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Lattices and factorization of polynomials*) 

by 

A.K. Lenstra 

ABSTRACT 

We present a new algorithm to factorize polynomials over an algebraic 

number field. Unlike other algorithms the efficiency of our method does not 

depend on the irreducibility of the minimal polynomial modulo some prime. 

The algorithm is based on a theorem on integral lattices and a lower bound 

for the length of a polynomial having modulo pk a non-trivial co1ID.llon divisor 

with the minimal polynomial. These theorems also enable us to formulate a 

new algorithm for factoring polynomials over the integers. 

KEY WORDS & PHRASES: Polynomial factorization., "lattice theozoy., reduced 

basis., s'hortest vector 

*) This report will be submitted for publication elsewhere. 
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1. INTRODUCTION AND NOTATION 

We present a new algorithm. to factorize polynomials over an algebraic num­

ber field. The algebraic number field is given as the field of rational num­

bers extended by a root of a prescribed minimal polynomial. Unlike other 

algorithms the efficiency of our method does not depend on the irreducibili­

ty of the minimal polynomial modulo some prime. 

A brief outline of our algorithm is as follows. First, we factorize 

the polynomial to be factored over a large enough ring determined by a 

prime power pk and an irreducible factor of the minimal polynomial modulo 

pk, using for instance the well-known Berlekamp-Hensel technique. We then 

construct a lattice such that the coefficients of the factors over the al­

gebraic number field are congruent,modulo this lattice,to the coefficients 

of the factors over the ring. Using a theorem stating that these coefficients 

in the algebraic number field are the shortest-length vectors with this 

property, we are able to compute them, if a sufficiently orthogonal basis 

of the lattice can be found. That such a basis can be effectively con­

structed is a result of H.W. LENSTRA [3]. 

From the same theorem it follows that an irreducible polynomial over 

the integers with a given maximal length is uniquely determined by a factor 

modulo pk, if k is sufficiently large. As a consequence we can compute this 

irreducible polynomial as the shortest-length vector in a lattice defined 
k k by p and the factor modulo p. This gives us a new algorithm to factorize 

polynomials over the integers. 

The result from [3] on the computation of a reduced basis of a lattice 

is presented in Section 2, together with a number of elementary remarks 

about lattices. In Section 3 we prove a theorem giving a lower bound for 

the length of a polynomial having modulo pk a non-trivial common divisor 

with an irreducible polynomial. As an application of this theorem we describe 

the new algorithms for factorization of polynomials over the integers and 

over algebraic number fields in Sections 4 and 5 respectively. The algorithm 

from Section 5 has been implemented in Algol 68 on a CDC-Cyber 170-750 

computer; we include some machine examples with timings. 
Throughout this paper we make no distinction between vectors and 
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polynomials;an (l+l)-dimen~ional vector v = (v0 , ... ,v,e_)T corresponds to the 

polynomial v(X) = 'f.f:o v iX1., where ~v denotes the degree of the polynomial 

v (here dv = ·-1 if v. - 0 for i = O, .. • ,l, and dv = max{ijv.,'O} otherwise). 
- 1. . - 1. 

. fn 1. Conversely a polynomial v(X) = l · 0 v .X corresponds to an (l+l )-dimensional 
Ti= i 

vector V = (vo,···,v ,o, ... ,O) for all .e. ~ n. 
1 n 1 n+ 

If v = (v0 , ... ,vn) ER , we denote by [v] the vector 
, n+l 

w = (w0 , ••• ,w) E 'lZ such that w. is the integer nearest to v. for 
n i i 

i = O, ... ,n, and where halves are rounded upwards, e.g. [0.5] =I.Fur-

thermore we put 

UvU = (fn 2)1/2 
li=O vi 

the length of v, 

lc(v) = vdv' 

the leading coefficient of v (with lc(v) = 0 if dv = - l), and if v E Zln+l, 

cont(v) = gcd(v0 , ••• ,vn) 

the content of v, and 

pp(v) = v/cont(v) = (v0/cont(v), ••• ,vn/cont(v)) 

the primitive part of v. 

2. LATTICES 

Let b0 , ••• ,bm E 7lm+l be m+l linearly independent vectors for some positive 

integer m. The 'lattice L with basis b0 , ..• , bm is defined as L = lj =O 7l b j. 

This lattice is uniquely determined by the basis b0 , •.. ,bm; the converse 

however is not true as is illustrated in Figure l. 
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Figure 1. Two different bases generating the same lattice. b10 
T T T b 11 = (2, 1) and b20 = (2,-2) , b 21 = (2, 1) • 

T = (6,0) , 

3 

1 
The deterrnina.nt of a lattice is defined as d(L) = ldet((b.,b.)~ . 0 )j2; its 

1 J 1,J= 
value is independent of the choice of the basis of L. By the fundamentaZ 

domain of a basis b0, ••• ,bm we mean the set 

{X "' Rm+ 1 I [ 1 1) • }:m } "' 3c . e: - 2 , 2 , J = 0, ••• , m, such that x = • 0 c. b . • 
J 'J= J J 

Clearly it is possible to determine for all i e: lR.m+l a unique element x 

in the fundamental domain, such that i and x are congruent modulo L. 

