
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

H.J. SINT

IW 187/81

MIDL-A MICROINSTRUCTION DESCRIPTION LANGUAGE

IPrepr int

~
MC

DECEMBER

kruislaan 413 1098 SJ amsterdam

PJilnted a.:t .the Ma.thema.tlc.ai. Centlr.e, 413 Klr.u.l6la.a.n, Aml,.tetu:lam.

The Ma.themailc.ai. Centlr.e , 6ounded .the 11-.th 06 FebJu.UVr.y 1946,. -l6 a non­
p!(.o6U .ln6tli.u,t,lon aimbzg at .the p!(.Omo.tlon 06 pUll.e ma.thema.tlC-6 and J.h
appU.cati.on6. 1.t ,l6 .6pon60ll.ed by .the Ne.theJli..a.nd6 GoveJc.nment :thltough .the
Ne.thcvrla.nd6 01tga.n,i.za.tlon 601L .the Advanc.ement 06 Pune Rueanc.h {Z.W.O. J.

1980 Mathematics subject classification: 68A05

ACM-Computing Reviews-category: 6.20

MIDL - A Miciroinstruction Description Language*)

by

Marleen Sint

ABSTRACT

A microinstruction description language called MIDL is introduced.
A MIDL description of a microarchitecture defines the semantics and
triggering conditions of all microoperations. It also defines operand
selection. MIDL incorporates a timing model that allows detailed specif­
ication of the timing of each microoperation, and a sequencing model that
allows the description of many different sequencing schemes.

KEY WORDS & PHRASES: MICROARCHITECTURES, HARDWARE DESCRIPTION LANGUAGES

*) This paper is not for review; it has been submitted for publication
elsewherE~.

1

1. BACKGROUND AND MOTIVATION

User microprogr.amming is not really widespread. The microarchitec­
tures of user microprogrammable machines tend to be complicated; as a
result, the speed gain to be achieved (often claimed to be a factor of
ten*) is seldom worth the trouble. If microprograms could be written in
a (preferably machine independent) high level language instead of a mi­
croassembly language, microprogramming would become considerably easier.
Several such languages have been designed and even experimentally imple­
mented, but to date none of them has been generally accepted. I have ar­
gued elsewhere [Sin80] that this is not primarily caused by the absence
of suitable languages, but by the lack of adequate implementation tech­
niques. The parallelism and the inhomogeneity that are characteristic of
microarchitectures make it difficult to produce even moderately efficient
microcode.

A general code generation technique has to assume some structure
common to all machines for which it can produce code. It needs a de­
tailed model of each individual machine for which it is used. Therefore,
some formalism to specify such a model has to be provided. A formalism
general enough to model a microarchitecture at an abstraction level suit­
able for code generation does not yet exist. The evidence for this con­
clusion will be presented in section 2.

This observation has led to the initiation of a research project
aiming at the development of such a formalism. A machine independent mi­
crocode generation system will be developed to test its suitability. Ini­
tially, requirements on the efficiency of the generated code will be mod­
est. The (conveniently simple) language YALLL [Tuc79, Pat79] will be
used as the source language in this project.

The code generation system will be modeled after the one Cattell has
developed for conventional machines [Cat77, Cat80]. The structure of this
system is shown in figure 1.

In Cattell 's method, it is essential that semantics of machine
operations are defined by statements from the source language. For my
project, this implies that the microarchitecture description, labeled (1)
in the diagram, must define the effect of microoperations on the machine
state in terms of YALLL statements. The task of the table-generator (2)
is to reverse this definition: its output is a table (3) that maps each
YALLL construct into a sequence of microoperations. This table in turn
can be used to drive a code generator (4), which translates a YALLL pro­
gram into microcode for the machine described by (1).

*) This claim seems open to doubt, however. Some organizational
features, like the availability of an instruction or a data cache, are
likely to reduce this factor seriously.

2

I 2 3
machine table table:

~ ~
description generator YALLL to

microops

compile - compile time: 3 is produced
once for each machine

FIGURE I: The envisaged code generation system

-

YALLL

program

t
4

code

generator

t
microcode
for machine
described
in I.

compile time:

once for each
program

This paper presents a proposal for a microarchitecture description
language called MIDL (Micro Instruction Description Language). The defin­
ition of this language is the first stage of the project just sketched;
its suitability for code generation cannot be determined until the gen­
erator is implemented. Its implementation will probably reveal some as
yet overlooked deficiencies in MIDL that will induce changes; this paper
must therefore be considered as a progress report.

The next section will be devoted to existing models. In section 3 a
fragment of a sample architecture will be informally presented. In sec­
tion 4 MIDL will be introduced, using the fragment from section 3 as an
illustration. Section 5 contains some concluding remarks.

