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I • Introduction 
In many computations it is necessary to main­

tain several counts simultaneously such that, at 
all times, an instant signal indicates which counts 
are zero. Keeping many counts in tally notation, 
each count being incremented/decremented indepen­
dently by at most I in each step, governed by the 
input and the set of currently zero counts, is for­
malized in the notion of a multicounter machine 
[1,2]. Such machines have numerous connections with 
both theoretical issues and more or less practical 
applications. One of the better known open problems 
about counter machines concerns the question 
whether or not multicounter machines can be simu­
lated in real-time by one-tape Turing machines 
[1,2]. The result in this paper answers the ques­
tion affirmatively, with a considerable margin, 
since the exhibited one-head tape units real-time 
simulating the multicounter machines are oblivious. 
By well known constructions we find as a corollary 
that the first n steps of a multicounter machine 
can be implemented on a fast low-cost combinational 
logic network. 

Mul ticounter Ltachines. We view machines as trans­
duaers. (The simulation results therefore hold also 
for the machines viewed as recogniz~rs.) 
Thus we abstract from the input/output conventions 
and concentrate on the storage structure. The ab­
stract storage structure embodied by a k-aounter 
maahine (k-CM) consists of a finite state control 
unit, k aounters each capable of containing any 
integer, and an input and output terminal. The 
states of the finite control are partitioned into 
poZZing and autonomous states. At the start of the 
computation the k-CM is in a designated initial 
state and the counters are set to zero. A step in 
a. CM computation is uniquely determined by the 
state of the finite control, by the symbol scanned 

at the input terminal if the state is a polling 
state and by the set of counters which contain 
zero. The action at that step consists of indepen­
dently altering the contents of each counter by 
adding -1, 0 or +I, changing the· state of the fi­
nite control and producing an output. Hence the 
machine effects a transduction from input to output 
strings. If you will, the input and output might be 
written on some input and output tapes on which the 
access pointers (heads) are steered by the finite 
control. The above is more or less the formulation 
in [2] where also a more precise definition can be 
found. 

Background of the problem. Counter machines are re­
latively old devices. Unrestricted 2-counter ma­
chines were shown to be as powerful as Turing ma­
chines in [4}. Subsequently the power of counter 
machines was measured against resource restricted 
multitape Turing machines. In [2] the now classic 
linear time/logarithmic space on-line simulation 
of multicounter machines by one-tape Turing ma­
chines was exhibited. Since then it has been an 
open problem whether or not k-1 single head tape 
units suffice to simulate a k-counter machine in 
real-time. Stated imprecisely, but perhaps more to 
the point, whether or not k counters can be main­
tained in real-time by a linear storage unit with 
less thank access pointers. For the easier Origin 
Crossing ·Problem, where the task is to recognize 
the set of sequences of unit basis vectors ink­
space, which leave from and end in the origin, an 
ingeneous solution on a real-time one-tape Turing 
machine appeared in [IJ. The Axis Crossing Problem, 
of recognizing the set of sequences of unit basis 
vectors ink-space which leave from the origin and 
end in one of the (k-l)•dimensional hyperplanes 
with one zero coordinate, defied a ~eal-time (k-1)­
tape Turing machine solution [1,2]. In [7] the 
linea. time/logarithmic space one-tape solution for 
simulating multicounter machines was made oblivious 
retaining the same resource bounds. This is signi­
ficant, since by its nature an oblivious multitape 
Turing machine is far more restricted than a non­
oblivious one. For instance, an oblivious multitape 
Turing machine needs Q(n log n) steps to 
on-line simulate a single pushdown store, and a 2-
tape oblivious Turing machine achieves this bound 
[SJ. There is good reason to suppose that an obli­
vious one-tape Turing machine requires 0(n2) steps 



~or :his task. With res pee t to counters, the story 
1s different due to the possible compactification 
of information to be stored. In [6, Corollary 2] it 
was shown how to on-line simulate a T(n) time/ S(n) 
storage multi tap,e Turing machine by an oblivious 2-
tape Turing machine in time O(T(n) log S(n)) and 
storage O(S(n)). So the best simulation by an obli­
vious multitape Turing machine known before [7], 
was achieved by combining [2] and [6], yielding an 
on-line simulation of n steps of a multicounter ma­
chine by O(n log log n) steps of an oblivious 2-
tape Turing machine. The real-time 
simulation presented here gives a surprising ex­
ample of the pow,er of a one-head tape unit, let 
alone an oblivious one, besides shedding light 
on encodings for dynamically maintaining integers 
under unit incranentations/decrementations. 

Obliviousness. A Turing machine is oblivious, if 
(for the moment disregarding the input/output 
s true ture) the movements of the storage heads are 
fixed functions of time independent of the inputs 
to ~h~ machine [5,6]. Many problems seem inherently 
oblivious: the usual algorithms for computing the 
four main arithm,etic functions, or a table look-up 
by sequential search, can easily be programmed 
obliviously. Other problems like e.g. binary search 
are inherently nonoblivious. Reasons to consider 
oblivious computations have been that they are 
easily converted to combinational logic networks or 
str~ight line programs. Furthermore, when we re­
strict ourselves to this class of computations it 
becomes simpler to derive good lower bounds on time 
co~plexity, or good time/space trade offs, for cer­
tain problems to be solved on the chosen model of 
computation, whe:reas we consistently fail to do so 
in the nonoblivious case. This seems especially 
worthwhile for problems where it is hard to see how 
nonobliviousness could yield any gain, or where the 
change of a nonoblivious computation model to an 
oblivious one incurs a relatively small penalty 
[5,?]. Here we show yet another, more heuristic, 
motive for confining attention to oblivious compu­
tation: restriction of the considered model of com­
putation· to its oblivious version can shift the 
emphasis in the problem to be solved from one as­
pect to another one directing us to a solution. 
Thus, we here us,e the oblivious restriction to ob­
tain upper bound:s on complexity. Whereas the prob­
lem of real-time simulating k-counter machines by 
k'-tape Turing machines, k' < k, is solely due to 
the fact that k' < k, the same problem for obliv­
ious Turing machines knows only one difficulty: 
the obliviousness of the simulating device. For 
suppose we can on-line simulate n steps of some ab­
stract storage d,evice S in T(n) steps by an obliv­
ious Turing machine M. Then we can also simulate 
a c?llection_of k such devices St, ••• ,Sk, inter­
acting through a common finite control, by dividing 
all storage tape:s of M into k tracks each of which 
is a duplicate of the corresponding former tape. 
The same head movements of M can do the same job on 
each of the k collections of tracks as formerly on 
the collection of tapes. So the time and storage 
complexity of the extended M is the same as those 
of the original. By these scant considerations we 
obtain in particular: 

Proposition I. :The foll()l,}ing statements aPe equiv-
a lent: 
(i) We ~a~ simulate each 1-counteP machine by an 

obl-ivwus l·-tape Turing machine in Peal-time. 

