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Algebraic specifications for parametrized data types with minimal parameter,, 

and target algebras *) 

by 

**) J.A. Bergstra & J.W. Klop 

ABSTRACT 

We conceive a parametrized data type as a partial functor 

<f>: ALG ('.E) ➔ ALG (6) , where 6 is a signature extending I: and ALG (I:) is the 

class of minimal I: - algebras which serve as parameters. 

We focus attention on one particular method of algebraically specifying 

parametrized data types: finite specifications with conditional equations 

using auxiliary sorts and functions provided with initial algebra semantics. 

We introduce the concept of an effective parametrized data type. Asa

tisfactory adequacy result is then obtained: each effective parametrized 

data type possesses a finite algebraic specification under initial semantics. 

KEYWORDS & PHRASES initial algebra specification, parametrized data type, 

semi- computable data type 
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INTRODUCTION 

The mathematical theory of parametrized data types was initially inves

tigated in ADJ [13], [6], LEHMANN & SMYTH [IO], KAPHENGST & REICHEL [9] and 

EHRICH [SJ. Central topics in these studies are specification methods and the 

correctness problem for specifications and parameter passing mechanisms. 

Reading through the growing litterature on parametrized data types one 

observes small but important differences between the basic definitions used 

by various authors; these variations resulting from differences in aims as 

well as from differences concerning the general points of view. 

Obviously this situation entails a difficulty for the theoretical de

velopment of the subject. Rather than aiming at a unified theoretical frame

work it is our intention to consider one single specification method and to 

investigate that one in depth. This method is: initial algebra specifications 

with conditional equations using auxiliary sorts and functions. 

The relevance of our results should not only be measured against the im

portance of the specification method that we analyze; it also indicates a 

style of investigating specification mechanisms for data types in general. 

The main idea is to connect specification methods to recursion theoretic con

cepts; similar results for abstract data type specification were obtained in 

BERGSTRA & TUCKER [2] and [3] • 

A parametrized data type will be a partial functor~: ALG(I) +ALG(6), 

for some signatures E,6 with E .=. 6. Here ALG(r) denotes the class of all 

minimal algebras of signature r. (Remark on terminology: BURSTALL & GOGUEN 

[4] call A E ALG(r) an algebra 'without junk'.) 

Further, ~ is called pePsistent if ~(A) is an expansion of A for all 

A E Dom(~). Apart from the requirement that parameter algebras be minimal 

these definitions correspond to the original ones in ADJ [13]. 

All the constructions and arguments in the sequel will be modulo iso

morphism of the minimal algebras we are dealing with. (Alternatively, one 

may consider ALG(E), the class of minimal I-algebras, as consisting of term 

algebras, i.e. quotients of the free term algebra over E.) In this way we 

get around the difference between 'persistent' and 'strongly persistent' from 

ADJ [13]. For generalizations of our results however, a more sophisticated 

approach of this issue will be required. 
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Keeping in mind that the application of a parametrized data type on 

a parameter algebra is to be effectively performed in a computational process, 

the following class of effective parametrized data types seems to be of in

trinsic importance. A parametrized data type¢ is called effective iff there 

exists a computable transformation (y,£) that transforms a finite input spe

cification (I' ,E') for a parameter algebra A into a finite specification 

(y(I' ,E'), £(I' ,E')) = (I",E") for a target algebra HA). In both cases the 

specifications are allowed to use auxiliary sorts and functions. 

An attractive transformation mechanism for specifications is the fol

lowing one: 

(y(I',E'), E(I',E')) = (I'ur,E'uE) 

for some fixed finite specification (r,E). If such (f,E) can be found, the 

parametrized data type¢ is said to have a finite algebraic specification. 

Our main interest is the following question: to what extent are algebraic 

specifications available for effective parametrized data types. For this 

question we are interested in parametrized data types with a domain consis

ting of semi-computable algebras only, because other algebras have no finite 

specification. We are then able to prove the following adequacy theorem 

(where SCA(I) denotes the class of semi-computable I-algebras): 

THEOREM 3.1. Let¢: ALG(I)-+ ALG(L':.) be a persistent parametrized data type 

such that Dom(¢)= ALG(I,E) n SCA(I) for some finite E. Then¢ is effective 

iff it has a finite algebraic specification. 

The proof is quite involved and uses a detour via an auxiliary notion, 

viz. that of a (effectively) continuous parametrized data type. A continuous 

parametrized data type¢ can be represented by an element Fin the Graph 

model Pw for the A-calculus; an effectively continuous one by a recursively 

enumerable FE Pw. Now it turns out that a parametrized data type has a 

(finite) algebraic specification iff it is (effectively) continuous. 

