
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

J. HEERING & P. KLINT

IW 185/81

TOWARDS MONOLINGUAL PROGRAMMING ENVIRONMENTS

Preprint

~
MC

DECEMBER

kruislaan 413 1098 SJ amsterdam

PJunted a.t :t.he Ma.thema.tlc..a1. Cen.tll.e, 413 K!U.U.6la.a.n, Am6:t.vulam.

The Ma.thema.:tlc.ai. Cen.tll.e , nounded :t.he 11-:t.h on Febll.U.CVl.y 1946, -l6 a non­
p1e.o nli -lnh:t.li.u,tlo n ai.mi.ng a,t .the pJc.omo.tlo n on pwr.e. ma.themati.c& and Lt6
applicationh. 1:t. -l6 1.,ponho1r.ed by :t.he Ne:t.he!r.land6 Gove1r.nment :t.h!r.ough :t.he
Ne:t.helrl.and6 01r.ganizati.on no!r. :t.he Advanc.ement on PU/Le Rue.aJr.c.h (Z.W.O.).

1980 Mathematics subject classification: 68B20

ACM-Computing Reviews-category: 4.22, 4.35, 4.42

Towards monolingual programming environmentst

by

Jan Heering & Paul Klint

ABSTRACT

Most programming environments are much too complex. One way of simplifying them is to
reduce the number of mode dependent languages the user has to be familiar with. As a first step
towards this end we investigate the feasibility of unified command/programming/ debugging
languages and the concepts on which such languages have to be based. The unification process is
accomplished in two phases. First, a unified command/programming framework is defined and,
secondly, this framework is extended by adding an integrated debugging capability to it. Strict rules
are laid down by which to judge language concepts presenting themselves as candidates for inclusion
in the framework during each phase. On the basis of these rules many of the language design
questions that have hitherto been resolved this way or that depending on the taste of the designer,
lose their vagueness and can be decided in an unambiguous manner.

KEY WORDS & PHRASES: Programming Environments, Monolingual Systems, Language In­
tegration, Language Design, Command Languages, Programming
Languages, Debugging Languages, Event Associations, Side-effect
Recovery

tThis paper is not for review; it is intended for publication elsewhere.

Rien n'est plus fecond, tous /es mathematiciens le savent, que ces obscures analogies,
ces troubles rejlets d'une theorie a une autre, ces furtives caresses, ces brouilleries
inexplicables; rien aussi ne donne plus de plaisir au chercheur.

Andre Weil

1. INTRODUCTION

1.1. General

A programmer interacting with a typical computer system has to be something of a polyglot.
In addition to the language he is programming in, he has to be fluent in the system command
language and the language of the symbolic debugger. Furthermore, various other system utilities
like the text editor and the linkage editor each have their own command language, bringing the total
number of languages he has to master to at least four.

This hodgepodge of languages makes fast and efficient interaction with the system difficult.
There are several reasons for this. The first and most obvious one is that the user has to remember
so many diffe:rent details. This would be acceptable if the domains of discourse corresponding to
the various interactive modes were sufficiently distinct. The point is that, at least for some modes,
the opposite is true. There are profound analogies between command mode, programming mode and
symbolic debugging mode, but in most existing systems a substantial intellectual effort is required to
see them, because they tend to be obscured by the differences between the various languages.

Secondly, because of the heterogeneous character of the system, the user is confronted with
serious interfacing problems. An especially tricky boundary to cross is the one between his program
and the file system. The mismatch between the datatypes supplied by the file system and the
datatypes available in the programming language force him to resort to explicit input/output
operations and intricate data conversions for even the simplest of operations on files. This whole
area is a source of confusion and programming errors.

These problems have not gone unnoticed. Perhaps Shaw, one of the designers of the
JOHNNIAC Open-Shop System (an early time-sharing system which became operational at The
RAND Corporation in January 1964), already had an inkling of the chaos that was to ensue from
the separate development of command and programming languages when he wrote: "A striking
feature of the system is that the user commands JOSS directly in the same language that he uses to
define procedures for JOSS to carry out indirectly" [SHA64]. And in 1966, at the occasion of the
decommissioning of JOHNNIAC, Ware, who had been closely involved with it, said somewhat
optimistically: "Those who know JOSS and perceive the friendliness of its help and reaction feel
strongly that ~ystems such as it will be one of the prominent, if not exclusive, ways of computing for the
future" [GRU79]. Reading all this fifteen years later one cannot help but get the impression that
somehow the evolution of programming environments has lagged. This is not to say that no
developments have taken place in this field since JOSS first made its appearance. Powerful systems
like APL/700 [BUR74], the CDL2 'laboratory' [BAY80], INTERLISP [TEI78], a recent LISP
environment developed at IBM [ALB79], PATHCAL [WIL80], and SMALLTALK [GKA76,
ING78, BYT81], each of which in its own way provides the user with a highly integrated interactive
environment, are keeping the spirit of JOSS alive. Nevertheless, the main trend has always been to
let the various interactive modes influence each other as little as possible.

One reason current time-sharing systems are suffering from a lack of homogeneity is that they
have to support a multitude of different programming languages. It seems sensible, in terms of
implementation effort required, to provide a single environment for all languages the system is

2

intended to support. Such an environment has of necessity to be a compromise, however, being less
than perfectly adapted to each individual language. Also, language specifications almost invariably
assume 'external' data (files) to have entirely different characteristics from 'internal' data (i.e. data
that are local 1to the program). This split propagates through the whole system and cannot be hidden
from the user.

Yet another problem is that most programming languages (except APL [FIV73], LISP
[ALL78] and SNOBOL4 [GPP71]) do not permit the dynamic creation and subsequent modification
of procedures. This essential mechanism without which a system cannot change or grow (except by
adding another level of interpretation) therefore has to be supplied by the command language.

By pure coincidence there are currently two factors working in favor of a more integrated
approach to system design. First, time-sharing is rapidly losing ground to personal computing and
many personal systems do not have to support more than a single programming language.
Secondly, system command languages have reached a point in their evolution where their similarity
to regular programming languages has become so obvious that a kind of attractive force striving for
even greater similarity has started to build up.

The reader who wishes to gain a broader perspective on the various issues involved should
consult the paper by Sandewall [SAN78], the proceedings of the 1980 Symposium on Software
Engineering Environments [HUN80], and the compilation of recent papers on programming
environments by Buxton [BUX80].

1.2. Scope of lthis paper

For good reasons most integrated programming environments developed so far are based on
languages not specifically designed to be used that way. By using an existing language the designer
avoids the quicksand of shifting language specifications and the promotion effort needed to convince
prospective users of the merits of his new proposal. Although these are great practical advantages,
the unfortunate consequence is that the influence of integrated environments on language design
remains largely unexplored. SMALLTALK [GKA76, ING78, BYT81] is an important exception.

In this article we shall look at programming environments from a language designer's
perspective. Suppose a language is to be embedded in an integrated programming environment.
How would this requirement affect its design? We shall attack this problem by investigating the
feasibility of monolingual systems in which the command language, the programming language and the
language of the symbolic debugger are identical. The three main questions to be answered are:

(I) Are unified command/programming/debugging languages feasible and on what concepts
would they have to be based?

(II) Would such languages be significantly easier to use than the typical conventional user
interface?

(III) In what respects would the implementation of such languages differ from the typical
conventional operating system and language processor?

Before going on to a detailed discussion of basic concepts we shall first give a brief survey of
the present status of command languages in §2. §3 will be devoted to a discussion of (I). In
essence, what we shall attempt to do is to derive a coherent set of language concepts starting from
the single requirement that it must constitute a suitable basis for a monolingual environment in the
above sense. This will take up the major part of the paper. The final section will be devoted to a
brief discussion of (II) and to a general evaluation of the concepts developed in §3. We shall pay no
attention to (III) in this paper.