(ii) Fol' each k, we can simulate each k-counteP 
~chine bY_ an oblivious I-tape Turing machine 
1,n peal-t=e. 

Approach to the problem. It quickly becomes appar­
ent that updating a count correctly in real-time 
on an_obliv~ous machine requires a redundancy in 
notation which seems to make an instant check for 
zero impossible. To achieve the latter, we shall 
allow only encodings of integers such that they are 
z~ro iff the 'first' positions show this uniquely. 
Since the head movement is supposed to be obliv­
ious we must, roughly speaking, update each 'ini­
t~al'. log i length segment of the encoded integer 
w1th1n each cycle of about i steps. This entails 
that, while moving the head to update a longer seg­
ment of code, we have to simultaneously shift and 
update smaller segments of code, and so on recur­
sively down to the smallest pieces. 

Outline of the simulation. Like in [2] we maintain 
the current count c as the difference between two 
positive integers y and z. Like in [7] we encode 
y and z in a redundant binary notation using digits 
0,1,2, where a 2 in a bit position stands for an 
unp:o~esse~ carry. Leading O's in corresponding 
P?s1~1on~ 111 y and z are immediately replaced by a 
d1st1ngu1shed blank symbol. Maintaining also an in­
variant such that if any position of either integer 
y,z contains a digit greater than O then the three 
nearest positions of the other integer do not, en­
sures that y - z = 0 iffy and z contain blanks 
only. Incrementing [decrementing] the count by I 
is done by incrementing y[z] by I. In order to be 
able to increment y[z] at all times by I, and to 
also maintain said invariant,we continuously sub­
tract corresponding blocks of digits in y and z 
from each other. Although there is a considerable 
amount of freedom here how to go further, for 
reasons of exposition we choose to divide the en­
coding of y and z into consecutive blocks of 10 
digits (in corresponding positions) each, and up­
date t~e i-th block within each cycle of 210i steps. 
For this purpose, we develop a method to recursive­
ly transport the digits of block i+I from one 
side of the combination of the first i blocks to 
the other side, 9ack and forth, one digit within 
each cycle of 24 1 steps, for all i. The process 
shall be such that the single head, without being 
ab~e to ~den~ify individual pieces of encoding, 
still maintains a topological adjacency relation 
amongst them, which allows it,according to certain 
local criteria, to update correctly. For the re­
cursive process we use an extra pushdown store and 
also allow squares on the tape to be deleted and 
inserted. We later get rid of the square deletion/ 
insertion option by interleaving a stack of deleted 
squares through the sequence of consecutive blocks 
which by the recursive block traversal can grow ' 
and shrink as required. Similarly, we maintain the 
pushdown store. The net effect of all this will be 
that, .for all i, the combination of the first i 
blocks acts like a single very fat head, moving 
slower _the higher i is, but fast enough to update 
block 1+1 (plus a few adjacent positions which 
will be required) each small enough cycle of steps. 

The present paper is a preliminary and incom­
plete draft; it does however contain all of the 
simulation. A more extensive version containing all 
necessary proofs will appear later. For notions 
like on-line simulation, real-time (simulation) 
etc., see e.g. [SJ. 
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2. Real-time simulation of a counter by an obliv­
ious one-head tape unit 
By Proposition 1, we can simulate each multi­

counter machine in real-time by an oblivious one­
head tape unit if we can simulate a single counter 
that way. So let C be a single counter, and let S 
be an abstract linear ordered storage unit, for 
simulating C. 

2.1. Notation of the count 
The count c is maintained as difference be­

tween two nonnegative integers y and z. If at the 
current step of C oE{-1,0,+l} is added to the 
count, then 

o -1: 
o = O: 
o = +l: 

C-+- c-1 
C -+- C 
c-+- c+l 

y ... y 
y ... y 
y-+- y+l 

z -+- z+l 
z ... z 
z + z. 

We also allow at any time to subtract equal amounts 
from y and z such that bothy and z stay nonnega­
tive integers. So, for all t, at the t-th step of C 
(and of the simulator S) the following invariants 
will hold: 

(1) y + z ,; t 
(2) y - Z C. 

Bothy and z are represented in a kind of redundant 
binary notation: code(y) = Y0Yl·•·Ym and 
code(z) = zoz1···Zm, Yi,zi E {0,1,2}, 0,; i,; m, 
such that 

Y = ~m y.2i and 
Li=O i 

and 

~m z. 2i 
z = li=O i 

m = max {i I yi > 0 v zi > 0}. 

In the simulation we maintain y and z on two chan­
nels: they- and z-channel, and replace nonsignifi­
cant O's in corresponding digit positions on both 
channels simultaneously by blanks. At all times t 
we maintain the additional invariant: 

(3a) (yi > 0,. zi-l'zi,zi+l E {0, blank}) & 

(zi > O • yi-l'yi,Yi+l E {0, blank}) & 

(3b),(yi zi = 0 & Yi+l = zi+l = blank) & 

(yi blank - z. = blank) 
1 

with the obvious allowances made for the border­
line case i = 0. 
(3a) ensures that if the i-th digit position of 

code(y) contains a digit greater than 0 then the 
positions i-1, i, i+l of code(z) contain no digits 
greater than 0 and vice versa. 
(3b) takes care that there occur no leading O's in 
corresponding positions of code(y) and code(z). 

Although not only the encoding of c as the 
difference of y and z is not unique, but also the 
encoding of y and z themselves are not unique, we 
still have: 

Pro~osition 2. Since invariants ( 1) - (3) hold at 
eac step of the surrufotion, c = 0 iff aode(y) = 
= eode(z) = E. 

Proof. For suppose there is a 0, 1 
'code(y) or code(z). Then according 
is also a highest indexed Ym or Zm 
say ym > 0. But then, by (3) z,; 2 

or 2 in either 
to (3) there 
greater than 0, 
rm-2 2i,; 

i=0 

,; 2m-2. Since Ym > 0 we have y ~ 2m and 
by t2) it follows c = y - z ~ 2. (Form= 0 or 
m = 1 allow for the borderline case.) Conversely, 
if c IO then code(y), code(z) IE by (2) and (3).0 

2.2. Maintenance of the count. For the moment we 
think of y and z as being maintained on a tape di­
vided into 2 channels: they- and z-channel. Code 
(y) and code(z) are justified with the low order 
digits in the home square 0. The tape is one-way 
infinite, and squares m+l, m+2, ••• contain blanks 
denqted by "-", where m is highest index of a non­
zero digit in code(y) or code(z). See Figure 1. 