For further information about parametrized data types the reader is 

referred to [7], [8] and [14]. 
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I. SPECIFICATION OF PARAMETER AND TARGET ALGEBRAS 

In thi:s section we will collect several definitions of preliminary 

notions and some facts about them. 

I.I. Algebras. 

A signature I is a triple consisting of three listings, one of sorts, 

one of functions and one of constants. 

EXAMPLE. sorts INT BOOL 

functions sue: INT ➔ INT , 7 : BOOL ➔ BOOL 

constants OE INT , true E BOOL. 

Thus I determines the type of constants and functions declared 1.n it. The 

meaning of I .=_ r , I u r , I n r is clear. 

A I - algebra A consists of a non-empty set A 
s 

for each sorts in I and 

f . fA unctions : As x ••• x As ➔ A for each function name f E I of type 
k SA 

s I x ••• x sk ➔ s and a constant c E As for each constant name c of type s 1.n 

L 

For each sort s E I there are variables x~ 1. E w The sets Ter (I) of 1. s 
terms for sort s EI are defined by the following simultaneous induction. 

For each s: 

(i) the constants of sorts are 1.n Ter (I); 
s 

(ii) x~ E Ter (I), i Ew; 1. s 
(iii) if T T j E er s j (I) , J = I, ... , k, and f E I is 

s 1x ... x sk ➔ s then f(, 1, •.. ,,k) E Ter 8 (I) 

Furthermore, Ter (I) = U {Ter (I) I s in I} . 
s 

A closed term contains no variables. Terc(I) 

a function of type 

1.s the set of closed I-

terms. An equation (of sorts) 1.s an expression of the form T =,'where 

,,T 1 E Ter (I). A closed equation 1.s an equation between closed terms. A 
s 

conditional equation is a construct of the form 

where,.,,! E Ters_(I) 
1 1 1 
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The free term algebra T(E) is obtained by taking as A (see above) the 
s 

sets Terc (I) and interpreting functions and constants 'by themselves'. 
s 

A E-algebra A is minimal if it has no proper E-subalgebras. If r J E 

and A is some r - algebra , then A IE is the reduct of A of signature E which 

results by forgetting sorts, constants and functions not named in L By 

<A>E we denote the minimal E - subalgebra of A I E • If Al E = <A> = B E , we 

write (A) E = B and call A an enrichment of B. 

With ALG(E) we denote the class of minimal E-algebras. For a set E of 

conditional equations, ALG(E,E) denotes the class of algebras A E ALG(E) 

with A I= E. 

To each A E ALG(E) we can associate the congruence = A , that is the 

set of all closed equations true in A. Note that A Sa T(E)/ =A (A is isomor

phic to the factor algebra obtained from the free term algebra by dividing 

out its congruence). 

If K ~ ALG(E), then I(K) denotes the initial algebra of K, if it exists. 

(This is the algebra A from which all BEK are homomorphic images; A is 

determined up to isomorphism.) 

1.2. Recursion theory and coding. 

We use the notation W ( of ROGERS [JI]) for recursively enumerable (r.e) 
z 

subsets of w; z EW is called an r.e. -index. 
r l 

Often we will use a bijective and effective coding S ➔ w for a 
C 

set S of syntactic constructs, e.g. S = Ter (E). Decoding l J :w ➔ Sis 

given by the inverse function. It is left to the reader to give a detailed 
r 1 r 1 {rt1 I } . • construction of If T c S , then T = t ET ; likewise LA J, for 

A~ w , is defined. 

Let A E ALG(E). Then A is called semi-computable iff r =A 7 is r.e. (iff 
r 1 • 

3z =A = W2 ). The set of semi-computable minimal E-algebras is denoted by 

SCA(E) . 

Let r 7 : TERc (E) x Terc (E) ➔ w be a bijective coding of all closed 

E - equations, with L J as decoding function. Now an arbitrary L W2_J need 

not yet be a congruence; it is after closure under logical derivability: 

LW J • 
z 
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7 ' Coding again it is not hard to see that W 
L z .J 

c : w ➔ w. So Wc(z) codes 

gram in section 1.3.) 

= Wc(z) for some recursive 

z E w. (See also the dia-a congruence, for all 

1.3. Initial algebra specifications. 

Let A E ALG(I:), and I:'::> L Then (I:' ,E') is a specification of A using 

auxiliary sorts and functions if A= (I(ALG(I:' ,E')))I: • For brevity we will 

use the notation: (I:' ,E')[ =A. To employ in diagrams, we use the alterna

tive notation: 

(I:' ,E') A • 

Note that I(ALG(I:' ,E')) always exists. However, (I(ALG(I:',E')))I: is not 

for all (I:' ,E') and I:'~ I: defined (see the definition of enrichment in 1.1). 