Putting M = (b0 1 ... lb ), the (m+l)x(m+l) matrix with b., i = O, ... ,m, as 
m ~ _1 ~ 1 

columns, it is easily shown that x = x - M•[M •x] (cf. Figure 2). 



4 

Figure 2. T 
(O, 1) • 

Remark that the volume of the fundamental domain equals d(L). 

X 

In the sequel the quotient <rt;=Ollbjll)/d(L) =OD((bO, ... ,bm)) = OD 

(where OD stands for OrthogonaZity Defeat) will play an important role. By 

Hadamard's inequality we know that OD is always~ 1; there is however not 

an a priori upperbound for this quotient. The constructive proof of the fol­

lowing theorem from [3] provides us with an algorithm to construct a basis 

bO, ••• ,bm of an arbitrary lattice, such that OD((bO, ••• ,bm)) is bounded 

from above by a constant depending only on the dimension of the lattice. 

THEOREM 1. (Reduction Algorithm) 

For any choice of z E (O,} ✓3) we can reduae an arbitrary basis of an (m+l)­

dimensionaZ Zattice L to a basis bO, ••• ,bm E 2Zm+l of L satisfying 

2 (m+l)•m 

1 $ OD((bo,•••,bm)) $ (4:z;I) 4 
Unfortunately there is till now no better bound on the degree of the po­

lynomial bounding the running time of the algorithm resulting from the 

proof of this theorem than an exponential function of the dimension of the 



lattice. For small dimensions (i.e. SIO) however this appears to be no 

serious drawback. In the sequel we put 

2 (m+l)•m 

C = C(z,m+l) = (~:z;1) 4 • 

In practice the value for z doesn't matter too much; all our applications 
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of Theorem 1 resulted in bases satisfying ODs 2. There exist lattices how­

ever for which the orthogonality defect is bounded from below by an exponen­

tial function of the dimension [5]. 

In Section 4 we need a method to determine the shortest vector~ 0 in 

a given lattice. The algorithm given by DIETER [I] performs very well in 

practice, if the dimension of the lattice is reasonably small. For higher 

dimensions (i.e. ~15) however the running time of this shortest vector al­

gorithm becomes prohibitively long. 

In Section 5 we have to do with lattices containing only large vectors 

~ O; we want to be able to construct a basis for such a lattice, such that 

the fundamental domain of this basis contains a sphere about the origin 

with a comparably large radius. That this is possible follows from Theorem 

1 in combination with the following lemma. 

LEMMA I. Let L be an(m+l)-dimensionaZ Zattiae with bases b0 , ••• ,bm, and 'let 

O < B < min . llb. II. Then the fundcunentai domain of b0, ••• , b contains an 
0SJSm J m 

(m+1)-dimensionai sphere about the origin with radius> B/(2•0D), and aZZ 

vectors IO in L have length> B/OD. 

PROOF. Define for i = O, ••• ,m them-dimensional lattice L. in the m-dimen-
1 

s ional hyperplane V. = }:~ 0 . ..L. Rb. as L. = ~ 0 . ..L • 7l b. • Let d. denote 
1 'J= ,Jr1 J 1 'J= ,Jr1 J 1 

the distance of V. to V.+b., then clearly we have d. = d(L)/d(L.). By 
1 1 1 1 1 

Hadamard's inequality we obtain 

d (L . ) s rf.1 O . ..L • U b . II , 
1 J= ,Jr1 J 

and therefore 

d. ~ llb.11 •d(L)/(rf.1 O llb.11) > B/OD((b0 , ••• ,b )) • 
1 1 J= J m 
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Let x = l~=O 
c. < 1/2 for 

l. 

c.b. be such that llxll < d./2 for i = O, ••• ,m. This implies that 
l. l. l. 

i = 0, ••• ,m , so that x is contained in the fundamental domain 

of b0 , ••• ,bm. The fundamental domain therefore contains a sphere about the 

origin with radius> B/(2•0D). 

Suppose that there exists a non-zero v in L with Hvll < B/0D. Then -v/2 

and v/2 are both contained in the fundamental domain and congruent modulo 

L, which is a contradiction. 0 

Now, if we know that all vectors~ 0 in a lattice have length> B, 

then we have a sphere with radius> B/(2•0D). Using Theorem 1, we get a 

theoretical lowerbound B/(2•C) and, in most cases, a practical lowerbound 

B/4 for the radius of the sphere contained in the fundamental domain of the 

reduced basis of the lattice. 

In Section 4 we will see that the following simple corollary of Lennna 

provides us with an alternative way to calculate in certain cases the 

shortest vector in a lattice. 

COROLLARY 1. If there exists a vector~ 0 with Zength ~Bin a Zattice 

with basis b0 , ••• ,bm' then there is a basis vector with Zength ~ B•OD. 

PROOF. Suppose that b. > B•OD for i = O, ••• ,m. Then all vectors~ 0 in L 
l. 

have length> B•OD/0D = B according to Lennna 1, which clearly gives a con-

tradiction. D 

If we know that all vectors ~ 0, linearly independent of the shortest 

vector v, have length> llvU •OD((b0 , ••• ,bm)), for some basis b0 , ••• ,bm' then 

the basis vector with length~ UvD •OD equals± v. 

3 • A LOWER BOUND THEOREM 

Let g E 7Z[X] be an arbitrary polynomial of degree n1 ~ 1, and let 

vk E (7Z/pk 7l) [X], k = 1, 2, ••• , with ~ vk = n2 ~ 1, where p is a prime. 