3

2. RELATED RESEARCH

MIDL has been · designed as a compromise between microinstruction
models designed specifically to be used by microcode improvement tech­
niques, and general purpose hardware description languages. In this sec­
tion I will discuss the advantages and disadvantages of both, and try to
formulate some design goals on the basis of this.

Special purpose models [DeW75, Tok77, Lan80] have the advantage that
they are used by existing algorithms that compose a compact set of mi­
croinstructions from a given straight line sequence of microoperations
(see [Lan80] for an overview), or even perform global optimizations
[Fis79, Poe80]. Because these compaction techniques should preferably
remain applicable, MIDL should have the same conceptual foundation as ex­
isting models: its central concept should be the microinstruction viewed
as a collection of nonconflicting microoperations.

However, none of these models constitutes a suitable microarchitec­
ture description language. They were designed for just one purpose (com­
paction of straight line microprograms), and all machine characteristics
that are irrelevant to that purpose were left out. Microoperation seman­
tics are not modeled beyond mere resource usage; asynchronous events can­
not be modeled at all; and finally, sequencing is not considered. One
aspect related to sequencing but commonly ignored by compaction algo­
rithms is microprogram composition, i.e. the allocation of instructions
to addresses in the control store. This problem is far from trivial be­
cause the calculation of successor addresses often leads to constraints.
For example, if the destination of a 2-way branch is calculated by OR-ing
a given register with a condition code, the two successors must have ad­
jacent addresses.

The main advantage of general hardware description languages like
ISPS [Bar77] or CDL [Chu72] is their power. ISPS, for example, is able to
model a machine at each desired level of abstraction, from the purely
functional level of the macroarchitecture down to the level of individual
gates. An obvious choice for a microarchitecture description language is
therefore a subset of such a language, tailored to the required level of
abstraction. There are several reasons why such a subset is not satis­
factory.

First, a minor change is necessitated by the choice to model the en­
visaged code generation system after the one described in [Cat77]. For
reasons already explained in the introduction, the operators used in the
definition of microoperation semantics should be those of the source
language YALLL.

Secondly, the sequencing operations provided by hardware description
languages cannot be easily tailored to the description of microsequenc­
ing. It is, for example, desirable to separate successor selection from
successor initialization.

4

Finally, the timing primitives of hardware description languages are
inadequate. In most languages, one can only distinguish sequential and
parallel execution of operations. For a description language that, in ac­
cordance with the goal stated above, describes microoperations as indi­
visible units this is insufficient, since their execution can overlap
without being fully parallel. Hence, a new scheme to model timing had to
be developed.

A project with similar goals (development of an automated micropro­
gram synthesis technique) is described in [Mue8O]. This project differs
from the one outlined in the introduction in two respects. First, it
focuses on the synthesis process and uses ·a machine description that
corresponds to a subset of ISP. The inadequacies of such a subset, espe­
cially the limitations imposed by the timing primitives, are noted but
accepted. Secondly, the approach to the synthesis itself differs. The
techniques used by Mueller have their origin in the domain of program ve­
rification by stepwise refinement; see for example [Man79]. The tech­
niques that will be employed in my project are based on conventional,
table driven code generation.

3. AN EXAMPLE ARCHITECTURE

The (informal) definition of MIDL in section 4 will be illustrated
by the systematic development of an example, which defines a small part
(some ALU-operations and some sequencing operations) of a microarchitec­
ture, subsequently to be called EXMP. It is somewhat similar to the mi­
croarchitecture of the DEC PDP11/6O. The section of the datapath con­
sidered here is shown in figure 2.

Operations

The EXMP ALU can perform 16 different operations, but only the fol­
lowing three will be considered:

1. Two's complement addition of the inputs;
2. Two's complement subtraction of the inputs;
3. Bitwise implication (A=> B). This is equivalent to (NOT A) ORB.

Arithmetic operations set the N (negative ALU result), Z (zero ALU
result), C (carry) and V (overflow) flag. Logical operations set only the
N and Z flag, but leave the C and V flag undefined.

Three left ALU inputs will be considered: a 16-register scratchpad
A; a 16-bi t register X whose further purpose does not concern us here;
and the low byte of X with the high byte replaced by zero's. Only one
possible right input will be considered: A 16-register scratchpad B. The
ALU output is connected to a register D; loading that register is under
microprogram control.

0

8 x(8: 0)

8

multi­

plexer

16

Timing

l 6

D

X 16

ALU

16

A

16

FIGURE 2: Part of the EXMP datapath

4

16

B

N

z
C

V

16

5

Each m:icrocycle is divided into four phases. The ALU-operation
starts execution in the first phase; the D-register can be clocked either
in the second or in the third phase. The latter possibility should be
used only if the ALU performs a logical operation, because the result of
an arithmetical operation is not available until the third phase.