We are using the adjective monolingual in a somewhat ad hoc manner. There are, for instance,
no obvious reasons to refrain from attempting to integrate the text edit mode in addition to the

3

three modes discussed in this paper. We have not yet tried this simply because we had to stop
somewhere, but attempts in this direction will almost certainly be worth-while.

Two other subjects we shall not concern ourselves with are concurrency and protection.
Again, the reason is that we had to restrict the scope of our investigation in some reasonable way.
The design of debugging facilities for languages allowing the manipulation of concurrent processes is
a difficult task and their integration into a larger whole is probably even more difficult. As for
protection, the main problem is to reconcile protection and debugging facilities. By their very
nature, these tend to be in conflict with each other. For a monolingual system, a language based
protection scheme allowing user defined access control would be an obvious choice, but this does
not seem to make things any easier. We shall pay no further attention to the problems involved.

Needless to say, the monolingual approach as discussed in this article is not an end in itself.
Although there is much to be gained by exploiting the similarities between different modes,
integration of languages with dissimilar domains of discourse can only be achieved within the
framework of an extensible base language allowing the definition of different dialects or
sub languages.

4

2. PRESENT STATUS OF COMMAND LANGUAGES

2.1. General

One of the basic functions of the command level is to enable the user to create, modify, and
execute programs and procedures. Furthermore, it allows the manipulation of processes and large
collections of more or less permanent data (files). To a first approximation existing command
languages may be viewed as ordinary programming languages with powerful primitives that operate
on files. At the present time command languages and programming languages are rapidly
converging towards each other and any attempt to confine them to different categories would be a
step in the wrong direction. The differences between them do not in any way have a fundamental
character but are rather a result of the separate evolutionary paths they have followed. In order to
bridge the gap that still separates them, it is useful to look at existing command languages from a
programmer's perspective. The following general remarks have been inspired by three representative
current command languages, namely the so-called UNIX shell [BOU79], IBM's TSO Command
Language [IBM78], and Burroughs' Work Flow Language (WFL) [BUR77]. In §2.2 we discuss the
UNIX shell in more detail and in §2.3 we draw some conclusions.

Both the shell and TSO are incrementally interpreted, that is, each command is executed
immediately after it has been read by the command interpreter. WFL is compiled, reflecting the fact
that it was originally intended to be used exclusively in batch mode. Neither the shell nor TSO
perform an overall syntax check of command procedures that are submitted in their entirety instead
of incrementally. This difference in implementation may be one of the reasons WFL is in some
respects more like a conventional programming language than the other two. Among the features of
WFL are declarations and a conventional evaluation mechanism. The shell and TSO, on the other
hand, do not]have declarations (these would be bothersome to the interactive user) and use an
evaluation mechanism based on macro substitution. This is a direct descendant of the simple
substitution mechanism that was among the earliest facilities introduced at the command level to
make life easier for the user by allowing him to abbreviate frequently used commands.

Computallion at the command level is to a large extent string oriented and consists of the
synthesis of parts of command language statements to be used later on. These invoke programs
(which may themselves be written in the command language), specify file parameters, manipulate
the file directory, etc. It is also possible to create file names dynamically and to perform operations
on existing file names. Because of this, file names have more inherent meaning than names of
variables in ordinary programs. The reason for this difference is that file names are permanent
entities in the :system, while names of variables have a more temporary character and are usually
eliminated from the executable code to gain speed. To simplify string handling all three languages
have operations like concatenation, substring selection and pattern matching (the latter mainly in
the shell). The availability of variable length strings and string operations, however ad hoc they may
be, contributes substantially to the popularity of command languages as programming tools. Of
course, macros thrive in this environment although macro languages are notoriously difficult to
understand. The shell and TSO are no exception in this respect.

It should be stressed that the variables offered by the three languages under discussion are
used as temporary storage by command procedures and are distinct from files. The split between
file types and the types of local variables of command procedures is analogous to (and just as
undesirable as) the split between file types and the types of local variables in programs written in
ordinary programming languages (see §1.1). In addition to the type differences between files and
local variables, the permanent environment as defined by the file directory has a much more
involved structure than the local environment. As a result, file names have a more complex syntax
than local names. Also, the creation, maintenance and inspection of the file directory requires a
large number of primitives that do not have 'local' equivalents.

5

2.2. The UNIX shell

In this siection we shall concentrate on the UNIX Version 7 shell [BOU79], both because we
are most familiar with it and because it is a powerful tool offered as part of an increasingly popular
programming 1environment. We shall first give a list of mechanisms which shell procedures can use
to communicate with each other. It will serve as a yardstick for measuring the consistency and
power of the concepts to be introduced in §3. It will be followed by three sample shell procedures
to give the reader a concrete feeling for the two chief characteristics of command languages: their
power and their chaotic character. We shall also take the opportunity to translate some of the shell
concepts occurring in the examples into more familiar and/ or more consistent terms.

Shell procedures can communicate through

□ Parameters: Shell procedures may have a variable number of parameters; both keyword and
positional parameters are allowed.

□ Return value: Essentially a boolean value which is used to drive shell control structures like
the if and while statements.

□ Exported variables: In the shell a command procedure corresponds to a separate process. An
entirely new environment is created each time a command procedure is activated. The
environment of the caller is not accessible to the callee, except for variables that have been
explicitly designated as exportable.

□ Shared Jiles: Files are essentially homogeneous character/byte strings. UNIX does not have
other file: types.

□ Command substitution: The string value produced by the callee on its output port is substituted
for the call.

□ Pipes: The string value produced by one command process on its output port is sent to the
input port of another command process. The latter need not wait till the former has produced
its entire: output, but can start processing as soon as part of it is available (depending on the
kind of ,computation involved, of course). The pipe mechanism takes care of synchronization
between the two processes.

(For ease of reference and to enhance readability line numbers have been added to the
following three sample shell procedures, while keywords are bold face. Neither of these are shell
conventions.)

Example 1

for name iin 'ls'
2 do
3 if test - d $name
4 then echo $name' directory - not copied'
5 ellse cp $name backup
6 fl
7 done

This is a small run-of-the-mill shell procedure. It copies all files in the current file directory to
the directory backup. It uses one local variable (name) and four procedures (ls, test, echo and cp).
Whether the latter are themselves written in shell language or in another language is immaterial.
Procedure ls produces a listing of the file names in the current file directory on its output port (line
1). The command substitution mechanism denoted by the opening quotes in line 1 redirects this
output to the caller which, in this case, is the for statement. The effect is, that the controlled
variable name successively runs through all names in the current directory. The body of the loop
(lines 3-6) first tests whether the current name refers to a directory by calling procedure test with

6

parameters -d and the value (expansion) of name denoted by $name. If the current name refers to
a directory, an appropriate message is issued (line 4). The value of the parameter of echo in line 4 is
the value of name concatenated with the text between string quotes. Alternatively, if the current
value of name refers to a file, the file is copied to backup by cp (line 5).

Example 2

I echo abc >x
2 y='cat x'

This procedure illustrates the asymmetry between files and local variables in the shell. In line l
procedure echo copies the value of its argument to its output port. In this case the latter is
redirected to file x (denoted by >x) and the value of the argument is abc. If x already exists, its old
value is replaced by abc; otherwise x is created and set to abc. In line 2 cat copies the value of the
file denoted by its first argument to its output port. The value of the latter is taken as the value to
be assigned to y by command substitution (denoted by opening quotes). In programming language
terminology one would say that this shell procedure assigns the string value abc to a permanent
variable and subsequently assigns the value of the permanent variable to a local variable. If x were
a local variable and y a permanent one, the procedure would look quite different:

I x=abc
2 echo $x >y

Example 3

1 compname = $1 $2
2 echo $1' ''$2' $1" >$compname
3 chmod + x $compname

This example is somewhat more involved than the previous ones. The reader who is familiar
with LISP may wish to take a look at its LISP equivalent first:

1 (lambda (fl f2)
2 (set (concat fl f2)
3 (list (quote lambda) (list (quote par))
4 (list fl (list f2 (quote par)))
5)
6)
7)

When called with actual parameters (quote f) and (quote g) it assigns

(lambda (par) (f (g par)))

to variable Jg. (The function concat in line 2 is non-standard. It is the concatenation operator for
atoms.) Variable jg thus becomes a function variable. Its value is the composition off and g.

