
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

J.A. BERGSTRA & J.W. KLOP

IW 194/82

FORMAL PROOF SYSTEMS FOR PROGRAM EQUIVALENCE

Preprint

~
MC

MAART

kruislaan 413 1098 SJ amsterdam

~l:!UOTHEEK MATHEMATISCH CENTRUW
#,MSTER'.:lAM

P.unted a.t .the Ma.thema.ti.c.al Centlr.e, 413 K.lf.l.LU,£.aa.n, Am6.teltdam.

The Ma.thema.uc.ai. Centlte , 6ou.nded .the 11-.th 06 FebJuuVLy 1946, i.J, a non
p,r.o 61..t i.n.6.tli.u:tio n a.i.mlng at, .the p!Wmo.tio n o 6 pUJLe. ma.t.hema.t-lC-6 and ,i;a
appUc.a:ti.on6. 1.t i.1, .6pon6oll.ed by .the Ne.theJclartdt, Gove/f.nment :thlwugh .the
Ne.thelrla.nd6 0Jr.ga.n1-za.uon 6oll. .the Advanc.ement 06 PuJLe Rueall.c.h (Z.W.O.).

1980 Mathematics subject classification: 03D45, 03D80, 68B15,
03D35, 03D75, 68B10

1982 CR Categories: 4.34, 5.24

*)
Formal proof systems for program equivalence

by

**) J.A. Bergstra & J.W. Klop

ABSTRACT

We explore conservative refinements of specifications. These form an

appropriate framework for a proof theory for program equivalence that is based on

a logic for partial program correctness.

We propose two formalized proof methods for program equivalence (inclusion).

Both are sound w.r.t. the most general semantics of first order specifications.

In spite of being incomplete the methods cover many natural examples.

KEY WORDS & PHRASES: data type specification, program correctness, conservative

refinement, program inclusion, program equivalence, proto

type proof, logical completion

*) This report will be submitted for publication elsewhere.

This report is a revised and abridged version of the report IW 176/81 'Proving
program inclusion using Hoare's logic'. Several topics, discussed in IW 176/81, are
not touched here; also some changes in the order of presentation have been made
and alternative arguments have been used in some proofs.

**) Department of Computer Science, University of Leiden, Wassenaarseweg 80,
2300 RA Leiden, The Netherlands

0. INTRODUCTION

This paper aims at a detailed study of program equivalence, seen from the point of
view of Hoare's logic for program correctness. Because program inclusion is just
halfway program equivalence we can safely restrict our attention to program in
clusion. This moreover has the advantage of connecting closely to the theory of
prograrrnning using stepwise refinements as described in BACK [2].

Our work can be seen as belonging to the subject of axiomatic semantics for prog
rams. :ts novelty lies in the precise mathematical analysis of the situation, i~
addition to a rather strict adherence to first order proof systems and first order
semantics for data type specifications.

Deriving program equivalence from program correctness properties is not a new idea,
of course. It occurs in compiler correctness proofs, for instance HEMERIK [12],
and RUSSELL [16], as well as in the general theory of program correctness as in
HAREL, PNUELI & STAVI [I I], COUSINEAU - ENJALBERT [9].

Because of our interest in a proper theoretical analysis, we try to minimize the
semantical problems by working with while- programs only; this by no means trivial
izes the problem. We expect that the present theory can be generalized to more
powerful progrannning concepts, although not without some effort.

It appears to us to be a worth-while but nontrivial project to relate our proof
systems to the methods of algebraic semantics, as explained e.g. in GUESSARIAN
[I OJ.

One might expect a close relationship between the present work and MEYER-HALPERN
[14], which also describes program equivalence from the point of view of first
order logic. It is an important difference however that their paper focuses on se
mantics, whereas our main interest is in proof systems.

In the sequel of this introduction an intuitive account is given of the key de
finitions that underly the paper.

Intuition. Suppose that for s1, s2 E WP(Z) we have

(I) (semantical inclusion)

and that we wish to prove this fact. Now obviously, (I) implies

2

(2) Alg(E,T) F' {p}S 1{q}, for all p,q E L(E).