Figure 1. 

y-channel 

z-channel. 

The tape is divided into blocks of length x, say 
x = 10, which are called block 0, block 1, ••• , see 
Figure 2. 

t-2---i i----2:-. ~ 

TAPE ~~-__.____,___/ 
block O block I block 

Figure 2. 

During the real-time simulation of C by S we shall 
update each block i to~ether with the first two po­
sitions of block i+I at least once within each 
cycle of T~b) steps, such that T(0) = I and 
T(i+l) < 2 T(i) for all i ~ 0. To describe the 
updating procedure, and to show that it maintains 
invariants (1) - (3) throughout the entire tape, 
we consider the digit positions involved in the up­
dating of a block i in isolation, and divide them 
into an input field of 2 digits, followed by an 
own field of 8 digits, followed by an output field 
of 2 digits. The digit position next to the output 
field will serve to aheak for adjacent blanks so as 
to remove leading O's. See Figure 3. 

block i block i+I 

(i) 
Yo 

(i) 
Y1 

(i) 
Y9 

(i+I) 
Yo 

(i+I) 
Y1 

(i+t) 
Y2 

(i) (i) (i) (i+I) (i+I) (i+I) 
'o ', '9 'o ', '2 

. 
input field own field output field check field 

Figure 3. 

So the input field of block i is the output field 
of block i-1, i > 0, while the output field of 
block i is the input field of block i+I, i ~ 0. 
For the sake of uniformity, we consider the proces­
sing of the current input to be the updating of a 
hypothetical block -1, of which the output field is 
the input field of block 0. If at any step more 
than 1 block needs to be updated, we update the 
higher indexed blocks first. Note that since an up­
date of block i will involve also its output field 

.J:.wo consecutive blocks i and i+l are concerned. 
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r 1 Ci)1 Ci> ••• yti) . 
Let 9i) ti) i) be the a'Ul'rent aontents CC(i) UPDATE simply removes a 2 from the first square of 

z~ z 1 ,,.z a block i and propagates it right, until it peters 
of block 1, i ~ -1, and let the loaal aount on out or arrives at the first square of block i+l, 
block i be Ci =,Yi - Zi, where Yi= l~=O y{i)2j and meanwhile preserving invaria.nt (3) throughout the 
Zi = l~-O z( 1 )2J. Let the current inpdt beJo € {-1,0,+I} concerned tape segments and invariant (I) and (2) 
and 1el-b1olks i 1,i2, ••• ,im, i 1 < i 2 < ••• < im, be the by the update of block -1, treating the higher in-
blocks to be updated by UPDATE below in the current step.dexed blocks first. 
(It will appear that always i1 = -1, i2 = 0, while m ~ 4)~roposition 3. If eaah bloak i, i ~ -1, with the 
Assume that all nonblank symbols on the tape are stated intezrpretation of 'updating bloak -1' as 
put there by previous applications of UPDATE, and processing the a'Ul'rent input, is updated by UPDATE 
that UPDATE preserves invariants (1) - (3). This at least onae in every ayale of T(i) steps of s, 
assumption will be justified, since (1) - (3) hold T(-I) = T(O) = I and T(i+I) < 210 T(i) for i ~ O, 
at the start and, under the timing assumptions in then UPDATE always suaaeeds and invariants (J)-(3) 
the next Proposition 3, UPDATE preserves (1) - (3). are preserved. 

Algorithm UPDATE: 

!!!P....!· c:_, + 6.210, 

step 2. Select the appropriate case below and execute the action. 

o. 

,. 
Yi • zi 

Yi > zi 

I .I. Yi - Zi < 29 

I.I.I. 

1.1.2. 

Y. - z. is even 

' ' 

1.2. Yi - Zi • 29 

1.2.1, z~i+I) :- 0 

1.2.2. z~i+I) t 0 

I .J. 29 < Yi - zi < 210 

1.3.1. 

1.3.2. 

Y. - z. is even 

' ' 

+ nothing changes. 

Oy1Yr··Y5D 
+ CC(i) + 00 0 .. ,0 0 

with l~. 1 r/j • Yi - Zi 

and yj E'. tO,I), I :; j ':: 8, 

.... ¢ By invariant (3a) there is no '2' 
in the first position on block i: 
nothing changes ¢ 

... z~i+I) + z~i+I) - I; 

00 ... 00 
CC(i) + 00 ... QI • 

00 ••• 01 
+ CC(i) + 00 ... 00 , 

d; UPDATE can deposit '2' 's 
only in the first square of a block, so 

y(i) • J. By invariant (Ja) there-

f:re z~i+I) ( {O.-}. So similar to 

case I .I: &. 

Oy1y., ••• y3y9 
-+ CC(i) + 00 0 ..... 0 0 

with }:~•I yj2j • Yi - Zi 

and yj c {O,I}, I ~ j s 9, 

... &. By invariant (la) there is no '2' 
in the first position on block i: 
nothing changes ¢ 

oo ... o 
+ CC(i) + 00 ... 0; 

¢ and according to the appropriate 
subcase the output field 

(i+I) (i+I) 
Yo Y1 
.(i+I) (i+I) 

zO zl 
is updated. ¢ 

1.4.1. y~i+J) ,z~i+I) • z?+I) f: 

t: (O,-} .... y~i+I).., Ii z~i+I) + 0 • 

.... y~i•I) + 2, 1,4,2, y~i•I) ~ I 

+ i By invariant (la) impossible. Viz, 
UPDATE can deposit '2"1 only in 
the first square of a block, 10 

yii) vas I. l 

... l~i+I) + I; zii•I) + O. 

2 y < z • t. Analogous to case I with the roles of the y- and z-chan"el■ 
• i i interchanged t., 

step 3. Inspect y~i•I) to see whether it is a blank •-•, 

If so, replace all leading O's _by blanks in bloc~ ! and its output 
ffeld up to the leftmost poait1on of a nonzero d1g1t. 

!.!, i • -I !!!!! finiah .!!!.!.<i + ik-l i k .... k-1 ;~ step 2) • 

Proof. By induction on the number of steps. 
Base ease t = O. Initially all positions on they­
and z-channel contain only blanks and so (I) - (3) 
hold. 

