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Towards monolingual programming environmentst 

by 

Jan Heering & Paul Klint 

ABSTRACT 

Most programming environments are much too complex. One way of simplifying them is to 
reduce the number of mode dependent languages the user has to be familiar with. As a first step 
towards this end we investigate the feasibility of unified command/programming/ debugging 
languages and the concepts on which such languages have to be based. The unification process is 
accomplished in two phases. First, a unified command/programming framework is defined and, 
secondly, this framework is extended by adding an integrated debugging capability to it. Strict rules 
are laid down by which to judge language concepts presenting themselves as candidates for inclusion 
in the framework during each phase. On the basis of these rules many of the language design 
questions that have hitherto been resolved this way or that depending on the taste of the designer, 
lose their vagueness and can be decided in an unambiguous manner. 

KEY WORDS & PHRASES: Programming Environments, Monolingual Systems, Language In
tegration, Language Design, Command Languages, Programming 
Languages, Debugging Languages, Event Associations, Side-effect 
Recovery 

tThis paper is not for review; it is intended for publication elsewhere. 





Rien n'est plus fecond, tous /es mathematiciens le savent, que ces obscures analogies, 
ces troubles rejlets d'une theorie a une autre, ces furtives caresses, ces brouilleries 
inexplicables; rien aussi ne donne plus de plaisir au chercheur. 

Andre Weil 

1. INTRODUCTION 

1.1. General 

A programmer interacting with a typical computer system has to be something of a polyglot. 
In addition to the language he is programming in, he has to be fluent in the system command 
language and the language of the symbolic debugger. Furthermore, various other system utilities 
like the text editor and the linkage editor each have their own command language, bringing the total 
number of languages he has to master to at least four. 

This hodgepodge of languages makes fast and efficient interaction with the system difficult. 
There are several reasons for this. The first and most obvious one is that the user has to remember 
so many diffe:rent details. This would be acceptable if the domains of discourse corresponding to 
the various interactive modes were sufficiently distinct. The point is that, at least for some modes, 
the opposite is true. There are profound analogies between command mode, programming mode and 
symbolic debugging mode, but in most existing systems a substantial intellectual effort is required to 
see them, because they tend to be obscured by the differences between the various languages. 

Secondly, because of the heterogeneous character of the system, the user is confronted with 
serious interfacing problems. An especially tricky boundary to cross is the one between his program 
and the file system. The mismatch between the datatypes supplied by the file system and the 
datatypes available in the programming language force him to resort to explicit input/output 
operations and intricate data conversions for even the simplest of operations on files. This whole 
area is a source of confusion and programming errors. 

These problems have not gone unnoticed. Perhaps Shaw, one of the designers of the 
JOHNNIAC Open-Shop System (an early time-sharing system which became operational at The 
RAND Corporation in January 1964), already had an inkling of the chaos that was to ensue from 
the separate development of command and programming languages when he wrote: "A striking 
feature of the system is that the user commands JOSS directly in the same language that he uses to 
define procedures for JOSS to carry out indirectly" [SHA64]. And in 1966, at the occasion of the 
decommissioning of JOHNNIAC, Ware, who had been closely involved with it, said somewhat 
optimistically: "Those who know JOSS and perceive the friendliness of its help and reaction feel 
strongly that ~ystems such as it will be one of the prominent, if not exclusive, ways of computing for the 
future" [GRU79]. Reading all this fifteen years later one cannot help but get the impression that 
somehow the evolution of programming environments has lagged. This is not to say that no 
developments have taken place in this field since JOSS first made its appearance. Powerful systems 
like APL/700 [BUR74], the CDL2 'laboratory' [BAY80], INTERLISP [TEI78], a recent LISP 
environment developed at IBM [ALB79], PATHCAL [WIL80], and SMALLTALK [GKA76, 
ING78, BYT81], each of which in its own way provides the user with a highly integrated interactive 
environment, are keeping the spirit of JOSS alive. Nevertheless, the main trend has always been to 
let the various interactive modes influence each other as little as possible. 

One reason current time-sharing systems are suffering from a lack of homogeneity is that they 
have to support a multitude of different programming languages. It seems sensible, in terms of 
implementation effort required, to provide a single environment for all languages the system is 



2 

intended to support. Such an environment has of necessity to be a compromise, however, being less 
than perfectly adapted to each individual language. Also, language specifications almost invariably 
assume 'external' data (files) to have entirely different characteristics from 'internal' data (i.e. data 
that are local 1to the program). This split propagates through the whole system and cannot be hidden 
from the user. 

Yet another problem is that most programming languages ( except APL [FIV73], LISP 
[ALL78] and SNOBOL4 [GPP71]) do not permit the dynamic creation and subsequent modification 
of procedures. This essential mechanism without which a system cannot change or grow (except by 
adding another level of interpretation) therefore has to be supplied by the command language. 

By pure coincidence there are currently two factors working in favor of a more integrated 
approach to system design. First, time-sharing is rapidly losing ground to personal computing and 
many personal systems do not have to support more than a single programming language. 
Secondly, system command languages have reached a point in their evolution where their similarity 
to regular programming languages has become so obvious that a kind of attractive force striving for 
even greater similarity has started to build up. 

The reader who wishes to gain a broader perspective on the various issues involved should 
consult the paper by Sandewall [SAN78], the proceedings of the 1980 Symposium on Software 
Engineering Environments [HUN80], and the compilation of recent papers on programming 
environments by Buxton [BUX80]. 

1.2. Scope of lthis paper 

For good reasons most integrated programming environments developed so far are based on 
languages not specifically designed to be used that way. By using an existing language the designer 
avoids the quicksand of shifting language specifications and the promotion effort needed to convince 
prospective users of the merits of his new proposal. Although these are great practical advantages, 
the unfortunate consequence is that the influence of integrated environments on language design 
remains largely unexplored. SMALLTALK [GKA76, ING78, BYT81] is an important exception. 

In this article we shall look at programming environments from a language designer's 
perspective. Suppose a language is to be embedded in an integrated programming environment. 
How would this requirement affect its design? We shall attack this problem by investigating the 
feasibility of monolingual systems in which the command language, the programming language and the 
language of the symbolic debugger are identical. The three main questions to be answered are: 

(I) Are unified command/programming/debugging languages feasible and on what concepts 
would they have to be based? 

(II) Would such languages be significantly easier to use than the typical conventional user 
interface? 

(III) In what respects would the implementation of such languages differ from the typical 
conventional operating system and language processor? 

Before going on to a detailed discussion of basic concepts we shall first give a brief survey of 
the present status of command languages in §2. §3 will be devoted to a discussion of (I). In 
essence, what we shall attempt to do is to derive a coherent set of language concepts starting from 
the single requirement that it must constitute a suitable basis for a monolingual environment in the 
above sense. This will take up the major part of the paper. The final section will be devoted to a 
brief discussion of (II) and to a general evaluation of the concepts developed in §3. We shall pay no 
attention to (III) in this paper. 

We are using the adjective monolingual in a somewhat ad hoc manner. There are, for instance, 
no obvious reasons to refrain from attempting to integrate the text edit mode in addition to the 
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three modes discussed in this paper. We have not yet tried this simply because we had to stop 
somewhere, but attempts in this direction will almost certainly be worth-while. 

