
AFDELING INFORMATICA IW 188/81 DECEMBER
(DEPARTMENT OF COMPUTER SCIENCE)

•

L.G.L.T. MEERTENS

DEFINITION OF AN ABSTRACT ALGOL 68 MACHINE

• ru1s aan

, •

C .. · ··. · · .. · ,. ,o < • · ul. 11-.th. o 6 F , · . .. 1946 ~
... . n a:t tkt. . no " 1t o~ > , ,· nu:k ,

- ,, ... !" 116. 1.t iA .6ponAo,Jtfld. b!f the. N · Gov · . , , .· ·
, · OlfBaAlz !" n. 6 01t the. Adva.nc.,eMe.nt o .· · · Ru · .. •. · .·

. ,_ . , '

-- ' .. : ,_,." . ' ... '

classification: 68B20

Definition of an abstract ALGOL 68 machine

,

by

L.G.L.T. Meertens

ABSTRACT

This report contains the definition of a machine-independent abstract
machine, the "MIAM", whose code may serve as the target code for a portable
ALGOL 68 compiler. Implementing ALGOL 68 with the MIAM entails two steps:
implementing ALGOL 68 in tex•tns of the MIAM, and implementing the MIAM in
terms of an actual computer. This report defines only the "core" of the
MIAM, which is sufficient to model all actions prescribed in the sections
headed with "Semantics" of the Revised Report, with the exception of the
widening coercions and the denotations.

KEY WORDS & PHRASES: ALGOL 68, abstract machine, compiler, portability

'

1

O. INTRODUCTION
•

This report contains the definition of the ''MIAM'' (''Machine-Independent

Abstract Machine"), whose code may serve as the target code for a portable

ALGOL 68 compiler. The philosophy that has governed the design of the MIAM,

and notably the ''cut principle'', have been described in [1] and will not be

repeated here. In making this definition available, it is hoped that it may

also be instructive in the task of creating an ALGOL 68 compiler for a

fixed target machine.

The definition given here, just as the ALGOL 68 Revised Report [3]

(some familiarity with which is assumed), is not easy to read. Since the

definition of a MIAM is a contract (although not with legal standing), it

aims at a level of precision that is threatened by the informality required

for an enjoyable exposition. Worse even, any reliance on whatever assump­

tion, however reasonable by itself, as to how the MIAM will be used in

translating ALGOL 68 programs, but that cannot be rigorously deduced from

the definition proper, destroys the cut principle immediately.

However, some considerations as to why particular solutions have been

chosen, suggestions for possible implementation approaches and other hope­

fully helpful remarks are incorporated in the text by placing them between

''double pragmatic brackets'', viz., "{{''and"}}''· These remarks should in no

way be construed to be part of the definition {{although they may be helpful

to show the intended meaning in the case of shortcomings in the defini­

tion}}.

Implementing ALGOL 68 with the MIAM entails two steps: implementing

ALGOL 68 in terms of the MIAM, and implementing the MIAM in terms of an ac­

tual computer. In order to reduce confusion, the term "translation" will be

used for the former, and "realization'' for the latter step.

The definition given in this report defines only the ''core" of the

MIAM. For a complete definition, a large number of rel~tively simple in­

structions have to be added, e.g., to deal with the numerous operations de­

fined in the Standard Prelude. The core defined here is sufficient to model

all actions prescribed in the sections headed with "Semantics" of the Re-

2

vised Report, with the exception of the widening coercions and the denota­

tions.

One caveat is in order. The MIAM described here has not been tested in

an actual effort to translate ALGOL 68, nor has it been realized on an ac­

tual computer. Such an effort is bound to bring problems to light that have

not been foreseen in the design phase.

1. THE MACHINE AND THE PROGRAM

1.1. Tokens

a) A ''token'' is a primitive entity. Tokens that are named with different

names are different.

{{Tokens serve as literals without inherent meaning or internal struc­

ture by virtue of which it is possible to discriminate certain entities.}}

1.2. Registers

a) A "register'' is a variable for holding certain objects. {{No relation

with hardware registers, if any, of the realization on an actual computer

is ass1.1roed. }} Global registers of the MIAM are "T" and ''S'' for holding keys

of locales, and "P" for holding a pointer to a process descriptor. If a re­

gister R is "set to" an object x, this means that R is made to hold a copy

of x. If, subsequently, ''R'' is used in a context where an object is asked

for, it stands for the object currently held in R.

1.3. Areas, pointers and models

{{Areas are the basic way to abstract from memory management. An area,

once created, has a fixed (i.e., dynamically invariant) size. In the reali­

zation, areas will be modelled by contiguous segments of memory. These seg­

ments contain ''hidden" fields; notably the scope and the model of the area,

and presumably also the span, giving its size.}}

a) A "span'' is a nonnegative integer. {{The term "span" is introduced to

avoid confusion with the ALGOL 68 term "size", which has a totally dif­

ferent meaning. Since integers may be used in the MIAM for index calcula­

tions, they correspond to the integers of "size 0" (i.e., having the mode

INT) from ALGOL 68.}}

3

b) An ''area" has a spans and a ''key'' k, and is then composed of a se­

quence of s contiguous {{memory}} ''cells'', selected by ''pointers'', which are

denoted k•O, k•1, ••• , k•(s-1).

{{Areas come into being as the result of a GEN or EST-instruction. It is

not further specified here what cells are, but in the realization they

should correspond to the smallest units of memory that are adressable in an

efficient way. On byte-oriented machines, this will be a byte. The key of

an area and the pointer of a cell both correspond, in the realization, to

its address. The main reason for maintaining a distinction between ''keys''
.....

and "pointers" is that the operations: "given the pointer k•i, determine

the corresponding address'' and ''given the pointer k•i, determine the key k''

must both be efficiently realizable; the latter to make garbage collection

tolerably efficient. A simple way is to represent the pointer k•i by a pair

<address(k), address(k)+i>, although this requires more memory for a

pointer. Under this realization scheme, a key may be represented more suc­

cinctly than a pointer.}}

c) Each cell is uniquely determined by its pointer, and vice versa, that
•
1.S'

{{The effect of garbage collection and compaction is transparent:

although, in a realization of the MIAM, cells may be physically moved, the

corresponding representations of keys and pointers are accordingly updated.