Similarly, the above shell procedure is the functional composition operator for shell
procedures that obey certain argument conventions (to be specified). Its arguments are the names of
the two shell procedures to be composed. Its result is the shell procedure which is their
composition. By convention the two arguments are numbered l and 2. (Remember that shell
procedures can have a variable number of parameters.) In line r the name of the result is
synthesized. It is the concatenation of the names of the two procedures to be composed (denoted by
$1$2). The output port of echo in line 2 is redirected to a file with this name (denoted by
>$compname). The argument of echo looks rather forbidding. It is best understood by looking at

7

its value when actual values are substituted for procedure arguments I and 2: if the procedure is
called with parameters J and g the argument of echo evaluates to

f 'g $1'

Procedure echo writes this value to file Jg, which is made executable by a call to procedure chmod in
line 3, i.e. Jg becomes a shell procedure itself.

What happens when Jg is executed? Both J and g are supposed to have one argument and to
produce their result on their output port. The same argument convention should apply to Jg. By
using command substitution (denoted by opening quotes) the output port of g is redirected to the
procedure Jg itself. Compare this with examples I and 2. In this way the result of g becomes the
argument off

2.3. Conclusions

In view of the foregoing it will come as no surprise that command languages and
programming languages have evolved into competing tools. Many programs consist of a main
program written in a command language and one or more procedures written in a programming
language. (For historical reasons the latter are often considered to be the 'real' programs.) Although
such a 'mixed mode' implementation may relieve the programmer from a lot of work because many
things are easier to program in a command language than in a regular programming language, the
resulting programs tend to be difficult to understand and highly non-portable. This is partly
because most command languages contain all kinds of strange features and suffer from a lack of
proper syntax. For another part it is caused by the highly irregular interface between both types of
languages and the fact that standardized command languages do not exist. The universal lack of
adequate command level debugging facilities does not improve things either. ·

Clearly, programming languages are too weak to fend off the intrusion of command languages.
The existence of all kinds of powerful but unstandardized command languages poses a serious threat
to the effectiveness of any language standardization effort. Straightforward standardization of
command languages in their present form (whatever that may mean) would only consolidate an
already unsatisfactory state of affairs and would therefore be undesirable. In the sequel we hope to
show that the current competition between command languages and programming languages is but
a prelude to the emergence of more powerful languages encompassing both.

8

3. BASIC CONCEPTS FOR A MONOLINGUAL PROGRAMMING ENVIRONMENT

3.1. General principles

Our proposal for finding a suitable conceptual basis for a unified command/programming/­
debugging language may easily fall short of its goal if proper guiding principles are lacking. We
need some simple rules to protect us from the enormous amount of features offered by current
languages and systems and to aid us in finding our way towards a coherent whole. Fortunately,
such rules are inherent in the concept of integration itself:

(A) A linguistic concept is eligible for inclusion in the set of basic linguistic concepts only if it
adds substantial power in all three modes.

(B) The semantics of each concept must be mode independent.

(C) On the basis of the resulting set of linguistic concepts it must be possible to provide the user
with adequate facilities in all three modes.

We use the word mode in the sense of functional setting or kind of activity. In this sense it
denotes something more immediately pertaining to the kind of activity the user feels he is involved
in than to som(:thing specific in the system itself.

The above requirements are not as vague as they may seem at first glance. A vague term like
adequate facilities can be given a more precise meaning by using the facilities offered by existing
integrated as well as non-integrated environments as a yardstick. In fact, (A), (B) and (C) are so
restrictive that they are occasionally in conflict. Nevertheless, they have proved to be very useful
guidelines and we shall stick to them as closely as possible.

Requirement (A) forces us to look at each concept from three different viewpoints. In most
cases, at least one of these provides an unexpected perspective, even if it turns out that the concept
in question is tied too closely to a specific mode to be of general use. Occasionally, the opposite
happens and a concept turns out to have unsuspected applications in modes that initially may have
seemed foreign to it.

In the next section we first develop the concepts underlying a unified command/programming
language. We then add an integrated debugging capability to it in §3.3. Requirement (A)
guarantees that the resulting unified command/programming/debugging framework is largely
independent of the order in which concepts are added.

3.2. Integration of command and programming language

3.2.1. Information and control flow

In conventional programming languages the three chief mechanisms for communication
between program units are:

□ Procedure parameters.

□ Procedun~ return value.

□ Global variables.

Their command level equivalents are (§2):

□ Program and command procedure parameters.

□ Program and command procedure return value.

□ Files and exported variables.

9

Unification of both sets of mechanisms is achieved as follows:

D The distinction between programs and procedures is eliminated.

D The distinction with respect to type and naming between files and variables is eliminated.

We shall elaborate on both points. First, in a unified framework calling a procedure is
indistinguishable from running a program. The command level corresponds to interactive
programming at the. highest procedural level of the system. To preserve symmetry between this
level and deeper procedural levels it is necessary to introduce an interact construct, allowing
interactive mode to be entered at the point at which it occurs. The command level is thus an
implicit interact at the highest procedural level, but interactive programming mode may be entered
at deeper levels as well. Execution of an interact does not cause an environment switch. The
interact construct is similar to the LISP eval function. Its application in interactive debugging mode
is discussed in §3.3.2.

The semantics of shell concepts like command substitution and pipes (§2.2) can for the most
part be expressed in terms of ordinary procedures. There is one exception, however. Producing and
consuming processes which communicate by means of a pipe-like method cannot always be modeled
by function composition. If the producer happens to create an infinite output stream, the pipe
mechanism allows the consumer to start doing useful work on a time-multiplexed basis as soon as
part of its input is available. If the pipe is modeled in terms of function composition, each
functional component has to finish before the next component can start, so in this case the model is
inadequate. The problem can be solved either by introducing special language features, like
interprocess communication or co-routines, or by using some form of lazy evaluation. As this goes
at the expense of a relatively large increase in complexity of the language, we do not think it
worth-while to explore these possibilities any further in the present paper.

In a unified framework, the analogues of files are permanent variables. (§2.2, example 2). We
shall call all other variables local. Conventional global variables are thus also called local in our
terminology. The first step in unifying permanent and local variables is to abolish the distinction
between permanent and local data types. For instance, suppose we are maintaining an on-line
telephone directory. In a system in which the command and programming language are different,
the following three steps are required to modify a directory entry:

(1) Enter a special purpose 'telephone directory editor' (or the standard text editor if the directory
resides on an ordinary text file).

(2) Modify the entry.

(3) Return to command mode.

On the other hand, if we are maintaining the directory in a system with a unified command/ -
programming language, the information can be represented using a suitable data type, such as an
associative table that maps names on telephone numbers. To modify a table entry a simple
command mode assignment suffices:

telephonenumbers[person] : = newnumber;

No special program or mode switch is needed to modify the information.

From now on we shall be using a single type system throughout. Variables can differ with
respect to their lifetime, but this does not imply any difference with respect to the types of values
they can have. Type definition and type checking in a unified command/programming language
will be discussed in the next subsection.

The second step in eliminating the differences between permanent and local variables is to
unify the naming mechanisms at the two levels, i.e. to give the permanent and local environment the
same basic structure. This is the subject of §3.2.3.

Integration of conventional control flow mechanisms, like if, for and while statements, does not
present any serious problems. They are already present in both kinds of languages. Some desirable
features of command procedures, such as multiple return values, failure signals, keyword
parameters, etc., are seldom found in programming languages, but their inclusion in a unified
framework is a relatively minor issue.

Some command and programming languages allow a modest form of exception handling. This
important subject will come up in a natural way in the context of the integration of debugging tools
(§3.3.4.1).