Note that if E' is finite, I(ALG(I:' ,E')) E SCA(['). In fact we have: 

1.3. 1. LEMMA. A E SCA(I:) ~A= (I:' ,E')I: for some I:'~ I: and finite E'. 

This is proved in BERGSTRA & TUCKER [1]. In fact it is proved there 

that from an r.e.-index z for r=A7 one can uniformly find a finite (I:' ,E') 

specifying A; see the diagram below. 

Finite specifications (I:',E') for A can be thought of as 'indices' just 

like z is an r.e.-index for =A(= W ) after coding. Indeed, the following 
L Z_j 

diagram asserts that both kinds of indices can effectively be translated 

into each other: 

A E SCA([) 

effective 
finite 
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2. PARAMETRIZED DATA TYPES, DESCRIPTIONS AND SPECIFICATIONS 

In this section we explain our definition of a parametrized data type, 

and explain what it means for a parametrized data type to be: effeatively 

given, aZgebraiaaZZy speaified, aontinuous or effeatively aontinuous. 

2. I Parametrized data types. 

A parametrized data type is a partial functor$: ALG(E) + ALG(6) where 

E c 6 , i.e. 

3 horn. 6 

B 

which satisfies the following condit::.on : for each A E Dom($) there is a 

surjective homomorphism a.: A+ HA) IE. 

If, moreover, for each A E Dom($) we have: A ~ HA) IE then $ is persis

tent. 

2.2. $ is effective given($ is effective) 

if Dom($)~ SCA(E) and there is a pair (y,E) of computable operations, 

acting on finite specifications, that produces a specification 

(y(E',E'), E(E',E')) of $(A) for each specification (E',E') of some 

A E Dom($) • 

In a diagram : 

finite (E' ,E') __ c_om_p_ • ...;.(y.:...::..,E_);......(y(E',E') , E(E' ,E')) = (E",E"), finite 

semi-computable A E Dom($) -----------------~B, semi-comp. 

In a different notation: $((E',E')r) = (y(E',E'), E(E',E')) 6 • 
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2.3. ~ has an algebraic specification 

if there is a specification (r ,E) such that for all A e: Dom(~): 

(E' ,E')------- (E' ur,E'uE) 

If (f,E) is finite, then~ has a finite algebraic specification; in that 

case~~ SCA(E) is effectively given with y(E',E') = E'ur and e(E',E') = E'uE. 

Here it is required that E 'n r c E • 

Notation: so the diagram states: 

E (r,E)6 (E',E')r = (E'ur,E'uE)6. 

Note the following composition rule (provided r'n f=6) 

(r',F)~ o(f,E)~ = (r'ur,FuE)~. 

2.4. Representing parametrized data types in reflexive domains. 

2.4.I. Let r 7 f be a bijective coding of closed r-equations, and L ~r the 

corresponding decoding. We will omit the r when no confusion is likely to 

arise. 

For a parametrized data type ~: ALG(E)-+ ALG(6) , let 

- r , r , The mapping~ : Dom(~) -+ Range(~) is introduced by 
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A B 

2.4.2. A reflexive domain. The Graph model Pw is the structure consisting 

of the powerset of wand an application operator• on it. Application is 

defined as follows: for A,B E Pw, 

A•B = {ml3 nE w (n,m) EA & D c B} where (, ): wxw ➔ w is a bijecn-
tive and effective pairing function and D is the finite set with 'canonical 

n 
index' n defined as follows: D0 = QI; if n = 2a1 + ••• +2 8 k, a 1< ••• <~, then 

Dn = {al, ••• , ak}. 

A mapping F: Pw ➔ Pw is continuous if for all XE Pw: 

F(X) = U{F(D )ID c X}. For the next Lemma, see SCOTT [12]. n n-

2.4.2.1. LEMMA. Let F: Pw ➔ Pw. Then: 

Fis continuous <==> 3F E Pw VX E Pw F(X) = F•X. 

2.4.2.2. DEFINITION. (i) The parametrized data type~ is continuous if~ 

is the restriction to rDom(~)' of some continuous mapping F: Pw ➔ Pw. 

(ii) Moreover,~ is called effectively continuous if~ is the restriction 

of a continuous F which is represented in Pw by an r.e. element F E P w. 

(I.e. Fis an enwneration operator, in the sense of ROGERS [II].) 