Sequencing

The EXMP microarchitecture has four sequencing operations:

- proceed with the next instruction;
- skip the next instruction;
- jump to the instruction following the one whose address is in the AMPC

register (AMPC standing for alternative microprogram counter);
- likewise, but also load AMPC with the address of the current instruc­

tion.

Each microinstruction specifies a condition to be tested (N, z, c,

6

or V), a successor if that condition is true, and a successor if.the con­
dition is false. Specifying for example, "N, next, skip" will execute
the next instruction if N equals 1, and skip it if N equals O. Specifying
"N, jump, jump" will jump regardless the value of N.

Micro-instruction fields

WHEN
I CLKD .. I I . .

AIN I BIN I AB I ALU I ASELI BSELI -,-, I CONDI TRS I FAS I
•• I I I I I I I I I •• I I I I

49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 5 4 3 2 1 0

ALU operation selection is controlled by the ALU field. ALU operand
selection is fairly complicated. The left input is primarily controlled
by the field AIN. If AIN designates the X register, bit 39 determines
whether its high byte is masked off. If it designates the A-scratchpad,
the ASEL field provides the 2 most significant bits of the index, and the
complement of the AB field provides the 2 least significant bits. Selec­
tion of the right input is likewise controlled by BIN, BSEL and AB. It
follows that the A and B indices are interdependent: If one of them is
fixed only four possible choices are left for the other. The CLKD field
denotes whether the ALU result should be clocked into the D register.
The WHEN field denotes whether clocking the D register occurs during
phase 2 or phase 3; this field is relevant only if CLKD is set to 1. The
COND field specifies the flag that governs the choice of a successor. TRS
(TRue Successor) specifies the sequencing operation executed if the flag
equals 1; FAS (FAlse Successor) specifies the operation executed if the
flag equals zero.

4. THE MICRO INSTRUCTION DESCRIPTION LANGUAGE

4.1. Overview

In this subsection the global structure of a MIDL definition is ex­
plained, guided by an abridged BNF syntax of the language. Details are
postponed until later subsections. In addition to standard BNF notation,
some non-standard notational conventions are used:

- Terminal keywords are underlined; other terminal symbols are quoted.

- { A 's'}+ denotes a list of one or more A's separated by 's' symbols.
{A's'}* denotes a similar list, except that it may also be empty.

MIDL is a declarative language. It defines the semantics of mi­
crooperations in terms of YALLL operators. Furthermore, it defines

7

triggering conditions for microoperations and their operands, and it de­
fines how the operations are timed. The specifics of YALLL do not affect
the structure of MI])L. Replacement of YALLL by some other .language would
merely result in another dialect.

The organization of a MIDL description is similar to that of a con­
ventional program. It consists of a list of declarations, followed by a
privileged declaration called the "root".

A MIDL description consists of the following kinds of declarations:

<MIDL_description>:

<declaration>:

{<declaration> ';'}+<root>.

<resource declaration>
<field declaration>
<operation_selection_rule>
<operand_selection_rule>
<schedule declaration>.

Resource declarations describe machine resources such as registers,
along with some of their properties. Field declarations describe the
lay-out of microinstructions. The details of these two kinds of declara­
tions are given in section 4.2 and 4.3.

Operator selection rules and operand selection rules define mi­
crooperations and their operands; schedule declarations specify the tim­
ing of operations. Rules of these three types may contain references to
other rules. Such a reference has the semantics of a macro-call. The
rules thus form a hierarchy. The top of that hierarchy is the root.
Operation selection rules, operand selection rules and timing declara­
tions will now be considered in turn.

Operator selection rules.

<root>: root <identifier>
<operation_expressions>

end.

<operation_selection_rule>: operation <identifier>
<operation_expressions>

end.

<operation_expressions>: {<operation_expression> ';'}+.

8

<operation_expression>: <microoperation>
if <condition>
then <operation expressions>
[else <operation_expressions>]
fi
case <operand>
of ((<integer> ':')+

(<operation expression> ';')+
)+ -

esac
during <schedule>
do <operation_expressions> od
<identifier> •

Root and operation selection rules have the same structure: a list
or operation expressions. The order of these expressions is irrelevant;
the execution order of microoperations is only dictated by the timing in­
formation.

A microoperation in this context is a small YALLL program, which de­
fines the effect or the operation on the machine state. If an operation
involves operand selection, its declaration refers to an operand selec­
tion rule elsewhere in the same description. Details of microoperation
definitions are considered in sections 4.4 and 4.6. The latter subsection
is devoted to sequencing operations.

The if- and ~-constructs are familiar from conventional program­
ming languages. They specify triggering conditions for microoperations.