This requires, of course, that the realization of the MIAM is able to keep

track of all pointers.}} ,

4

d) The key of an area is said to ''access" that area, and the pointers of

an area are also said to ''access'' that area {{although the pointers point to

sites in the area}}.

e) If p = k•i, where pis a pointer and k is a key, then p•j stands for

k•(i+j); it is "required'' {{1.7.1.f}} that O < i+j < s, wheres is the span

of the area accessed by k.

f) Areas have a "scope'', which is a nonnegative integer. The scope ''of'' a

key or pointer is the scope of the area that it accesses {{and the scope of

other objects is the largest (i.e., "newest") scope of component keys or

pointers}}.

{{This scope is akin to the ALGOL 68 scope; it indicates the nesting of

lifetimes of areas, and thereby of objects residing in the areas. By defin­

ing the scope of objects in terms of the scope of areas, it is sufficient

to remember, in a realization, one scope per area, instead of per object,

reducing the memory requirements. A price is paid in that it may be neces­

sary to keep a whole area because of one object that may not be relin­

quished, as in the presumable translation of REF INT X = (HEAP [large] INT)

[1]. }}

g) A copy of an "object" {{1.5.a}} of a ''type" {{1.4.a}} <k, a, 1, u, m>

''occupies'' a "site'', ''appointed" by a pointer p = q•a which is "suitable"

for that type, and the site then consists of the cells selected by q•l,

{{The so-called 11 dynamic parts'' are not considered part of the object.

In the translation, they are represented by pointers.}} If q is k•i, where k

is the key of an area with spans, then pis suitable for the type if i is

a multiple of m, 0 < i+l and i+u < s. The object may be denoted, in a con­

text where the type is known, by •P• {{If the type is not known, the denota­

tion "*P'' is ambiguous.}}
'

'

5

h) New copies may be made to occupy sites, thereby obliterating (parts of)

former copies, if any. If x denotes an object of known type, x =* p stands

for the action by which a new copy of the object xis made to occupy the

site appointed by p; it is required {{1.7.1.f}} that p be suitable for x and

that the scope of x be at least that of p. Moreover, if xis a label, it is

required that x not be abortive {{1.7.1.d}}.

{{It can be shown that a key occupying a site, or held in Tors, must

be the key of' a locale (1.6.a). The GEN-instruction (3.3.a) for creating an

area that is not a locale does not make its key available, and it is impos­

sible to retrieve the key of an area from a pointer accessing it by means

of MIAM-instructions.}}

i) The phrase "p appoints a site occupied by a copy of x" may be shortened

to "P points to x".

j) The objects ''contained in" an area are the objects pointed to by

pointers of the area. {{Care should be taken not to confuse the pointers

''of'' an area, i.e., selecting a cell of the area, and the pointers "con­

tained in" an area.}}

k) Apart :from the ''proper'' pointers introduced in section 1.3.b, there ex­

is ts a {{unique}} du1,,rny pointer, the token ''Nix" , which does not access any

area {{and thus does not select any cell}}, and which is unsuitable for any

type. The scope of Nix is O.

1) A "model" is a {{possibly empty}} set of pairs <t, d>, where tis one of

the tokens "KEY'' and "PTR'', and dis an integer. Each area has a model,

which may vary as a result of execution.

m) An area A is "reachable" if it is accessed by Tor S {{1.6.b}}, if it is

the C-locale {{1.6.c}}, if P {{1.5.2.c}} accesses the area, if the area con­

tains a process descriptor whose token is Halted, or if some site in a

reachable area A' is occupied by the key of A or by some pointer accessing

A. An area is reachable only if it is reachable by virtue of the previous

sentence.

6

n) "Model confor1nance" holds if the following three criteria are met:

(i) The model of the C-locale {{1.6.c}} is empty;

(ii) The C-locale contains no pointers or keys accessing a different lo­

cale;

(iii) For each reachable area, other than the C-locale, there is a one-to­

one correspondence between the pointers k•d of that area that point

to a key (a pointer), and the elements <KEY, d> (<PTR, d>) of the

model, with a possible exception for keys and pointers that are Nix

or that access the C-locale.

{{If model conformance holds, this means that the sites of keys and

pointers may be deduced from the model for purposes of garbage collection

and area compaction. In the realization, a specialized representation of

the sets that models are may be used. Because of the dynarr, le span detez"rrii­

nation of areas that are not locales, the collection of models that may

play a role during execution is not finitely bounded. However, the

corresponding models have a repetitive structure and may be represented in

the realization by means of "hyper-models'', by allowing, roughly, the ab­

breviation "and so on until the end of the area". The set of hyper-models

that may play a role can then be kept finite and may be determined stati­

cally.}}.

o) The formula "m+d'", where mis a model and d' is an integer, stands for

the model {<t, d+d'> I <t, d> € m}.

1.4. Types

{{Types in the MIAM are akin to ALGOL 68 modes. They are static attri­

butes that allow the realization of efficient treatment of objects. The

main difference with ALGOL 68 is that a given type ''describes'' the lay-out

of a contiguous segment of memory of fixed size. Pointers have a corr1rnon

type that does not contain the type of the object pointed to. {{There is no

such thing as type checking in the MIAM.}} However, in operations manipulat­

ing objects through the access provided by a pointer, the type of that ob­

ject is always statically known.

7

The 11 philosophy'' behind the type model used in the MIAM is as follows.

In actual computers, there are certain privileged "primitive types" in

terms of whose semantics the machine instructions are described. An effi­

cient realization must make use of this fact whenever reasonably possible.