Suppose that g and vk are relatively prime over 7l, but that there exists 
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an integer n ~ 1 such that g and vk have a monic counnon divisor of degree 
k at least n modulo p, k = 1,2, •••• 

We want to be able to give a lower bound for the length of the poly­

nomials vk, i.e. we want to prove that for all B > 0 we can find an index 

k0 = k0 (B) such that DvkU > B for all k > k0 • Furthermore, the proof has to 

give us a way to compute k0 = k0 (B), given a value for B. We do this by 

proving that 

k = 1,2, •••• 

Clearly this suffices for what we want, because given a value for B, we 

take 

n2 nl 
= lln(llgll •IIBII )/(n•ln(p))J, 

so that for k > k0 we find 

Uvkll ~ ( Pk:n)!t 
H gU 2 

Remark that from(*) it also follows that an irreducible polynomial over the 

integers with a given maximal length is uniquely determined by a factor 

modulo pk, if k is sufficiently large. Namely, let g1 and g2 be two unequal 

irreducible polynomials with lengths< B for some B > 0. Then g1 and g2 
k cannot have a monic counnon divisor of degree n ~ 1 modulo p for all k, 

because this would imply that 

for k = 1 , 2, ••• , 

which clearly is impossible. Therefore, g1 is uniquely determined by a 

monic factor modulo pk, if k is sufficiently large. We use this observation 

in Section 4. 

We now formulate and proof our lower bound theorem. 

THEOREM 2. Let f 1 and f 2 be two reZativeiy prime pol,ynomial,s in 7l[XJ with 

n1 = ~f 1 ~ n2 = df 2 ~ 1 • Let pk be a prime power and n ~ 1 an integer suah 
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that f 1 and f 2 have a monia aommon divisor hk of degree n, 1 :$; n :$; ~, 

k k•n n2 n1 
modu"lo p • Then p :$; 11 f 1 11 • II f 2 0 

PROOF. Since gcd(f 1,f2) = 1 over ?l, we have that a•f 1 + b•f 2 = 0 if and 

only if a = b = O, where a,b € 1l[X] and da < n2, db < n1• This implies that 

the collection 

~ f • x1-b. = i = o, ... ,n2-1, 1 1 . 1-n ~ . 2 
b. = f •X i = n2, ••• ,ntn2-I, 1 2 , 

constitutes a basis of an(n1+n2)-dimensional lattice L contained in 
n1+n2-l n2 n1 

{1l +1l •X+ •• • +7l •X } with d(L) :$; 11£ 111 •11£ 211 (Hadamard's inequality). 

We define the (n1+n2)-dimensional lattice Lk as the lattice with the fol­

lowing basis: 

b. k Xi i 0, ••• , n-1 , = p • , = 1 

b. hk 
i-n i n, .•• ,n1+n2-I. = X , = 1 

It is clear that b0 , ••• ,bn1+n -1 are linearly independent and that 
k•n 2 

d(~) = p • Now remark that Lk equals the set of polynomials of degree 

:$; n1+n2-I having~ as a factor modulo pk, so that Lis a sublattice of Lk. 

Therefore d(~) :$; d(L), which proves the theorem. O 

4. FACTORIZATION OF POLYNOMIALS OVER THE INTEGERS 

Let f be a squarefree polynomial over 1l. We present a method to de­

termine irreducible factors of f over 1l, based on the results from the 

previous sections. First let us recall the well-known Berlekamp-Hensel al­

gorithm to factorize f completely over 1l. 

Algorithm 1. (Complete factorization in ?l [X]) 
k - Determine the irreducible factorization of f over a ring 1l/p. 1l, for 

some prime P rte (f)•Discr(f)tand some sufficiently large integer k, 
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For all subsets Sc{J,2, ••• ,r} test whether pp((lc(f)•TT. 8 h.)mod pk) is a 
l.E l. 

factor off over 2Z. 

In practice this method performs very well, but since r, the number of 

irreducible factors modulo p, can be as large as ~f, the number of trial 

divisions in the second step can become exponential in the degree off. This 

is due to the fact that in order to determine a factor over 7l , the right 

combination of factors modulo pk has to be found. We present a method to 

determine an irreducible factor off over 7l using only one.factor off over 

some ring 7l/pk 7l. 

Let hk e: (7l/pk 7l) [X] be a manic irreducible polynomial of degree n 

such that hkff modulo pk. Clearly, if n = df then f is irreducible; there­

fore let n < df. If f is reducible over 7l, there exists for some m ~ n an 

irreducible polynomial g e: 7l [X] of degree m, such that glf over 7l and hklg 
k modulo p. Now suppose that this g of degree m exists. We will see how we 

can construct g using only the factor hk modulo pk, if k is chosen suffi­

ciently large. First we define a lattice Lk, such that g is contained in Lk. 

We then prove that it is possible to choose kin such a way that g is the 

shortest-length non-zero vector in Lk. 
k 

Define the (m+l)-dimensional lattice Lk generated by hk and p as the 

lattice with the following basis: 

b. k i i = p •X ' = 
l. 

b. = h •Xi-n i = 
l. k ' 

where the polynomials b. for i 
l. 

vectors. Clearly b0 , ••• ,bm are 

(remember that hk is manic). 