The during-construct associates timing information with all opera­
tions within its scope. Inner during-constructs take precedence over
outer ones. This allows the easy modeling or local exceptions to a global
timing scheme. Each microoperation should be within the scope of at
least one during-construct. If all operations are uniformly timed, one
such construct at the outermost level in the root declaration suffices.
Schedules are either defined in line, or refer to a schedule declaration.

An operation expression may contain references to other operation
selection rules.

Operand selection rules

<operand_selection_rule>: operand <identifier>
<operand_expression>

end.

<operand_expression>: <operand>
if <condition>
then <operand expression>
[else <operand_expression>]
fi
case <operand>
of ((<integer> ':')+

<operand expression>
)+ -

esac.

9

The body of an operand selection rule may contain (possibly nested)
if- and ™-constructs. Note the absence of the during-construct here:
in MIDL all timing information is associated with microoperations, even
if it concerns individual operands. Details of operands and operand
selection are presented in section 4.5.

Schedule declarations

<schedule declaration>:

<schedule_expression>:

schedule <identifier>
<schedule_expression>

end.

<schedule>
<identifier>
if <condition>
then <schedule expression>
[else <schedule_expression>]
fi
case <operand>
of ((<integer> ':')+

<schedule_expression>
)+

esac •

A schedule defines the timing of a microoperation. It specifies the
phase or phases in which the operation is executed. If necessary, it can
be broken up to reveal the phases during which individual resources are
involved in the operation.

If- and case-constructs are allowed in schedule declarations to
modelthe (rare) cases in which the timing of a microoperation is under
microprogram control. The details of schedules will be considered in
section 4.7.

The following subsections will be devoted to a more detailed discus­
sion of the various MIDL constructs. Because examples are more suitable

10

for a detailed explanation than syntax rules, the MIDL definition of EXMP
will be used through_out.

4.2. Resource declarations

Like the microinstruction model presented in [Lan80], MIDL divides
resources into two classes. Permanent resources model registers; they
retain their value until it is explicitly replaced. Transient resources
model buses, multiplexers, and the like; they retain their value for only
a limited number of (sub)cycles.

With each resource a bit-dimension (denoted by (b1:b2)) and a
block-dimension (denoted by [b1:b2]) can be associated. If a resource is
dimensionless in either direction, the corresponding specification can be
omitted. The bounds b1 and b2 may be any pair of nonnegative integers;
1:b2 can be abbreviated to b2.

Certain MIDL constructs require operands with a specific function,
e.g. LOAD and STORE operations require a memory address and a memory
buffer register. Other constructs have side-effects on resources with a
specific function, e.g. the operator CALL pushes a return address on a
microprocedure call stack. Such a function has to be specified in the
declaration of the resource. Other functions to be specified are residu­
al control registers, main memory, control store, microprogram counter,
and four kinds of flags: zero, negative, carry and overflow. The purpose
or each function indication is explained along with the construct for
which it is relevant.

The declaration of the EXMP resources looks as follows:

permanent D(15:0),
X(15:0),
A[16](15:0),
B[16](15:0),
WCS[0:1023](79:0) = control store,

AMPC(9:0)
end• __ ,
transient (2) alu_out(15:0),

(1) Xtemp(15:0),
(4) z =~,
(4) N = negative,
(4) C = carry,
(4) V = overflow

end• --'

I The EXMP D register I
I The X register I
I The A scratchpad I
I The B scratchpad #
I The EXMP 1K by I
I 80 bit control store I
Holds jump addresses I

The ALU result I
See section 4.5 I
I The four flags I

11

The declaration of a transient resource specifies how long that
resource retains its value. For example, the register alu _:_out, which
represents the ALU result, must be clocked into the D register within 2
subcycles after an ALU operation. Likewise, the flags (Z, N, C and V)
hold their value for only four subcycles.

4.3. Field declarations

A field declaration names microinstruction fields and enumerates
their cons ti. tuent bi ts. These do not have to be consecutive. A bit can
be preceded by n-n, to denote that it has to be complemented. The order
in which thei bits are enumerated is important, the leftmost bit is always
the most significant one. Fields are allowed to overlap.

Fields are explicitly associated with a resource of type
control store, mentioned at the start of the declaration. This explicit
association allows the description of machines with split-level coritrol
store organlzation like the Burroughs Interpreter [Rei 72], in which mi­
croinstructions from different memories have different lengths and for­
mats.