Two other subjects we shall not concern ourselves with are concurrency and protection. 
Again, the reason is that we had to restrict the scope of our investigation in some reasonable way. 
The design of debugging facilities for languages allowing the manipulation of concurrent processes is 
a difficult task and their integration into a larger whole is probably even more difficult. As for 
protection, the main problem is to reconcile protection and debugging facilities. By their very 
nature, these tend to be in conflict with each other. For a monolingual system, a language based 
protection scheme allowing user defined access control would be an obvious choice, but this does 
not seem to make things any easier. We shall pay no further attention to the problems involved. 

Needless to say, the monolingual approach as discussed in this article is not an end in itself. 
Although there is much to be gained by exploiting the similarities between different modes, 
integration of languages with dissimilar domains of discourse can only be achieved within the 
framework of an extensible base language allowing the definition of different dialects or 
sub languages. 
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2. PRESENT STATUS OF COMMAND LANGUAGES 

2.1. General 

One of the basic functions of the command level is to enable the user to create, modify, and 
execute programs and procedures. Furthermore, it allows the manipulation of processes and large 
collections of more or less permanent data (files). To a first approximation existing command 
languages may be viewed as ordinary programming languages with powerful primitives that operate 
on files. At the present time command languages and programming languages are rapidly 
converging towards each other and any attempt to confine them to different categories would be a 
step in the wrong direction. The differences between them do not in any way have a fundamental 
character but are rather a result of the separate evolutionary paths they have followed. In order to 
bridge the gap that still separates them, it is useful to look at existing command languages from a 
programmer's perspective. The following general remarks have been inspired by three representative 
current command languages, namely the so-called UNIX shell [BOU79], IBM's TSO Command 
Language [IBM78], and Burroughs' Work Flow Language (WFL) [BUR77]. In §2.2 we discuss the 
UNIX shell in more detail and in §2.3 we draw some conclusions. 

Both the shell and TSO are incrementally interpreted, that is, each command is executed 
immediately after it has been read by the command interpreter. WFL is compiled, reflecting the fact 
that it was originally intended to be used exclusively in batch mode. Neither the shell nor TSO 
perform an overall syntax check of command procedures that are submitted in their entirety instead 
of incrementally. This difference in implementation may be one of the reasons WFL is in some 
respects more like a conventional programming language than the other two. Among the features of 
WFL are declarations and a conventional evaluation mechanism. The shell and TSO, on the other 
hand, do not ]have declarations (these would be bothersome to the interactive user) and use an 
evaluation mechanism based on macro substitution. This is a direct descendant of the simple 
substitution mechanism that was among the earliest facilities introduced at the command level to 
make life easier for the user by allowing him to abbreviate frequently used commands. 

Computallion at the command level is to a large extent string oriented and consists of the 
synthesis of parts of command language statements to be used later on. These invoke programs 
(which may themselves be written in the command language), specify file parameters, manipulate 
the file directory, etc. It is also possible to create file names dynamically and to perform operations 
on existing file names. Because of this, file names have more inherent meaning than names of 
variables in ordinary programs. The reason for this difference is that file names are permanent 
entities in the :system, while names of variables have a more temporary character and are usually 
eliminated from the executable code to gain speed. To simplify string handling all three languages 
have operations like concatenation, substring selection and pattern matching (the latter mainly in 
the shell). The availability of variable length strings and string operations, however ad hoc they may 
be, contributes substantially to the popularity of command languages as programming tools. Of 
course, macros thrive in this environment although macro languages are notoriously difficult to 
understand. The shell and TSO are no exception in this respect. 

It should be stressed that the variables offered by the three languages under discussion are 
used as temporary storage by command procedures and are distinct from files. The split between 
file types and the types of local variables of command procedures is analogous to (and just as 
undesirable as) the split between file types and the types of local variables in programs written in 
ordinary programming languages (see §1.1). In addition to the type differences between files and 
local variables, the permanent environment as defined by the file directory has a much more 
involved structure than the local environment. As a result, file names have a more complex syntax 
than local names. Also, the creation, maintenance and inspection of the file directory requires a 
large number of primitives that do not have 'local' equivalents. 
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2.2. The UNIX shell 

In this siection we shall concentrate on the UNIX Version 7 shell [BOU79], both because we 
are most familiar with it and because it is a powerful tool offered as part of an increasingly popular 
programming 1environment. We shall first give a list of mechanisms which shell procedures can use 
to communicate with each other. It will serve as a yardstick for measuring the consistency and 
power of the concepts to be introduced in §3. It will be followed by three sample shell procedures 
to give the reader a concrete feeling for the two chief characteristics of command languages: their 
power and their chaotic character. We shall also take the opportunity to translate some of the shell 
concepts occurring in the examples into more familiar and/ or more consistent terms. 

Shell procedures can communicate through 

□ Parameters: Shell procedures may have a variable number of parameters; both keyword and 
positional parameters are allowed. 

□ Return value: Essentially a boolean value which is used to drive shell control structures like 
the if and while statements. 

□ Exported variables: In the shell a command procedure corresponds to a separate process. An 
entirely new environment is created each time a command procedure is activated. The 
environment of the caller is not accessible to the callee, except for variables that have been 
explicitly designated as exportable. 

□ Shared Jiles: Files are essentially homogeneous character/byte strings. UNIX does not have 
other file: types. 

□ Command substitution: The string value produced by the callee on its output port is substituted 
for the call. 

□ Pipes: The string value produced by one command process on its output port is sent to the 
input port of another command process. The latter need not wait till the former has produced 
its entire: output, but can start processing as soon as part of it is available (depending on the 
kind of ,computation involved, of course). The pipe mechanism takes care of synchronization 
between the two processes. 

(For ease of reference and to enhance readability line numbers have been added to the 
following three sample shell procedures, while keywords are bold face. Neither of these are shell 
conventions.) 

Example 1 

for name iin 'ls' 
2 do 
3 if test - d $name 
4 then echo $name' directory - not copied' 
5 ellse cp $name backup 
6 fl 
7 done 

This is a small run-of-the-mill shell procedure. It copies all files in the current file directory to 
the directory backup. It uses one local variable (name) and four procedures (ls, test, echo and cp). 
Whether the latter are themselves written in shell language or in another language is immaterial. 
Procedure ls produces a listing of the file names in the current file directory on its output port (line 
1). The command substitution mechanism denoted by the opening quotes in line 1 redirects this 
output to the caller which, in this case, is the for statement. The effect is, that the controlled 
variable name successively runs through all names in the current directory. The body of the loop 
(lines 3-6) first tests whether the current name refers to a directory by calling procedure test with 
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parameters -d and the value (expansion) of name denoted by $name. If the current name refers to 
a directory, an appropriate message is issued (line 4). The value of the parameter of echo in line 4 is 
the value of name concatenated with the text between string quotes. Alternatively, if the current 
value of name refers to a file, the file is copied to backup by cp (line 5). 

Example 2 

I echo abc >x 
2 y='cat x' 

This procedure illustrates the asymmetry between files and local variables in the shell. In line l 
procedure echo copies the value of its argument to its output port. In this case the latter is 
redirected to file x (denoted by >x) and the value of the argument is abc. If x already exists, its old 
value is replaced by abc; otherwise x is created and set to abc. In line 2 cat copies the value of the 
file denoted by its first argument to its output port. The value of the latter is taken as the value to 
be assigned to y by command substitution ( denoted by opening quotes). In programming language 
terminology one would say that this shell procedure assigns the string value abc to a permanent 
variable and subsequently assigns the value of the permanent variable to a local variable. If x were 
a local variable and y a permanent one, the procedure would look quite different: 

I x=abc 
2 echo $x >y 

Example 3 

1 compname = $1 $2 
2 echo $1' ''$2' $1" >$compname 
3 chmod + x $compname 

This example is somewhat more involved than the previous ones. The reader who is familiar 
with LISP may wish to take a look at its LISP equivalent first: 

1 (lambda (fl f2) 
2 (set (concat fl f2) 
3 (list (quote lambda) (list (quote par)) 
4 (list fl (list f2 (quote par))) 
5 ) 
6 ) 
7 ) 

When called with actual parameters (quote f) and (quote g) it assigns 

(lambda (par) (f (g par))) 

to variable Jg. (The function concat in line 2 is non-standard. It is the concatenation operator for 
atoms.) Variable jg thus becomes a function variable. Its value is the composition off and g. 