Induction phase. Assume that the proposition held 
up to time t: so UPDATE has always succeeded and 
invariants (I) - (3) hold at time t, Let blocks 
i1,i2,,,.,im be due for updating at the current 
step, i1 < i2 < ••• < im, i1 = -1, i2 = 0. Since UP­
DATE never leaves a 2 anywhere on the tape except 
possibly in the first position of a block, and al­
so preserves invariants (1) - (3), this is the con­
dition of the tape at time t. We need to show that 
under the assumptions of the proposition this is 
also the case at time t+I, The due blocks 
i1,i2,,,.,im at the current step are updated in 
order im,im-1•···,il by UPDATE. Since UPDATE has 
succeeded all previous steps, it possibly has put 
a 2 in the first position of a channel on a block 
but nowhere else, and we have at time t that 
lcil ,; 210 for all i :?c O. The only way VPDATE can 
fail on block im is tor ~i = 210 and yJ 1m+l) = 2 
or Cim = -210 and za 1m+lJ ~ 2, Assume that the 
former is the case. According to the rules of UP­
DATE Ybim+I) must have been incremented to 2 at an 
earlier UPDATE of block lm, say at the step from 
t'-1 tot'. So block im contained only O's at time 
t' according to 1.4.2, and D = (the total count on 
they-channel minus the total count on the z-channel 
on the consecutive blocks O,l,.,.,'m) ~atisfies 

IDl5I~ml 210i. Since T(i +I) ~ c2 10-1) 1m+l by hypo-
1= m 

thesis in the proposition, we have 

t-t' ~ (2 10-1/m+I. Otherwise the '2' in the first 
position on block im+l would have disappeared by a 
successfull application of UPDATE to that block in 
the meantime. Hence at time t, 

im lOi 10 im+l IDI ,; I,_ 1 2 + (2 -1) , because the '2' has 
stayed tn the first position on block im+l's y­
channel, and hence by invariant (3) and the rules 
in UPDATE no digits have been transported from 
block im+l to block im in the meantime. We saw that 
for UPDATE not to succeed on block im at time t, 
Cim = 210, and so 

IDI ~ 2IO(im+l) Since this leads to the contradic-
tion 
210(im+l) ~ I im 10· 10 i +l 

2 1 + (2 -1) m 
i=l 

for all im ~ 0, UPDATE succeeds on block im, It is 
easy to see that UPDATE maintains invariant (3a) on 
block im in between the first position on its in­
put field and the last position on its output field. 
So we only need to worry about the maintenance of 
(3a) on the interfaces between blocks im-1 and im 



and blocks im and ~+I. However, either the entries 
in block im and its output field are not changed at 
all (rules 0,1.1.2 and 1.3.2) or no l's and 2's are 
left at all in the first position of the input 
field, preserving (3a) locally on the interface of 
blocks im-1 and im, and no l's and 2's are left in 
the output field in positions where they might 
violate (3a), assuming invariant (3a) held before 
the update, preserving (3a) locally on the interface 
between blocks im and ~+I (check rules 1.1.1, 1.2, 
1.3.1, 1.4). Thus, step 2 of UPDATE pre­
serves.invariant f3a),)During the update of block 
im, y~im+l) and z2im+J were not changed. So either 
they were not blank and no leading O's were created 
by step 2 of UPDATE, assuming invariant (3b) held 
previously, or they were blank and all new leading 
O's created by step 2 are turned into blanks by 
step 3. The only remaining possibility to fail 
maintaining invariant (3b) is on the interface be­
tween blocks im-1 and im, viz. by leaving block im 
with blanks only while block ~-1 has 

y(im-l) = z(im-l) = O, and block~ did not con­
tiin only b~anks before step 3. But chis last case 
is excluded because either Yi= Zi (i-.i.m) and step 2 
didn't change anything (rule 0) or Yi-Zi was odd 
and nothing changed (rules I .1.2 and 1.3.2), or 
step 2 did not leave leading O's at all in the first 
position of the input field of block im (rule~ 
I. I. I, I .2, I .3. I, I .4). Therefore step 2 followed 
by step 3 of UPDATE maintain invariant (3) through­
out the tape. Similarly, the subsequent due updates 
of blocks ~-I• ••• ,i2, succeed. Since 
T(O) = I, the update of block -I (i.e., the proces­
sing of the input) always succeeds during the exe­
cution of UPDATE, because the input field of block 
0 contains no '2''s when block -1 is updated. So 
the successive updating of blocks im,im-l•···•iJ 
during the execution of UPDATE succeeds. Hence the 
current input is processed by UPDATE, main-
taining invariants (I) - (3). So, under the 
timing assumptions in the Proposition, at each step 
UPDATE succeeds it preserves invariants (I) - (3), 
while under the assumption that invariants (I) - (3) 
hold at time t by applications of UPDATE, starting 
from a blank tape, UPDATE succeeds in the next 
step. D 

One may well wonder how it is possible that 
while at most 4 blocks, so less than SO positions, 
are updated each step, invariant (3) can be main­
tained, since it allows the tape to contain 
00 ••• 001-
22 ••• 200- ' 

length m 
so c = y - z = 2, and c can be set to O in 2 steps. 

We have, how~ver, excluded such racing of the most 
significant digit to the home position by implicitly 
maintaining a far stronger invariant than (3a) in 
step 2 of UPDATE, viz. 

(3a') 

Vi<!0[3j € {l, ••• ,9Hy?)>OJ • 

Vj € {I, .•• ,9}[/i) € {0,-}]J & 
J 

Vi<!0[3l€ {1, ••• ,9}[zy>> oJ • 

Vj € {I, ... ,9}[yy) € {0,-}JJ & 

Vi<!O Vj € {1, ••• ,9Hyy)i' 2] & (3a). 

The present proof relies partly on the fact that 
all of the nonblank tape contents at any time must 
be the result of previous applications of UPDATE 
alone, and partly on invariant (3a). 

2.3. The oblivious one-head tape unit 
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According to Propositions 2 and 3 we can simu­
late a counter C in real-time by an abstract storage 
unit S consisting of a finite-state control and a 
linear ordered set of storage locations called 
ae?:ls, which are in one-to-one correspondence with 
the tapesquares of the previous section (using the 
cells as boxes in which the contents of the cor­
responding squares are stored), provided the fol­
lowing Requirement is met. 

Requirement. For all i <! O, within each cycle of 
T(i) steps, T(O) = I and T(i+l) < zlO T(i) for all 
i <! 0, there is a time instant at which S accesses 
the ordered group of cells corresponding to the 
squares of blocks i and i+l. Whenever S accesses 
more such groups of cells simultaneously in some 
time instant, it distinguishes the relative order 
amongst those groups, induced by the corresponding 
block indexes. 