However, there is no reason to expect that the reverse implication (2) => (1) will
hold, since (2) states only roughly that s 1 E s2, where 'roughly' refers to the
limited expressive power of L(E). (In fact, one can show that indeed (2) ,,/,, (I).)
Now consider

(3) V(r',T') ~ (E,T) Vp,q E L(r')

Alg(E' ,T') F' {p}S2{q} => Alg(E' ,T') F' {p}S 1{q}.

Clearly (1),. (3),. (2). (For (1),. (3), note that if (r',T') ~ (E,T), then the
reducts of (r',T')-algebras to E form a subset of Alg(E,T); hence Alg(E,T) F'
s1 E s2 .. Alg(r' ,T') I= s1 E s2.)

In fact we will restrict our attention to a subclass of all refinements (~) of
(E,T), namely to the aonser>Vative refinements (~) of (E,T), for reasons which will
be clear later. So consider

(4) V(E',T') ~ (E,T) Vp,q E L(E')

Alg(E',T') F' {p}S/q} ,. Alg(E',T') F' {p}S 1{q}.

Now we have (I)=> (3) => (4),. (2); and it can be shown that (4),. (I). The con
clusion is that one can treat the 'semantical' inclusion (I) by considering only
first order properties of s 1, Sf (i.e. asserted programs {p}Si{q}, i = 1,2),
provided one is willing to consider not only (E,T), but all its (conservative)
refinements.

This observation prepares the way for an approach via Hoare's logic of proving
asserted programs. First of all, define

(5) s 1 EHL(E,T) s2 iff Vp,q E L(r)

and consider

(6)

HL(E,T) f- {p}S2{q} => HL(E,T) f- {p}S 1{q}

(prooftheoretiaaZ inalusion)

(derivable inalusion)

the prooftheoretical analogue of (4). Indeed, it will turn out that this 'deri
vable' inclusion, written as HL(E,T) f- s1 E s2 , implies the semantical inclusion
(1). This is our first "proof system" for proving semantical inclusion; we will
prove that (6), as a relation of s1, s2, is semi-decidable in T.

Of course the proof system given by (6) is sound, i.e. (6),. (!); otherwise it
did not deserve the name. Some simple program inclusions that are in its scope,
are program equivalences like 'loop-unwinding', and the kind of program equiva
lences considered in MANNA [13]. This proof system is not yet complete, however.
In order to prove semantical inclusion (I), it is sufficient that:

(7) 3(E',T') ~ (r,T) V(r",T") ~ (E',T') s 1 EHL(E",T") s2•

(Notation: HL(E,T) II- s1 E s2, in words: foraed inalusion.)

The proof system embodied by (7) is stronger than that of derivable inclusion (6),
and we will give an example of program inclusion which requires the extra strength
of this last proof system.
Still, (7) is not 'complete'. One can prove, however, that the following 'cofinal'
inclusion is equivalent to semantical inclusion:

(8) V(E',T') ~ (E,T) 3(E",T"),;:: (E',T')

One could suspect that there is a multitude of such relations obtained by repeated
alternating quantification V3V ••• from the basic relation!;HL(E T) (prooftheoret
ical inclusion). It is a pleasant surprise, suggesting the natu:alness of the
notions involved, that this possible hierarchy does in fact not exist, and that
one has no more relations than in the following diagram:

s1 SHL(l:,T)sz
proof theoreti-

cal inclusion
(5)

HL(l:,T) I- S1SS2

derivable

inclusion (6)

3(l:',T')t? (l:,T)

s1 SHL(i:' ,T')s2
inclusion in

some refinement

I. PRELIMINARIES ABOUT PROGRAMS AND LOGIC

HL(l:,T) lf-s 1 ss2

forced

inclusion (7)

cofinal

inclusion

(8)

~
semantical

inclusion

(I)

The notions of first order language, derivability (f-) and satisfiability (I=) are
supposed known.

In this paper we will exclusively deal with while-programs. For a signature Ethe
set WP(E) of while-programs over Eis defined inductively as follows:

S ::= x := t ls 1;s2 1 if b then s 1 else s 2 fi I while b dos od,

where t E Ter(E), the set of terms over the signature E, bis a boolean (i.e.
quantifier free) assertion E L(E), the first order language determined by E.

A specification is a pair (E,T) where Tc L(E); the semantics of a specification
is just the collection Alg(E,T) of E-structures A such that A I= T. We write
Alg(E) for Alg(E,0).

