there is~ unique joint expansion A1 U A2 E ALG(r 1ur 2) of A1, A2

such that (Al U A2) = Ai , i = l , 2.

PROOF. Routine. 0

The next Lemma is intended to simplify a verification that some speci­

fication indeed specifies a parametrized data type~.

20

7.2. STANDARD APPLICATION LEMMA.

Suppose that~: ALG(E) + ALG(6) is a persistent parametrized data type.

Then the following is a sufficient condition for~= (r,E)~

PROOF.
E

= (r,E)6 (E,=A)r =>

= (r , E u =A) 8 •

Let B = (r,Eu=A)r. Then BI= E, (B) 8 = HA) and (B)r = (HA))r = A because

of persistency.

Now let A = (E' E') E 'n r = r • We have to show , E ,

Hence, by the Joint Expansion Lemm.a 7.1, A' and B have a joint expansion

C = A' U Bin ALG(E'ur) with (C)r, = A' and (C) = B.
r

Clearly CI= Eu E' and (C) 8 = HA).

0 0

It follows that (EuE') n Ter (6) c = HA) • (~ef. : see proof of Lemm.a

5.1). Because (rur,Eu =A) 8 = HA) we have (Eu:A) ~ =cp(A)"

0

Further, (E',E')r = A imp~ies E' .:.. =A. It follows that

(EuE') n Ter(6) .:.. (Eu =A) n Ter(6) .:.. =HA) n Ter(6) = =HA) •

0

So HA)= (rur',(EuE') ✓ n Ter(6)) 8 = (rur',EuE') 8 • □

7.3. DEFINITION. Let (r',E') and (r,E) be two specifications. We say that

(r',E') is a lifting of (r,E), notation: (r',E') ~ (r,E), if the following

three conditions are satisfied:

(i) r' ::i r
(ii) F::i E (-- denotes the closure under logical derivability),

(iii) each A E ALG(r,E) can be expanded to an algebra A'E ALG(r',E'). (I.e

(A') r = A •)

The important property of liftings is the following.

7.4. LIFTING LEMMA.

Let~= ALG(E) ➔ ALG(~) be a persistent parametrized data type. Let

E c ~ c rand assume (r',E') ~ (r,E). Then :

PROOF. (First note that the requirement that~ is persistent, turns the
E E

statement(*) into one weaker than the statement (r,E)~ _::. (r',E') ~ .)

Suppose A E Dom(~). By Lemma 7.2 it suffices to check that

(r' ,E')1 n ,=A) = (f,E)1 < E,=A) •

21

Let B = (r,E u =A)r and B' = (r' ,E'u =A)r'. Take B" to be an expansion

of Bin ALG(r') with B" I= E'. Because of the initiality of B' there is a

homomorphism a: B' --r B". Restricting a tor one obtains

ar: (B')r ---(B")r (=B). Because B' f E' U=A, (B')r f Eu=A. Since Bis

initial in ALG(r,E u =A), there is a homomorphism S: B -- (B')r. Conse-

quently B2:! (B')r and (B)~ 2:!(B')t, which had to be shown. D

REFERENCES

[I] BERGSTRA, J.A. & J.V. TUCKER, Algebraic specifications of computable

and semi-computable data structures, Mathematical Centre, Depart­

ment of Computer Science Research Report IW 115, Amsterdam 1979.

[2] BERGSTRA, J.A. & J.V. TUCKER, A characterisation of computable data

types by means of a finite equational specification method,

Proc. 7th ICALP, Springer LNCS Vol. 85, 1980.

[3] BERGSTRA, J.A. & J.V. TUCKER, Initial and final algebra semantics for

data type specifications: t-wo characterisation theorems, Mathe­

matical Centre, Department of Computer Science Research Report

IW 131, Amsterdam 1980.

22

[4] BURSTALL, R.M. & J.A. GOGUEN, An infoPmal introduction to specifications

us;ing CLEAR, Lecture notes for the International Sunnner School on

theoretical foundations of programming methodology, Munich 1981.

[5] EHRICH, H.D., On the theory of specification., irrrplementation and para­

metrization of abstract data types. Research Report Dortmund 1978.

[6] EHRIG, H.E., H.-J. KREOWSKI, J.W. THATCHER, E.G. WAGNER & J.B. WRIGHT,

Parameterized data types in algebraic specification languages.,

Proc. 7th ICALP, Springer LNCS Vol. 85, 1980.

[7] EHRIG, H .. , Algebraic theory of parameterized specifications with re­

quirements., in Proc. of Int. Conf. on the formalization of pro­

grannning concepts, Springer LNCS Vol. 107.

[8] GANZINGER, H., Parameterized specifications: parameter passing and op­

timizing irrrplementation. Report TUM-18110. Technische Universitat

Munchen, August 1981.

[9] KAPHENGST, H. & H. REICHEL, Algebraische Algorithmentheorie., VEB

Robotron, Dresden WIB, 1971.

[IO] LEHMANN, D.J. & M.B. SMYTH, Data types. Proc. 18th IEEE Symposium on

Foundations of Computing, Providence R.I. November 1977.

[II] ROGERS jr., H., Theory of recursive functions and effective corrrputabil­

ity., McGraw-Hill, 1967.

[12] SCOTT, D.S., Lambda calculus and recursion theory~ in Proc. Third

Scandinavian Logic Conf., Ed. s. Kanger, North Holland Studies in

Logic and the Foundations of Mathematics, Vol. 82, 1975.

[13] THATCHER, J.W., E.G. WAGNER & J.B. WRIGHT, Data type specification:

par·ameterization and the power of specification techniques., Proc.

SIGACT 10th Annual Symp. on Theory of Computing, pp. 119-132,

May 1978.

[14] WIRSING, M., An analysis of semantic models for algebraic specifications.,

Lecture notes for the International Sunnner School on theoretical

foundations of progrannning methodology, Munich 1981.

11NTVAN
\""I. ~,<, ("\

L