Now it may occur that not all addresses are equally suited for storing ob­

jects of a given primitive type. For example, it may happen that integers

may be operated upon efficiently only if they are stored at adresses that

are a multiple of four. If the design of the MIAM does not recognize this

fact of technology, efficient realization of the MIAM is out of the ques­

tion. Now the translation phase should not be bothered by pararneters of the

target hardware: the MIAM code turned out for a particular ALGOL 68 program

should be identical. The solution chosen is to assign types to objects of

the MIAM in such a way that the realization may choose adresses for MIAM

pointers suitable for the objects pointed to. Whether this is indeed possi­

ble for a given contraption depends on how reasonable its adress restric­

tions are. The model developed here will not cater for the case where in­

tegers may not be stored at adresses that are one more than some prime

number. The assumptions used are:

(i) The hardware adresses suitable for a given primitive type Pare of

n runs through not

assumed, of course, that there is an infinite number of suitable adresses;

see under (ii).) The quantity mp, the "modulus" of P, is at least one.

Although this fact is not used, it is reasonable to choose ap such that

0 < ap < mp ..
(ii) The hardware cells that will be occupied by a P object ''at'' address

+ n • II cells

physically exist, the adress is indeed suitable.

(iii) There exists a (least) corr1mon multiple M of all primitive type moduli

(i.e., the set of moduli is finite).

In the realization, an area must always be ''aligned'' in such a way that
'

the adress corresponding to its first cell, k•O, is a multiple of M. This

ensures that a lay-out allowing efficient access to the objects in an area

is possible.}}

8

a) A "type" is a quintuple <t, a, 1, u, m>, where tis a token and a, 1, u

and m are integers. The ''modulus'' m is at least 1 , and is a di visor of the

"area modulus", denoted by ''M". Moreover, 1 satisfies O < 1 < m, and the

''span'' of the type, u-1+1, is at least O.

{{If a= 1 for all primitive types, this property is inherited :for com­

posite types if the formulae given below are used.}}

b) The token of a type is either an ''atomic type token" or the token

''STRUCT''. The names of the atomic type tokens correspond, one to one, to

the terminal productions of 'tok' {{2.1.h}}, after leading non-significant

digits 'o', if any, have been omitted from the constituent dee, if any {{see

2.1.m}}. If two types have the same atomic type token, then they are one and

the same type.

{{Although each object has a type, there are no objects whose type has

the token STRUCT. The latter kind of types may be used to model "composite

objects", that, to the MIAM, and notably its realizer, exist only in the

eye of the beholder (see also the remarks in section 1.5.a).

The function of the atomic type tokens is to allow two types to be dif­

ferent, even if all four characteristic numbers are equal, since some

hardware may require different instructions for different primitive types,

even if the abstract meaning of the instructions is the same.}}

c) stand

for a type t and an integer d, respectively, satisfying:

(i) if pis a pointer, suitable fort, then pis also suitable for t
1

and

p•d is suitable for t 2 ;

the

are contained in the site appointed by p fort;

(iii) the token oft is STRUCT;

(iv) if t 1 is of the form <STRUCT, O, O, u, M>, then tis of the form

<STRUCT, O, O, v, M>. .

Tjoin and Djoin are {{deterministic}} functions of their arguments.

Moreover, if Seq(n, t), where n is an integer> 0 and tis a type, is de­

fined inductively by

• Seq(O, t) = Type[G] {{2.2.j}};

• Seq(n+1, t) = Tjoin(Seq(n, t), t);

then there exists a function Shift, mapping types to integers, such that

the value of Djoin(Seq(n+1, t), t) is Djoin(Seq(O, t), t)+n•Shift(t).

let q 1 m
1
•m

1
;

• t = <STRUCT, a 1+q 1 , 1 1+q 1 , u 2+q2 ,

Lowest Cocn1non Multiple;

9

The idea is that in the compound type the site of the t 2-object is

shifted over q 2 cells to the right, being the least multiple of m2 such

that the shifted site is disjoint from the earliest possible site for the

t 1-object. Next, the t 1-site is shifted to the right over q 1 cells, being

the greatest multiple of m1 that leaves the sites disjoint, in order to ob­

tain a tight packing. This is not necessarily the tightest packing if the

hold for the moduli involved.

More realistically, interchanging the order of the field sites might also

give a tighter packing.

The ''axiom" defined by means of the auxiliary function Seq means that

sites for a sequence of objects of the same type are allocated equidistant­

ly.}}

d) ''Shift(t)", where tis a type, stands for the integer

Djoin(Seq(n+1, t), t)-Djoin(Seq(n, t), t), where Seq is the function intro-

duced in the previous section {{and

istence was postulated there}}.

Shift is the same function whose ex-
'

10

{{A for1nula computing Shift(<k, a, 1, u, m>), if the formulae for Tjoin

and Djoin given above are used, is (u + m - 1) + m * m. This function is

useful for translating selection on multiple values.}}

1.5. Objects

a) An "object" is a "plain object" {{1.5.1.a}}, a key or a pointer, or a

"descriptor" {{1.5.2.a, 1.5.2.b}}. Each object has a type and a scope. The

token of the type of a key (a pointer) is "KEY" (''PTR'').

{{The translator may model ''composite objects" by composing them of a

sequence of other objects. The MIAM proper does not "recognize" the ex­

istence of composite objects -- other than parallel action descriptors,

whose internal structure, however, is inaccessible--, but provides all

necessary equipment for the modelling, such as types for composite objects,

being a function of the types of the components, determined with the

"Tjoin" function. The site occupied by a "copy" of such a composite object

is then occupied by a sequence of copies of its components, possibly leav­

ing some cells unused in between. The "scope" of a composite objects is the

largest of the scopes of its components.}}

1.5.1. Plain objects

•

a) A "plain object" is an integer, an "answer" (i.e., one of the tokens

"Yes'' and "No''), a "label'' {{1.7.1.c}} or some ''other plain object" {{e.g.,

a character or a real number}}. The token of the type of an integer (an

answer, a label) is "INTO'' {''ANS'', "LAB") • The na1nes of the tokens of the

types of other plain objects correspond, one to one, to the terminal pro­

ductions of 'tok' obtained by adding productions for it by virtue of 2.1.i.