Similarly, the above shell procedure is the functional composition operator for shell 
procedures that obey certain argument conventions (to be specified). Its arguments are the names of 
the two shell procedures to be composed. Its result is the shell procedure which is their 
composition. By convention the two arguments are numbered l and 2. (Remember that shell 
procedures can have a variable number of parameters.) In line r the name of the result is 
synthesized. It is the concatenation of the names of the two procedures to be composed (denoted by 
$1$2). The output port of echo in line 2 is redirected to a file with this name (denoted by 
>$compname). The argument of echo looks rather forbidding. It is best understood by looking at 
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its value when actual values are substituted for procedure arguments I and 2: if the procedure is 
called with parameters J and g the argument of echo evaluates to 

f 'g $1' 

Procedure echo writes this value to file Jg, which is made executable by a call to procedure chmod in 
line 3, i.e. Jg becomes a shell procedure itself. 

What happens when Jg is executed? Both J and g are supposed to have one argument and to 
produce their result on their output port. The same argument convention should apply to Jg. By 
using command substitution (denoted by opening quotes) the output port of g is redirected to the 
procedure Jg itself. Compare this with examples I and 2. In this way the result of g becomes the 
argument off 

2.3. Conclusions 

In view of the foregoing it will come as no surprise that command languages and 
programming languages have evolved into competing tools. Many programs consist of a main 
program written in a command language and one or more procedures written in a programming 
language. (For historical reasons the latter are often considered to be the 'real' programs.) Although 
such a 'mixed mode' implementation may relieve the programmer from a lot of work because many 
things are easier to program in a command language than in a regular programming language, the 
resulting programs tend to be difficult to understand and highly non-portable. This is partly 
because most command languages contain all kinds of strange features and suffer from a lack of 
proper syntax. For another part it is caused by the highly irregular interface between both types of 
languages and the fact that standardized command languages do not exist. The universal lack of 
adequate command level debugging facilities does not improve things either. · 

Clearly, programming languages are too weak to fend off the intrusion of command languages. 
The existence of all kinds of powerful but unstandardized command languages poses a serious threat 
to the effectiveness of any language standardization effort. Straightforward standardization of 
command languages in their present form (whatever that may mean) would only consolidate an 
already unsatisfactory state of affairs and would therefore be undesirable. In the sequel we hope to 
show that the current competition between command languages and programming languages is but 
a prelude to the emergence of more powerful languages encompassing both. 
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3. BASIC CONCEPTS FOR A MONOLINGUAL PROGRAMMING ENVIRONMENT 

3.1. General principles 

Our proposal for finding a suitable conceptual basis for a unified command/programming/
debugging language may easily fall short of its goal if proper guiding principles are lacking. We 
need some simple rules to protect us from the enormous amount of features offered by current 
languages and systems and to aid us in finding our way towards a coherent whole. Fortunately, 
such rules are inherent in the concept of integration itself: 

(A) A linguistic concept is eligible for inclusion in the set of basic linguistic concepts only if it 
adds substantial power in all three modes. 

(B) The semantics of each concept must be mode independent. 

(C) On the basis of the resulting set of linguistic concepts it must be possible to provide the user 
with adequate facilities in all three modes. 

We use the word mode in the sense of functional setting or kind of activity. In this sense it 
denotes something more immediately pertaining to the kind of activity the user feels he is involved 
in than to som(:thing specific in the system itself. 

The above requirements are not as vague as they may seem at first glance. A vague term like 
adequate facilities can be given a more precise meaning by using the facilities offered by existing 
integrated as well as non-integrated environments as a yardstick. In fact, (A), (B) and (C) are so 
restrictive that they are occasionally in conflict. Nevertheless, they have proved to be very useful 
guidelines and we shall stick to them as closely as possible. 

Requirement (A) forces us to look at each concept from three different viewpoints. In most 
cases, at least one of these provides an unexpected perspective, even if it turns out that the concept 
in question is tied too closely to a specific mode to be of general use. Occasionally, the opposite 
happens and a concept turns out to have unsuspected applications in modes that initially may have 
seemed foreign to it. 

In the next section we first develop the concepts underlying a unified command/programming 
language. We then add an integrated debugging capability to it in §3.3. Requirement (A) 
guarantees that the resulting unified command/programming/debugging framework is largely 
independent of the order in which concepts are added. 

3.2. Integration of command and programming language 

3.2.1. Information and control flow 

In conventional programming languages the three chief mechanisms for communication 
between program units are: 

□ Procedure parameters. 

□ Procedun~ return value. 

□ Global variables. 

Their command level equivalents are (§2): 

□ Program and command procedure parameters. 

□ Program and command procedure return value. 

□ Files and exported variables. 
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Unification of both sets of mechanisms is achieved as follows: 

D The distinction between programs and procedures is eliminated. 

D The distinction with respect to type and naming between files and variables is eliminated. 

We shall elaborate on both points. First, in a unified framework calling a procedure is 
indistinguishable from running a program. The command level corresponds to interactive 
programming at the. highest procedural level of the system. To preserve symmetry between this 
level and deeper procedural levels it is necessary to introduce an interact construct, allowing 
interactive mode to be entered at the point at which it occurs. The command level is thus an 
implicit interact at the highest procedural level, but interactive programming mode may be entered 
at deeper levels as well. Execution of an interact does not cause an environment switch. The 
interact construct is similar to the LISP eval function. Its application in interactive debugging mode 
is discussed in §3.3.2. 

The semantics of shell concepts like command substitution and pipes (§2.2) can for the most 
part be expressed in terms of ordinary procedures. There is one exception, however. Producing and 
consuming processes which communicate by means of a pipe-like method cannot always be modeled 
by function composition. If the producer happens to create an infinite output stream, the pipe 
mechanism allows the consumer to start doing useful work on a time-multiplexed basis as soon as 
part of its input is available. If the pipe is modeled in terms of function composition, each 
functional component has to finish before the next component can start, so in this case the model is 
inadequate. The problem can be solved either by introducing special language features, like 
interprocess communication or co-routines, or by using some form of lazy evaluation. As this goes 
at the expense of a relatively large increase in complexity of the language, we do not think it 
worth-while to explore these possibilities any further in the present paper. 

In a unified framework, the analogues of files are permanent variables. (§2.2, example 2). We 
shall call all other variables local. Conventional global variables are thus also called local in our 
terminology. The first step in unifying permanent and local variables is to abolish the distinction 
between permanent and local data types. For instance, suppose we are maintaining an on-line 
telephone directory. In a system in which the command and programming language are different, 
the following three steps are required to modify a directory entry: 

(1) Enter a special purpose 'telephone directory editor' (or the standard text editor if the directory 
resides on an ordinary text file). 

(2) Modify the entry. 

(3) Return to command mode. 

On the other hand, if we are maintaining the directory in a system with a unified command/ -
programming language, the information can be represented using a suitable data type, such as an 
associative table that maps names on telephone numbers. To modify a table entry a simple 
command mode assignment suffices: 

telephonenumbers[person] : = newnumber; 

No special program or mode switch is needed to modify the information. 