These features are illustrated by the EXMP field declaration:

fields in WCS

end• --'

field ain
field bin
field alu

field maskX
field Aindex
field Bindex
field when
field clockD
field cond
field strue
field sfalse

(49:48),
(47:46),
(43:40),

(39),
(39.38.-45.-44),
(37.36.-45.-44),
(35),
(34),
(5:4),
(3:2),
(1: 0)

fl AIN I
fl BIN I

equivalent I I ALU. 43-40 is
I 43.42.41.40 I

X high byte I
combined I
combined I

I To mask off
I ASEL and AB
I BSEL and AB
I WHEN I
I CLKD :fl
I condition tested I
I TRUE successor I
I FALSE successor :fl

The deelaration of field_Aindex and field_Bindex, which represent
the A and B scratchpad indices, may need clarification. The most signi­
ficant half of, for example, the A index is provided by bits 39 and 38 of
the microwor•d, while its least significant half is provided by the com­
plements of bits 45 and 44. A condition like "field Aindex = 6" (0110 in
binary) is thus to be interpreted as "bit 39 equals o, bit 38 equals 1,
bit 45 equals o, bit 44 equals 1".

12

4.4. Operation selection rules

Operation selection rules serve two functions: they define the se­
mantics of microoperations, and they associate triggering conditions and
timing information with them. This section is devoted to the definition
of microoperations that do not change the flow of control in the mi­
croprogram.

Microoperation semantics are defined by small YALLL programs sur­
rounded by BEGIN and END statements If such a program consists of only
one statement, the BEGIN and END brackets may be omitted. MIDL provides
all register transfer operations provided by YALLL: addition, subtrac­
tion, logical AND, OR, XOR (exclusive or) , CMPL (complement) , several
shifts , MOVE for transfer between registers, and LOAD and STORE for
memory references. For more details the reader is referred to [Pat79] or
[Tuc79]. The format of the operations is

OPCODE destination sources(s) (FLAGS)

FLAGS specifies which condition codes are defined by the operation.*) The
resources mentioned in FLAGS must have been declared with a function in­
dication zero, negative, carry or overflow. That function indication
determines by which condition the flag is governed.

Three operation selection rules define the EXMP datapath operations:
the first one describes how the ALU operation is selected, the second one
models the clocking of the D register when field_clockD is set, and the
third one describes the replacement of the high byte of the X registers
by zeros. I will consider each rule in turn.

operation alu_op
during 2-3

end• __ ,

do case field ---

od

of O:

esac

1 :
2:

alu
ADD 2
SUB 2
during
do

od

I ALU operation selection I

alu_out,
alu_out,

2
BEGIN
CMPL
OR
END

a_in, bin <Z,N,C,V>;
a_in, bin <Z,N,C,V>;

loc;
loc, a_in;
alu_out, loc, bin <N,Z>;

*) This differs slightly from the original YALLL definition.

13

ADD 2 and SUB 2 denote two's complement addition and subtraction,
respectively. The sources a_in and b_in refer to operand selection rules
defined in the next subsection. YALLL has no implication operation,
therefore the EXMP implication is defined using the CMPL and OR opera­
tions. The local variable loo does not correspond to either a machine
resource or an operand selection rule, but is only introduced for the
sake of the description. It provides communication between YALLL state­
ments.

The schedules in alu_op are simple: the addition and subtraction
operations are executed during phases 2 and 3, while the implication
operation is executed during phase 2.

operation clockD I Clocking of D register I
if field clockD = 1
then during phase_clockD do MOVED, alu out od
fi

end• __ ,
The only remarkable thing about this declaration is the during con­

struct, which refers to a schedule phase clockD. The declaration of this
schedule will be shown in section 4.7. -

operation maskX I Mask operation on X register I
duri.ng 1
do AND Xtemp, X, %377 od I %377 means 377 octal I

end• __ ,
Xtemp corresponds to the bus that receives the masked X register

value. According to this declaration, the X register is masked even if
the result is not selected as an ALU-input. Because Xtemp is a transient
resource, the result, if not selected, is lost at the end of the cycle.
This description is therefore equivalent to one that associates the same
conditions with the masking operation and with the selection of the
result.

4.5. Operand selection rules

Operand selection rules model the selection of operands. MIDL allows
five operand forms:

1 •

2.

A register. If selected from a register
other legal operand form; not only
A[D(8:6)] would be a legal operand.
A register field; e.g. D(8:6).

file, the index can be any
A[field_Aindex] but also

14

3. A reference to another operand selection rule;
4. A decimal, binary, octal or hexadecimal constant;
5. A microinstruction field.

The following rules model the selection of the EXMP ALU inputs:

operand a_in # Left ALU input I
case field ain -of O: case field maskX

of 0: X;
1: Xtemp

~;
1: ...
2: ...
3: A[field_Aindex]

esac
end• __ ,
operand bin # Right ALU input I

case field bin
~ O: B[field_Bindex] ...
esac

end• __ ,
Note, that thanks to the encoding of the index fields as specified

in the field declarations (4.3), indexing of the A and B scratchpads is
now completely straightforward.