0, •.. , n-1 , 

n, ... ,m, 

= O, ••• ,m are regarded as (m+l)-dimensional 

linearly independent and d(Lk) = pk•n 

It is clear from this definition that Lk equals the set of polynomials 

of degree~ m having hk as a factor modulo pk, and therefore, g is contained 

in Lk. 

Since g If over 7l, we know from MIGNOTTE [4] that,, if g = l,~=O giXi, 

then 

i=O, ••• ,m, 



and therefore 

=~•llfll =B. 
m 

If we take k such that 

2•m k•n 
B < p 

then we know from Theorem 2 that every polynomial in Lk that is not an in­

tegral multiple of g, has length> B. Namely, for v E Lk with gcd(g,vk) = 1, 

we have 

( pk•n\_.!._ (B2•mJ _ 
llvll > 1-=---)lm > 1 -- - B 

- 'II gll~v \ Bm . 

Therefore g is the shortest-length vector f O in Lk, and therefore g can be 

determined by a shortest vector algorithm. 

Several remarks can be made on the above method. Since the value of m 

1.s unknown, it is possible to apply a shortest vector algorithm for 

m = n, n+l, ... ,~f-1 to the (m+l)-dimensional lattice generated by hk and 

pk, where k satisfies (*). If a vector is found with length :5: B, we test 

whether or not this vector is a factor of f over 7l; if there is no such 

vector, we know from the above reasoning that the guess for m is wrong. 

However, it is possible to choose for a given value of ma value fork, such 

that every vector v f O with length :s: B, that might be found, will satisfy 

gcd(f,v) f I. Furthermore g or some multiple of g will be determined as shor­

test vector, if the irreducible polynomial g with ~lg modulo pk and glf 

over 2'l has degree :,; m. This follows by the same reasoning as above. It is 

therefore not necessary to guess the correct value form; it is sufficient 

to choose a large enough m, and to use a sufficiently large k. 

Another interesting remark is that we can apply Theorem 

lary 1 from Section 2. If we take k such that 

2"m m k·n B • C ( z, m+ I ) < p , 

and Corol-
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for some choice of z € (0,! ✓3), then every polynomial in ½t that is not an 

integral multiple of g has length> C•B (Theorem 2). Since Lk contains a 

vector g # 0 with length s B, we can effectively construct a basis of Lk 

containing a vector b # 0 with lengths C•B, according to Theorem 1 and 

Corollary 1. Therefore bis an integral multiple of g, and because bis an 

element of the basis of Lk, we have b = ±g. 

Experiments have shown that for small dimensions (i.e. SlO) the running 

times of Dieter's shortest vector algorithm and of the reduction algorithm 

(Theorem 1) are almost equal. For larger dimensions however, the use of the 

shortest vector algorithm is preferable. 

What can we say about the practical importance of this new factoriza­

tion algorithm? Determination of a large degree irreducible factor requires 

the application of a shortest vector algorithm (or of the reduction algo­

rithm) to a high-dimensional lattice; in Section 2 we have seen that it is 

not advisable to use these algorithms in that case. Therefore this method 

will in general not be very efficient. 

On the other hand, suppose that we are given some polynomial f, and 

that we want to know all irreducible factors off of degrees m, for acer­

tain value of m. First we compute the irreducible factorization off modulo 
k p for a prime panda suffic1ently large k (Berlekamp and quadratic Hensel). 

If we use the old 'combine and try' method, like in Algorithm 1, to determine 

the irreducible factors of degrees m, then the computing time will be ap­

proximately Q((~f)m) in the worst case. The new method, however, is linear 

in df; it takes at most ~f applications of a shortest vector algorithm to 

an(m+l)-dimensional lattice. This implies that the new method is preferable 

if df is large and mis small. There are other, similar examples where the 

above algorithm is of some practical importance. 

We conclude this section with an example. Let 

f = 96x8 + aox7 - 156x6 - 58x5 + 101x4 - 39x3 - 29X2 + ax - 24. 

Algorithm I will factorize f without problems into irreducible factors: 
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We show how WE~ can get a factor of fusing only one factor over '11,/pk 'll, • For 

instance, for p = 5 we find a factor X+2 over 'll/5 'll, • We take for the example 

k = IO, so that we get a factor X - 515858 over '11,/ 5 10'11,. The initial basis 

of the 5-dimensional lattice generated by X - 515858 and 5 10 is given by: 

510 -515858 0 0 0 

0 -515858 0 0 

bO = 0 bl = 0 ' b2 'b3 = -515858 b4 = 0 

0 0 0 -515858 

0 0 0 0 

We apply the reduction algorithm from Theorem I to this basis and we obtain: 

0 -24 19 -3 -5 

23 5 12 -8 

bO = 5 ' bl 16 b2 = 7 b3 = -7 b4 = 13 . 
-43 13 -2 0 -IO 

-3 -I 16 8 17 

The shortest basis vector b 3 is indeed a factor of f over 'll, • For p = 23, 

we find the factor x2 + 9X + 9 off modulo 23. Here we take k = 5, and the 

factor modulo pk= 23 5 becomes x2 - 162095X + 1783475. For the example we 

will have a look at the 6-dimensional lattice generated by 

x2 - I 62095X + I 7834 75 and 235; the initial basis is given by: 