From now on we shall be using a single type system throughout. Variables can differ with 
respect to their lifetime, but this does not imply any difference with respect to the types of values 
they can have. Type definition and type checking in a unified command/programming language 
will be discussed in the next subsection. 

The second step in eliminating the differences between permanent and local variables is to 
unify the naming mechanisms at the two levels, i.e. to give the permanent and local environment the 
same basic structure. This is the subject of §3.2.3. 



Integration of conventional control flow mechanisms, like if, for and while statements, does not 
present any serious problems. They are already present in both kinds of languages. Some desirable 
features of command procedures, such as multiple return values, failure signals, keyword 
parameters, etc., are seldom found in programming languages, but their inclusion in a unified 
framework is a relatively minor issue. 

Some command and programming languages allow a modest form of exception handling. This 
important subject will come up in a natural way in the context of the integration of debugging tools 
(§3.3.4.1 ). 

3.2.2. Type definition and type checking 

The user of a unified command/programming language must be able to handle both small 
scale data, like integers and short strings, as well as large scale data, like entire texts, arrays of 
numbers, trees and directories, with equal ease. In view of this it is appropriate to introduce an 
abstract type definition facility in the language. In conjunction with sufficiently powerful basic types 
(including dynamic arrays and associative tables) it should enable him to define most required data 
types himself. Directories are somewhat special and are discussed in the next subsection. 

A unified command/programming language has to be complete in the sense that procedure and 
type declarations are not supplied by an outside source, but must be created and manipulated in the 
language itself. This, and the fact that statements in the language are entered both incrementally 
and in the form of predeclared units, makes it necessary to consider type systems from a broader 
viewpoint. In the following we shall briefly discuss three aspects of them, namely: 

□ Elastic type checking. 

D The need to introduce procedure and type valued variables. 

D The influence of modifications on type consistency. 

Insofar as our account is incomplete, the reader is referred to an interesting recent article by 
Goodwin [G0081]. 

A central issue with type systems is the moment at which the rules are checked. Procedure 
and type declarations can be checked as a whole, but interactive commands have to be checked 
incrementally. It is not clear how both situations can be captured by a single, static type system. 
An analysis of the moment at which the checks could be performed may shed some light on the 
problem. A typical procedure will go repeatedly through some or all of the following stages: 

(1) Create or modify procedure declaration. 

(2) Compile. 

(3) Include in library. 

(4) Combine with referenced procedures from a library. 

(5) Call procedure. 

(6) Execute body. 

Not all type checks can be performed during stage 1, because not all information is statically 
available. An example is the check on the type of external procedures. This check cannot be 
performed before stage 4 above, but could be postponed to stages 5 or 6. In a typical statically 
typed programming language most checks are performed during stages 1 through 4. It is interesting 
to note that operations on permanent data (files) are almost always checked during stage 6. If a file 
name is created dynamically no earlier check is possible, but statically known files could be checked 
earlier. This is seldom done, however. Also, checking the type of external procedures in stage 4 is 
often done rather cursorily or not at all. In a typical command language all checks are postponed 
to stages 5 and 6. 



11 

For a unified command/programming language the simplest solution is to perform all type 
checking at run-time. In this scheme there is no distinction between incremental execution and the 
execution of predeclared units with respect to the moment at which type checking is performed. 

Another - much better - method is to check type consistency at the earliest possible moment. 
This leads to an elastic type system covering the whole range from strictly static typing to 
completely dynamic typing. In such a system the type rules are checked as soon as sufficient 
information is available. This amounts to static typing when full static information is available, and 
to dynamic typing when no static information is available at all. Furthermore, cases in which there 
is only partial static information can also be handled. 

The completeness property mentioned in the first paragraph of this section has important 
consequences. The monolingual equivalent of the creation of a new program is the declaration of a 
new procedure at the command level. When completed, the declaration becomes an object of type 
procedure and is given a name, i.e. it becomes the value of a procedure variable. Depending on the 
scope of the name given to it, it may either become a local procedure or a permanent one. In the 
former case it is destroyed on return from the command level, i.e. on log-out. 

As the command level corresponds to incremental programming at the highest procedural level 
of the system, all facilities offered by it are shared by other procedures. As a consequence a unified 
command/programming language must necessarily allow nested procedure declarations, procedure 
variables, and procedure parameters. Similar considerations lead to the introduction of type valued 
variables. The value of an object of type procedure or type is the original declaration used in its 
creation. But, hidden from the user, it may contain an optimized (compiled) version of the 
declaration which is used instead of the original source text when the procedure or type is invoked. 

For editing purposes it is necessary to decide which program units are modifiablet. Because 
there is a natural conversion from an object of type procedure or type to an object of type string and 
vice versa, procedure or type declarations can be modified in a straightforward manner. 
Modification of a single statement, however, can be achieved only indirectly by looking for the 
procedure or type declaration to which it belongs and by assigning a completely new declaration 
(which only differs from the previous one in the modified statement) to the original procedure or 
type variable. 

It is sufficient to have only a few high level constructs that are modifiable provided that all 
constructs in the language are covered either directly or indirectly. This may lead to the 
introduction of additional types, if procedures and type definitions are not the only modifiable units. 
If a program modifies one or more of its own modifiable units, it is self-modifying. The possibility 
of self-modification is thus a consequence of completeness. 

Modifications may easily lead to type inconsistencies. For instance, if a type definition is 
modified all instances of the old version may become incompatible. Similarly, replacement of a 
procedure may lead to type inconsistencies between the new version and existing program units 
referring to it. An elastic type system, whose purpose it is to report type inconsistencies at the 
earliest possible moment, would need extensive backward linking in order to be able to perform its 
duty in these cases. Although not easy to implement, this kind of service from a type system is 
quite unheard-of in conventional systems. 

tWe shall not pursue the integration of editing primitives here, but note in passing that the string manipulation component 
of the language may be viewed as the forerunner of an integrated editing facility. Another interesting point is, that the posi
tioning operations needed for editing source text can also be used to identify control flow events (breakpoints) in debugging 
mode. See §3.3. 
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3.2.3. Environments, directories and abstract type definitions 

Both in command and programming languages there is a bewildering variety of mechanisms to 
associate names with values. Furthermore, unlike the set of local names in a conventional program, 
the set of names at the command level has a dynamic character. These large differences between 
the permanent and local environment (see also §2.1) are not acceptable in a unified command/
programming language. In this section we show that, on closer inspection, most of the mechanisms 
involved tum out to be rather similar and can be unified by allowing the user to structure both the 
local and permanent environment himself. An immediate consequence is, that variables can be 
created and destroyed dynamically irrespective of their scope. 

Let an environment be a linear list of (name,value) pairs. Environments will be denoted by 

{(N l'V 1), ... '(Nn,V n)}. 

When the value of name Nin environment Eis needed (this will be denoted by E.N), Eis searched 
from left to right for a pair with name part N. The corresponding value part is the value of E.N. A 
value V can be associated with name N in environment E by searching E from left to right for a 
pair with name part N and by substituting V for the corresponding value part. Different pairs in E 
can have the same name part, but only the leftmost one is affected. If N does not occur in E, the 
new pair (N, V) is appended at the right-hand side of E. The join of two environments E and F is 
obtained by appending the pairs of F at the right-hand side of E in the same order in which they 
occur in F. 

An object directory (the successor of the conventional file directory) is an environment that 
maps object names on objects. An object directory D containing objects A, B and C can be 
described by 

{(A:objectA), (B:objectB), (C:objectC)}. 