2.4.2.3. Write RE for the set of r.e. subsets of Pw. Let~= RE ➔ RE. Then 

~ is called effective if for some computable f: 

We need the following version of the Theorem of Myhill and Shepherdson (see 

ROGERS [11]),as stated in SCOTT [12]: 



2.4.2.4. THEOREM. If~= RE-+ RE is effective, then for some r.e. eZement 

F of Pw: 

VX e: RE ~(X) = F • X • 

Consequently~ as in the Theorem can be extended to a continuous operator 

(viz. AX. F •X). On the other hand of course: if Fe: RE, then 

AX e: RE. F • X is effective. 

3. SPECIFICATION THEOREMS 
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The main result of this paper is Theorem 3.1 which essentially asserts 

that effective parametrized data types have finite specifications, provided 

their domain is reasonably well-behaved. We expect that 3.1 (ii)~(iii) will 

have many generalizations; for instance, removing the condition that input 

algebras are minimal seems quite worth-wile. Other specification methods, 

such as working with requirements (see EHRIG [7J)or with final algebras, 

lead to similar questions. 

Theorems 3.2 and 3.3 provide exact characterizations of the persistent 

parametrized data types that can be specified, without any condition on the 

domains involved. 

3.1. THEOREM. Let~: ALG(E)-+ ALG(6) be a persistent parametrized data type 

with Dom(~)= ALG(E,E) n SCA(E), for some finite E. Then the foZZowing are 

equivaZent: 

(i) ~ is effectiveZy continuous; 

(ii) ~ possesses a finite aZgebraic specification; 

(iii)~ is effective. 

3.2. THEOREM. Let~= ALG(E)-+ ALG(6) be a persistent parametrized data type. 

Then the foZZowing are equivaZent: 

(i) ~ is continuous; 

(ii) ~ has an aZgebraic specification. 



3.3. THEOREM. Let¢: ALG(E) ➔ ALG(~) be a persistent parametrized data type. 

Then the foUowing are equivalent: 

(i) ¢ is effectively continuous; 

(ii) ¢ has a finite algebraic specification. 

Since the proofs are rather involved we will make some remarks about 

their structure. (See also fig. 1 below.) First we will prove the continuity 

properties for all three theorems; i.e. all upward arrows in fig. 1,2,3. This 

is done in section 4. In section 5 we prove an important trio of lemma's 

enabling us to prove (i) => (ii) for the three theorems above. The proofs 

of these specification lemma's require some theory of 'lifting of specifi

cations' which is of a technical nature. In order not to obscure the main 

line of the arguments, this technical part is given in an Appendix. Section 

6 contains the combination of the three specification lemma's which yields 

the remaining parts of the proofs of Theorems 3.1, 3.2 and 3.3. 

Theorem 3. I 

A. 
p 
p 

E 
N 
D 
I 
X 

¢:ALG(I)+(ALG(6)is persistent and Dom(¢) 

fi)¢ 1s effectively continuous 

=>II Countable specification 
_ij,Lemma (CSL) 5. I 

= i Compression Lemma (CL) 

= =>II Finite Specification jj, Lemma (FSL) 5. 3 

5.2 

(ii)¢ has a finite 
algebraic specification trivial 

._ _____________ _ 

ALG(I,E) n SCA(I) 

(iii) 

for some finite E 

Theorem of 
Myhill-Shepherdson 

4,3 

¢ is effective 

fig. I 



Theorem 3.2 

Theorem 3.3 

4. PROVING CONTINUITY 

<j, persistent 

(i) 
<j, is continuous 

CSL 5.1 

<j, has an algebraic 
specification 

<j, persistent 

f1l is effectively continuous 

n CSL 5. I 

$ CL 5.2 

FSL 5.3 

(ii) <P has a finite algebraic 
specification 

l l 

4. I 

fig.2 

4.2 

fig.3 

We will now prove (iii),.. (ii) of Theorem 3.1 and (ii),.. (i) of Theorems 

3.2, 3.3. First the easier two implications: 

4.1. Proof of Theorem 3.2 (ii),.. (i). 

1 7 Let and L ~ be bijective coding and decoding functions for closed 

I: - equations, and likewise Ir 71 , IL J for closed A-equations. 
I: 

Suppose that t has a specification, say (f,F). So t(A) = (f,F)A (A), 

for A E Dom(t). Noting that A= (E,=A)E, we have 

<P (A) 
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Now let A = { (n,m) IF u LDn.J I- tt.. m.JI } , A E Pw. Then for A E Dom(cj,): 

. r _ 7 = { m I 3 Dn _c r =A , ( n, m) E A } = 
a • =A 

Hence cp is continuous (by Def. 2.4.2.2 and Lennna 2.4.2.l). D 

4.2. Proof of Theorem 3.3 (ii)=> (i). 

If in the above proof Fis finite, then obviously A is r.e •• 

Hence cp is effectively continuous. D 

4.3. Proof of Theorem 3.1 (iii)=> (ii). 

Let (Y,E) be an effective transformation of specifications that de-

scribes cp. Consider We will construct an effective operator (see 

2. 4.2.3) o: RE-+ RE that extends ~. Then it follows by the Theorem of Myhill 

& Shepherdson (2.4.2.4) that o can be extended to an enumeration operator 

(2.4.2.2(ii)), which innnediately implies that cp is effectively continuous. 