23 5 0 1783475 0 0 

0 235 -162095 1783475 0 

bO = 0 'b 1 = 0 'b2 = ,b3 = -162095 ,b4 = 1783475 

0 0 0 -162095 

0 0 0 0 

0 0 0 0 0 

I 0 

0 

b5 = 0 

1783475 

-162095 

The reduced basis has the form: 
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285 8 0 114 -296 296 

327 0 8 -287 -378 -40 

bO = -197 , b 1 = -9 , b2 = 0 , b3 = -431 , b4 154 , b5 = 269 

186 10 -9 -275 -8 

-487 10 -184 16 

339 12 139 27 5 

and we see that we have found two equally short basis vectors b 1 and b 2, 

corresponding to a factor and a shifted factor off respectively. In prac­

tice we modify the reduction algorithm in such a way that it stops as soon 

as a short enough basis vector is found. Remark that we could have used al­

so a shortest vector algorithm. 

5. FACTORIZATION OF POLYNOMIALS OVER ALGEBRAIC NUMBER FIELDS 

Let IQ(a.) be an algebraic number field where a. denotes a zero of a 

, 

manic irreducible polynomial F of degree mover Zl. The efficiency of existing 
methods to factorize polynomials over algebraic number fields strongly de-

pends on the behaviour of the minimal polynomial F modulo some prime p. If 

a prime p can be found such that Fis irreducible modulo p, and such that 

a few other, more trivial, conditions are met, there are no problems. In 

this case the algorithms are similar to algorithm 1 from Section 4; we will 

not discuss this case here (see [6] and [7]). 

It can occur however, that the minimal polynomial factorizes modulo p 

for any prime p. This implies that the set 

]111-1 
l I 
i=O 

a.a. 
l. 

i a. E 
l. 

'll Ip 'll , i = 0, ... , m-1} 
_cannot be regarded as the finite field lF m, which gives considerable 

p 
problems while factoring a polynomial f over IQ(a.). WANG [6] solves these 

problems by transforming the factorization off over IQ(a.) into the fac­

torization over 'll of a multivariate polynomial of much, higher degree. 

WEINBERGER and ROTHSCHILD [7] use the factorization of the minimal polyno­

mial modulo p to define a number of finite fields over which f is factored 

using Berlekamp's methods. These factorizations off are then combined 
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using the Chinese Remainder Algorithm. If f has degree n and F hast fac­

tors modulo p, the worst case running time of this algorithm is n(2n•t). 

We show that we can eliminate the use of the Chinese Remainder Algorithm 

at the cost of one reduction of an m-dimensional lattice. Besides the time 

necessary for this lattice reduction, the term n(2n•t) in the running time 

then reduces to n(2n). Although we know from Section 2 that the running time 

of the reduction algorithm increases extremely fast with growing dimension, 

it might be preferable to use it even for large dimensions, depending on 

the values of n and t. 

Let f E (~(a))[X] be the squarefree monic polynomial to be factored over 
k ~(a), and let ~ E (7l /p 7l) [X] be a monic irreducible non-trivial factor 

of the minimal polynomial F modulo pk, for some prime p f Discr (F) and 

k = 1,2 ••• , such that H1 =~mod p fork= 1,2, •••• We denote by aka zero 

of~ fork= 1,2, •••• The set 

can be regarded as the finite field lF , where q = ~I. Using Berlekamp' s 
q 

algorithm for factorization of polynomials over finite fields, and the 

quadratic Hensel construction to lift a factorization, we get the complete 

factorization of f over Wk(lFq) for arbitrary k <'= I in, say, r irreducible 

factors, where 

We use these r irreducible factors in (Wk(lFq)) [X] to construct the irre­

ducible factors off over ~(a). 

Let g E (~(a))[X] be one of the unknown irreducible factors off over 

~(a). Without loss of generality we can assume that f and g are monic and 

in (~ 7l [a])[X] for some integer D ~ I (D can be effectively computed using 

a method from [7]). For simplicity we take D = 1. From for instance 
\dg . i 

WEINBERGER and ROTHSCHILD [7] we know that, if g = li=O viX E (7l [a])[X], 

then there exists a constant B > O, depending on f and F only, such that 

II v. II ~ B for i = 0, ••• , dg (here and in the 
i -

2'Z [a] as polynomials in a). Of course, we 

sequel we regard coefficients in 
can also use a heuristic bound on 

llv.11 (see [6]). Furthermore, there exists among 
i 

the 2r factors off modulo 
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I\ and pk' which can be constructed (by multiplication over Wk(JF4 )), from 

the r irreducible factors of f over (Wk (JF 4) )[X], some factor ~, such that 

gk = g mod(l\,Pk) € (Wk(JF4)) [X] (remark that we make here no distinction 

between a and ak, and that we regard I\ as a polynomial in a). We now 

describe a mapping -r from (Wk(F4)) [X] to (tl [a])[X], such that -r(gk) = g, 

if k is chosen sufficiently large. It follows that we can determine the 

complete factorization off over ~(a) by trying for all 2r factors h off 
k modulo I\ and p whether or not -r(h) If over ~(a). 