4.6. Sequencing operations

The MIDL, sequencing operations are based on the following conceptual
model. At each moment, all known successors of the current microinstruc­
tion are held in a sufficiently large buffer. There are four operations
that fetch instructions from control store and put them in the buffer:
JUMP, CALL, RETURN and MULTI JUMP (for details see below) • These opera­
tions have random write access to the buffer. By default, an instruction
to be written to the buffer is taken to be the immediate successor of the
currently executing one and is put into the first buffer location.
Another operation, called INIT, signals the start of the execution of a
new instruction. This operation always takes the instruction to be ini­
tialized from the first location of the buffer, and at the same time
moves all remaining instructions up by one position.

Some examples will illustrate this model. In all these examples,
the initial situation is the same. The microinstruction with address 512
is executing, and the buffer is empty. Figures 3a, 3b and 3c picture the
successive states of the buffer for three different microoperation se­
quences. The instructions that are executing are also shown. After ini-

15

tialization of a successor, the previous instruction does not necessarily
terminate: their execution may overlap. This should be reflected in the
timing specifications.

2

2

current: 512

(empty)

current: 512

(empty)

(empty)

current: 512

(empty)

(empty)

(a) JUMP +1
INIT

current: 512 current: (512 and) 513

instruction 513 (empty)

2 (empty) 2 (empty)

JUMP +I INIT

FIGURE 3a: straight line successor

current: 512 current: 5 I 2

inst rue tion 513 instruction 0

2 (empty) 2 (empty)

JUMP +I JUMP 0

FIGURE lb: straight line default replaced by branch

current: 512

(empty)

2 instruction 513

JUMP +I,
SUCCESSO\ (2)

current: 512

I instruction 0

2 instruction 513

JUMP 0

VIGURE Jc: out-of-line execution of instruction O.

INIT

INIT

current: 1512 and\ O

(empty)

2 (empty)

current: 1512 andl 0

I instruction 513

2 (empty)

The first microoperation indicates that the next instruction in con-

16

trol store is the immediate successor; the second one initializes its
execution.

(b) JUMP +1
JUMP 0
INIT

In this example, the second JUMP to absolute address O overrules the
previously specified JUMP to the next instruction, as both are (by
default) loaded into the first location of the buffer.

(c) JUMP +1, SUCCESSOR(2)
JUMP 0
INIT

In this example, the default successor (the next instruction in con­
trol store) is placed second in the buffer, which is indicated by the
operand SUCCESSOR(2). The instruction with absolute address O is
loaded into the first location, and is therefore initialized first.
If that instruction does not specify another JUMP, execution will
afterwards continue with instruction 513. Hence, this operation se­
quence shows how out-of-line execution of a single instruction can be
modeled.

Of the four sequencing operations, the first three are straightfor­
ward. JUMP specifies a successor address, CALL does the same but also
saves an address in an appointed register. The address to be saved and
the location where it is to be saved are the third and second parameter
of CALL. RETURN jumps back to the instruction pointed to by the register
most recently saved. If the second operand of CALL is a register declared
with function indication address-stack, CALL performs a push instead of
simply loading the register; a subsequent RETURN then automatically per­
forms a pop.

All sequencing operations will load a resource declared with func­
tion indication mpc (microprogram counter) with the address of the in­
struction most recently fetched.

The addresses required by sequencing operations are specified as
BASE+/- OFFSET, where BASE admits any operand form described in the pre­
vious subsection, and OFFSET is some constant. If the address of the
current instruction serves as base address, it can be omitted: JUMP +1
appoints the next instruction as the successor. If a base is specified, a
zero offset may be omitted.

MULTIJUMP is less straightforward. It specifies a dynamically calcu­
lated successor address, which is the result of OR-ing a base address
(often provided by a field of the current microinstruction) with a mask
composed of one or more conditions. This multiway jump is included as a
separate operation, even though its effect could be modeled in terms of

17

the ordinary JUMP. This particular way of address calculation is fairly
common, however. It complicates microprogram composition (that is, the
assignment of addresses to otherwise complete microinstructions), because
it leads to restrictions on the successor addresses. Such a complication
is better handled if its cause is explicitly modeled.

Sequencing operations can have two more operands. If more than one
resource is declared with function indication control store, the store in
which the successor resides must be specified in addition to its address.
As already shown in example 3c, the successor's location in the buffer is
indicated by SUCCESSOR(n). SUCCESSOR(1) may be omitted.