In order to define o, consider the domain ALG(E,E) n SCA(E) of cp • Let 

Wd(z) be the coded congruence of an algebra in ALG(E,E) n SCA(E) which is 

generated by W (cfr. W () in diagram in 1.3; there E = 0 ). To be precise, 
Z C Z 

let d be a recursive function such that for all z: 

Such a function d exists because Eis finite. 

Further, let (h 1,h2) be as in the diagram in 1.3, and let 

(E'(z), E'(z)) = (h 1(d(z)), h2 (d(z)). Now define: 



o(W) = {D"el l<r(E'(z),E'(z)), e:(E'(z),E'(z))) 1- e, 
z 

e is a closed A - equation} 

for an appropriate computable function g. 

One easily verifies that o is an effective operator. Moreover, o ex-
- r_ 7 

tends~: let A€ Dom(~) and =A = W. Then W = Wd() and thus 
I: z z z A 

(E'(z),E'(z)-+- A and (y(E'(z),E'(z)), e:(E'(z),E'(z))) - HA) which 
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r 1 - r 7 
implies Wg(z) = =~(A) . Hence o(Wz) = ~( =A). D 

5. THREE SPECIFICATION LEMMA'S 

Since the proof of Theorem 3.l(ii).,. (iii) is trivial and since Theorem 

3.1 (i) => (ii) follows from the more general implication 3~3 (i) .,. (ii), it 

remains to establish (i).,. (ii) for Theorems 3.2 and 3.3. This is done as 

follows. 

Given a continuous parametrized data type~, we have an F € Pw repre

senting~. Now the Countable Specification Lemma (5.1) transforms this Fin

to a countable specification EF for~ consisting of closed conditional equa

tions. This proves already Theorem 3.2 (i).,. (ii). 

If moreover~ is effectively continuous, Fis r.e •• Then the Finite 

Specification Lemma (5.3) is able to convert the countable specification 

EF into a finite one; but first EF has to be 'preprocessed' by the Compression 

Lennna (5.2) to an EF containing only closed conditional equations e ➔ e' with 

precisely one condition. 

5.1. COUNTABLE SPECIFICATION LEMMA. Let~: ALG(E) ➔ ALG(A) be a persistent 

and continuous parametrized data type. Then~ has a specification (6,E) 

with E containing closed conditional equations onZy. 

If moreover~ is effectively continuous, then E aan be taken to be an 

r.e. set. 
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PROOF. Let~ be continuous. Let FE Pw represent i(i.e. F extends i) • 

Let I 7 , L _J , Ir 1I and IL JI be as in 4. 1 • 

Now there is a nice correspondence between (m,n) E F and closed con

ditional equations, as follows: to each (m,n) E F we associate the conditional 

equation 

e ( ) = M D ➔ IL n.JI m,n IL m _J 

These closed conditional equations turn out to be the desired specification: 

where EF = {e(m,n) I (m,n) E F}. 

We will now prove that (*) indeed holds. In order to do so, we need a 

proposition expressed in the following claim. There the following notation 
0 • 

is used: if Eis a set of conditional equations , E is the set of all 

closed equations logically derivable from E. 

CLAIM. Let ~,F and EF be as above. Then: 
0 

(i) A E Dom(~) => (EF u '=A) c =HA) , 

(ii) if~ is pePsistent: 

A E Dom(~) => (EF u '=A) 0 = =~(A) • 

Proof of the claim. 

(i) 

(ii) 

is obvious from the construction of EF. 