Let v € 7l [o:] be the i-th coefficient of g, so dv < m, and let vk be 

the i-th coefficient of gk, for some i € {O, ••• ,~g}. Then OvU ~Band 

vk = v mod(l\,Pk). Clearly, to define our mapping -r, it suffices to give a 

method to construct v given Band vk. From vk = v mod(l\,Pk) it follows 

that there exist polynomials w1 and w2 in 7l[a] such that 

Therefore, v and vk are congruent modulo them-dimensional lattice Lk gener­

ated by I\ and pk (see Section 4). 

Now suppose that we can determine a basis b0 , ••• ,bm-l of Lk such that 

the fundamental domain of this b_asis contains an m-dimensional sphere about 

the origin with radius at least B. Together with llvll ~ B this would imply 

that 

-1 
where M = (b0 l ... lbm_ 1), because vk-M•[M. •vk] is the unique element in 

the fundamental domain of b0 , ••• ,bm-l congruent to vk modulo Lk (see Sec­

tion 2). 

We now prove that we indeed can construct such a basis of Lk, if k is 

chosen sufficiently large. Choose a value for z € (0,} ✓3) and choose k such 

that 

Next apply Theorem 1 (the reduction algorithm) to Lk to obtain a basis 
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Let w ,f, 0 be an arbitrary vector in Lk, then gcd(F,w) = l over Zl (remember 

that d~ < m and that Fis irreducible). Therefore Theorem 2 applies to F 

and w, so that 

Together with (*) this implies that llwll > 2•C •B. Clearly this lower bound 

also holds for b., j = O, ••• ,m-1, so that application of Lemma I yields that 
J 

the fundamental domain of b0 , ••• ,bm-l contains a sphere about the origin with 

radius> 2•C•B/(2•0D) ~ B. This finishes our proof. 

It is clear now how to define the mapping, from (Wk(F4)) [X] to 

(Zl [a])[XJ; just apply the above construction to each of the coefficients of 

the pol.ynomial in (Wk(F4)) [X]. 

Remark that the reduction algorithm from Theorem I has to be applied 

only once to compute the matrix M. Therefore, the computation of M, and of 
-1 

the first ~Hk columns of M , can be regarded as merely preprocessing. 

In practice it is often possible to choose k considerably smaller than 

the theoretical value given by(*). This is due to the fact that the radius 

of the sphere contained in the fundamental domain of the reduced basis is 

almost always much larger than its theoretical lower bound. Therefore it is 

advisable to compute the orthogonality defect of the reduced basis of Lk for 

a reasonable value of k; if min. 0 · 1llb.ll/(2•0D) > B the guess fork is 
J= , ••• ,m- J 

correct, otherwise take a larger k. A reasonable guess is to take k such 

that 

(k•dH.) /m 4 p --K > •B. 

This follows from the following observations. In practice the vectors of 

the reduced basis b0 , ••• ,bm-l of~ will have approximately the same length. 
k•dHk The product of these lengths is bounded from below by d(Lk) = p -

(Hadamard's inequality), so p(k•~~)/m is a reasonable lower bound for the 



length of b.,j = 0, ••• ,m-1. Furthermore, we have seen in Section 2 that 

the reducedJbasis often satisfies OD((b0 , ••• ,b )) ~ 2. Combining these· 
- m-1 · · 

bounds with Lennna I we obtain a sphere with radius p(k•~~)/m/(2•0D) ~ 
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p(k•d~)/m/4. This radius is> B if k is chosen such that p(k•~~)/m/4 > B. 

Remark here and in(*) the trade off between d~ and k; a small degree fac­

tor of the minimal polynomial leads to a large value fork. 

As an example we factorize a polynomial from Weinberger and Rothschild 

using the lattice algorithm (LA). Let 

F(T) = r 6 + 3T5 + 6T4 + r 3 - 3T2 + 12T + 16, 

and let 

3 f = X - 3 E (~(a))[XJ, 

where a denotes a zero of F. The minimal polynomial F has an irreducible 
3 2 factor T + T - 2T + 3 modulo 7. For the example we take k = 8, and we 

find a factor r 3 - 1399040 r 2 - 1399043 T - 4 of F modulo 78 • Application 

of Berlekamp's factorization algorithm and of the quadratic-Hensel construc­

tion yields 

f - (X-2387947a-2387948)•(X+2387948a+I)• 

3 2 8 (X-a+2387947) modulo (a -1399040a -1399043a-4,7 ). 

The initial basis of the 6-dimensional lattice generated by 

a3 - 1399040a2 - 1399043a - 4 and 78 = 5764801 is given by 

5764801 0 

0 5764801 

0 0 

0 0 

0 0 

0 0 

0 -4 0 0 

0 -1399043 -4 0 

5764801 -1399040 -1399043 -4 

0 1 -1399040 -1399043 

0 

0 

0 

0 

-1399040 

0 1 
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Orthogonalization of this basis yields the following matrix: 

1265 -1265 -1059 -1265 0 - 103 

479 -273 -547 683 2530 34 

547 547 -137 -34 752 1641 
= M. 