A,B E Alg(E,T) will be·written as A= (A, •••), B = (B, •••) where A, Bare the
underlying sets.

For A E Alg(E) and SE WP(E) with variables x 1, ••• ,xk the meaning of Sin A is a
partial function MA(S): Ak + Ak. MA(S) can be defined using conventional methods
of operational or denotational semantics.

We write S(1) = b for MA(S)(!) = b; ifs(!)= b for some b we writes(!) i (other
wise s(!) t).

Important is the following
➔ ➔ ➔

I.I. COMPUTATION LEMMA. Let x = x 1, ••• ,~ and y = y 1, ••• ,yk. Let S = S(x) E WP(E)
(i.e. S contains precisely the variables~).
Then for all n E :N there is a quantifier free assertion Comp5 (;)=yin L(E)

++ n such that for every A E Alg(E) and all a,b EA: '

A I= Comps,n<i) = f = ls(!)i :s: n and s(!) = b.

He1•e i, ~ are constant symbols denoting !, band Is(!) I denotes the length of the

3

4

➔
computation of Son a.

1.2. Preliminaries on Hoare's logic.

Let p,q € L(E) and S € WP(E). Then the syntactic object {p}S{q} is called an
'asserted program'. For A€ Alg(E), we define:

A I= {p}S{q} iff v!J € A: s(!H and s(~) = b ,.

Furthermore we define

Alg(E,T) I= {p}S{q} - VA€ Alg(E,T) A I= {p}S{q}.

Hoare's logic w.r.t. (E,T) is a well-known proof system designed to prove facts
like Alg(E,T) I= {p}S{q}. We will call this proof system HL(E,T); it provides one
axiom (assignment axiom) and four rules:

(1) Assignment axiom scheme: {p[t/x]} x:=t {p}

(2) Composition rule:

(3) Conditional rule:

(4) Iteration rule:

(5) Consequence rule:

{p}S 1{r} {r}S2{q}

{p}Sl;S2{q}

{pAb}S 1 {q} {pA7b }S2{q}

{p} if b then s1 else s2 fi{q}

{pAb} S {p}
{p} while b do S od {pA7b}

p+pl {pl}S{ql} ql+q

{p}S{q}

where (E,T) I- p ➔ pl and (E,T) I- q 1 ➔ q.

These rules constitute an inductive definition of a relation HL(E,T) I- {p}S{q};
we assume familiarity with this proof system.

HL(E,T) is sound in the following sense: for all p,q € L(E) and S € WP(E):
HL(E,T) I- {p}S{q} ,. Alg(E,T) F {p}S{q}.

1.2.1. DEFINITION. HL(E,T) is logically complete if£ for all p,q € L(E) and
S € WP(E): HL(E,T) I- {p}S{q} - Alg(E,T) I= {p}S{q}.

(In general, HL(E,T) is not logically complete. The notion of logical completeness
is studied in BERGSTRA-TUCKER [6].)

2. REFINEMENTS OF SPECIFICATIONS

In this section we will collect some facts concerning the notion of refinement and
especially, conservative refinement. These notions will be of fundamental impor
tance in the sequel. All the material in this section is standard in Mathematical
Logic and can be found (e.g.) in SHOENFIELD [17] and MONK [15].

2.1. DEFINITION (refinements)
(i) If E1 ~ E and T' ~ T we write (E',T') ~ (E,T) and call (E',T') a refinement
of (E,T). Here T = {p-€ L(E)IT I- p}.
We will always suppose that T, T' are consistent.
(ii) Let A be some algebra. Then EA is the signature of A and TA is the theory of
A: TA = {p € L(EA) IA I= p}.
Note that A I= p - Alg(EA,TA) I= p.
(iii) Let (E, T) be a specification. Then T is complete if Vp € L(E), T I- p or
T I- 7p.

2.2. DEFINITION (conservative refinements)
Let (E' ,T') ~ (E,T) be a refinement such that: Vp e: L(E) T' f- p - T f- p. In
other words, such that T' n L(E) = T. Then this refinement is called conservative
over (E,T).
(So a conservative refinement does not yield more theorems in the 'original'
language L(E).)
Notation: (E' ,T') ~ (E,T).