It suffices to show that HA) I= EF u '=A • 

That HA) I= '=A is obvious since (HA)) E 

homomorphic image of A • Also ~ (A) I= EF 

for, let e(m,n) E EF. Assume ~(A) I= 
M D • Then also (HA))~ I= M Dm • 

Lm.J ,., L. ~ 

By persistency A= (~(A))E, hence 

A I= 
A I= 

• Now 

is a 



D 
L mJ ~ = A .,. 

r = , __ 
D c: -A ...,. 

m -r.- 1 n e: =HA) ... 

lnJI € =cf>(A) ... 

cf>(A) F · u_nJ • 

The ref ore !/> (A) I= 

So if(/> is persistent, then for A e: Dom((/>): 

M LDmj -+ ln 11 ( = e ) :..u (m,n) 

(by the claim) 

Now(*) follows by the Standard Application Lenuna (App. 7.2). D 
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In the next two lenuna's the concept (r',E') ~ (r,E) (the specification 

(r',E') is a lifting of (r,E)) is employed. The precise definition and the 

proof of the 'Lifting Lenuna' are given in the Appendix. The intuitive idea 

is simply that a lifting (r',E') of (r,E) is some kind of extension of the 

specification (r,E) such that they specify the same parametrized data types: 

I: 
= (f,E)/J. 

(In fact we must be slightly more precise - see the Appendix.) 

5.2. COMPRESSION LEMMA. 

Let (f,E) be a specification with E containing closed conditional equa

tions only. Then there is a lifting (r',E') of (r,E) with E' containing 

closed conditional equations of the form e-+ e' only. 

Moreover, if Eis r.e. then so is E'. 
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PROOF. Consider the following extension r u 11 of r: 

the signature /1 has sorts NAT, LINK 

functions S: NAT ➔ NAT 

L: NAT X NAT + LINK 

constants 0 E NAT 

We use the abbreviation k for the k 
term S (O) of sort NAT (kEw). 

Let E = {s 1=t 1 A ••• As = t + s! = t'.liEw} be a (not necessarily 
mi mi 1 1 

effective) enumeration of E, for some function i 1+ m .• We may suppose 
l 

m. c I (by prefixing a dummy condition if necessary). 
l 

Consider e.: s 1 = t 1 A ••. As = tm + s! = t~ (m.cl). We will replace 
l m. . l l l 

h E d .l. 11 . h h . 1 e. byte set . of m. + I con 1t1ona equations eac aving on y one con-
1 l l 

dition: 

s I = ti ➔ L (i_, _Q_) = L(i_,J_) 

s2 = t2 ➔ L (i_, 1) = L(i_,2) 

/ l s m. 

L(~,_Q_) 

tm. ➔ L(i_,k-1) = L(i_,l) 
l 

=.L(i_,l) + s! = t'. 
l . l 

(Note that using these cond. equations: 

s 1 = t 1 A . • • A s m. = t m • + L (i_, 0) = L (i_, I ) = L (i_, 2) = • • • = L (i_, l) + 

Now (r',E') wl11 be1 (rul1,.U E) • The verification that indeed 
lEW l 

s!= 
l 

t ! . ) 
1 

(r',E') ~ (r,E) is left to the reader. 

If Eis r.e., it is not hard to see that E' is r.e. too. 

5.3. FINITE SPECIFICATION LEMMA. 

Let (r,E) be a specification with E an r.e. set of conditional equations 

of the form e + e' . 

Then (r,E) has a lifting (r' ,E') with E' finite. 

PROOF. Let E = {e. + e! Ii E w} be an effective enumeration of E. Let E(s,t) 
l 1- S S t t 

contain all the conditional equations in E of the form , 1 = , 2 + , 3 = , 4 , 

for every pair of sorts (s,t) in r. So E = U{E(s,t) ls,t sorts in r}. 
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r l 
Let , be bijective coding and decoding functions of the closed 

L J (st) 
r - terms. Since Eis r.e., each E ' is r.e.; hence for each pair (s,t) 

there are recursive functions g. (s,t) , i= 1, ••• , 4 such that 
l. 

E (s' t) = { ( ) ( ) + g3 (n) = g4 (n) I n E w } • 
L gl n J = L g2 n _J L J L J 

Now we could give the desired (r' ,E') ~ (f,E) at once; however for a 

better understanding, and as an anticipation of the proof of~ , we will 

consider first the following expansion of A E ALG(r). 

First we define an algebra E, determined by E. Let * r * be a sig-r+ 

nature morphism making a disjoint copy of r. So to each constant c, resp. 

function fin r there corresponds c* , f* in r*. We will extend* in the 

obvious way to Ter(r). 

The signatu:t'e of E, called EE, is: 

r* u sorts : NAT 

functions: S: NAT + NAT 

G.(s,t): NAT+ r* (for each s,t E sorts(r) and 
l. 

i = 1, ••• , 4) 

constants : 0 
k (as before, ~ abbreviates S (O), for k E w.) 