-752 -2017 2359 -752 0 -171 

-957 -205 -957 -1231 1265 205 

-1299 -1299 -376 2051 -752 376 

The highest power of a in the above factorization off is one, so we have 

to compute only the first two columns of the inverse of M: 

2.5500 10-4 1.3045 10-4 
* * * * 

-2.8466 10-4 -0.7112 10-4 
* * * * 
* * * * -1 .8977 10-4 0.2996 10-4 -1 

10-4 10-4 
= M • 

-0.9487 1.8977 * * * * 
-0.9487 10-4 3.2022 10-4 

* * * * 
0.3556 10-4 -1 • 6011 10-4 

* * * * 

Like Weinberger and Rothschild we use 12 as the denominator of the factors 

off over (Q(a). The factorization off modulo a3 - 1399040a2 - 1399043a - 4 

and 78 then becomes 

f - (X+(l6864la+l68629)/12)•(X-(168629 -12)/12)• 

(X-(12a+l68641)/12). 

Taking vk = 168641a + 168629, we compute v = T(vk) by putting 

v = v - M•[M-1•v ]. This gives v = -a5 - 3a4 - 6a3 - 5a2 + 3a - 12, and 
k 4 3 2k 

X-(a5+3a +6a +5a -3a+l2)/12 is a factor off over (Q(a). In the same way we 
5 4 3 2 get T(l68629a-12) = -2a - 4a - 8a + 2a - 8a - 28 and 

5 4 3 2 T(l2+168641) = a + a + 2a - 7a +Ila+ 16, so that ,the complete facto-

rization off over ~(a) becomes 



f = (X-(a5+3a4+6a3+sa2-3a+l2)/12)• 

(X+(a5+2a4+4a3-a2+4a+l4)/6)· 

(X-(a5+a4+2a3-7a2+tla+l6)/12). 
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Experiments have shown that the LA performs very well in practice. As 

we expected the use of this algorithm can be reconnnended, as long as the 

degree of the minimal polynomial is not too large. We compared it with a 

slightly modified (unpublished) version of the Weinberger-Rothschild algo­

rithm (WRA) in the following way. To apply the LA we first determine a small 

prime p, such that the minimal polynomial F has an irreducible factor modulo 

p of small degree (i.e. 1 or 2); such a prime can easily be found. In con­

trast, for the WRA we look for a small prime p, such that Fis irreducible 

modulo p. It 1.s possible, however, that such a prime can not be found [2]; 

in that case we take p such that the number of irreducible factors of F 

modulo pis small (and pf Discr(F)). If F1, ••• ,Ft' with E_F 1 ~ E_F 2 ~ ••• ~ 

are the irreducible factors of F modulo pk, and f is the polynomial to be 

factored over ~(a), it is often possible to derive a partial factorization 

off modulo F. and pk for i = 2, ••• ,t, from the factorization off modulo F1 
k 1 k 

dF, 
- t 

and p. This is done by looking for a linear factor of F1 modulo Fi and p 

for i = 2, .•• ,t. This modification can decrease the running time of the WRA 

considerably. 

In the examples below we denote by "new time" and "old time" the time 

taken by the LA and the time taken by this modified version of the WRA re­

spectively; they both include the time taken to determine the value for p. 

Here we have to remark that we did not use the extremely large theoretical 

values fork, but a reasonable heuristic one. Examples number 1 and 4 come 

from Wang, numbers 8 and 9 come from a paper by KALTOFEN et al. [2]. 

EXAMPLES. 

I) f = x2 + X - 1, 

a-4 = 0 modulo 11: 

2 
a - 5 = 0. 

new time 50 msec, 

irreducible modulo 3: old time 124 msec. 

factoriz:ation over (Q(a): 

(2X+a+l)•(2X-a+l) 
4 
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2) f 

3) 

CL - I = 0 modulo 3: new time 143 msec, 

irreduciblE~ modulo 7: old time 676 msec. 

factorization over (Q(CL): 

3 2 3 2 (47X -(12la-7I)X -(121CL+70)X-47)•(47X +(121CL-50)X +(121CL-191)X-47) • 
2209 

f x6 2X5 2X3 X - 1 ' 
3 2 2CL 1 o. = - + - CL + CL - - = 

CL + 3 = 0 modulo 13: new time 183 msec, 

irreducible modulo 2: old time 844 msec. 

factorization over {Q(CL): 

(X2-(CL+l )X+CL 2+CL-1) • (X2+(CL2+CL-2)X-CL2+2) • (X2-(CL2-1 )X-a.). 

4) f __ l6X6-1 3 
16 'a. + 2 = o. 

5) 

6) 

CL 2 + 2a. - l = 0 modulo 5: new time 431 msec, 

irreducible modulo 7: 

factorization over ~(a.): 

old time 511 msec. 

2 2 2 2 (4X +2a.X+a. )•(4X -2CLX+CL )•(2X-CL)•(2X+CL) 
64 

f 
8 7 x6 + x4 - x2 + X + 1 ' 

4 
1 = o. = X - X a. - CL + 

3 2 1 = 0 modulo 3: time 1347 msec, a. - CL + (). + new 

CL + 1 - 0 modulo 3: new time 235 msec, 

irreducibl1e modulo 7: old time 2038 msec. 

factorization over IQ(CL): 
6 32 5 32 4 3 2 3 32 2 (X -(CL +a. +a.)X +(2CL +a. -3)X +(CL +2CL +2CL)X -(2CL +CL -3)X 

3 2 . 2 3 2 -(CL +CL +CL)X-1) • (X +(a. +CL +CL-1)X-I). 

f = XS ,4 
- 3X3 + x2 + 2X - 1 , 

5 3 2 o. X a. + a. - CL + CL - = 
2 1 0 modulo 3: time 352 msec, CL + CL - - new 

CL + 1 = 0 modulo 5: new time 292 msec, 

irreducibl,e modulo 2: old time 1152 msec. 