I will now show the MIDL description of the sequencing of EXMP. An
EXMP microinstruction always specifies two possible successors and a flag
whose value determines which one is executed.

operation successor
during 4

end• --'
02erand

end• --'

do if flag= 1
then case field strue

else

of 0:- JUMP +1;
1: JUMP +2;
2: JUMP AMPC+1;
3: CALL AMPC, AMPC, +1

esac
case field
of O:

sfalse
JUMP +1;
JUMP +2;
JUMP AMPC+ 1 ;

esac

1:
2:
3: CALL AMPC, AMPC, +1

fi
od &
during 5 do INIT od

flag
case
of

esac

I The 5-th phase of the current instruction coincides I
with the first phase of its successor; see also 4.7. I

field cond -O: Z;
1: N;
2: V;
3: C

The choice of a successor is determined by the condition "flag= 1".
The flag tested is selected by field_cond, as described in selection rule
"flag".

18

4. 7. The MilDL timing model

The MIDL timing model is based on the one presented in [Tok77]. This
model describes the timing of a microoperation by specifying during which
phases each :Lndi vi dual resource is used. The MIDL model allows a similar
specification, but a linear notation was devised to replace the 2-
dimensional diagrams used by Tokoro. There are some differences. First,
MIDL allows the modeling of operations whose timing is under microprogram
control. Secondly, MIDL provides an asynchronous timing primitive. Final­
ly, the possibility to declare transient resources adds descriptive
power, becau:se it leads to constraints on the timing of microoperations
using such resources: their execution cannot be further apart than the
lifetime of the transient value.

MIDL assumes that a microcycle is divided into a number of phases.
Each microoperation except INIT (see below) takes at least one phase to
complete. If the architecture is not pipelined, it is not necessary to
describe the exact timing of each individual resource. In that case, a
schedule is a simple integer or range of integers, as was illustrated by
the during-constructs in the EXMP rules considered so far.

A first refinement consists in the distinction between sources and
destinations. Consider for example this pipelined timing scheme:

instruction 1:
instruction 2:
instruction 3:

1
read

2
execute
read

3
write

execute
read

This scheme i.s described by the following schedule.

schedule pipeline
read 1,
exec 2,
write 3

end• --'

4

write
execute

5

write

If necessary, this can be even further refined by separately speci­
fying the timing of indi victual resources. Suppose, that reading a source
ROM takes longer than reading other sources. The timing of a microopera­
tion using ROM as an operand is modeled by either of the following
schedules.

schedule exception1
1 (ROM: 1-2)

end• __ ,
schedule exception2

end• __ ,
read 1 (ROM: 1-2),
exec
write

2,
3

19

There is a subtle difference between these two schedules. The first
one states that the associated operation takes longer to execute if ROM
is selected as an operand. The second one states that reading ROM itself
takes longer. In the above example (exception2), it even takes too long:
it will cause illegal overlap between the read and the execution phase of
the operation.

Schedule declarations are allowed to contain if- and case-constructs
just like operation and operand selection rules.- This is necessary to
model, for instance, the timing of the EXMP clockD operation, which is
under microprogram control (see section 4.4):

schedule phase_clockD
case field clockD
of O: 2;

1: 3
esac

end• --'
Asynchronous operations are considered to be operations whose com­

pletion is determined by conditions outside the scope of the MIDL
description. It is assumed, that completion is signaled by some flag, set
by the same outside agent that governs the operation. A memory reference
could, for example, be described as follows:

during
read 2,
exec until F,
write until F

do
LOAD MBR, MAR

od

where MBR and MAR stand for the memory address and the memory buffer re­
gister respectively. Execution of the LOAD is completed when the flag F
is set.

A final remark should be made about the INIT operation. Execution of
INIT does not take any time. It is a synchronization primitive, designat­
ing the phase of the current microinstruction that coincides with the
first phase of the next. This is not necessarily always the same phase,
e.g.

if (some branching condition)
then during 2 do JUMP alternative od &

during 3 do INIT od
else duri.ng 1 do JUMP +1 od &

during 2 do INIT od
fi

20

describes a sequencing scheme where a prefetched, straight-line successor
starts execution in the second phase of its predecessor, while the first
instruction following a branch is delayed.

4.8. The root

The root is a special operation selection rule, serving a dual pur­
pose. First, it designates the top of the rule hierarchy. Secondly, it
allows the association of defaults with all operations. For example, a
during construct surrounding the root body specifies a default timing for
all microoperations. The EXMP root consists only of references to all
other operation selection rules:

root EXMP

end• --'

alu_op &
clockD &
maskX &
successor

5. CONCLUSIONS

MIDL has two design goals. It must be possible to model most exist­
ing microarchi tectures in MIDL, and the resulting descriptions must be
suitable to drive a machine independent code generator. Whether MIDL
meets the latter requirement cannot yet be decided; but some remarks can
be made about its modeling power.

MIDL combines features from declarative hardware description
languages (general structure) with features from special purpose microin­
struction models (timing, the concept of transient resources). In addi­
tion, it has some new features, notably the field encoding mechanism
(originally suggested to me by A. Tanenbaum) and the sequencing model.