Obviously, one of the names in the directory could itself be a directory (i.e. a sub-environment). In 
this way, tree-structured and even more general directory systems can be described. Supposing B in 
the above example is a directory containing objects Bl and B2, the resulting structure can be 
described by 

{(A:objectA), (B:{(Bl:objectBl), (B2:objectB2)}), (C:objectC)}. 

Selection of object Bl from directory D is then achieved by D.B.Bl. 

In the shell so-called path names are used to specify the position of a file in the directory tree 
with respect to the 'current directory' or the root of the tree. The above selection is similar both to 
such path names as well as to (repeated) field selection from instances of abstract types. The shell 
user can also specify a search path, i.e. a linear list of directories in which the binding 
(interpretation) of each command read by the shell is looked up. For instance, suppose the user 
wants to execute command P. The first executable file with name P encountered when searching the 
given list of directories is then taken to be the program or command procedure to be executed. The 
interpretation of P can be changed not only by replacing P itself, but also by placing another 
version with the same name in a directory which is closer to the start of the search path. Similarly, 
many systems allow the definition of search paths consisting of linear lists of procedure libraries for 
use by the linkage editor. If the first library does not contain the procedure to be linked, the linkage 
editor goes on to the second library, etc. A search path can simply be described as the Join of a 
series of environments. 

Now that we have brought out these similarities, the next question is: how can environments 
be incorporated in a unified command/programming language? Rather then incorporating 
environments as such, a better solution is to improve the environment-like properties of instances of 
abstract data types. An example may clarify this. The PASCAL with statement ([JWI75], §7) can 
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be looked upon as installing the record variable mentioned in its header as a component of the 
environment. Given the declarations 

type date= 
record day: 1 .. 31; 

month: 1 .. 12; 
year: integer 

end; 
var mybirth, today : date; 
var myage : integer; 

and appropriate initializations, one can write 

print(today.day); 
print(today.month); 
print(today.year); 
myage : = today.year - mybirth.year; 

PASCAL allows the above statements to be abbreviated to 

with today do 
begin 

print(day); 
print(month); 
print(year); 
myage: = year - mybirth.year; 

end; 

i.e. within the scope of the above with statement today.day may be abbreviated to day, etc. 

The PASCAL with statement can be generalized by permitting abstractly typed objects with 
procedural components and own variables instead of just records with passive fields. Such 
generalized versions of the with statement are the CDL2 focus statement [BAY80], and the scan 
expression in SUMMER [KLl80]. The use clause in ADA [DOD80] serves a similar purpose. 

We are not finished yet, because there is still an essential difference between environments and 
ordinary abstractly typed objects. An instance of an abstract type has a fixed number of fields, 
while ihe number of elements in an environment or directory may vary dynamically. This problem 
can be solved by allowing a 'table of contents' to be added to an abstract data type and by adapting 
the rules for the interpretation of names in generalized with statements as follows: the occurrence of 
name x within the scope of a generalized with statement with argument OBJ, is equivalent to 

OBJ.x 

if the type of OBJ statically includes a field x, and to 

OBJ.contents['x'] 

if it does not. In the latter case, the table of contents of OBJ is accessed via its contents field with 
key x. String quotes have been added to indicate that the table key is a literal. In the first case it is 
assumed that fields are not evaluated, so no quotes are necessary. 

Execution of a generalized with is rather similar to switching to a different 'current directory' 
in command mode (cd command of the shell). The equivalent of a search path (see above) can be 
obtained by nesting generalized with statements or by allowing a list of objects instead of only a 
single object to be specified in the header of a with. Again compare this with the PASCAL with 
statement which may be applied to a single record variable as well as to a list of record variables. 
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3.3. Integration of debugging facilities 

3.3.1. General 

Grishman has argued the unification of programming and debugging languages as follows: 
"I would like to emphasize particularly that the debugging language should be similar to the source 
language. Since the data structures involved are those of the source language, it is only natural to use 
statements from the source language in debugging, rather than to try to put together a new language 
which reflects the data structures of many languages. Also, the resistance of most users toward learning 
a new language in order to debug their programs is not to be underestimated; a language with which 
they are already partly familiar helps to overcome this resistance" [GRl71]. Grishman does not 
advocate the total integration of programming and debugging languages, but leaves room for special 
facilities that are only available in debugging mode. 

The designers of SNOBOL4 have gone one step further in an attempt to integrate the two 
kinds of language completely. The tracing facilities of the original version of SNOBOL4 as defined 
in [GPP71], chapter 8, constitute a more or less separate set of functions not too well integrated into 
the rest of the language. To remedy this defect Hanson has defined an interesting language 
extension [HAN76, HAN78]. It consists of a mechanism called event association allowing the 
programmer to associate a SNOBOL4 procedure with assignments to variables, procedure calls, etc. 
Hanson has also investigated the application of event associations for purposes other than 
debugging. 

In a monolingual system interactive debugging is indistinguishable from incremental 
programming. Likewise, statements that have been added to a program for purposes of debugging 
cannot be distinguished from 'ordinary' statements. Because command mode corresponds to 
incremental programming at the highest procedural level, interactive debugging at that level is 
indistinguishable from command mode itself. Although the user may have a very specific idea 
regarding the mode he is operating in, this is immaterial as far as the system is concerned. As was 
pointed out in §2.3, conventional systems do not only suffer from a chaotic command language but 
also from a lack of command level debugging facilities. Obviously, the latter cannot happen in a 
monolingual environment. 

Implicit in the above is the availability of an interact primitive allowing the interactive 
insertion of statements at the point at which it occurs. This construct was already introduced in 
§3.2.1 as part of the development of a unified command/programming framework. In addition to 
an interact, the user needs two other tools to aid him in debugging: 

(I) He must be able to associate actions with the occurrence of certain computational events. He 
may for instance wish to switch to interactive mode whenever the value of a certain variable 
becomes zero during the execution of a certain procedure or to display the values of the actual 
parameters when a certain procedure is called. Furthermore, in order to catch an event the user 
should not be forced to locate all points where it can occur. To this end we shall introduce an event 
association mechanism similar to that of Hanson. Although our event associations will obey 
somewhat different rules than his we shall use the same name. Event associations will be discussed 
in §3.3.2. 

(2) The second tool needed for debugging is side-effect recovery. For instance, the user who wishes 
to inspect the top element of a stack may be forced to use the stack's pop operation for lack of an 
accessible top-of-stack field. Although in this particular instance he q>uld probably undo the side
effect of the pop operation rather easily by pushing the popped item back on the stack, in other 
cases this might be difficult or even impossible. The inverse operation(s) required to restore the 
original state may be complex and time-consuming or, perhaps even worse, the user may be 
unaware of the precise side-effects some of his actions are causing. What is needed is a general 
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mechanism to evaluate expressions and undo all their side-effects (except, of course, the delivery of 
the result). This will be the subject of §3.3.3. 

As a result of the integration of debugging facilities all unified command/programming 
constructs introduced in the previous section become available in debugging mode, while event 
associations and side-effect recovery become available as general programming tools and in 
command mode. Requirement (A) of §3.1 stipulates that all three modes should benefit from this. 
The merits of normal programming constructs in debugging mode were set in evidence by the 
quotation at the beginning of this section. The applications of event associations and side-effect 
recovery in programming and command mode are perhaps less evident and will be discussed in 
§3.3.4. 

We conclude this chapter with a discussion of the disadvantages of integrated debugging in 
§3.5. 