7) f = x 3 - 3, a6 + 3a5 + 6a4 + a3 - 3a2 + 12a + 16 = 0. 

a 2 - 2a - 1 = 0 modulo 5: new time 564 msec, 

2 factors modulo 7: 

factorization over ~(a): 

old time 814 msec. 
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(12X-a5-3a4-6a3-sa 2+3a-12)•(6X+a5+2a4+4a3-a 2+4a+l4)•(12X-a5-a4-2a3+7a 2-11a-l6) 
864 • 

8) 
6 

f = X + 9X5 + 36X4 + 77X3 + 90X2 + 63X + 31, 
6 5 a + 3a + 6a4 3 + 3a + 9a + 9 = o. 
2 

a - a + 2 = 0 modulo 5: new time 1191 msec, 

2 factors modulo 7: old time 2789 msec. 

factorization over ~(a): 

(X5+(a+8)X4+(a2+7a+28)X3+(a3+6a 2+21a+49)X2+(a4+sa3+15a 2+28a+41)X + 
5 4 3 2 a +4a +I0a +13a +13a+22)•(X-a+l). 

9) f = x9 + 9X8 + 36X7 + 69X6 + 36X5 - 99X4 - 303X3 - 450X2 - 342X - 226, 

a9 - 15a6 - 87a3 - 125 = 0 

a3 - a+ 2 = 0 modulo 7: new time 2816 msec, 

3 factors modulo 7: old time 59183 msec, 

factorization over ~(a): 
6 5 4 3 3 3 2 3 6 3 2 2 (X +6X +ISX +(a +5)X +(3a -30)X +(3a -39)X+a -14a -l0l)•(X +(a+2)X+a +a+l)• 

(X-a+l). 

10) f = x8 - 2x7 + x6 + 3x5 - 4x4 + x3 + 2x2 - 2X + 1, 
8 7 6 5 4 a - 2a + 3a 3a + a + = 0. 

a3 + a 2 - 2a - 3 = 0 modulo 7: new time 2011 msec, 

irreducible modulo 5: old time 6295 msec. 

factorization over ~(a): 
7 7 6 5 4 2 6 7 6 5 4 3 2 5 (X -(a -2a +2a -2a +a +2)X +(a -3a +4a -4a +a +2a -2a+l)X -
5 4 2 4 7 6 5 4 3 3 7 6 5 4 2 2 (a -a +a -3a-l)X -(a -3a +3a -4a +2a +a+2)X +(a -3a +Sa -6a +3a -2a+l)X 

7 6 5 4 3 5 4 3 7 6 5 4 2 -(a -2a +4a -4a +2a -2a)X+a -a +a -a)•(X+a -2a +2a -2a +a). 

The new algorithm is on the average more than two times' as fast as the WRA, 

even in the case that the minimal polynomial is irreducible modulo some 

small prime. This is due to the fact that the costs of elementary operations 
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like+ - * and of the algorithms for factorization of polynomials over finite , , 
fields (Berlekamp, Rabin) grow rapidly with the size of the field. In the 

LA we choose the prime in such a way that we only have to do with small 

finite fields; in the WRA we have either a number (>I) of (small) finite 

fields, or we have one large finite field. 

In Section 4 we used a shortest vector algorithm to determine factors 

over 7l; here we use a shortest congruent algorithm to determine coeffi­

cients of factors over ~(a). Notice however, that factors in (~(a))[X] 

can also be found using a shortest vector algorithm. We illustrate this 

with an example. Let H(T) = T2 + t 1T + t 0 be an irreducible factor of F(T) 

modulo pk, with dF = 4. Furthermore, let h(X) = x2 + (x 11 a+x 10)x + x01 a+x00 
k be an irreducible factor of f modulo H(a) and p • Suppose that f has over 

~(a) an irreducible factor of degree 3 with divisor h(X) modulo H(a) and pk. 

This factor ean then be determined as the shortest vector in the following 

lattice, if k is chosen sufficiently large: 

k 
0 0 0 0 0 0 - 0 p to - - - xoo -
k I 

0 p ti to XOI xoo 
I ' I ti 0 

' I XOI 
I ' I 0 0 0 0 0 0 - - -

' ' 
k 0 t 0 o 0 I ....... p xlO xoo 

k 
I ' p ti to xi I XIO XOI 

' ' I ti 0 xi I 0 ( ' I 

' I 0 0 0 0 0 
' 

' 0 to 0 XJO 
' ....... I ti to xi I 

........ 
I ti 0 

' { ' I 0 
' ' ' 0- - - - - - - - - - 0 - - - - -

If n is the degree of the factor we are looking for, then n•dF + I is the 

dimension of this lattice ((n+l)•dF if we are looking £or a non-monic 

factor). Clearly this method is rather impractical if nor dF is large. 
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Throughout Section 5 we have restricted ourselves to univariate poly­

nomials ; rem.ark that the lattice approach equally well applies to the mul­

tivariate case (see for instance WANG [6]). 
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