3.2.2. Type definition and type checking

The user of a unified command/programming language must be able to handle both small
scale data, like integers and short strings, as well as large scale data, like entire texts, arrays of
numbers, trees and directories, with equal ease. In view of this it is appropriate to introduce an
abstract type definition facility in the language. In conjunction with sufficiently powerful basic types
(including dynamic arrays and associative tables) it should enable him to define most required data
types himself. Directories are somewhat special and are discussed in the next subsection.

A unified command/programming language has to be complete in the sense that procedure and
type declarations are not supplied by an outside source, but must be created and manipulated in the
language itself. This, and the fact that statements in the language are entered both incrementally
and in the form of predeclared units, makes it necessary to consider type systems from a broader
viewpoint. In the following we shall briefly discuss three aspects of them, namely:

□ Elastic type checking.

D The need to introduce procedure and type valued variables.

D The influence of modifications on type consistency.

Insofar as our account is incomplete, the reader is referred to an interesting recent article by
Goodwin [G0081].

A central issue with type systems is the moment at which the rules are checked. Procedure
and type declarations can be checked as a whole, but interactive commands have to be checked
incrementally. It is not clear how both situations can be captured by a single, static type system.
An analysis of the moment at which the checks could be performed may shed some light on the
problem. A typical procedure will go repeatedly through some or all of the following stages:

(1) Create or modify procedure declaration.

(2) Compile.

(3) Include in library.

(4) Combine with referenced procedures from a library.

(5) Call procedure.

(6) Execute body.

Not all type checks can be performed during stage 1, because not all information is statically
available. An example is the check on the type of external procedures. This check cannot be
performed before stage 4 above, but could be postponed to stages 5 or 6. In a typical statically
typed programming language most checks are performed during stages 1 through 4. It is interesting
to note that operations on permanent data (files) are almost always checked during stage 6. If a file
name is created dynamically no earlier check is possible, but statically known files could be checked
earlier. This is seldom done, however. Also, checking the type of external procedures in stage 4 is
often done rather cursorily or not at all. In a typical command language all checks are postponed
to stages 5 and 6.

11

For a unified command/programming language the simplest solution is to perform all type
checking at run-time. In this scheme there is no distinction between incremental execution and the
execution of predeclared units with respect to the moment at which type checking is performed.

Another - much better - method is to check type consistency at the earliest possible moment.
This leads to an elastic type system covering the whole range from strictly static typing to
completely dynamic typing. In such a system the type rules are checked as soon as sufficient
information is available. This amounts to static typing when full static information is available, and
to dynamic typing when no static information is available at all. Furthermore, cases in which there
is only partial static information can also be handled.

The completeness property mentioned in the first paragraph of this section has important
consequences. The monolingual equivalent of the creation of a new program is the declaration of a
new procedure at the command level. When completed, the declaration becomes an object of type
procedure and is given a name, i.e. it becomes the value of a procedure variable. Depending on the
scope of the name given to it, it may either become a local procedure or a permanent one. In the
former case it is destroyed on return from the command level, i.e. on log-out.

As the command level corresponds to incremental programming at the highest procedural level
of the system, all facilities offered by it are shared by other procedures. As a consequence a unified
command/programming language must necessarily allow nested procedure declarations, procedure
variables, and procedure parameters. Similar considerations lead to the introduction of type valued
variables. The value of an object of type procedure or type is the original declaration used in its
creation. But, hidden from the user, it may contain an optimized (compiled) version of the
declaration which is used instead of the original source text when the procedure or type is invoked.

For editing purposes it is necessary to decide which program units are modifiablet. Because
there is a natural conversion from an object of type procedure or type to an object of type string and
vice versa, procedure or type declarations can be modified in a straightforward manner.
Modification of a single statement, however, can be achieved only indirectly by looking for the
procedure or type declaration to which it belongs and by assigning a completely new declaration
(which only differs from the previous one in the modified statement) to the original procedure or
type variable.

It is sufficient to have only a few high level constructs that are modifiable provided that all
constructs in the language are covered either directly or indirectly. This may lead to the
introduction of additional types, if procedures and type definitions are not the only modifiable units.
If a program modifies one or more of its own modifiable units, it is self-modifying. The possibility
of self-modification is thus a consequence of completeness.

Modifications may easily lead to type inconsistencies. For instance, if a type definition is
modified all instances of the old version may become incompatible. Similarly, replacement of a
procedure may lead to type inconsistencies between the new version and existing program units
referring to it. An elastic type system, whose purpose it is to report type inconsistencies at the
earliest possible moment, would need extensive backward linking in order to be able to perform its
duty in these cases. Although not easy to implement, this kind of service from a type system is
quite unheard-of in conventional systems.

tWe shall not pursue the integration of editing primitives here, but note in passing that the string manipulation component
of the language may be viewed as the forerunner of an integrated editing facility. Another interesting point is, that the posi­
tioning operations needed for editing source text can also be used to identify control flow events (breakpoints) in debugging
mode. See §3.3.

12

3.2.3. Environments, directories and abstract type definitions

Both in command and programming languages there is a bewildering variety of mechanisms to
associate names with values. Furthermore, unlike the set of local names in a conventional program,
the set of names at the command level has a dynamic character. These large differences between
the permanent and local environment (see also §2.1) are not acceptable in a unified command/­
programming language. In this section we show that, on closer inspection, most of the mechanisms
involved tum out to be rather similar and can be unified by allowing the user to structure both the
local and permanent environment himself. An immediate consequence is, that variables can be
created and destroyed dynamically irrespective of their scope.

Let an environment be a linear list of (name,value) pairs. Environments will be denoted by

{(N l'V 1), ... '(Nn,V n)}.

When the value of name Nin environment Eis needed (this will be denoted by E.N), Eis searched
from left to right for a pair with name part N. The corresponding value part is the value of E.N. A
value V can be associated with name N in environment E by searching E from left to right for a
pair with name part N and by substituting V for the corresponding value part. Different pairs in E
can have the same name part, but only the leftmost one is affected. If N does not occur in E, the
new pair (N, V) is appended at the right-hand side of E. The join of two environments E and F is
obtained by appending the pairs of F at the right-hand side of E in the same order in which they
occur in F.

An object directory (the successor of the conventional file directory) is an environment that
maps object names on objects. An object directory D containing objects A, B and C can be
described by

{(A:objectA), (B:objectB), (C:objectC)}.

Obviously, one of the names in the directory could itself be a directory (i.e. a sub-environment). In
this way, tree-structured and even more general directory systems can be described. Supposing B in
the above example is a directory containing objects Bl and B2, the resulting structure can be
described by

{(A:objectA), (B:{(Bl:objectBl), (B2:objectB2)}), (C:objectC)}.

Selection of object Bl from directory D is then achieved by D.B.Bl.

In the shell so-called path names are used to specify the position of a file in the directory tree
with respect to the 'current directory' or the root of the tree. The above selection is similar both to
such path names as well as to (repeated) field selection from instances of abstract types. The shell
user can also specify a search path, i.e. a linear list of directories in which the binding
(interpretation) of each command read by the shell is looked up. For instance, suppose the user
wants to execute command P. The first executable file with name P encountered when searching the
given list of directories is then taken to be the program or command procedure to be executed. The
interpretation of P can be changed not only by replacing P itself, but also by placing another
version with the same name in a directory which is closer to the start of the search path. Similarly,
many systems allow the definition of search paths consisting of linear lists of procedure libraries for
use by the linkage editor. If the first library does not contain the procedure to be linked, the linkage
editor goes on to the second library, etc. A search path can simply be described as the Join of a
series of environments.

Now that we have brought out these similarities, the next question is: how can environments
be incorporated in a unified command/programming language? Rather then incorporating
environments as such, a better solution is to improve the environment-like properties of instances of
abstract data types. An example may clarify this. The PASCAL with statement ([JWI75], §7) can

13

be looked upon as installing the record variable mentioned in its header as a component of the
environment. Given the declarations

type date=
record day: 1 .. 31;

month: 1 .. 12;
year: integer

end;
var mybirth, today : date;
var myage : integer;

and appropriate initializations, one can write

print(today.day);
print(today.month);
print(today.year);
myage : = today.year - mybirth.year;

PASCAL allows the above statements to be abbreviated to

with today do
begin

print(day);
print(month);
print(year);
myage: = year - mybirth.year;

end;

i.e. within the scope of the above with statement today.day may be abbreviated to day, etc.