3.3.2. Event associations as a debugging tool 

Integrated debugging facilities should not force the user to plan his debugging act1V1t1es 
beforehand or to make temporary modifications to the source text of the program units involved. 
Event associations should therefore be designed in such a way that the user can control and monitor 
execution interactively by jumping from one event to another without modification of any source 
text whatever. Furthermore, in order to enable the user to inspect variables in the current 
environment with the aid of ordinary language constructs, triggering of an event association should 
not cause an environment switch. Although these two requirements are important, they are far from 
sufficient to g:uarantee the proper behavior of event associations. A very strict discipline has to be 
imposed on them to ensure their predictable behavior and their smooth interaction with other 
language constructs. The set of requirements given below is in no sense complete or definitive, but 
is meant to give an indication of the many issues involved. 

To simplify the following discussion we first introduce a notation for event associations: 

<event association> : : = [<label>] when <event> do <action> od 

Some examples are: 

Example 1 

when x is modified 
do 

interact 
od; 

This event association causes interactive programming mode to be entered when x is modified. 

Example 2 

when P is called 
do 

display x1, ... , xn 
od; 

The values of the parameters of P are displayed just before execution of the body of P starts. 

Basically, when an <event association> is executed as part of the normal flow of execution, 
the corresponding (<event>,<action>) pair is connected. It simultaneously gets armed. In the 
armed state the <action> is triggered when the specified <event> occurs. For reasons to be 
explained below, an event association can also become temporarily disarmed. In that state it remains 
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connected, but it cannot be triggered. If conditions are favorable again, it is re-armed. When it is 
no longer needed, an event association is disconnected. This either happens automatically or can be 
done explicitly by means of a disconnect statement containing a reference to the <label> of the 
<event association> to be removed. 

To be useful as a debugging tool event associations have to meet at least the following 
requirements: 

(I) Side-effects due to the testing of the event part of an event association are automatically undone 
after the test has been performed, independently of whether the test succeeds or fails. In this way 
the behavior of event associations is guaranteed to be independent of the number of actual tests 
performed by the implementation. See example 3 below. 

(2) When an event association is triggered, its action part is interpreted in the current environment, 
i.e. activation of the action part does not cause an environment switch. Apart from unwanted side
effects, this convention allows straightforward inspection and modification of variables in the trigger 
environment with the aid of ordinary language constructs in the action part. Side-effect free 
inspection requires special constructs and is discussed in §3.3.3. 

(3) The event part is statically bound to the environment in which the when occurs (although this 
may of course depend on the general binding strategy used by the system). Binding of the action 
part is dependent on the type of event specified. Normally, it will be bound to the same 
environment as the event part, but if the event involves an environment switch, the action part will 
be dynamically bound to the new environment. If one or more of the variables occurring in the 
event part of an event association become temporarily inaccessible due to an environment switch, 
the event association is temporarily disarmed. If one or more of these variables are destroyed, 
because the environment to which they belong is destroyed, the event association is disconnected. 
For instance, all event associations connected during execution of a procedure are disconnected on 
procedure exit. See example 4 below. 

(4) No constraints are imposed on the statements making up the action part. In particular an action 
part may itself contain event associations. In keeping with (3), these stay connected as long as the 
environment to which their event parts are bound has not been destroyed, i.e. they are not 
automatically disconnected when the action part terminates. Event associations can thus be 
'exported' from an action part. See example 4 below. 

(5) No constraints are imposed on the position of event associations with respect to other 
statements. 

(6) Potential trigger conflicts must be eliminated by imposing a linear order on the set of armed 
event associations. Such an order can, for instance, be based on 'seniority' or on some linear 
ordering of environment components. Even if resolved properly, trigger conflicts easily lead to 
unforeseen complications because of side-effects of the action parts involved. 

We give two further examples to illustrate the various aspects and possibilities of event 
associations. 

Example 3 

when x < stack. pop 
do 

display x 
od; 

At the moment x becomes less than the top element of stack (if any), the value of x is 
displayed. The event may occur either when a new value is assigned to x or stack, if stack is 
popped, or if a new value is pushed on stack. The stack pointer is reset to its original value by the 
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side-effect recovery mechanism after the event test has been performed. See also example 1 of 
§3.3.3. 

Example 4 

Suppose the following event association is entered interactively at the command level: 

when P is called 
do 

interact 
od; 

A subsequent call 

P(x1, ... , xn); 

triggers the event association just before execution of the body of P starts. The interact statement in 
its action part causes a (nested) switch to interactive mode. Neither the triggering of the when nor 
the execution of the interact causes an environment switch, so any succeeding interactive statements 
are interpreted in the context of P. The user can now connect an event association to the current 
invocation of P, for instance: 

whenx = 0 
do 

interact 
od; 

After leaving interactive mode, execution of the body of P starts until the value of x becomes equal 
to 0. At that moment interactive mode is re-entered, etc. 

3.3.3. Side-effect recovery as a debugging tool 

As was explained in §3.3.1, the primary purpose of side-effect recovery is to protect the user 
from unwanted side-effects when he is inspecting the state of his program in debugging mode. Any 
side-effects caused by testing the event part of an event association are automatically undone, 
independently of whether the test succeeds or not (§3.3.2), but everywhere else (and especially in the 
action part of event associations) side-effects have to be recovered explicitly with the aid of special 
constructs. 

It is sufficient for the purpose at hand to introduce recovery brackets which transform an 
expression into its side-effect free equivalent. We shall use the following notation: 

<expression> : : = ... I <probe> 
<probe> : : = probe <expression> endprobe. 

By adding <probe> as an alternative to <expression>, the first rule ensures that a <probe> 
may occur at all syntactic positions where an <expression> is allowed. The second rule says that 
key words probe and endprobe play the role of recovery brackets. Evaluation of an expression 
enclosed in recovery brackets proceeds in the normal fashion, but when evaluation terminates the 
process is restored to the state it was in just before evaluation started, except that the new statement 
pointer and the result(s) of the expression are retained. Any success/fail signals returned by the 
expression are counted as results and are thus retained as well. If a result shares its value with a 
variable, a complete recursive copy of the shared object is made before the process state is restored. 
This copy is returned instead of the shared object itself so as to prevent the result from being 
affected by the recovery process. Sharing of values between results does not present a problem and 
is not undone by the copy process. If an expression does not have side-effects, enclosing it in 
recovery brackets has no effect. 
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As the program state comprises the permanent environment, recovery of permanent side
effects is implicit in the above definition. Permanent side-effects are the equivalent of side-effects 
due to file input/ output in a conventional system. Automatic recovery of terminal input/ output and 
other forms of man-machine interaction merits special attention, but is best treated in the context of 
conditional side-effect recovery. Both subjects will be discussed in the next subsection. 

We conclude this subsection with some examples of the application of side-effect recovery in 
debugging mode. 

Example 1 

display probe stack.pop endprobe; 

The pop operation returns the top element of stack and decrements the stack pointer. If 
enclosed in recovery brackets, the stack pointer is restored to its original value and the pop becomes 
a non-destructive read-top-of-stack operation. 

Example 2 

display probe text.nextline endprobe; 

An object text consisting of lines of text is accessed sequentially through its operation nextline. 
An internal line pointer is incremented every time a line is retrieved. Putting the access between 
recovery brackets allows the user to look ahead in the text without disturbing the line pointer. 

Example3 

display probe P(x1, ... , xn) endprobe; 

More general forms of look-ahead are also possible. For instance, suppose one would like to 
take an advance look at the results of the next call to a procedure P. Assuming the context is right, 
this can be done without affecting the state of the process by putting the call to P between recovery 
brackets. 