The scope of a plain object is O.

{{The definition and treatment of other plain objects are left open in

this definition of the MIAM. For a contract between translation and reali­

zation, these have to be filled in, of course.}}

1 1

1.5.2. Descriptors

{{Parallel actions may be translated by means of parallel action and

process descriptors. Starting from some primal process descriptor, a tree

is descended of currently active processes. In the model given below, the

branches of the tree correspond to pointers pointing in the direction from

leaves to root. However, no explicit connection is given between a process

descriptor and any parallel action descriptor created by the corresponding

process (by the action of a SPAWN-instruction). A data structure realizing

the tree must contain supplementary pointers to connect the tree; other­

wise, the ''If there exists" in the description of "Search Process"

(1.7.2.c) could not be effected in a reasonable way. Also, the determina­

tion of "Spawner(p)" {{1.5.2.d}} requires implicit pointers pointing upwards

in the tree.·}}

a) A "parallel action descriptor" is an object, composed of a sequence of

''process descriptors'' {{1.5.2.b}} and a ''parent'' pointer {{which, if it is

not Nix, points to a process descriptor <Spawned, l>}}. The site occupied by

a copy of a parallel action descriptor is occupied by a sequence of copies

of its components, possibly leaving some cells unused in between. The scope

of a parallel action descriptor is the largest of the scopes of its com~

ponents. A parallel action descriptor with n process descriptors has a type

whose token has a name of the fo1~1n ''PARdec'', where Val(dec) {{2.2.b}} is n.

b) A "process descriptor" is an object, composed of a token and possibly

other objects; it is of one of the following four forms:

• <Running>;

• <Spawned, l>, where 1 is a label {{for continuation after all spawned

processes have reached completion}};

• <Halted, sp, kT'

an integer, kT and

dition that caused the halting no longer applies}};

• <Complete>.
'

The scope of a process descriptor is the largest of the scopes of its

components, where the tokens are assumed to have scope O.

12

c) There is a register ''P'' holding a pointer which, if' it is not Nix,

points to a process descriptor {{the (unique) "<Running>" process descrip­

tor}}.

d) ''Spawner(p)'', where p is a pointer pointing to a process descriptor, is

the parallel action descriptor, pointed to by the pointer q, such that the

site appointed by pis contained in the site appointed by q.

{{This definition is given in terms of pointers, since different paral­

lel action descriptors might contain identical process descriptors.}}

1.6. Locales

a) An area may be a ''locale''.

{{Locales are created by an EST-instruction; other areas are created by

a GEN-instruction. Locales are chained by a dynamic and a static (lexico­

graphic) chain. Parallel action descriptors may built a tree form ~rom

these, otherwise linear, chains.}}

. b) There exist two registers T and S that may hold keys of locales, that

are then known as the "T-locale'' and the ''S-locale", respectively.

c) The ''C-locale" is a {{standard}} locale, existing without explicit crea­

tion, whose scope is O and whose span is sufficiently large {{if realization

permits}} to accomodate the static action prescribed by all of the CFILL­

instructions {{3.2.f}}. "C" stands for the key of the C-locale. It is re­

quired that no pointers or keys accessing areas other than the C-locale are

made to occupy sites contained in the C-locale.

{{The C-locale is the only locale whose scope is o, and it is also the

only area that exists without creation, not counting some fictitious

locale(s) facilitating the semantic description.}}
'

13

1.7. Actions

1.7.1. The program

a) The program consists of a sequence of ''instructions''. The "execution''

of the program consists of the execution of the instructions, one by one,

starting with the first instruction, and ending, if the program is normally

completed, with the last instruction. The execution of each instruction

determines a successor, which is, unless otherwise specified, the next in­

struction in {{the sequence which is}} the progra1r1, or it results in "abor­

tion'' with an ''error code" (an integer), whereupon no further instructions

are executed.

b) For some instructions the execution is empty, apart from determining

the next instruction as successor {{e.g., a LABEL instruction}}. Such in­

structions, may, however, influence the meaning of other instructions. This

influence is execution-independent and must, therefore, be determined stat­

ically by performing once, in the textual order, the ''static actions"

prescribed for these instructions.

{{This holds, especially, for the CFILL-instructions and for the EST-FIN

pairs. If the realization, in a second pass through the program to generate

concrete code for the dynamic actions, should re-perform the static ac­

tions, the meaning remains the same. For example, the ''meaning'' of 4 in the

COPY-instruction in

JOIN, A, INT, 4;

COPY, INTO, 666, &T4;

JOIN, 4, INT, 4;

is that Offset[4], that has been set in the first instruction, even though

the following setting of Offset[4] is allowed and has a well-defined ef­

fect.}}
l

c) A "label" is the "valuation" {{2.2.a}} of a ''lab"

a label is o, and its type is LAB.

{{2.1.q}}. The scope of
'

14

d) There exists a special class of "abortive" labels, which have an error

code.

e) "LABEL" {{3.4.c}} and "DOWN 11 {{3.5.d}} instructions are ''labelled" with

the valuation of their first argument {{which is execution independent}}. It

is required that no two different instructions be labelled with the same

label.

f) If, in this description, some condition is said to be ''required", this

means that the MIAM is not designed to be able to cope with the situation

arising if the condition is not fulfilled.

{{It is certainly not the intention that a realization of the MIAM

should check the requirements. Rather, the translation should generate a

program whose execution cannot violate them.}}

1.7.2. Auxiliary actions

a) ''Newkey(m, s, c)", where m is a model, s is a span and c is a scope,

stands for the key yielded by the following action:

• it is required that model conformance holds {{1.3.n}};

• the action yields the key of a newly created area with model m, spans

and scope c.