The PASCAL with statement can be generalized by permitting abstractly typed objects with
procedural components and own variables instead of just records with passive fields. Such
generalized versions of the with statement are the CDL2 focus statement [BAY80], and the scan
expression in SUMMER [KLl80]. The use clause in ADA [DOD80] serves a similar purpose.

We are not finished yet, because there is still an essential difference between environments and
ordinary abstractly typed objects. An instance of an abstract type has a fixed number of fields,
while ihe number of elements in an environment or directory may vary dynamically. This problem
can be solved by allowing a 'table of contents' to be added to an abstract data type and by adapting
the rules for the interpretation of names in generalized with statements as follows: the occurrence of
name x within the scope of a generalized with statement with argument OBJ, is equivalent to

OBJ.x

if the type of OBJ statically includes a field x, and to

OBJ.contents['x']

if it does not. In the latter case, the table of contents of OBJ is accessed via its contents field with
key x. String quotes have been added to indicate that the table key is a literal. In the first case it is
assumed that fields are not evaluated, so no quotes are necessary.

Execution of a generalized with is rather similar to switching to a different 'current directory'
in command mode (cd command of the shell). The equivalent of a search path (see above) can be
obtained by nesting generalized with statements or by allowing a list of objects instead of only a
single object to be specified in the header of a with. Again compare this with the PASCAL with
statement which may be applied to a single record variable as well as to a list of record variables.

14

3.3. Integration of debugging facilities

3.3.1. General

Grishman has argued the unification of programming and debugging languages as follows:
"I would like to emphasize particularly that the debugging language should be similar to the source
language. Since the data structures involved are those of the source language, it is only natural to use
statements from the source language in debugging, rather than to try to put together a new language
which reflects the data structures of many languages. Also, the resistance of most users toward learning
a new language in order to debug their programs is not to be underestimated; a language with which
they are already partly familiar helps to overcome this resistance" [GRl71]. Grishman does not
advocate the total integration of programming and debugging languages, but leaves room for special
facilities that are only available in debugging mode.

The designers of SNOBOL4 have gone one step further in an attempt to integrate the two
kinds of language completely. The tracing facilities of the original version of SNOBOL4 as defined
in [GPP71], chapter 8, constitute a more or less separate set of functions not too well integrated into
the rest of the language. To remedy this defect Hanson has defined an interesting language
extension [HAN76, HAN78]. It consists of a mechanism called event association allowing the
programmer to associate a SNOBOL4 procedure with assignments to variables, procedure calls, etc.
Hanson has also investigated the application of event associations for purposes other than
debugging.

In a monolingual system interactive debugging is indistinguishable from incremental
programming. Likewise, statements that have been added to a program for purposes of debugging
cannot be distinguished from 'ordinary' statements. Because command mode corresponds to
incremental programming at the highest procedural level, interactive debugging at that level is
indistinguishable from command mode itself. Although the user may have a very specific idea
regarding the mode he is operating in, this is immaterial as far as the system is concerned. As was
pointed out in §2.3, conventional systems do not only suffer from a chaotic command language but
also from a lack of command level debugging facilities. Obviously, the latter cannot happen in a
monolingual environment.

Implicit in the above is the availability of an interact primitive allowing the interactive
insertion of statements at the point at which it occurs. This construct was already introduced in
§3.2.1 as part of the development of a unified command/programming framework. In addition to
an interact, the user needs two other tools to aid him in debugging:

(I) He must be able to associate actions with the occurrence of certain computational events. He
may for instance wish to switch to interactive mode whenever the value of a certain variable
becomes zero during the execution of a certain procedure or to display the values of the actual
parameters when a certain procedure is called. Furthermore, in order to catch an event the user
should not be forced to locate all points where it can occur. To this end we shall introduce an event
association mechanism similar to that of Hanson. Although our event associations will obey
somewhat different rules than his we shall use the same name. Event associations will be discussed
in §3.3.2.

(2) The second tool needed for debugging is side-effect recovery. For instance, the user who wishes
to inspect the top element of a stack may be forced to use the stack's pop operation for lack of an
accessible top-of-stack field. Although in this particular instance he q>uld probably undo the side­
effect of the pop operation rather easily by pushing the popped item back on the stack, in other
cases this might be difficult or even impossible. The inverse operation(s) required to restore the
original state may be complex and time-consuming or, perhaps even worse, the user may be
unaware of the precise side-effects some of his actions are causing. What is needed is a general

15

mechanism to evaluate expressions and undo all their side-effects (except, of course, the delivery of
the result). This will be the subject of §3.3.3.

As a result of the integration of debugging facilities all unified command/programming
constructs introduced in the previous section become available in debugging mode, while event
associations and side-effect recovery become available as general programming tools and in
command mode. Requirement (A) of §3.1 stipulates that all three modes should benefit from this.
The merits of normal programming constructs in debugging mode were set in evidence by the
quotation at the beginning of this section. The applications of event associations and side-effect
recovery in programming and command mode are perhaps less evident and will be discussed in
§3.3.4.

We conclude this chapter with a discussion of the disadvantages of integrated debugging in
§3.5.

3.3.2. Event associations as a debugging tool

Integrated debugging facilities should not force the user to plan his debugging act1V1t1es
beforehand or to make temporary modifications to the source text of the program units involved.
Event associations should therefore be designed in such a way that the user can control and monitor
execution interactively by jumping from one event to another without modification of any source
text whatever. Furthermore, in order to enable the user to inspect variables in the current
environment with the aid of ordinary language constructs, triggering of an event association should
not cause an environment switch. Although these two requirements are important, they are far from
sufficient to g:uarantee the proper behavior of event associations. A very strict discipline has to be
imposed on them to ensure their predictable behavior and their smooth interaction with other
language constructs. The set of requirements given below is in no sense complete or definitive, but
is meant to give an indication of the many issues involved.

To simplify the following discussion we first introduce a notation for event associations:

<event association> : : = [<label>] when <event> do <action> od

Some examples are:

Example 1

when x is modified
do

interact
od;

This event association causes interactive programming mode to be entered when x is modified.

Example 2

when P is called
do

display x1, ... , xn
od;

The values of the parameters of P are displayed just before execution of the body of P starts.

Basically, when an <event association> is executed as part of the normal flow of execution,
the corresponding (<event>,<action>) pair is connected. It simultaneously gets armed. In the
armed state the <action> is triggered when the specified <event> occurs. For reasons to be
explained below, an event association can also become temporarily disarmed. In that state it remains

16

connected, but it cannot be triggered. If conditions are favorable again, it is re-armed. When it is
no longer needed, an event association is disconnected. This either happens automatically or can be
done explicitly by means of a disconnect statement containing a reference to the <label> of the
<event association> to be removed.

To be useful as a debugging tool event associations have to meet at least the following
requirements:

(I) Side-effects due to the testing of the event part of an event association are automatically undone
after the test has been performed, independently of whether the test succeeds or fails. In this way
the behavior of event associations is guaranteed to be independent of the number of actual tests
performed by the implementation. See example 3 below.

(2) When an event association is triggered, its action part is interpreted in the current environment,
i.e. activation of the action part does not cause an environment switch. Apart from unwanted side­
effects, this convention allows straightforward inspection and modification of variables in the trigger
environment with the aid of ordinary language constructs in the action part. Side-effect free
inspection requires special constructs and is discussed in §3.3.3.