3.3.4. Applications of debugging constructs in other modes 

3.3.4.1. Event associations in other modes 

Basically, event associations are production rules [DAK77]. The set of armed event 
associations constitutes a ( dynamically varying) production system which is superimposed on the 
otherwise object oriented base layer of the language, thus lending it a hybrid aspect. Of course, 
event associations do not add essential computing power. They are strictly a matter of convenience, 
just like most other language features. Nevertheless, they are better suited to some applications than 
conventional constructs. In this section we show that the application range of event associations is 
sufficiently broad to justify their inclusion into the set of basic linguistic concepts (requirement (A), 
§3.1). 

The language is assumed to provide facilities for the monitoring of at least the following 
events: 

□ Assignment to a given variable or field. See example I of §3.3.2. 

□ Truth or falsity of a given boolean expression or, if expressions return a success/fail signal in 
addition to their result, success or failure of an arbitrary expression. See example 3 of §3.3.2. 

This is by no means an exhaustive list of useful events, but it is sufficient for our present 
purpose. 



Example 1 

procedure P(x1, ... , xn) 
{ 

if ... then flags.E : = true fi; 

}; 

when flags.E = true 
do 

od; 

19 

Event associations can be used as exception handlers. In this example procedure P raises a 
user defined exception by setting field E of object flags to true. Object flags contains boolean 
variables associated with various exception conditions. The value of E is monitored by a when, 
whose action part handles the exception. If the when happens to be temporarily disarmed at the 
time the exception is raised, handling of the exception is delayed till the when is re-armed. 

Example 2 

when x is modified 
do if R(x,y) fails 

then y : = P(x) 
fi 

od; 
when y is modified 

do if R(x,y) fails 
then x : = Q(y) 

fi 
od; 

Suppose that x and y have to satisfy an invariant one-one relation R, but that external factors 
can cause variations in both x and y (but not simultaneously). Assuming that R(x,y) <;:;> y=P(x) 
<=;> x = Q(y ), R is kept invariant by the above pair of event associations. 

One application of this is in keeping a subsystem consistent when one of its components is 
replaced. This can be achieved by defining a suitable event association which monitors the 
relationship between the various components. If the relation no longer holds, because one of the 
components has been modified, the action part rebuilds a consistent version of the subsystem. 

Some systems include a software maintenance facility with its own special 'maintenance 
language' ( e.g. the UNIX make program [FEL 79]). With every subsystem a maintenance procedure 
is associated which must be executed every time a change is made. In a monolingual environment 
there is less need to introduce a separate maintenance language, not only because the compile and 
link (bind) phases are completely hidden from the user but also because the structure of a subsystem 
can be described by means of an abstract type definition, so no separate language for this purpose is 
needed. In addition to this, event associations permit maintenance actions to be initiated 
automatically. 
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Example 3 

Define the semantics of a guard as 

guard EXPR when EXPR fails do abort od. 

Should the evaluation of EXPR ever fail while the left-hand when is armed, execution of the 
offending statement is terminated, a warning is issued and control is returned to the command level. 
For example, consider 

guard prime(n); 

which causes an abort when a composite integer is assigned ton. 

Apart from the abort which it may cause, a guard never has any side-effects. Compare also 
with example 2 of the next .subsection. 

3.3.4.2. Side-effect recovery in other modes 

In addition to its usefulness for debugging, a side-effect recovery mechanism like the probe 
construct introduced in the previous subsection also has applications in algorithms involving 
exploratory actions (backtracking) and error recovery. The probe performs unconditional side-effect 
recovery. A slightly modified version allowing conditional recovery is also useful. It consists of a 
pair of conditional recovery brackets with the following syntax: 

<expression> : : = ... I <try> 
<try> : : = try <expression> endtry. 

try EXPR endtry is equivalent to EXPR itself if the evaluation of EXPR succeeds. Otherwise, it is 
equivalent to probe EXPR emlprobe. Side-effects are thus recovered only if the evaluation of the 
expression enclosed in conditional recovery brackets fails. 

In the following example we show how the try construct can be applied to the parsing of non
LL( 1) notions. 

Example t 
Suppose a language has a case expression with the following syntax: 

<case expression> 
<case entry> 
<keys> 
<key> 
<expression> 

For instance, 

k : = case n of 
1: 2: k+ 1, 
3: 0 
esac; 

: : = case <expression> of <case entries> esac 
- <keys> <expression> 

<key> [<keys>] 
<integer> : 
<integer> I ... 

is a legal <case expression>. 

Rule <keys> always produces at least one <key>. Both <key>s and <expression>s can 
have an <integer> as initial symbol. We assume that <expression>s do not contain colons. The 
following procedure uses a try to permit a <key> to be parsed without regard to its non-LL(l) 
character: 



procedure keys() 
{ 

if key() fails then error( ... ) fi; 
do forenir 

od; 

if try key() endtry fails 
then exitloop 

fi 

return 
}; 
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Can the meaning of automatic side-effect recovery be extended so as to encompass man
machine interaction in a satisfactory way? In discussing this question we shall assume that 
interaction takes place through a (possibly dynamically varying) number of viewports. If viewports 
are treated in the same way as other objects, modifications to a viewport requested by a probe or try 
construct will take effect immediately, even though this may subsequently turn out to have been 
premature. Consider the previous example. After having parsed the first <key>, procedure keys 
looks for additional ones. It does this by calling procedure key from within a try statement. 
Because it proceeds on the assumption that another <key> follows, key may issue an error 
message, only to discover afterward that the assumption was erroneous and that what it was parsing 
was not a <key>, but an <expression>. It then fails and all its side-effects are undone by the 
enclosing try. Among other things this means that the error message issued by <key> has to be 
canceled in some way, but even if initially marked as tentative its (probably rather brief) display 
would be highly confusing to the unsuspecting user. If it had been assigned to a permanent object 
instead of to a viewport, there would have been no problem because the user would never have seen 
it. 

In order to minimize the amount of irrelevant information presented to the user, viewport 
modifications requested by a probe or try construct have to be postponed or even suppressed 
altogether. To some extent this can be achieved by queuing them internally till either a user 
feedback is requested or till the current probe or try terminates. In this way isolated messages that 
are not part of a dialogue can be discarded by the side-effect recovery mechanism before they get a 
chance to be displayed. Premature displays are still possible, however. In the above case, for 
instance, the c!rror message is valid only if the alternative chosen turns out to be the the right one, 
independently of whether a request for user input follows production of the error message or not. 
To achieve this, either procedure key must be changed or, more generally, a deferred evaluation 
mechanism must be added to the language. In both cases, the fact that key is called from within a 
try must be known in advance and is reflected in the code. 

Again consider example 1. If the source text is stored as a permanent object, the compiler can 
simply re-access the ambiguous part of the text each time procedure key fails, because the enclosing 
try restores th.e source text pointer to its original value. If the user interacts with the compiler 
directly, it is i1uite unreasonable to expect him to provide the same text repeatedly only because the 
compiler does not know how to parse it correctly the first time. In this particular case the problem 
can be solved by moving the request for input out of the recoverable section, but this is an ad hoc 
solution without obvious generalization. 

The overall conclusion must be that recovery of user interaction cannot be performed in a 
straightforward way. 

The try construct is a direct descendant of its namesake in the SUMMER programming 
language [KLI80]. The SUMMER try is more powerful in that it permits several alternatives to be 
tried in turn until a given condition is met. Experience shows that the simpler try and probe 
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constructs presented here are adequate in most cases. This may depend on the type of application 
envisaged for the system however. 