The congruence =Eis generated by the recursive set of closed EE-equa

tions: 

= ~s,t)(k) * lkEw, s,t E sorts (r)} 
tgl. J 

So E = (EE,G)E Clearly Eis a semi-computable (even a computable) algebra. 

Hence by LemmaEl.3.1 it has a finite specification (~,F) for some~.=. EE 
and F. 

Next, Eis "glued" to A, by means of homomorphisms hs: T(r*) + A (note 

that (E)r* = T(r*)) for every sorts in r, satisfying the finite set Hof 

equations: 
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H = hs(c*) = C for every c E constants (r) 
' 

s( * ••• 'xk)) 
$1 sk 

h f (x I, = f (h (x 1) , ... , h (xk)) 

for every f E functions (r) of type s I X • • • 

s * * (So the h remove the of r - symbols.) 

Let A@ Ebe the result , see figure 4. 

Q, ~,3_ •••• 

(s,t) 
G. 

1 

,v \ I 

,. 
'I 

* 
hs 

' C / C 

T(f*) 
' / 

""- ~ Fig. 4 

E A 

Now consider the finite set of conditional equations 

JE = {e(s,t)I s,t E sorts (r)} where 

(s,t) 
e : 

x sk ➔ s 

Evidently, if A @ E f JE, then A f E • So using E the infinite E can be re

placed by the finite ]E • 

It is now clear what the desired (r' ,E'), such that (r',E') ~(f,E), 

should be: 

(f' ,E') = (r u fl u { hs I s E sorts (r)} , JE u F u H). 

The proof that (r',E') ~ (f,E) is routine; the expansion requirement (see 

Def. App. 7.3(iii)) is clearly fulfilled since every A E ALG(E,E) can be ex

panded to A@ E' E ALG(f'E') where E' = I(ALG(fl,F)). 0 
' 
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6. PROOF OF THEOREM 3.2 (i) ~ (ii) AND 3.3 (i) ~ (ii). 

Clearly 3.2 (i) ~ (ii) is a consequence of the Countable Specification 

Lennna (CSL) 5.1. 

The other implication requires some argument. Let~: ALG(r) ➔ ALG(6) 

be persistent and effectively continuous. According to CSL 5.1 it has a 

specification (6,E) with E r.e. and containing closed conditional equations 

only. According to the Compression Lennna (5.2) this specification can be 

lifted to a specification (r,F) with F r.e. and containing closed conditional 

equations of the form e ➔ e' only. 

Then, using the Finite Specification Lennna (5.3), (f,F) is lifted to 

(r',F') with F' finite. By transitivity of lifting, (r',F') ~ (6,E). 

Finally, by the Lifting Lennna (App. 7.4) we may conclude from 

~ c (6,E)~ to~ c (r',F')~, i.e. ~ possesses a finite specification. D 

7. APPENDIX: LIFTINGS OF SPECIFICATIONS 

Before we state the definition of lifting and prove its main property, 

we need some preparation. 

7.1. JOINT EXPANSION LEMMA. 

Let Ai E ALG(ri) , i = 0,1,2, be such that Ll n Lz = Lo and 

<A1)ro =Ao= <Az)r • 
Then there is~ unique joint expansion A1 U A2 E ALG(r 1ur 2) of A1, A2 

such that (Al U A2 ) = Ai , i = l , 2. 

PROOF. Routine. 0 

The next Lemma is intended to simplify a verification that some speci

fication indeed specifies a parametrized data type~. 
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7.2. STANDARD APPLICATION LEMMA. 

Suppose that~: ALG(E) + ALG(6) is a persistent parametrized data type. 

Then the following is a sufficient condition for~= (r,E)~ 

PROOF. 
E 

= (r,E)6 (E,=A)r => 

= (r , E u =A) 8 • 

Let B = (r,Eu=A)r. Then BI= E, (B) 8 = HA) and (B)r = (HA))r = A because 

of persistency. 

Now let A = (E' E') E 'n r = r • We have to show , E , 

Hence, by the Joint Expansion Lemm.a 7.1, A' and B have a joint expansion 

C = A' U Bin ALG(E'ur) with (C)r, = A' and (C) = B. 
r 

Clearly CI= Eu E' and (C) 8 = HA). 