(3) The event part is statically bound to the environment in which the when occurs (although this
may of course depend on the general binding strategy used by the system). Binding of the action
part is dependent on the type of event specified. Normally, it will be bound to the same
environment as the event part, but if the event involves an environment switch, the action part will
be dynamically bound to the new environment. If one or more of the variables occurring in the
event part of an event association become temporarily inaccessible due to an environment switch,
the event association is temporarily disarmed. If one or more of these variables are destroyed,
because the environment to which they belong is destroyed, the event association is disconnected.
For instance, all event associations connected during execution of a procedure are disconnected on
procedure exit. See example 4 below.

(4) No constraints are imposed on the statements making up the action part. In particular an action
part may itself contain event associations. In keeping with (3), these stay connected as long as the
environment to which their event parts are bound has not been destroyed, i.e. they are not
automatically disconnected when the action part terminates. Event associations can thus be
'exported' from an action part. See example 4 below.

(5) No constraints are imposed on the position of event associations with respect to other
statements.

(6) Potential trigger conflicts must be eliminated by imposing a linear order on the set of armed
event associations. Such an order can, for instance, be based on 'seniority' or on some linear
ordering of environment components. Even if resolved properly, trigger conflicts easily lead to
unforeseen complications because of side-effects of the action parts involved.

We give two further examples to illustrate the various aspects and possibilities of event
associations.

Example 3

when x < stack. pop
do

display x
od;

At the moment x becomes less than the top element of stack (if any), the value of x is
displayed. The event may occur either when a new value is assigned to x or stack, if stack is
popped, or if a new value is pushed on stack. The stack pointer is reset to its original value by the

17

side-effect recovery mechanism after the event test has been performed. See also example 1 of
§3.3.3.

Example 4

Suppose the following event association is entered interactively at the command level:

when P is called
do

interact
od;

A subsequent call

P(x1, ... , xn);

triggers the event association just before execution of the body of P starts. The interact statement in
its action part causes a (nested) switch to interactive mode. Neither the triggering of the when nor
the execution of the interact causes an environment switch, so any succeeding interactive statements
are interpreted in the context of P. The user can now connect an event association to the current
invocation of P, for instance:

whenx = 0
do

interact
od;

After leaving interactive mode, execution of the body of P starts until the value of x becomes equal
to 0. At that moment interactive mode is re-entered, etc.

3.3.3. Side-effect recovery as a debugging tool

As was explained in §3.3.1, the primary purpose of side-effect recovery is to protect the user
from unwanted side-effects when he is inspecting the state of his program in debugging mode. Any
side-effects caused by testing the event part of an event association are automatically undone,
independently of whether the test succeeds or not (§3.3.2), but everywhere else (and especially in the
action part of event associations) side-effects have to be recovered explicitly with the aid of special
constructs.

It is sufficient for the purpose at hand to introduce recovery brackets which transform an
expression into its side-effect free equivalent. We shall use the following notation:

<expression> : : = ... I <probe>
<probe> : : = probe <expression> endprobe.

By adding <probe> as an alternative to <expression>, the first rule ensures that a <probe>
may occur at all syntactic positions where an <expression> is allowed. The second rule says that
key words probe and endprobe play the role of recovery brackets. Evaluation of an expression
enclosed in recovery brackets proceeds in the normal fashion, but when evaluation terminates the
process is restored to the state it was in just before evaluation started, except that the new statement
pointer and the result(s) of the expression are retained. Any success/fail signals returned by the
expression are counted as results and are thus retained as well. If a result shares its value with a
variable, a complete recursive copy of the shared object is made before the process state is restored.
This copy is returned instead of the shared object itself so as to prevent the result from being
affected by the recovery process. Sharing of values between results does not present a problem and
is not undone by the copy process. If an expression does not have side-effects, enclosing it in
recovery brackets has no effect.

18

As the program state comprises the permanent environment, recovery of permanent side­
effects is implicit in the above definition. Permanent side-effects are the equivalent of side-effects
due to file input/ output in a conventional system. Automatic recovery of terminal input/ output and
other forms of man-machine interaction merits special attention, but is best treated in the context of
conditional side-effect recovery. Both subjects will be discussed in the next subsection.

We conclude this subsection with some examples of the application of side-effect recovery in
debugging mode.

Example 1

display probe stack.pop endprobe;

The pop operation returns the top element of stack and decrements the stack pointer. If
enclosed in recovery brackets, the stack pointer is restored to its original value and the pop becomes
a non-destructive read-top-of-stack operation.

Example 2

display probe text.nextline endprobe;

An object text consisting of lines of text is accessed sequentially through its operation nextline.
An internal line pointer is incremented every time a line is retrieved. Putting the access between
recovery brackets allows the user to look ahead in the text without disturbing the line pointer.

Example3

display probe P(x1, ... , xn) endprobe;

More general forms of look-ahead are also possible. For instance, suppose one would like to
take an advance look at the results of the next call to a procedure P. Assuming the context is right,
this can be done without affecting the state of the process by putting the call to P between recovery
brackets.

3.3.4. Applications of debugging constructs in other modes

3.3.4.1. Event associations in other modes

Basically, event associations are production rules [DAK77]. The set of armed event
associations constitutes a (dynamically varying) production system which is superimposed on the
otherwise object oriented base layer of the language, thus lending it a hybrid aspect. Of course,
event associations do not add essential computing power. They are strictly a matter of convenience,
just like most other language features. Nevertheless, they are better suited to some applications than
conventional constructs. In this section we show that the application range of event associations is
sufficiently broad to justify their inclusion into the set of basic linguistic concepts (requirement (A),
§3.1).

The language is assumed to provide facilities for the monitoring of at least the following
events:

□ Assignment to a given variable or field. See example I of §3.3.2.

□ Truth or falsity of a given boolean expression or, if expressions return a success/fail signal in
addition to their result, success or failure of an arbitrary expression. See example 3 of §3.3.2.

This is by no means an exhaustive list of useful events, but it is sufficient for our present
purpose.

Example 1

procedure P(x1, ... , xn)
{

if ... then flags.E : = true fi;

};

when flags.E = true
do

od;

19

Event associations can be used as exception handlers. In this example procedure P raises a
user defined exception by setting field E of object flags to true. Object flags contains boolean
variables associated with various exception conditions. The value of E is monitored by a when,
whose action part handles the exception. If the when happens to be temporarily disarmed at the
time the exception is raised, handling of the exception is delayed till the when is re-armed.

Example 2

when x is modified
do if R(x,y) fails

then y : = P(x)
fi

od;
when y is modified

do if R(x,y) fails
then x : = Q(y)

fi
od;

Suppose that x and y have to satisfy an invariant one-one relation R, but that external factors
can cause variations in both x and y (but not simultaneously). Assuming that R(x,y) <;:;> y=P(x)
<=;> x = Q(y), R is kept invariant by the above pair of event associations.

One application of this is in keeping a subsystem consistent when one of its components is
replaced. This can be achieved by defining a suitable event association which monitors the
relationship between the various components. If the relation no longer holds, because one of the
components has been modified, the action part rebuilds a consistent version of the subsystem.

Some systems include a software maintenance facility with its own special 'maintenance
language' (e.g. the UNIX make program [FEL 79]). With every subsystem a maintenance procedure
is associated which must be executed every time a change is made. In a monolingual environment
there is less need to introduce a separate maintenance language, not only because the compile and
link (bind) phases are completely hidden from the user but also because the structure of a subsystem
can be described by means of an abstract type definition, so no separate language for this purpose is
needed. In addition to this, event associations permit maintenance actions to be initiated
automatically.

20

Example 3

Define the semantics of a guard as

guard EXPR when EXPR fails do abort od.

Should the evaluation of EXPR ever fail while the left-hand when is armed, execution of the
offending statement is terminated, a warning is issued and control is returned to the command level.
For example, consider

guard prime(n);

which causes an abort when a composite integer is assigned ton.

Apart from the abort which it may cause, a guard never has any side-effects. Compare also
with example 2 of the next .subsection.