One input to the design of MIDL was [Agr76], in which some 13 mi­
croarchitectures are described. While working on the design, I kept a
list of problematic features encountered there, and occasionally checked
whether MIDL would be able to handle them. With one exception (the QM1,
see below) this was indeed the case. This indicates that the modeling
power of MIDL is satisfactory.

MIDL also has some weak points. These are a consequence of two deci­
sions that have facilitated its design but limited its power.

First, MIDL models only one architectural level, without regard to
others. This implies, that a code generator based on MIDL will generate
code that completely ignores the existence of a conventional machine lev-

21

el, and therefore does not guarantee that the contents of conventional
machine registers will be saved: this will have to be taken care of
separately. It also implies that MIDL cannot model the two-level struc­
ture of the Nanodata QM-1 , or at least, cannot model the nanolevel and
the (interpreted) microlevel of that machine at the same time.

Secondly, MIDL ignores the existence or the outside world. Espe­
cially microtraps present difficult problems to microcode generators.
Although these problems may provide an interesting research topic, I have
initially decided to treat them like virtually all other papers on design
or implementation of higher level microprogramming languages: I have ig­
nored them.

Acknowledgements

A. van de Goor and A. Tanenbaum have made valuable contributions to
the design of MIDL. Critical reading of this manuscript by J. Heering, P.
Klint and A. Veen markedly improved the presentation.

Literature

[Agr76] A.K. Agrawala & T .G. Rauscher, "Foundations of Microprogram­
ming", Academic Press, (1976).

[Bar77] M.R. Barbacci, G.E. Barnes, R.G. Cattell & D.P. Siewiorek, "The
ISPS Computer Description Language", CSD, Technical Report,
Carnegie Mellon University, (1977).

[Cat77] D.G. Cattell, "Formalization and Automatic Derivation of Code
Generators", Ph.D. Thesis, Tech. Report TR 78-115, Computer
Science, Carnegie Mellon University, Pittsburgh Pa, (1977).

[Cat80] R.G.G. Cattell, "Automatic Derivation of Code Generators from
Machine Descriptions", ACM Transactions on Programming
Languages and Systems, Vol. 2, No. 2, pp 173-190, (1980).

[Chu72] Y. Chu, "Introducing the Computer Design Language", IEEE Com-
puter Conference COMPCON72, San Francisco, pp. 215-218, (1972).

[DeW75] D. J. DeWitt, "A Control Word Model for Detecting Conflicts
Between Microprograms", Proceedings of the 8-th Annual Workshop
on Microprogramming, pp. 6-12, (1975).

22

[Fis79] J.A. Fisher, "The Optimization of Horizontal Microprograms
within and beyond Basic Blocks: An Application of Processor
Scheduling with Resources 11 , Ph.D. Thesis, Department of
Mathematics and Computing, New York University, (1979).

[Lan80] D. Landskov, s. Davidson, B, Shriver & P.W. Mallett, "Local Mi­
crocode Compaction Techniques", Computing Surveys, Vol. 12, no.
3, pp. 261-294, (1980).

[Man79] z. Manna & R. Waldinger, "Synthesis: Dreams-> Programs", IEEE
Transactions on Software Engineering, Vol. SE-5, No. 4, pp.
294-327, (1979).

[Mue80] R.A. Mueller, "Formalization and Automated Synthesis of Mi­
croprograms" Proceedings of the 13-th Annual Workshop on Mi­
croprogramming, pp. 45-53, (1980).

[Pat79] D. Patterson, K. Lew & R. Tuck, "Towards an Efficient,
Machine-Independent Language for Microprogramming", Proceedings
of the 12-th Annual Workshop on Microprogramming, pp. 22-35,
(1979).

[Poe80] M.D. Poe, "Heuristics for the Global Optimization of Micropro­
grams", Proceedings of the 13-th Annual Workshop on Micropro­
gramming, pp. 13-22, (1980).

[Rei 72] W. Reigel, V. Farber & D. A. Fisher, "The Interpreter - A Mi­
croprogrammable Building Block System", AFIPS Conference
Proceedings, Vol. 40, pp. 705-723, (1972).

[Sin80] H.J. Sint, "A Survey of High Level Microprogramming Languages",
Prooeedings of the 13-th Annual Workshop on Microprogramming,
pp. 141-153, (1980).

[Tok77] M. Tokoro, E. Tamura, K. Takase & K. Tamaru, "An Approach To
Microprogram Optimization Considering Resource Occupancy and
Instruction Formats", Proceedings of the 10-th Annual Workshop
on Microprogramming, pp. 92-108, (1977).

[Tuc79] R.D .. Tuck, "Software Microprogramming Tools for the VAX-
11/780", Memorandum No. UCB/ERL M79/65, Electronics Research
Laboratory, University of California, Berkeley, (1979).