{{It may be helpful to know that this action is only prescribed by the

instructions EST {{3.2.a}} and GEN {{3.3.a}}, and that prior to its invoca­

tion the execution of these instructions does not call for actions that

might influence the occupancy of any area.}}

b) ''Goto (l)", where 1 is a label, stands f'or the action whereby the in­

struction labelled with the label 1, if any, is determined as successor to

the instruction currently executed; otherwise, it is required that 1 be

abortive and the action results in abortion {{1.7.1.a}} with the error code

of 1.
•

15

c) "Search Process" stands for the following action:
.

If there exists a pointer q, contained in a reachable area {{1.3.m}}, point-

to a nonnegative integer,

then

•<Running>=* q;

• P is set to q;

• Goto(l);

otherwise,

• Goto(a), where a is an abortive label with error code Deadlock.

•

d) ''Discard Par(k)", where k is the key of a locale, stands for the fol­

lowing action:

If P and k access the same locale,

then

• let Spawner(P) {{1.5.2.d}} be the parallel action descriptor {{1.5.2.a}}

<pp, pd1' • • •

•Pis set to

, pd>; n
pp;

•<Running>=• P;

• <Nix, <Complete>, ••• , <Complete>>=* s {{which, in a realization of

the MIAM, should be a du1111oy action}};

• Discard Par(k) {{again}};

otherwise,

• if k is not T, Discard Par(•k•u), where u is Offset[U] {{2.2.n}}.

2. ARGUMENTS

2.0. Notation

In the next section, a syntax definition method is used that is a vari­

ant of BNF. Non-terminal symbols are a sequence of low~r case letters. A

colon separates the left hand side of a rule from the right-hand side, and

the alternatives are separated by a bar ('' 1 '1). All other marks are terminal

symbols and stand for themselves. Blank spaces are not significant {{but are

16

inserted in the syntax rules in such a way that they help to increase legi­

bility in the terminal productions if treated as terminal symbols}}.

2.1. Syntax

{{The following transcriptions may be
& -pointer to N
• -follow pointer S
A -Around-chain field T
C -C-locale U
E -Established locale X
G -Generated area Y
H -sHift
I -Indirect

helpful:
-No
-S-locale
-T-locale
-Upon-chain
-niX
-Yes

loo-locale

field

ans-answer
arg-argument
dee-decimal
ins-inspectable (only)
int-integer
jtp-joined type
lab-label
lev-static level
lit-literal

off-of:fset
ptr-pointer
rec-recipient pointer
res-resident {copy)
sin-signed integer
tok-token of type
typ-type

a) arg: lit I ins I rec

b) lit: sin I YIN I Ldec I Adee IX I Htyp

}}

c) Other productions for 'lit' may be added, together with rules for their

valuation {{2.2.a}}. {{Presumably, these other productions correspond to

denotations for the ALGOL 68 modes mirrored by INTsin with Val(sin) .~ O and

by additional productions for 'tok'; see 2.1.i.}}

d) sin: dee I -dee

e) ins: •Coff I •Toff I •Soff

f)

g) typ: tok I jtp
'

•

17

h) tok: GI E I KEY I PTR I ANS I INTsin I LAB I PARdec

i) Other productions for 'tok' may be added. {{Presumably, other produc­

tions for 'tok' are 'CHAR', 'REALsin', 'BITSsin' and 'BYTESsin', and 'CHAN­

NEL', 'BOOK' and 'BUF' if the approach from VAN VLIET[2] is taken for the

translation. }}

j) jtp: U I A I dee

k) lev: dee

1) off: jtp I off+jtp

m) dee: a nonempty sequence of decimal digits

is

equivalent to dee 1 { { so L 007 and L 7, e.g. , are one and the sa.111e lab}} •

n) res: ins I Coff I Toff I Soff

o) int: sin 1 Htyp I res

p) ans: YIN I res

q) lab: Ldec I Adee I res

r) ptr: XI ins I rec

{{Auxiliary definition}}

s) loc: C IT I S

2.2. Valuation

a) The "valuation" of an arg determines an object {{generally during execu­

tion}}; it is denoted by Val(arg). A typ t determines statically a type,

denoted by Type[t], and a model, denoted by Model[t]. Moreover, if tis a

jtp, it determines an integer {{an "offset"}}, denoted by Offset[t]. In the

static or dynarr,ic requirements and actions, Type[t], Offset[t] and

Model[t], where tis a jtp, have a meaning only if they have been set by

the static action of a textually preceding instruction which has not been

invalidated by a textually intervening instruction, and they have the mean-

18

ing as set by the textually last such instruction.

b) The valuations of the lits are {{execution independent and are}} deter­

mined as follows:

• Val(dec) is the integer whose decimal representation is dee;

• Val(-dec) is -Val(dec);

• Val(Y) is the answer Yes;

• Val(N) is the answer No;

• Val(Ldec) is the label "Ldec"; it is required that there be exactly one

instruction labelled with "Ldec'';

• Val(Adec) is an abortive label with error code Val(dec);

• Val(X) is the pointer Nix;

• Val(Htyp) is Shift(Type[typ]).

c) Offset[off+jtp] is Offset[off]+Offset[jtp].

d) Val(&Coff) is the pointer C•Offset[off].

e) Val(&Toff) is the pointer T•Offset[off].

f) Val(&Soff) is the pointer S•Offset[off].
,

g) Val(locoff) is •Val(&locoff) {{e.g., Val(T4) = •Val(&T4) =

•T •Offset [4] }} •

h) is the pis

it is required that p be a pointer, other than Nix.

i) Val(•arg) is •Val(arg) {{; it is required that Val(arg) be a pointer,

other than Nix}}.

j) Type[G] is <STRUCT, O, O, -1, 1> and Model[G] is the empty set.

k) Type[E] is <STRUCT, o, O, -1, M>, where Mis the area modulus {{1.4.a}},

and Model[E] is the empty set.