3.3.4.2. Side-effect recovery in other modes

In addition to its usefulness for debugging, a side-effect recovery mechanism like the probe
construct introduced in the previous subsection also has applications in algorithms involving
exploratory actions (backtracking) and error recovery. The probe performs unconditional side-effect
recovery. A slightly modified version allowing conditional recovery is also useful. It consists of a
pair of conditional recovery brackets with the following syntax:

<expression> : : = ... I <try>
<try> : : = try <expression> endtry.

try EXPR endtry is equivalent to EXPR itself if the evaluation of EXPR succeeds. Otherwise, it is
equivalent to probe EXPR emlprobe. Side-effects are thus recovered only if the evaluation of the
expression enclosed in conditional recovery brackets fails.

In the following example we show how the try construct can be applied to the parsing of non­
LL(1) notions.

Example t
Suppose a language has a case expression with the following syntax:

<case expression>
<case entry>
<keys>
<key>
<expression>

For instance,

k : = case n of
1: 2: k+ 1,
3: 0
esac;

: : = case <expression> of <case entries> esac
- <keys> <expression>

<key> [<keys>]
<integer> :
<integer> I ...

is a legal <case expression>.

Rule <keys> always produces at least one <key>. Both <key>s and <expression>s can
have an <integer> as initial symbol. We assume that <expression>s do not contain colons. The
following procedure uses a try to permit a <key> to be parsed without regard to its non-LL(l)
character:

procedure keys()
{

if key() fails then error(...) fi;
do forenir

od;

if try key() endtry fails
then exitloop

fi

return
};

21

Can the meaning of automatic side-effect recovery be extended so as to encompass man­
machine interaction in a satisfactory way? In discussing this question we shall assume that
interaction takes place through a (possibly dynamically varying) number of viewports. If viewports
are treated in the same way as other objects, modifications to a viewport requested by a probe or try
construct will take effect immediately, even though this may subsequently turn out to have been
premature. Consider the previous example. After having parsed the first <key>, procedure keys
looks for additional ones. It does this by calling procedure key from within a try statement.
Because it proceeds on the assumption that another <key> follows, key may issue an error
message, only to discover afterward that the assumption was erroneous and that what it was parsing
was not a <key>, but an <expression>. It then fails and all its side-effects are undone by the
enclosing try. Among other things this means that the error message issued by <key> has to be
canceled in some way, but even if initially marked as tentative its (probably rather brief) display
would be highly confusing to the unsuspecting user. If it had been assigned to a permanent object
instead of to a viewport, there would have been no problem because the user would never have seen
it.

In order to minimize the amount of irrelevant information presented to the user, viewport
modifications requested by a probe or try construct have to be postponed or even suppressed
altogether. To some extent this can be achieved by queuing them internally till either a user
feedback is requested or till the current probe or try terminates. In this way isolated messages that
are not part of a dialogue can be discarded by the side-effect recovery mechanism before they get a
chance to be displayed. Premature displays are still possible, however. In the above case, for
instance, the c!rror message is valid only if the alternative chosen turns out to be the the right one,
independently of whether a request for user input follows production of the error message or not.
To achieve this, either procedure key must be changed or, more generally, a deferred evaluation
mechanism must be added to the language. In both cases, the fact that key is called from within a
try must be known in advance and is reflected in the code.

Again consider example 1. If the source text is stored as a permanent object, the compiler can
simply re-access the ambiguous part of the text each time procedure key fails, because the enclosing
try restores th.e source text pointer to its original value. If the user interacts with the compiler
directly, it is i1uite unreasonable to expect him to provide the same text repeatedly only because the
compiler does not know how to parse it correctly the first time. In this particular case the problem
can be solved by moving the request for input out of the recoverable section, but this is an ad hoc
solution without obvious generalization.

The overall conclusion must be that recovery of user interaction cannot be performed in a
straightforward way.

The try construct is a direct descendant of its namesake in the SUMMER programming
language [KLI80]. The SUMMER try is more powerful in that it permits several alternatives to be
tried in turn until a given condition is met. Experience shows that the simpler try and probe

22

constructs presented here are adequate in most cases. This may depend on the type of application
envisaged for the system however.

In the n,ext two examples we show how side-effect recovery can be used in the definition of
assert and undo constructs.

Example 2

In addition to the guards discussed in the previous subsection conventional positional
assertions are also useful in all modes. They may take the form

<assertion> : : = assert <expression>.

If the evaluation of the expression part fails, execution of the offending statement is terminated, a
warning is issued and control is returned to the command level. If the expression part succeeds, the
assertion as a whole succeeds and no further action is taken. As they do not belong to the
computation proper, assertions must not return any values or cause any side-effects (except the
obvious one in case of failure). Enforcement of this rule cannot be left to the programmer, nor is it
practical to limit the expression part of assertions to intrinsically side-effect free expressions. The
alternative is to use dynamic side-effect recovery. In view of this, suitable semantics for the assert
construct are

assert EXPR _ if probe EXPR endprobe fails
then abort

fl.

Example 3

The probe and try constructs are useful only if the user has advance knowledge about the
tentative character of the expression involved and the conditions under which recovery is to be
performed. When working interactively, the user wants to be able to undo the effects of the
previous statement simply by typing undo (or something similar) after it. One might say that all
interactively entered statements have a tentative character, but that the conditions under which they
have to be revoked are vague and impossible to specify in advance. If an undo is introduced, the
unpredictable character of its interactive use makes it necessary to execute each interactive
statement in a reversible way.

3.3.5. Disadvantages of fully integrated debugging

Integration of debugging facilities also has its drawbacks. An unavoidable consequence of
making full programming power available in debugging mode is that the debugging statements
themselves may contain bugs that are as serious as the ones the user is looking for.

A second problem is, that the user cannot inspect the entire program state at every point.
Although he cam switch to other environments with the aid of the generalized with statement (§3.2.4)
and even inspect the own variables of objects in the current environment by means of probes and
suitable event associations, some variables, such as the local variables of the caller of the current
procedure, cannot be accessed in this way. Conventional symbolic debuggers circumvent this
problem by allowing the user access to the implementation. In a monolingual environment this is
unacceptable for at least three reasons: it jeopardizes the integrity of the language system; it forces
the user to familiarize himself with the implementation; and it imposes severe constraints on the
freedom of the implementor because, if implementation dependent notions are to be included in the
language, the architecture of the underlying (abstract) machine has to be part of the language
specification. It should be added that at least the first two points apply to other language systems as
well. Implementation dependence is simply never acceptable.

23

An implementation independent way of resolving the conflict would be to introduce a mode
dependent naming convention. It would consist of some simple rules to add extensions to names so
as to make them unique. These rules would only apply in debugging mode and would enable the
user to access all variables, fields, etc., irrespective of the environment prevailing at the time
debugging mode was entered. Clearly, this solution violates requirement (B) of §3.1 which says that
the semantics of all language constructs must be mode independent. Unfortunately, there seems to
be no way to resolve the conflict if we have to stay within the bounds dictated by (B). This means
we have reached the limits of what our integration method will allow us at this point.

Finally, one should keep in mind that event associations, although clearly an important
concept, are not yet well understood. Additional research is needed on this point.

24

4. EVALUATION AND CONCLUSIONS

The main obstacle in reaching valid conclusions regarding the merits of the monolingual
approach towards programming environments is, of course, the lack of an operational system.
Nevertheless, it may be useful to attempt a brief evaluation of the ideas presented in the previous
sections.

The basic idea is to simplify programming environments by reducing the number of mode
dependent languages or dialects the user has to be familiar with. A radical way to achieve this is by
replacing the various languages under discussion by a single language incorporating the
characteristic features of them all. The main candidates for replacement are the command
language, the programming language, the debugging language, and the editing language. To keep
the scope of this study within reasonable bounds we have excluded editing languages from our
considerations.

Although it may seem at first glance as if such an integration process would necessarily have
to lead to a monstrous language incorporating all features ever invented by language and system
designers, we hope to have shown that this is not the case. The reason is the conceptual inefficiency
inherent in conventional systems. Most command language concepts are also present in
programming languages although generally under a different guise. To a somewhat less extent the
same is true for debugging concepts. Only because of this circumstance is language integration a
meaningful proposition. Further integration of modes (especially of editing) may still be possible,
but eventually it will be necessary to introduce sublanguage definition facilities into the basic
language framework.