If S meets the Requirement, then Scan each 
step execute UPDATE meeting the timing conditions 
in Proposition 3, on the appropriate square con­
tents as contained in the corresponding groups of 
cells, thus maintaining invariants (1) - (3). Since 
T(O) = I, S always knows whether block O contains 
only blanks, and so by Proposition 2 whether the 
current count is zero or not. 
Below we describe an oblivious one-head tape unit 
supporting such an abstract storage unit S capable 
of simulating each counter C in real-time. Thus, 
by Proposition I, an oblivious one-head tape unit 
can simulate each multicounter machine in real-time. 

Let M be a one-head tape unit consisting of a 
finite control, a one-way infinite storage tape di­
vided into squares, and a single read-write head on 
the tape covering 2!+1 squares, for la constant 
(!=25 will suffice). Originally the head covers the 
left 2!+1 squares on the tape. By the position of 
the head we shall mean the position of the central 
square covered, so the start position is the 
(l+l)-th square from the left. During its action, 
by marking newly met unmarked right adjacent 
squares, and by counting modulo 10 in its finite 
control, M will lay out the blocks of JO squares 
each on its tape, beginning at the start position. 
The cells corresponding to block Oare maintained 
in M's finite control, and the cells corresponding 
to block i, i > 0, of the previous section can be 
thought of as being contained initially by the cor­
responding squares of the i-th block to be deter­
mined on M's tape. Initially all squares on M's 
tape contain only blanks, and so do the cells con­
tained on those squares. M creates such an appro­
priate cell whenever it meets an unmarked square on 
its tape, marking it as a left border '[' if it is 
the first cell of a new block, as an internal cell 
'o' if it is not a border cell, and as a right 
border ']' if it is the last cell of a block. Final­
ly, M distinguishes the cells of block 2 from those 
of the other blocks by either tagging them initially 
or remembering where they are (they will always be 
covered by M's head). So the start situation can be 
viewed as depicted in Figure 4. 



initial slack 

Figure 4. 

Except for the determination of new blocks, the 
identity of the actual squares on M's tape is not 
important, but the identity of the created cells is 
fixed wherever they end up in the simulation. So in 
the sequel when we talk about a block we will mean 
a block of cells. The head is forever positioned on 
block I and executes a regular motion from the left­
most position on block I to the rightmost position 
and back to the leftmost position, one square each 
step. At the extremes of its sweeps it therefore 
scanns alternatively l squares left of block I and 
l squares right of block I. For the moment we as­
sume that M can delete a square adjacent to block I 
and insert a square adjacent to block I. We also 
assume that we have an extra pushdown store avail­
able. Later we show how to eliminate these options. 

At all times blocks 1,2, ••• ,i shall form a 
'topologically connected' segment 'adjacent' to 
block i+l for all i ~ J. We shall call this segment 
superbZock I. Roughly, the following scheme is re­
cursively executed for all superblocks I: 

r-- \ 
... [I]iJ] ... [TI ... 

Figure 5 

i: ... [I][B] 
c::; 

[I] 

~ ... OJ[I] ... [I] ... 

We describe loosely what happens at first and then 
supply more detail. Initially the head is centered 
on the leftmost square of block I. It then moves 
right to the rightmost square, scans the leftmost 
border of block 2, stores it on the pushdown store, 
moves to the leftmost square of block I and inserts 
the leftmost border (on top of the pushdown 
store) next to the leftmost border of block I, re­
placing the instruction on top of the pushdown 
store by an "instruction to fetch a new cell. Squares 
are deleted/inserted as needed. (See Figure 6). 

ITJ m r ITJ :II r ~ ITJ :II 

Figure 6 

In the next 8 sweeps the head moves to the right 
end of block I, stores the cell contents of the 
right adjacent square of block 2 on the pushdown 
store, deletes the square, moves to the left end of 
block J, inserts a squarP and places the stored cell 
of block 2 in it and replaces the top of the push­
down store with a fetch instruction, in each sweep. 
The resulti~ situation is depicted in Figure 7. 

Figure 7 

When the head in its rightmost position scans the 
right border of block 2 and the left border of 
block 3, the left border of block 3 is placed on 
the pushdown store, the action is reversed and 
block I traverses block 2 in the other direction 
until only the left border of block 2 remains, in­
serts the left border of block 3 left of that of 
block 2, and traverses block 2 again up to and in­
cluding the right boundary of block 2. The result­
ing situation is depicted in Figure 8. 

Figure 8 

Now the combination of blocks I and 2 starts to 
traverse block 3, beginning with storing the first 
internal cell of block 3 on the pushdown store and 
deleting the corresponding square, then traversing 
block 2 by block I completely up to and including 
the left border of block 2 (which is not now ad­
jacent to a differently oriented border of some 
block) inserting the cell now on top of the push­
down store on a newly inserted square and so on. 
The general scheme of how the first i blocks act 
with respect to block i+l is shown in Figure 9. 

The union of blocks I ,'2, ••• , i is superbZoak I. 
Cells deleted from the tape are pushed on the push­
down store, and cells inserted are popped from the 
pushdown store. The pushdown store is not displayed 
below, and the head scans at least l-1 elements 
next to block I in the displayed positions. (Since 
we shall set l=25 the head scanns more cells than 
drawn). Squares and cells are deleted/inserted in 
concert. 

f-

,. 
r 

~ 

f-

~ 

➔ 
~ 

CD CEDCBJ -
CD :::BJ[@] -~ 
CD ::ED CBJ -

[i+I CD ::ED[@] 

-
[i+J CD -:EI][@] 

-
[EC CD i+l][@J 

-
[EC CD i+i]:=EIJ -·-[EC CD i+I] :=EI) 
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where -
--r---"---< 

cc:o 

~ 

f-- [i+2 

~ [i+2 

f-- [i+2 

~ [i+2 

~- [i+2 

i..: [i+2 

-
'­

r--#--1 

[i+I 

[i+I 

[EC 

[EC 

[EC 

[E1J 

[E1J 

f-

CD::BJ:EIJ -
CD ::BJ __i:2J 

-co i+!] :EI] 

-
C:O:EIJ -C:O:EIJ -
C:O:EIJ 

-----------C:O::::EIJ 

cm m ... rn 
_, --+ ,.._....__, ~ 

CI::J D O CC C2J · · · OJ iJ D -~ 
CI::] :=J 

Figure 9 

-,--.A---, 

- [I] [2] ... OJ :=J 

We are able to do this data transport by having the 
head scan the two adjacent squares when it is at the 
right or left border of block I, and inspecting the 
top of the pushdown store. We only need to distin­
guish elements in left borders '[' , right borders 
']' and internal. cells; the transition rules are de­
signed so that we do not have to know to which block 
the elements belong. Automatically, by the mainte­
nance of the pushdown store and a loose binding of 

1][' pairs, a certain order of blocks is preserved. 
In general, the cells within a block are always in 
the correct left: to right order, but a sequence of 
blocks is in the, correct left to right order iff 
all blocks of the sequence are "closed" and on the 
right of bfock ·1, where block 2 is identified by 
marked borders. (The borders of block 2 are the on­
ly ones which are identifiable as belonging to a 
particular block). 