1) Type [tok], where tok is not G or E, is the type whose token is narned

tok.

m) Model[tok] is {<tok, O>} if tok is KEY or PTR, and the empty model{}

otherwise.

n) Type[U] is Tjoin(Type(E], Type[KEY]), Offset[U] is

Djoin(Type(E], Type[KEY]), and Model[U] is {<KEY, Offset[U]>}.

o) Type[A] is Tjoin(Type[U], Type[KEY]), Offset[A] is

Djoin(Type[U], Type[KEY]), and Model[A] is {<KEY, Offset[U]>, <KEY,

Of:fset[A]>}.

{{The effect is the same as would be obtained for decs u and a by

JOIN, E, KEY, u;

JOIN, u, KEY, a; }}

p) Type[dec], Offset[dec] and Model[dec] are defined if set by a JOIN,

EST, MAX or FIN-instruction {{3.1.a, 3.2.a, 3.1.c, 3.2.b}}.

3. THE INSTRUCTIONS

3.0. Notation

19

In each instruction format given below, a lower-case letter, possibly

adorned with a subscript or an apostrophe, stands for a non-tertninal symbol

for which a production rule is given in the lines following the instruction

format. In the requirements and actions given for the instruction, they

stand for the terminal productions by which they are replaced in the actual

instruction. Production rules for different non-terininal symbols that have

a co1r•1non right-hand side may be replaced by one rule whose left-hand side

consists of a list of the original left-hand sides.

3.1. Type instructions

a) JOIN, s, t, u;

s, t: typ

u: dee {{type}}

20

Static action:

• Type[u] is set to Tjoin(Type[s], Type[t]), Offset[u] is set to

Djoin(Type[s], Type[t]), and Model[u] is set to the union of Model[s] and

Model[t]+Offset[u] {{1.3.o}}.

{{Ifs and t accomodate the ALGOL 68 modes SS and TT, then u will ac­

comodate STRUCT(SS f1, TT f2). If the argument Toff gives access to an ob­

ject of the composite type u, then Toff gives access also, in a context

where an object of types is implied, to the first field, and Toff+u gives

access to the second field. A structured mode with more than two fields,

e.g., STRUCT(SS f1, TT f2, UU f3), may be handled by treating it as

STRUCT(STRUCT(SS f1, TT f2) fx, UU f3) (or as STRUCT(SS f1, STRUCT(TT
'

f2, UU f3) fy), which does not necessarily give the same lay out).

The typ G is a d1;mrny that is useful to make uniform translation schemes

in which the first (or the last) field does not have to be translated in a

special way; Type[G] is defined as the type of a virtual object of zero

span that can be acco1nrnodated at any site. G is also useful to create types

that are equivalent to already given types, except that the token is

STRUCT, as is required by the MAX-instruction.

The typ E forces alignment in the realization. It is especially useful

for allocating sites in a locale (in translating an establishing-clause).

Consider, for example, BEGIN SS x1; TT x2; UU x3; ••• END. This can be han­

dled as BEGIN STRUCT(SS f1, TT f2, UU f3) xx; ••• END, but then the trans­

lation for accessing x1, say, as f1 OF xx, depends on the subsequent

identifier-declarations. If, however, a du y declaration ''EE durr,rny'' is as­

sumed ir11r11ediately following the BEGIN, where EE is treated as a mode accom­

modated by Type[EJ, the access for x1 as computed by the above scheme be­

comes independent of the sequel. Actually, the EST-instruction introduces

not only EE alignment automatically, but also, for convenience, two expli­

cit fields for keys, as in BEGIN EE dummy; KEY upon, around; ••• END.}}

b) SJOIN, s, t, u;

s, t: typ

u: dee {{type}}

'

•

21

Static action:
•

• The same static action is performed as would be performed by

JOIN , s, t , u; •

Dynamic Requirement:

• It is required that, for any non-empty site appointed by a pointer that

is the result of valuating, during execution, an argument of the form

&locjtp 1+ ••• +jtp
0

_
1
+u, where the value of Offset[u] is defined by virtue of

an SJOIN-instruction, neither that site nor any part or component thereof,

be appointed by any pointer contained in a reachable area {{1.3.m}}.

{{To grasp the usefulness of the requirement, it should be stressed that

requirements of the MIAM, being clauses from a contract between the trans­

lator and the realizer, correspond to promises on the part of the first

party. Since it is always possible to use a JOIN-instruction, the self­

inflicted requirement of an SJOIN-instruction is a promise by the transla­

tor that no ''alias'' pointers will be set up appointing sites described with

the offset u. This makes it possible for the realization to keep the

corresponding objects in hardware registers, if this is desirable for op­

timization purposes, without global data-flow analysis to check the safety.

In the general case, the translator can only make the promise after some

degree of global analysis of the source text. This is not necessary, howev­

er, for the code emitted for anonymous counters needed to translate, e.g.,

various actions on multiple values, in which case the intended optimization

may be quite profitable.}}

c) MAX, s, t;

s: jtp {{type}}

t: jtp {{type}}

Static requirement:

• Type[s] is of the form <STRUCT, O, o, u, M>, and Type[t] is of the form

<STRUCT, O, O, v, M>. '

22

Static action:

• Type[t] is set to <STRUCT, o, o, max (u, v), M>;

• any statically preceding settings of Offset[t] and Model[t] become in-

valid.

{{The MAX-instruction is useful for translating UNITED modes. By using

the typ E, the required zeros and M can be forced. This is hardly a res­

triction, since each united object has to be allocated an area of its own

in order to be able to set the model properly, and since areas have to be

aligned anyway in the realization. This argumentation is invalid in cases

like UNION(INT, REAL), where both variants give rise to an empty model, so

some cells may remain unused because of the static requirement. Still,

there is a good reason for always allocating a separate area for ''united''

objects: they may then be copied by simply copying the pointer yielded by

the GEN-instruction. That this is the case does not follow from any partic­

ular property of the MIAM, but from the Semantics of ALGOL 68 itself.

Another important application of MAX-instructions is for accomodating

sites for anonymous intermediate yields in a locale: the ''working stack''.