2.2.1. Note that if Tis complete: (E',T') ~ (E,T),. (E',T') ~ (E,T).

2.3. DEFINITION. (Expansions and restrictions). Let E' ~ E.
(i) If (E',T') is a specification, then the restriction of (E',T') to the sig
nature Eis (E,T) where T = T' n L(E).
(ii) If A' e: Alg(E',T'), then the restriction of A' to Eis obtained by deleting
all constants, functions, predicates in A' corresponding to symbols in E' -E. The
resulting A is also called a reduct of A'; and A' is called an expansion of A. We
will also write A~ A'.

2.3.1. Note that if A' ~ A, then (EA''TA,) ~ (EA,TA).

In the sequel we will always deal with conservative refinements (~). They have the
pleasant property that two refinements (E.,T.) ~ (E,T) (i = I 2) can be joined to
a r 7fi~ement ~r 1.u r 2 , T1 u T2) ~ (E,T), bro~ided the require~ent r 1 n E = r is
satisfied. This is a (strong) form of A. Robinson's Consistency Theorem {RCT).

2.4. ROBINSON'S CONSISTENCY THEOREM.

Let (E.,T.) ~ (E0 ,T0), i = 1,2, such that r 1 n r 2
(.) i i • • d

i T 1 u T2 ~s cons~stent, an moreover
(ii) (El u L2' Tl u T2) ~ (Eo,To).

PROOF. See Exercise 22. 15 p.375 MONK [15] or BOOLOS - JEFFREY LBJ p.244. D
We conclude this section with a useful criterion for conservativity.

2.5. DEFINITION. Let (r',T') be a refinement such that every A e: Alg(E,T) can be
expanded to an A' e: Alg(E',T'). Then this refinement is called simple.

2.6. PROPOSITION. (Criterion for conservativity). Simple refinements are conser
vative.

PROOF. Suppose (E',T') is a simple refinement of (E,T), i.e. VA e: Alg(E,T)
3A'E Alg(E' ,T') A' ~ A. Let T If p for some closed assertion p. Then by Godel' s
Completeness Theorem, A II p for some A e: Alg(E,T). So there is an A' e: Alg(E',T')
such that A' ~ A. Hence A' I= 7 p; and reasoning backwards we have T' If p. D

3. PROGRAM INCLUSIONS

We will now introduce the various notions of inclusion (S.) between programs s1,
s2 e: WP(E) which we will study, and prove some important facts about them.

Let Se: WP(E) and A= (A, •••) e: Alg(E,T). Let S contain the variables x1, ••• ,x
(n~I). Then MA(S):An +Anis the partial function defined in Section I. n

5

..

6

3.1. DEFINITION. Let s1, s2 E WP(E).

(i) Semantiaal inalusion:

Alg(E,T) F s1 ~ s2 - MA(S 1) .=. MA(s 2), for all A E Alg(E,T).

(ii) Prooftheoretiaal inalusion:

SI~ HL(E,T) s2 iff for all p,q E L(E): HL(E,T) I- {p}S2{q}

HL(E, T) I- {p}S 1 {q}.

(iii) Derivable inalusion:

HL(E,T) I- s 1 s_ s2 - V(E' ,T') 12: (E,T)

(iv) Foraed inalusion:

HL(E,T) II- s 1 s_ s 2 - 3(E' ,T') I=! (E,T)

(v) Cofinal inalusion: the inclusion s 1 S s 2 is aofinal, if

V(E',T') I=! (E,T) 3(E",T") I=! (E' ,T')

3.2. REMARK. (i) Note the direction of the implication in 3.1 (ii). Intuitively:
s1 is less defined than S2, so {p}S 1{q} is more often trivially true.
(ii) The phrase 'derivable' in 3.1 (iii) and the choice of the notation' I- '
is justified by results in Section 5: it will be proved that derivable inclusion
w.r.t. (t,T) is semi-decidable in T.
(iii) In all cases 3.l(i) - (v) there is the corresponding notion of equivalence,
defined in the obvious way; e.g. for forced equivalence:

It is clear that all inclusions (C) defined above are partial orders and that all
equivalences (=)are equivalencerelations, except for forced and cofinal in
clusion resp. equivalence. For the last case, 'cofinal', we will prove in Section
5 that cofinal inclusion coincides with semantical inclusion, hence cofinal in
clusion is indeed transitive.