In the n,ext two examples we show how side-effect recovery can be used in the definition of 
assert and undo constructs. 

Example 2 

In addition to the guards discussed in the previous subsection conventional positional 
assertions are also useful in all modes. They may take the form 

<assertion> : : = assert <expression>. 

If the evaluation of the expression part fails, execution of the offending statement is terminated, a 
warning is issued and control is returned to the command level. If the expression part succeeds, the 
assertion as a whole succeeds and no further action is taken. As they do not belong to the 
computation proper, assertions must not return any values or cause any side-effects (except the 
obvious one in case of failure). Enforcement of this rule cannot be left to the programmer, nor is it 
practical to limit the expression part of assertions to intrinsically side-effect free expressions. The 
alternative is to use dynamic side-effect recovery. In view of this, suitable semantics for the assert 
construct are 

assert EXPR _ if probe EXPR endprobe fails 
then abort 

fl. 

Example 3 

The probe and try constructs are useful only if the user has advance knowledge about the 
tentative character of the expression involved and the conditions under which recovery is to be 
performed. When working interactively, the user wants to be able to undo the effects of the 
previous statement simply by typing undo (or something similar) after it. One might say that all 
interactively entered statements have a tentative character, but that the conditions under which they 
have to be revoked are vague and impossible to specify in advance. If an undo is introduced, the 
unpredictable character of its interactive use makes it necessary to execute each interactive 
statement in a reversible way. 

3.3.5. Disadvantages of fully integrated debugging 

Integration of debugging facilities also has its drawbacks. An unavoidable consequence of 
making full programming power available in debugging mode is that the debugging statements 
themselves may contain bugs that are as serious as the ones the user is looking for. 

A second problem is, that the user cannot inspect the entire program state at every point. 
Although he cam switch to other environments with the aid of the generalized with statement (§3.2.4) 
and even inspect the own variables of objects in the current environment by means of probes and 
suitable event associations, some variables, such as the local variables of the caller of the current 
procedure, cannot be accessed in this way. Conventional symbolic debuggers circumvent this 
problem by allowing the user access to the implementation. In a monolingual environment this is 
unacceptable for at least three reasons: it jeopardizes the integrity of the language system; it forces 
the user to familiarize himself with the implementation; and it imposes severe constraints on the 
freedom of the implementor because, if implementation dependent notions are to be included in the 
language, the architecture of the underlying (abstract) machine has to be part of the language 
specification. It should be added that at least the first two points apply to other language systems as 
well. Implementation dependence is simply never acceptable. 
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An implementation independent way of resolving the conflict would be to introduce a mode 
dependent naming convention. It would consist of some simple rules to add extensions to names so 
as to make them unique. These rules would only apply in debugging mode and would enable the 
user to access all variables, fields, etc., irrespective of the environment prevailing at the time 
debugging mode was entered. Clearly, this solution violates requirement (B) of §3.1 which says that 
the semantics of all language constructs must be mode independent. Unfortunately, there seems to 
be no way to resolve the conflict if we have to stay within the bounds dictated by (B). This means 
we have reached the limits of what our integration method will allow us at this point. 

Finally, one should keep in mind that event associations, although clearly an important 
concept, are not yet well understood. Additional research is needed on this point. 
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4. EVALUATION AND CONCLUSIONS 

The main obstacle in reaching valid conclusions regarding the merits of the monolingual 
approach towards programming environments is, of course, the lack of an operational system. 
Nevertheless, it may be useful to attempt a brief evaluation of the ideas presented in the previous 
sections. 

The basic idea is to simplify programming environments by reducing the number of mode 
dependent languages or dialects the user has to be familiar with. A radical way to achieve this is by 
replacing the various languages under discussion by a single language incorporating the 
characteristic features of them all. The main candidates for replacement are the command 
language, the programming language, the debugging language, and the editing language. To keep 
the scope of this study within reasonable bounds we have excluded editing languages from our 
considerations. 

Although it may seem at first glance as if such an integration process would necessarily have 
to lead to a monstrous language incorporating all features ever invented by language and system 
designers, we hope to have shown that this is not the case. The reason is the conceptual inefficiency 
inherent in conventional systems. Most command language concepts are also present in 
programming languages although generally under a different guise. To a somewhat less extent the 
same is true for debugging concepts. Only because of this circumstance is language integration a 
meaningful proposition. Further integration of modes ( especially of editing) may still be possible, 
but eventually it will be necessary to introduce sublanguage definition facilities into the basic 
language framework. 

The designer of a unified command/programming/debugging language has less freedom than 
the designer of a conventional non-integrated language. Rather than being a disadvantage, the 
increased number of constraints helps him in settling design questions by offering various different -
but equally valid - viewpoints from which to look at possible solutions. As long as they do not 
prevent 'the language equation' from being solved the language designer should welcome any 
additional criteria protecting him from the whims of his own taste. 

The main features of monolingual environments as developed in this paper can be summarized 
as follows: 

□ No distinction is made between programs and procedures. Running a program is 
indistinguishable from calling a procedure; there is a single parameter mechanism throughout 
the system. 

□ No distinction is made between the types of permanent and local objects; there is no explicit 
input from or output to permanent objects. 

□ The type of every object is described by an abstract type definition. New type definitions may 
be added by the user. These may have either permanent or local status. Instances of 
permanent type definitions correspond to files in conventional systems. 

□ Procedures and type definitions are themselves objects that can be manipulated in the 
language. 

□ Permanent object directories and libraries do not have a special status, but are just one type of 
object definable by the user. This means that the structure of the environment is under 
control of the user. Since this is necessarily true at all levels, the data structures that are used 
as permanent object directories can also be used to structure, the local environment. Of 
course, it is still possible to supply a predefined type directory or library with the system. A 
generalized PASCAL with statement serves to establish the current focus of interest, which 
may either be a directory type object or an object of any other type. 
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□ An interact construct allows interactive programming at the point at which it occurs. The 
command level of the system corresponds to an implicit interact at the highest procedural 
level. Procedure and type declarations may (and probably will) be compiled, but if so, this 
must be completely transparent to the user. 

□ Event associations in conjunction with the interact construct mentioned in the previous point 
allow very selective interactive tracing without any source text modification. Event 
associations can also act as production rules, exception handlers, and gua,rds. 

□ Automatic side-effect recovery in the form of probe and try constructs facilitates both the 
side-effect free inspection of (procedural) fields of objects in debugging mode as well as the 
programming of algorithms involving backtracking and error recovery. undo and side-effect 
free assert constructs make use of the same basic mechanism. 

□ Powerful string manipulation and pattern matching operations are provided. These can be 
looked upon as the forerunners of an integrated editing facility. 

The greater conceptual simplicity of monolingual environments as compared with conventional 
systems hardly needs further amplification. Most existing APL and LISP environments are more 
highly integrated than conventional systems and do not have a separate command language. As a 
result, they do not make a distinction between the types of permanent and local data or between 
programs and procedures. The incorporation of other desirable features, such as system-wide 
abstract type definitions, is hampered by the fact that neither APL nor LISP allow user-defined 
types. The designers of SMALLTALK had greater freedom and based their system on an 
elaborated version of the SIMULA 67 class concept. In particular, SMALLTALK has system-wide 
class definitions and permanent class instances. 

Similarly, most other features of monolingual environments have their counterpart in one 
system or another. We are not claiming originality in that respect. What is new, we believe, is the 
method we have sketched to bring these concepts together and to fuse them into a homogeneous 
whole. 
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