The type of the locale may be treated as the union of all types for all in­

termediate stages the site lay out of the locale may be in.}}

3.2. Instructions concerned with locales

{{The following instructions use a "static level" with a ''type number''.

As follows from the static requirements, this is redundant (but possibly

helpful) information; however, a nesting of EST and FIN-instructions is

thereby enforced.}}

a) EST, 1, s;

1: lev {{static level}}

s: dee {{type}}

Static requirement:

• Val(l) is one more than the current static level.

'

23

Static action:

• the static level is set to Val(l);

• Type[s] is set to Type[A] and Model[s] is set to Model[A];

• the type number of the static level is set to Val(s).

Dynamic action:

• let c be the scope of the T-locale;

• let k be Newkey(Model[A], os, c+1) {{1.7.2.a}}, where os is the Offset[s]

statically set at the corresponding (i.e., textually first following) in­

struction ''FIN, 1, s;"; {{with the same 1 ands}};

•Sis set to T;

•Tis set to k;

• S =* T.Offset[U] and S =* T.Offset[A].

{{This instruction is typically the first to be emitted in the transla­

tion of an establishing-clause. If' the ''upon'' and the "around" locale do

not coincide, one of the following instructions in the translation of an

establishing clause will, presumably, be a SETS-instruction.}}

b) FIN, 1, s;

1: lev {{static level}}

s: dee {{locale type}}

Static requirements:

• Val(l) is the current static level, and Val(s) is the corresponding type

number;

• the T-locale does not contain a parallel action descriptor, not all of

whose process descriptors are <Complete>;

• If Val (1) is O, this instruction is the last instruction of the progra,n.

Static action:
• Offset[s] is set to Djoin(Type[s], Type[G]) {{or, maybe, to obtain a mul-

tiple of M, to Shift(Type[s]) in the actual realization}};

• the static level is decreased by one.

24

Dynatnic requirement:

• The dynamically last preceding EST-instruction not yet dynamically

matched by a corresponding FIN-instruction is the statically corresponding

EST-instruction.

Dynamic action:

•Tis set to T.Offset[U];

•Sis set to T.Offset[A] {{in which Tis the newly set T}}.

{{Typically, some MAX-instructions may have intervened between the EST

and FIN-instruction to set Type[s].}}

c) MOD, m;
•

m: jtp {{model}}

Dynamic action:

• the model of the T-locale is made to be Model[m].

{{This instruction is used to ensure that Model conformance holds prior

to the execution of an EST- or GEN-instruction. It is not necessary, on

translation, to issue a MOD-instruction for each change in the occupancy by

keys or pointers; if no EST- or GEN-instruction may intervene between the

execution of two MOD-instructions, the first one was superfluous. Care

should be taken that all sites of keys and pointers indicated in the model

have indeed been filled before an EST- or GEN-instruction is executed; for

pointers this may be done by using Nix.}}

d) KEEP, p;

p: ptr

Requirements:

Let A be the area accessed by Val(p).

• A is not a locale {{i.e., A is created by a GEN-instruction}};

• The scope of the T-locale is greater than O;

• The scope of A is the scope of the T-locale;

- "'-,he scope of any key or pointer, a copy of which occupies a site in A, is

nost the scope of the S-locale.

25

Dyn.ti.tn~ic action:

• the scope or A is made to be the scope of the S-locale.

{{The KEEP-instruction exists only for reasons of efficiency. Without

this instruction, the multiple value yielded by the inner closed-clause in,
e.g.,

BEGIN[] REAL x = ([large] REAL xx; ••• ; xx); ••• END

would have to be copied to a newly created area since its scope would be

too large (i.e., numerically).}}

e) SETS, a;

a: arg {{key of locale}}

Dynamic action:

• S is set to Val(a).

f) CFILL, t, 1, u;

t: tok

1: lit {{object of type Type[t]}}

u: off {{for object of type Type[t]}}

Static requirements: •

•tis not G, E, KEY or some PARdec {{for which, anyway, no lits can be

given}};

• no textually preceding CFILL-instruction has caused a copy to occupy the

site appointed by C.Offset[u], nor any part or component thereof.

Static action:

• Val(l) =• C.Offset[u].

{{The filling of the C-locale is perfor1ned before execution starts; so

an ins of the form •Coff may be used before the corresponding CFILL-

ins truction. For this to be meaningful, however, the (static) meaning of

o:r:rset [off] has to be the same in both instructions.}}
•

26

3.3. Instructions concerned with pointers

a) GEN , t , s , t ' , a , r;

t, t': typ {{possibly G}}

s: int {{number oft' elements}}

a: arg {{key}}

r: rec {{for pointer}}

Dyna1nic requirement:

• let N be Val(s);

• N > O.

Dyna1nic action:

• let c be the scope of Val(a);

let m
0

be Model[G] {{i.e., empty}};

For i from 1 to N:

and let mi be the union of m1_ 1 and

let

Model[t]+Djoin(Type[E], Type[t]);

n 1 be the union of n0 and

• let k be Newkey(n1, Djoin(u1 , Type[G]), c) {{1.7.2.a}};

• k•Djoin(Type[E], Type[t]) =• Val(r).

{{The computations are the sarne as would have been performed in

JOIN,

JOIN, t 1, t', t 2;

• • •

JOIN, E, t, u 0;

JOIN, u 0 , tN, u 1;

which, however, cannot be performed statically if N is not known statical-
'

ly. See also the remarks about Model conforr11ance in 3.2.c. }}

b) COPY, t, a, r;

t: tok

a: arg {{object of type Type[t]}}

r: rec {{for object of type Type[t]}}

Static requirement:

•tis not G, E or some PARdec.

Dynamic requirement:

27

• if the valuation Val(a), according to Section 2.2.a, is some •Val(b),

then either Val(b) = Val(r), or the sites appointed by Val(b) and by Val(r)

have no cells in comrnon.

Dynamic action:

• Val(a) =• Val(r).