The designer of a unified command/programming/debugging language has less freedom than
the designer of a conventional non-integrated language. Rather than being a disadvantage, the
increased number of constraints helps him in settling design questions by offering various different -
but equally valid - viewpoints from which to look at possible solutions. As long as they do not
prevent 'the language equation' from being solved the language designer should welcome any
additional criteria protecting him from the whims of his own taste.

The main features of monolingual environments as developed in this paper can be summarized
as follows:

□ No distinction is made between programs and procedures. Running a program is
indistinguishable from calling a procedure; there is a single parameter mechanism throughout
the system.

□ No distinction is made between the types of permanent and local objects; there is no explicit
input from or output to permanent objects.

□ The type of every object is described by an abstract type definition. New type definitions may
be added by the user. These may have either permanent or local status. Instances of
permanent type definitions correspond to files in conventional systems.

□ Procedures and type definitions are themselves objects that can be manipulated in the
language.

□ Permanent object directories and libraries do not have a special status, but are just one type of
object definable by the user. This means that the structure of the environment is under
control of the user. Since this is necessarily true at all levels, the data structures that are used
as permanent object directories can also be used to structure, the local environment. Of
course, it is still possible to supply a predefined type directory or library with the system. A
generalized PASCAL with statement serves to establish the current focus of interest, which
may either be a directory type object or an object of any other type.

25

□ An interact construct allows interactive programming at the point at which it occurs. The
command level of the system corresponds to an implicit interact at the highest procedural
level. Procedure and type declarations may (and probably will) be compiled, but if so, this
must be completely transparent to the user.

□ Event associations in conjunction with the interact construct mentioned in the previous point
allow very selective interactive tracing without any source text modification. Event
associations can also act as production rules, exception handlers, and gua,rds.

□ Automatic side-effect recovery in the form of probe and try constructs facilitates both the
side-effect free inspection of (procedural) fields of objects in debugging mode as well as the
programming of algorithms involving backtracking and error recovery. undo and side-effect
free assert constructs make use of the same basic mechanism.

□ Powerful string manipulation and pattern matching operations are provided. These can be
looked upon as the forerunners of an integrated editing facility.

The greater conceptual simplicity of monolingual environments as compared with conventional
systems hardly needs further amplification. Most existing APL and LISP environments are more
highly integrated than conventional systems and do not have a separate command language. As a
result, they do not make a distinction between the types of permanent and local data or between
programs and procedures. The incorporation of other desirable features, such as system-wide
abstract type definitions, is hampered by the fact that neither APL nor LISP allow user-defined
types. The designers of SMALLTALK had greater freedom and based their system on an
elaborated version of the SIMULA 67 class concept. In particular, SMALLTALK has system-wide
class definitions and permanent class instances.

Similarly, most other features of monolingual environments have their counterpart in one
system or another. We are not claiming originality in that respect. What is new, we believe, is the
method we have sketched to bring these concepts together and to fuse them into a homogeneous
whole.

ACKNOWLEDGMENTS

We are grateful to Martijn de Lange, Marleen Sint, Arthur Veen, and Paul Verhelst for their
many helpful comments.

26

REFERENCES
The quotation at the beginning of this article was taken from: Weil, A., "De la metaphysique au
mathematiques," in: Collected Works, Vol. II, Springer Verlag, 1980, pp. 408-412.

[ALB79] Alberga, C.N. , et. al., "A Program Development Tool," IBM, Thomas J. Watson
Research Center, Report RC 7895 (#34000), 1979.

(ALL78] Allen, J., Anatomy of LISP, McGraw-Hill, 1978.

[BA Y80] Bayer, M., et. al., "Software development in the CDL2 Laboratory," in: Hiinke, H.,
(Ed.), Software Engineering Environments, North-Holland, 1980.

[BOU79] Bourne, S.R., "An introduction to the UNIX Shell," in: UNIX Programmer's Manual,
Vol. 2A, Bell Telephone Laboratories, Inc., 7th Ed., 1979.

[BUR74] APL/700 User Reference Manual, Burrroughs Co., Pub. No. 5000813, 1974.

[BUR77] B7000/ B6000 Series Work Flow Language Reference Manual, Burrroughs Co., Pub. No.
500155, 1977.

[BUX80] Buxton, J .N ., "An informal bibliography on programming support environments,"
SIGPLAN Notices, 15(1980), 12, pp. 17-30.

[BYT81] Special Issue on SMALLTALK, BYTE, 6(1980), 8.

[DAK77] Davis, R., & King, J., "An overview of production systems," in: Elcock, E.W., & Michie,
D., Machine Intelligence 8, Ellis Horwood Ltd., 1977, pp. 300-332.

[DOD80] Ada Programming Language Military Standard, Department of Defense, MIL-STD-1815,
IO December 1980.

[FEL79] Feldman, S.I., "Make - A program for maintaining computer programs," in: UNIX
Programmer's Manual, Vol. 2A, Bell Telephone Laboratories, Inc., 7th Ed., 1979.

[FIV73] Falkoff, A.D., & Iverson, K.E., "The design of APL," IBM Journal of Research and
Development, 17(1973), 1, pp. 324-334.

[GKA76] Goldberg, A., & Kay, A., (Eds.), "SMALLTALK-72 Instruction Manual," XEROX Co.,
Palo Alto Research Center, Pub. No. SSL 76-6, 1976.

[GOO81] Goodwin, J.W., "Why programming environments need dynamic data types," IEEE
Transactions on Software Engineering, SE-7(1981), 5, pp. 451-457.

[GPP71] Griswold, R.E., Poage, J.F., & Polonsky, I.P., The SNOBOL4 Programming Language,
Prentice-Hall, 2nd Ed., 1971.

[GRl71] Grishman, R., "Criteria for a debugging language," in: Rustin, R., (Ed.), Debugging
Techniques in Large Scale Systems, Courant Computer Science Symposium 1, Prentice­
Hall, 1971, pp. 57-75.

[GRU79] Gruenberger, F.J., "The history of the JOHNNIAC," Annals of the History of Computing,
1(1979), I, pp. 49-64.

[HAN76] Hanson, D.R., "Variable associations in SNOBOL4," Software Practice and Experience,
6(1976), pp. 245-254.

[HAN78] Hanson, D.R., "Event associations in SNOBOL4 for program debugging," Software
Practice and Experience, 8(1978), pp. 115-129.

[HUN80] Hiinke, H., (Ed.), Software Engineering Environments, North-Holland, 1980.

[IBM78] OSI VS2 TSO Command Language Reference, IBM Co., Pub. No. GC28-0646-4, 5th Ed.,
June 1978.

27

[ING78] Ingalls, D.H.H., "The SMALLTALK-76 programming system - design and
implementation," Conference Record of the Fifth Annual A CM Symposium on Principles
of Programming Languages, ACM, 1978, pp. 9-16.

[JWI75] Jensen, K., & Wirth, N., Pascal User Manual and Report, Springer, 1975.

[KLI80] Klint, P., "An overview of the SUMMER programming language," Conference Record of
the Seventh Annual ACM Symposium on Principles of Programming Languages, ACM,
1980, pp. 47-55.

[SAN78] Sandewall, E., "Programming in an interactive environment: the LISP experience,"
Computing Surveys, 10(1978), I, pp. 35-71.

[SHA64] Shaw, J.C., "JOSS: A designer's view of an experimental on-line computing system,"
AFJPS Conference Proceedings, 26, 1964 Fall Joint Computer Conference, pp. 455-464.

[TEI78] Teitelman, W., "INTERLISP Reference Manual," XEROX Co., Palo Alto Research
Center, 1978.

[WIL80] Wilander, J., "An interactive programming system for PASCAL," BIT, 20(1980), pp.
163-174.

0