The effect of this procedure is that, like a 
very fat head superblock I continuously traverses 
block i+l from left-to-right and right-to-left. The 
higher index i is the slower this goes. We now esti­
mate whether this allows us to meet the Requirement 
on S. To later e,liminate the square insertion/dele­
tion facility, we need to be able to expand each 
block by two squares (without cells). Since block I 
is a special case it will need to store at most 
three such squares. In the following we shall call 

a block closed if all of its cells are present on 
the tape in a connected segment, disregarding in­
termittent squares containing no cells. A block is 
open if it is not closed. In situations like 

(•) ... OJ i-] OJ [EI]. ... [D [I] [8J . 

the head in its most extreme right pos1t1on on 
block I scanns 2 consecutive closed blocks right of 
block I and therefore will know that these blocks 
are blocks i and i+I for some i > I. Since the re­
lative order of cells within a block, of the cells 
present on the tape, is never changed by the cell 
transport, the cells of blocks i and i+I are con­
secutive and in the correct left-to-right 
order. In the leftmost situation of (*) i > 2, and 
in the right situation of (*) i ~ 2. Since the ma­
chine always knows which block is block 2 (by the 
tagging of its elements), the blocks due for update 
in(*) left are i, 0 and -I (processing of input) 
and in (*) right they are blocks i, 0 and -I if 
i > 2 and i,1,0,-1 if i=2. Note that M doesn't 
need to know the indexes of the blocks, except 
that of block 2 in case block I is updated, to up­
date the due blocks highest indexes first. 
Let S(i) be the number of steps needed for a full 
sweep by the head over superblock I, starting when 
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it has just deleted or inserted (or was in the ini­
tial situation) a square left of superblock I, going 
right until it insert/deletes a square right of 
superblock I and back up to, and including, the in­
sertion/deletion of a square left of superblock I. 
Clearly S(I) $ 24. Since each block i, i > I, covers 
at most 12 squares, not more than 24 full sweeps 
over superblock I-I are required to make one full 
sweep over superblock I, and we have S(i) $ 24S(i-l). 
Hence S(i) ~ 24i for all i 2 I. In each 
full sweep over superblock 1+2 configuration(*) 
must occur at least once, see figure 9. We can 
choose T(i) so that 

S(i+2) ~ 24i+2 < T(i) $ (2IO_l)i 

for all i ~ 2. Block O is contained in the finite 
control, while by setting l = 25 superblock 2 is 
always completely covered on the tape, so we can 
choose T(O) = T(I) = I. Hence an abstract storage 
unit S meeting the Requirement is supported by the 
loosely described one-head tape unit M. We describe 
Min detail by listing the rules governing the de­
vice. Squares containing left and right border cells 
of blocks are denoted by '[' ']' respectively. 
Squares containing any internal cell of a block, or 
no cell at all to later accommodate the square de­
letion/insertion facility, are denoted by 'o'. 
The format of the rules is: 

(a,b,c) => (d,e,f), where 

a= direction of last move. 
b scanned outside block I in direction of last 

move. 
c = top of stack. 
d direction of new move. 
e = string replacing b on the tape. 
f 0,1 or 2 elements c is replaced with (top of 

stack is right) 

The stack alphabet consists of: 

(a) fetch 
(b) store <operand> 



(a) store <operand> /1. fetch 
(d) store <operand> /1. store <operand> 

with <operand> € {o,[,J} 

(a) and (d) indicate two 'linked' stack instruc-
tions. 

- If the head is positioned on an internal cell of 
block I, band e are NIL. 

- Since the machine has ·special rules when it scans 
a 'closed' block 2 right or left of block I, we 
write '2' for 'o' in band e in such cases. 

(right, o, fetch)• (left, e, store o) means: the 
head moving right scans, right of the central 
square scanned, containing the right border of block 
I, an adjacent square containing an internal cell. 
The top of the pushdown store contains a 'fetch' 
instruction. In one step it does all of the follow­
ing: 

(i) 

(ii) 
(iii) 

Replace the top of the pushdown stack by 
'store o' 
delete the square containing 'o' 
move the head I square left. 

As long as the center scanned square contains an internal cell 
'o' the rules specify (as stated before) 

RO. (right, NIL, top) .. (right, NIL, top) 

LO. (left, NIL, top} .,. (left, NIL, top) 

when 'top' stands for current top of the stack. nte remainder 
of the rules is as follows: 
RULES: 
~(right, [2, top) • (left, 2, top store[), 
R2. (right,][ ,fetch) .. (left,], store["fetch), 
R3. (right,xy,fetch) • (left,y,store x), x,y E" {o, ]}, 
R4. (right,xy,store z) .. (left,zxy,fetch), xy ,' (2, z,'[, 
RS. (right,xy,store [) • (left,[xy,e), xy ,' [2, 
R6. (right,ox,store]"fetch) .. (left,x,store]"store o), all x, 
R7. (right, ]J ,store]z"fetch) .. (left, J1 J2,fetch fetch), 
RS. (right,x,store[Astore o) .. (left,ox,store[Afetch), x + [. 
LI. (left,2],top) .. (right,2,top store]), 
L2. (left,][ ,fetch) .. (right,[ ,store]Afetch), 
L3. (left,xy,fetch) • (right,x,store y), x,y € {o,[}, 
L4. (left,xy,store z) .. (right,xyz,fetch), xy P 2], z + ], 
L5. (left,xy,store]) • (right,xy],&), xy + 2], 
L6. (left,xo,store[Afetch) .. (right,x,store["store o), all x, 
L7. (left,[pstore[2"fetch).., (right,[2[1,fetch fetch), 
LS. (left,x,store]Astore o) • (right,xo,store]"fetch), x + J. 

We choose the rules so that they gave a concise de­
scription. Situations not covered by the rules do 
not occur in the operation of the device; certain 
situations covered by the rules do also not occur; all 
situations covered are covered uniquely: onlv one rule 
is applicable. The rules were also checked by having a 
simulation on 9 blocks of size 3, i.e. '[o]', run for 
> 10 5 steps, going 8 levels deep in recursion, · 
i.e. up to starting to transport cells of block 9. 
Assuming that M maintains a variable 'lastmove' in the 
finite control,at each step M performs: 

Algorithm MOVE: 

select appropriate transition rule and exe­
cute it. 