3.3. PROPOSITION. Foraed inalusion is transitive. (Henae it is a partial order and
foraed equivalenae is an equivalenae relation.)

PROOF. Let s1,s2,s3 E WP(E), HL(E,T) Ir s 1 ~ s 2 and HL(E,T) II- s 2 s_ s3• Then for
i = 1,2:

3("' T') "" (" T) V("'.',T'.') ("'. ,T'.) S C S "i' i "" "• "i i o:: "i i i -HL(E'.',T'.') i+t •
i i

Now consider such (E!,T!), i = 1,2. We may suppose that r; n E2 = E.
Now by Robinson's Cofisi§tency Theorem 2.4,

(E*,T*) = (E; u E2, T; u T2) ~ (E,T).

. * * * * Evidently, HL(E ,T) I- S1 ~ S2 and HL(E ,T) I- S2S S3-
By transitivity of derivable inclusion, therefore HL(E* ,T*) I- s 1 S s 3• Hence
HL(E,T) 11- s 1 s_ s3• □

The main result of this section consists in establishing the various logical inter
relationships between the previously defined notions of inclusion (and equivalence),
as they are displayed in the diagram in the Introduction. There are only three non
trivial cases and two of them are dealt with in the following proposition.

3.4. PROPOSITION. (i) Foraed inalusion implies aofinal inalusion.

(ii) Semantical inclusion implies cofinal inclusion.
(See Proposition (5.1) for the other direction.)

PROOF. (i) Suppose HL(E,T) II- s 1 s_ s 2 , i.e.:

(I) 3(E' ,T') ~ O:,T) V(E",T") ~ (E' ,T')

To prove:

(2)

Take (E',T') as in (I),
We may assume that E' n
and (E',T'); by RCT 2.4
(ii) To prove: Alg(E,T)

3(E" T") 1> (E' T')
I' 1 - I' I

and consider a (Ej,Tj) as
E' = E. Then take (E",T")
J. . 'bl I I tfiis is possi e.

I= SI s_ S2 ,.

sl SHL(E" T") s2
I ' 1

in (2).
in (2) as the union of (Ej,Tj)

V(E',T') I:?: (E,T) 3(E",T") I:?: (E',T') S C S 1 -HL(E",T") z·

Suppose Alg(E,T) I= s 1 ,S Sz, and consider (E' ,T') I:?: (E,T).
According to BERGSTRA-TUCKER [7] there is a (E",T") I:?: (E',T') for which HL is
logically complete (See Def. 1.2.1).
Consequently: s 1 ~L(E",T") s2 • D
3.5. REMARK. All inclusions introduced above, except semantical inclusion, were
obtained by quantification over the 'basic' prooftheoretical inclusions_HL" This
suggests looking at all inclusions of the following general form:

V(E3,T3) ~ (Ez,Tz) ••• 3 (E2n'T2n) ~ (E2n-l'T2n-l) SI s_HL(E T). Sz,
2n' Zn

d l 'k ' CV3V ••• V S d h d 1 ' b . db ' h ' 3 A an i ewise s 1 -HL(E,T) 2 , an t e ua notions o taine y interc anging , •

(Note that only alternating strings of quantifiers are interesting, since clearly
-VW-- = --V-- and likewise for 3.) So derivable inclusion w.r.t. (E,T) is
SHL(E,T)' forced inclusion is s:tcr,T)' and cofinal inclusion is s~~(E,T). (Inclu-

sion in some refinement, s:L(E,T)' was not mentioned in this Section, because it

seems to be of less importance).
Now it is easy to show (using RCT 2.4) that (dropping the subscript

HL(E,T)) c 3V = cV3V and cV3 = c 3V~, which implies that only five essentially
different-inclusions exist, viz Ci where i = empty, V,3,V3,3V.

4. PROTOTYPE PROOFS

In this section we will define the notion of 'prototype proof', which will
play an important role in the sequel. Its main property is that every proof of
some {p}S{q} is a substitution instance of the prototype proof w(S) corresponding
to S. First we need an auxiliary concept.

4.1. DEFINITION. The class IWP(E) (with typical elements s*, s**, •••) of inter
polated while-programs is inductively defined by

s* ::= s I {p}s* I s*{p} I if b thens~ else s; fi I
while b dos* od.