{{The copying of a composite object (see 1.5.a) has to be written out in

terms of copying its primitive components. There is no way in which a

parallel action descriptor can be copied.}}

c) DOT, t, p, d, r;

t: jtp

p: ptr

d: int

r: rec {{for pointer to object of type Type[t]}}

Dynamic action:

• Val(p)•Val(d) =* Val(r).

{{This action is generally only meaningful if pis derived from the result

of a GEN-instruction, and dis the result of multiplying an integer with

Val(Ht'), where t' is the fourth argument of that GEN-instruction. Because

of the coror11utativity of addition, field-selection on multiple values (e.g.,

given some[] COMPL zz, re OF zz), can easily be translated.}}
•

'

28

d) SCOPE, P, r;

p: ptr

r: rec {{for integer}}

Dynamic action:

• let c be the scope of Val(p);

• c =* Val(r).

e) IFIS, P, q, l;

p, q: ptr

1: lab

Dynamic action:

If Val(p) = Val(q)

then

• Goto(Val(l));

otherwise,

• no action.

f) IFISNT, P, q, 1;
p, q: ptr

1: lab

Dyna111ic action;

If Val(p) = Val(q)

then

• no action;

otherwise,

• Goto(Val(l)).

3.4. Instructions concerned with control flow

a) INIT;

Static requirement:

•

• the instruction is the textually first instruction of the progra111.

Dynamic action:

• the static level is set to -1, and T and Sare set to the key of the C­

locale;

•Pis set to a pointer to a process descriptor, appointing a site in a

fictitious locale of scope O;

•<Running>=* P.

b) IMAT, l;

1: dee {{line number}}.

Action: none {{but presumably this may be put to some diagnostic use}}.

c) LABEL, 1;

1: Ldec

Static action:

• Val(l) is made to label the instruction.

d) GOTO, l;

1: lab

Dynamic action:

• Goto(Val(l)).

e) JUMP , v , 1 ;

v: arg {{key}}

1: Ldec

Dynamic action:

• let k be T;

•Tis set to Val(v);

• Discard Par(k);

• Goto(Val(l)).

f) UNL, b, l;

b: ans

1: Ldec

29

30

Dynamic action:

If Val(b) = Yes

then

• no action;

otherwise,

• Goto(Val(l)).

g) CASE, i, c, 1, 1 O, 1 1 , • • • , ln;

i: int

c: dee

1, 1 0 , ••• : Ldec

Static requirement:

• Val(c) is n.

Dynamic action:

If O < Val(i) < n

then

otherwise,

• Goto(Val(l)).

3.5. Instructions concerned with parallel action descriptors

a) SPAWN, c, 1 2 , •••

c: dee

, 1 , 1 1 , r; n n+

12 , ••• , ln+ 1 : Ldec

r: rec {{for a parallel action descriptor of type

Type[PARn]}}

Static requirement:

• Val(c) is n.

Dyna1nic action:

• let a be a parallel action descriptor <pp, p 1, •••

are determined as follows:

• pp is P;

, p > whose components n

• p 1 is <Running>;
•

• p., i = 2, ••. , n, is <Halted, sp, T, s, Val(l)>, where sp is a
1

31

pointer appointing a site in a fictitious locale of scope O, occupied by

a copy of a fixed, positive integer;

n+ =• P;
• s =• Val(r);

•Pis set to a pointer to p 1 •

b) COMPLETE;

Dynamic requirement:

••Pis <Spawned, l> for some label 1.

Dynamic action:

• let Spawner(P) {{1.5.2.d}} be <pp, p 1, ••• , pn>;

•<Complete>=• P;

If for some i, 1 <
then

i < n, p. is not <Complete>,
l.

• Search Process {{1.7.2.c}};

otherwise,

•<Running>=* pp;

•Pis set to pp;

• Goto(l).

c) UP, r;

r: rec {{for integer}}

Dynamic action:

• •Val(r)+1 =• Val(r).

d) DOWN , 1 , r;

1: Ldec

r: rec {{for integer}}

Static action:
• Val(l) is made to label the instruction.

'

32

Dynarnic action:

I :r • Val (r) > 1

then

• •Val(r)-1 =• Val(r);

otherwise,

• <Halted, Val(r), T, S, Val(l)> =• P;

• Search Process {{1.7.2.c}}.

3.6. Instructions concerned with simple arithmetic

a) ADD , i , j , r;

i, j: int

r: rec {{for integer}}

Dynamic action:

• Val(i)+Val(j) =• Val(r).

b) SUB, i , j , ,,.r;

i, j: int

r: rec {{for integer}}

Dynamic action:

• Val(i)-Val(j) =• Val(r).

c) NEG, i, r;

i: int

r: rec {{for integer}}

Dyna1nic action:

• -Val(i) =• Val(r).

d) MUL , 1 , j , r;

i: int

j: int

r: rec {{for integer}}

Dyna1·11ic action:

• Val(i)•Val(j) =• Vai(r).

3.7. Instructions concerned with simple comparisons

a) IF c , i , j , 1 ;

c: LT I LE I EQ I NE I GE I GT

i, j: int

1: lab

Dynamic action:

e let* be< (<, =, ,, >,>)if c is LT (LE, EQ, NE, GE, GT);

If Val(i) * Val(j)

then

e Goto(Val(l));

otherwise,

• no action.

REFERENCES

33

[1] MEERTENS, L.G.L.T, On the definition of an abstract machine for a port­

able ALGOL 68 compiler, in Proc. Int. Conf. on ALGOL 68,

(J.C. van Vliet & H. Wupper, eds), 97-117, Mathematical Centre

Tracts 134, Mathematical Centre, Amsterdam, 1981.

[2] VAN VLIET, J.C., ALGOL 68 Transput, Part II, An Implementation Model,

Mathematical Centre Tracts 111, Mathematical Centre, Amsterda1r1,

1979.

[3] VAN WIJNGAARDEN, A., & al. (eds), Revised Report on the Algorithmic

Language ALGOL 68, Mathematical Centre Tracts 50, Mathematical Cen­

tre, Amsterdam, 1976.
•

'
•