Lemma I. For aZZ i > I, and aZZ a,S,y where a is 
~e left of super bloak I, a the tape right of 
super bloak I and y the staak aontents of the dis­
played start instantaneous desariptions: 

{a) • [TI [TI ... [I]s ~ "[i [BJ ... [DO] II• 
fetch 

... 
(b) •OJ [TI ... [BJ=:Js ~ " [E] [HJ ... [D =:J' 

Similarly from right to left, i.e., the mirror 
image of the depiated situations. 

Proof sketch. Base aase: i = I and i = 2, we leave 
for the reader to verify using the given rules. 

Induation: Assume that the Proposition holds for 
all J ,; i. Then: 

• OJ m ... m CEJ ' • [i [BJ ... OJ J.J CE] ' 

fetch 

t-' • K [BJ C8J .. · OJ II CEJ • f!. • K OJ [TI · · · [BJ J.J CEJ • 

~ • c:nil m ... [BJ JJ CEJ ' ~ • rr: [BJ C8J ... OJ:JJ CEJ • 

fetch fetch 

... ~ • [[[8][8] ... OJ i](E]' f!S. [I:[BJ[8] ... DJ I] J!D' 

fetch storer"fetch 

~ • II OJ [TI ... [BJ lJ :ED ' #' • IT: ITl m ... [BJ fl :ED ' 
store[ "fetc.h store[" store o 

f! "II[BJC8J ... OJ fJ EJ • ~ • IT:CBJC8J ··· ITJII ED• 
storer"store o store["fetch 

... t' " [ IT] IT] ... [BJ JJ :EJ' µ" [•• [ [I] IT] ... [BJ ::0 :EJ' 
store ('fetch fetch 

fetch 

' 
••• ~ (l [+1 IT [E[][GJ ... OJ 11 ~ B ~ a [+I [C[BJ[E[l ... cba B 

fetch 

fetch 

storel 

fetch 

~ <J [+I [I ciJ [TI ... CEO :ED e ~a[+! [I][!] m ... CED :ED e 

store] 

fetch 

fetch 

So {a) holds for j = i+I. 

fetch 

Similarly we prove (b), and so the Lemma. 0 

Using Lemma I, we can prove by induction on 
the number of steps: 

Lemma 2. For all i ~ I, superbloak I always is a 
aonneated tape segment whiah is aontinuously 
traversed from the left end to the right end and 
baak to tl-je left end. Eaah suah fuZZ sweep takes 
S(i) ,; 24 1 steps. For i > 2, duril1{! suah a full 
sweep over superbloak 1+2 the subaonfigu:r>ations 

.±:, 

C•l ••• IJ] i-] IT] [GJ ... and ... IJJITJ[GJ 
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both oaaur. For i = 2 (*) right oaaurs during a 
sweep over superbZoak 4, and for i = I the sub­
aonfiguration 

OJITI 
oaaurs during a full sweep over superbl,oak 3. Sinae 
l = 25 superbloak 2 is always aompletely aovered. 
Eaah pair of adjaaent aiosed bloaks right of bloak 
1 are bloaks i and i+l in that order. 

So the described one-head tape unit with square 
insertion/deletion and with the attached pushdown 
store can support an abstract storage unit S satis­
fying the Requirement, 
To allow a more intuitive understanding of the pro­
cess, note that there is a definite topology assoc­
iated with the tape configurations: always, for 
all i 

r.:r 1 ===I ~1r·+ 1 , 

Here (I+l) - I= the cells of block i+l present on 
the tape, in the correct left to right order. 
The order of blocks is maintained by being aware 
where block 2 is, and by linking blocks i and i+I 
via'][' adjacent borders and linking the assoc­
iated instructions on the stack. 

Eliminating the square insertion/deletion facil-
ity and the pushdown store _ 

We accomodate the square insertion/deletion 
facility by absorbing deleted squares in block I 
and extracting squares to be inserted from block I, 
The deleted squares are kept as a stack in the dif­
ferent blocks, block I containing at most 3 and each 
consecutive block at most 2. The regular block tra­
versal allows us to pass deleted squares from block 
to block, so as to have the stack of deleted 
squares with the top in block 1 grow and shrink as 
required, (The effect of a square deleted/inserted 
in block i+I does not affect the amount of deleted 
squares in blocks j, j ~ i+l.) Similarly, and with 
somewhat less fluctuations, we can maintain the push­
down store contents as a stack on blocks 0,1, .•• , 
of which the top is contained in block 0. The infor­
mation on the pushdown store is attached to the re­
sident cells of the blocks. Let the oaaupanay O(i) 
of a block i be the number of free (i.e. deleted) 
squares it stores. Then the procedure outlined be­
low will ensure that Os 0(1) s 3 and Os O(i) s 2 
for all i > I at all times, Squares which are deleted 
on the tapes are absorbed by block I and squares to 
be inserted are released by block 1. Transport of 
free squares from block to block, so as to have the 
stack of free squares with top in block 1 grow and 
shrink as required, is effected by the head when­
ever it scanns two adjacent closed blocks. As pre­
viously argued, the process maintains the property 
that all adjacent closed blocks i,j right of block 
1 are in the correct left-to-right order: j = i+l, 
and all adjacent closed blocks, i,j left of block 1 
are in the correct.right-to-left order: j = i-1. 
Block 1 always knows which of an adjacent closed 
block (if there are two of them) is block 2. When­
ever the head on block 1 is in an end position, and 
it scanns 2 adjacent closed blocks on that side, 
say block i and i+l,it first distributes free 
squares as follows: 

O(i) > 1 • O(i) + O(i)-1 & O(i+I) + O(i+I) + I 

O(i) 0 & O(i+I) > 0 • O(i) + I & O(i+l) +O(i+l)-1 

Whenever block 2 is closed, the free squares in 
blocks I and 2 are immediately adjusted according 
to the above distribution scheme, when block 1 
absorbs or exudes a free square. Clearly the dis­
tribution of free squares keeps the total number of 
free squares on the tape correct. 
We define a ahain on the tape as a sequence of 
closed blocks i1,i2,,,.,ik on the tape with ij ad­
jac~nt to ij+l• I s j < k. If i 1 is the one nearest 
block 1 (or i1=l) and ik is the one furthest from 
block 1, then ij+l = ij+l since every pair of ad­
jacent closed blocks have such indexes. If i1 = 1 
the chain is grounded, and if a chain is not a 
proper subchain from any other chain on the tape it 
is called maximal. We denote a maximal grounded 
chain as a MGC. We define 2 invariants (4a&b) and 
(5) • 

(4a) Every MGC C of length i contains 
free squares. If there ares s i 
on the total tape C contains all 
in particular: 

at most i+2 
free squares 
of them. More 

(i) top pd store= fetch• C contains 
min (i,s) free squares 

(ii) top pd store= store • .,. C contains 
min (i+l,s) free squares 

(iii) top pd store= store.Afetch.,. C con­
tains min (i+l,s) fre~ squares 

(iv) top pd store= store. store.=> C 
contains min (i+2,s) free squares. 
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For any MGC C there is a time before trans­
aation with environment and a time after trans­
aation with environment. The time before trans­
action is the time when the head on block I is 
proceeding to the border of block 1 which is 
not adjacent to an element of C. If Chas 
length I both borders qualify as such. We call 
Cat the time before transaction Cb. 