0 0 

It follows that (EuE') n Ter (6) c = HA) • (~ef. : see proof of Lemm.a 

5.1). Because (rur,Eu =A) 8 = HA) we have (Eu:A) ~ =cp(A)" 

0 

Further, (E',E')r = A imp~ies E' .:.. =A. It follows that 

(EuE') n Ter(6) .:.. (Eu =A) n Ter(6) .:.. =HA) n Ter(6) = =HA) • 

0 

So HA)= (rur',(EuE') ✓ n Ter(6)) 8 = (rur',EuE') 8 • □ 

7.3. DEFINITION. Let (r',E') and (r,E) be two specifications. We say that 

(r',E') is a lifting of (r,E), notation: (r',E') ~ (r,E), if the following 

three conditions are satisfied: 

(i) r' ::i r 
(ii) F::i E ( -- denotes the closure under logical derivability), 

(iii) each A E ALG(r,E) can be expanded to an algebra A'E ALG(r',E'). (I.e 

(A') r = A • ) 



The important property of liftings is the following. 

7.4. LIFTING LEMMA. 

Let~= ALG(E) ➔ ALG(~) be a persistent parametrized data type. Let 

E c ~ c rand assume (r',E') ~ (r,E). Then : 

PROOF. (First note that the requirement that~ is persistent, turns the 
E E 

statement(*) into one weaker than the statement (r,E)~ _::. (r',E') ~ .) 

Suppose A E Dom(~). By Lemma 7.2 it suffices to check that 

(r' ,E')1 n ,=A) = (f,E)1 < E,=A) • 
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Let B = (r,E u =A)r and B' = (r' ,E'u =A)r'. Take B" to be an expansion 

of Bin ALG(r') with B" I= E'. Because of the initiality of B' there is a 

homomorphism a: B' --r B". Restricting a tor one obtains 

ar: (B')r ---(B")r (=B). Because B' f E' U=A, (B')r f Eu=A. Since Bis 

initial in ALG(r,E u =A), there is a homomorphism S: B -- ( B')r. Conse-

quently B2:! (B')r and (B)~ 2:!(B')t, which had to be shown. D 

REFERENCES 

[I] BERGSTRA, J.A. & J.V. TUCKER, Algebraic specifications of computable 

and semi-computable data structures, Mathematical Centre, Depart

ment of Computer Science Research Report IW 115, Amsterdam 1979. 

[2] BERGSTRA, J.A. & J.V. TUCKER, A characterisation of computable data 

types by means of a finite equational specification method, 

Proc. 7th ICALP, Springer LNCS Vol. 85, 1980. 

[3] BERGSTRA, J.A. & J.V. TUCKER, Initial and final algebra semantics for 

data type specifications: t-wo characterisation theorems, Mathe

matical Centre, Department of Computer Science Research Report 

IW 131, Amsterdam 1980. 



22 

[4] BURSTALL, R.M. & J.A. GOGUEN, An infoPmal introduction to specifications 

us;ing CLEAR, Lecture notes for the International Sunnner School on 

theoretical foundations of programming methodology, Munich 1981. 

[5] EHRICH, H.D., On the theory of specification., irrrplementation and para

metrization of abstract data types. Research Report Dortmund 1978. 

[6] EHRIG, H.E., H.-J. KREOWSKI, J.W. THATCHER, E.G. WAGNER & J.B. WRIGHT, 

Parameterized data types in algebraic specification languages., 

Proc. 7th ICALP, Springer LNCS Vol. 85, 1980. 

[7] EHRIG, H .. , Algebraic theory of parameterized specifications with re

quirements., in Proc. of Int. Conf. on the formalization of pro

grannning concepts, Springer LNCS Vol. 107. 

[8] GANZINGER, H., Parameterized specifications: parameter passing and op

timizing irrrplementation. Report TUM-18110. Technische Universitat 

Munchen, August 1981. 

[9] KAPHENGST, H. & H. REICHEL, Algebraische Algorithmentheorie., VEB 

Robotron, Dresden WIB, 1971. 

[IO] LEHMANN, D.J. & M.B. SMYTH, Data types. Proc. 18th IEEE Symposium on 

Foundations of Computing, Providence R.I. November 1977. 

[II] ROGERS jr., H., Theory of recursive functions and effective corrrputabil

ity., McGraw-Hill, 1967. 

[12] SCOTT, D.S., Lambda calculus and recursion theory~ in Proc. Third 

Scandinavian Logic Conf., Ed. s. Kanger, North Holland Studies in 

Logic and the Foundations of Mathematics, Vol. 82, 1975. 

[13] THATCHER, J.W., E.G. WAGNER & J.B. WRIGHT, Data type specification: 

par·ameterization and the power of specification techniques., Proc. 

SIGACT 10th Annual Symp. on Theory of Computing, pp. 119-132, 

May 1978. 

[14] WIRSING, M., An analysis of semantic models for algebraic specifications., 

Lecture notes for the International Sunnner School on theoretical 

foundations of progrannning methodology, Munich 1981. 

11NTVAN 
\""I. ~,<, ("\ 

L 