Here SE WP(E). So the class of interpolated statements contains next to the usual
statements also asserted statements and statements interlaced with assertions in
an arbitrary way; but it contains also proofs of asserted statements. These will
be singled out by means of the following extended proof rules.

4.2. DEFINITION. By means of the following axioms and extended proof rules we can
derive proofs of asserted programs:

7

8

(I) Assignment a:x:iom scheme: {p(t)} X := t {p}

* {p}S 1 {r}
(2) Extended composition rule:

(3) Extended ciontitional rule:

* {pAb} s 1 {q} * {pA 7 b} s2 {q}

* {p} if b then {pAb} s 1{q} else

* {pAb} S {p}
(4) Extended iteration rule:

* {p} while b do{pAb} S {p} od {pA7 b}

(5) Extended consequence rule:
* p-+ P1 {pl} S {qi} qi-+ q

* {p}{pl }S {qi }{q}

4.3. DEFINITION AND NOTATION.

(i) Let PR(Z,T) be the class of proofs (interpolated programs) which can be
derived using this axiom scheme and extended proof rules, such that in (S) only
implications provable from Tare used.
(ii) Ifs* E IWP(Z), then a(S*) will denote the underlying program obtained by
erasing all {p} ins*.
(iii) Ifs* E PR(Z,T), then K(S*) will denote the set of implications p-+ p' used
in the derivation of S*. Note that these implications can be read of directly
from S*:

K(s*) = {p-+ p' I {p} {p'}-=- s*}.

(Here "c" denotes the relation of being contained as a 'subword'.)
(iv) Ifs* E PR(Z,T) ands*= {p} s7 {q}, then pre(S*) = p and post(S*) q.
(v) Lets* E PR(Z,T). Thens* is called a reduced proof, iff it contains no
occurrence of a triple {p} {q} {r}.
(By the transitivity of-+, every proof may be supposed reduced, up to equivalence.)
(vi) Two interpolated programs s*, s** such that a(s*) = a(S**) =Sare called
matching if at every place the same number of assertions occur ins*, s**.
(vii) Lets*= --{p}-- be an interpolated statement containing {p}. Thens**
= --{p} {p}-- is called a trivial expansion of s*.

In the following definition we will use a set of n-ary relation symbols {r.li~O}.
Ifs* E IWP contains some of these r-syrnbols, [s*Jj will be the result of fe
placing each occurrence of r • in S * by r (i j) where (,) : :N2 -+ :N is the usual
bijective pairing function. tThis device m~rely serves to 'refresh' the r-syrnbols
where necessary.)

4.4. DEFINITION.

(i) Let SE WP(Z) involve the variables i (= x 1, ••• ,xn). By induction on the
structure of S we define 1r'(S) as follows:

(I)

(2)

1r'(x.:=t)
l.

x. :=t
l.

(That is, 1r'(S 1) and 1r'(S2) are concatenated, without infix. Moreover, the r-syrn
bols in [1r'(S 1)JO are made distinct from those in [1r'(S2)J 1.)

(3) 1r'(if b then s 1 else s2 fi) =

{r0 (;)} if b then {r0 (;)Ab}[1r'(S 1)J2 {r1(i)}

-+ -+ else {r0(x)A7b} [1r'(s2)J3 {r 1(x)}

fi {r 1 (;)}.

(4) 1r' (while b do S od)

{r0 (t)} while b do {r0(l)Ab} s* od {r0(i)A7b} {r 1 (i)}

* -+ * where S = [1r'(S)J4 and r 0 (x) = post(S).

(ii) Now 1r(S) = {r0 (l)} [1r'(S)J0 {r1 (;)}.

1r(S) is called the prototype proof of S.

4.5. EXAMPLE. Let S be: x1 := 0;

x2 := 1;

while Xz > X3

do if x 1 = 0

then x3 := 0

else xi := Xz+l

fi

x 1 := x1+x2

Then 1r(S) is as follows. (The assertions to the right of the vertical bar are for
use in Example 4.7.1.)