(4b) 

(5) 

The free squares are distributed over the 
blocks in Cb as follows: 
s s i: one free square per block from block 
up to blocks and no free square in blocks 
s+l up to block i. 
s > i: (leftmost digit 0(1) and rightmost 
O(i) .) . 
(i) top pd 
(ii) top pd 
(iii) top pd 
(iv) top pd 

store 
store 
store 
store 

fetch: 11 ... 11 
store.: 11 ••• 12 
store. ~fetch: 11 ••• 1 2 
store. store: 1I ••• 12 

(s=i+I) 
11 .. 122 

(s~i+2) 
this in case i > I. If Chas length 1 then all 
free squares in Care of course contained in 
block I. 

For all i > 1, 0 s O(i) s 2,and Os 0(1) s 3. 

The consequence of the maintenance of invariant (4) 
is that at any time the head on block 1 needs to 
insert a square, block 1 contains at least 1 free 
square. Also, whenever the head on block 1 has to 
delete a square, block 1 can absorb a square with­
out violating (5). The fact that invariants (4) and 
(5) are maintained will show that the travprpol of 
the blocks allows us to keep a stack of free squares 
on the consecutive blocks with the top in block 1, 
so that the square deletion/insertion facility is 
incorporated in our ordinary tape, without needing 



to expand block 1 by more than 3 squares and the 
other blocks by more than 2 squares. 

Lemma 3. Invariants (4) & (5) are maintained by the 
'free square' distribution ru"les. 

Lemma 3 is proved by induction on the number of 
steps and shows we can maintain a stack of free 
squares on the consecutive blocks, while not ex­
panding any block over the allowed limit. 
·Similarly, and actually by the same distribution 
rules, we maintain the extra pushdown store as a 
pushdown store on the consecutive blocks by attach­
ing its entries to the resident cells of the blocks. 
An element is added to the pushdown store when 
either block 2 is opened or when a 'store.Afetch' 
is replaced by a 'fetch fetch'. An element is popped 
from the pushdown store when a block is closed, 
i.e., when 'store]' or 'store[' is replaced by£. 
In this case we also use block 0, to contain the 
top of the pushdown store, so here the occupancy of 
all blocks i ~ 0 needs only be at most 2. 
Thus we have eliminated the square deletion/inser­
tion facility and the extra pushdown store by in­
corporating them in the one-head tape unit. 

Eliminating the fat head. By using Hartmanis­
Stearn's construction [3) of cutting out U'.+l 
squares covered by the head, maintaining them in 
the finite control and exchanging contents with the 
single square covered on the tape as required, we 
eliminate the assumption of the fat head covering 
U'.+l squares. Note that, for the various update 
/distribution strategies discussed,we never have to 
look farther ahead then over the first• element ad­
jacent to block I, and cover the next adjacent 2 
blocks completely. Sot= 25 suffices. 
By Lemmas 2 and 3 the following one-head tape unit 
supports an abstract storage unit S meeting the Re­
quirement. Let M be as described and perform at each 
step: 
Algorithm STEP: 

~ check for unmarked squares to create new blocks of cells 
~ distribute free squares 
~ distribute elements of the pushdown store 
step 4 MOVE 
(The first: execution of STEP preceded by initialize block O and 
block I and put 'fetch' on the bottom of the simulated pushdown store.) 

Proposition 4. The constrwted one-head tape unit 
M supports an abstract storage unit S meeting the 
Requirement. 

Since M has as yet no input-output connections, 
its head movement is a function of time alone and 
therefore oblivious. Equipping M with input/output 
terminals, and plugging in an appropriate piece of 
finite control for each multicounter machine to be 
simulated, having the resulting machine execute 
the following algorithm: 
INITIALIZE; REPEAT: (read input; UPDATE counters; write output; STEP) 

we have by Propositions 1-4: 

Theorem. For each k ~ I, each. k-aounter machine can 
be simulated in simultaneous real-time and logarith­
mic space by an oblivious one-head tape unit. 

3. Conclusion. 
We have made no attempt to obtain optimal block 

sizes and amount of squares covered by the head, 
but instead aimed at a palatable exposition of the 
result. We now place it in context. 
For various theoretical and practical reasons, mul­
titape Turing machines, restricted in one or more 
resources, serve as a standard against which to 
calibrate the power of other devices or to compare 

power amongst themselves under different resource 
restrictions. The commonly considered resources 
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are time, space, number of tapes, number of head 
reversals and oblivious-nonoblivious. The present 
simulation is unusual in that it is optimal in all 
of these resources; the use of no resource can be 
improved by relaxing on the other resource restric­
tions. Because of the many applications of multi­
counters we can expect the result to yield addi­
tional fruit. For instance, we now can in real-time 
keep track of which pairs, out of a collection of k, 
k.> 1, stacks, are of equal heigth using one extra 
(oblivious) one-head tape unit or two extra (obliv­
ious) pushdown stores. This task formerly required 
k-1 extra nonoblivious pushdown stores (and is im­
possible for a single pushdown 
store receiving only information concerning the 
stack movements). Similar statements can be made 
about the head positions in multitape Turing ma­
chines. 

Number representations. The result yields an un­
usual number representation. It shares compactness 
of notation with positional number systems and ease 
of incrementation/decrementation by 1 and instant 
zero check with tally systems and variants. It im­
proves both in that many integers can be maintained 
under instant incrementation/decrementation by 1 
and instant zero check, using a single access 
pointer in the linear notation which never moves 
more than r1og n7 positions in any segment of time 
of less than n units. Moreover, the movement of the 
pointer is independent of the input, and 

((3k+0( 1)) log n bits are used to denote k n-bit 
integers. 

Under an actual implementation of a multicounter 
machine therefore the time cost is proportional to 
the number of counters maintained and not to the 
size of the counts • 
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