1r(S) =

{r 1 (xi ,xz ,x3)}
{r2(0,x2 ,x3)}

x 1 :=O

{r2(xl,x2,x3)}
{r3 (x1,I,x3)}

x2 :=t

{r3(Xl ,xz,X3)}

{r6(xl,x2,x3)}

while Xz > X3 do

{r6(x1,x2,x3)Ax2>x3}

{r4 (xi ,x2,x3)}

if x 1=0 then

{r4(x1,x2,x3)Ax)=0}

{r5 (x 1 ,x2 ,0)}

{true}

{O=O}

{x1=0}

{x1=0 A 1=1}

{x =O 1 A x2=J}

{x =O 1 A x2=1}

{x =O 1 AX =I . 2
{x =O I AX =I 2

A x2>x3}

A x2>x3}

{xl=O A Xz=l A x2>x3 A x)=O}

{x1=0 A x2=1 A 0=0}

9

x3 :=Q

{r5(xl,x2,X3)}

{r6(x1,xz,x3)}

else

{r 4 (x1 ,x2 ,x3) " 7 x 1 = O}

{r/x2+l ,xz,X3)}

x 1 :=x2+ 1

{r7(xl ,xz,x3)}

{r6 (xi ,x2,x3)}

fi

od

{r6 (x1,x2,x3) A7x2>x3}

{r8(xl+x2,x2,x3)}

xi :=xi +x2

{r8(xl ,x2,x3)}

{r9 (x1 ,x2,x3)}

{x1=0 /\ x2=1 A x3=0}

{x1=0 A x2=1}

{xl=O " Xz=l " X2>X3 " 7 xi = O}

{x2+1=0 "Xz=l "x3=0}

{x1=0 "x2=1 "x3=o}

{x1=0 /\ x 2=J}

{xl=O "xz=l "7x2>X3}

{xl+xz=l "Xz=l "X3~l}

{x1=1 "x2=I "x3~t}

{xi=) "Xz=l "x3~1}

* 4.6. DEFINITION. Let S E IWP(E) contain the n-ary relation symbol r, and let
p = p(x 1, ••• ,xn) E L(E). (Note: p may contain other variables than those display
ed,)

Then ~~(s*) is the result of replacing each r(t 1, ••• ,tn)' occurring ins*, by
pl' ... ,p

p(t 1, ••• ,t). Likewise we define~ n(s*) •
n r 1, ••• ,rn

4.7. LEMMA. Lets* E PR(E,T) be a reduced proof such that cr(s*) = s. Then
~:TI(S~* for some substitution~ as in Definition 4.6. (So every proof is an
instance of the prototype proof.)

PROOF. Take S, s* as in the lemma. We may supposes* and TI(S) are matching; other
wise only some trivial expansions (Definition 3.3) of s* are required. Then we can
construct by induction on the structure of Sa substitution as required. This con
struction is entirely straightforward and routine; it will be left to the
reader. 0

4.7.1. EXAMPLE. Let S be as in Example 4.5; we use the abbreviations

S" = if x 1=0 then x3:= 0 else x 1:=x2+1 fi

S' = while Xz>X3 do S" od

S = x 1 :=0; x 2:=l; S'; x 1 :=x 1+x2•

Then the following proof of {true}S{x1=1 "x2=1 "x3~1}, written as a column of
asserted programs and implications, is a substitution instance of TI(S) as in Ex
ample 4.5, via the substitution~ displayed there (see the assertions to the right
of the bar).

o.

I.

0, 1 : 2

3

2,3: 4

5

4,5: 6

7

8

7,8: 9

10

11

10, 11: 12

9, 12: 13

14

13, 14: 15

15: 16

6, 16: 17

18

19

18,19: 20

17,20: 21

true-+ O=I

{O=O}x1:=0{x1=0}

{~}x1:=0{x1=0}

x 1=0-+ x 1=0 A l=I

{true}x1 :=O{x1=0 A l=I}

{xl=O A 1=1}x2:=l{x1=0 A x2=)}

{true}x1:=0; x2:=I {x1=0 A x2=1}

x 1=0 A x2=1 A x2>x3 A x 1=0-+ x 1=0 A x2=J A O=O

{xl=O A x2=) A O=O}x3:=0{x1=0 A x2=l A X3=0}

{xl=O A x2=I A x2>x3 A x1=0}x3:=0{x1=0 A x2=) A X3=0}

{x2+1=0 A x2=) A X3=0}x1:=X2+){x1=0 A x2=) A X3=0}

xl=O A X2=) A X2>X3 A xl+o-+ x2+1=0 A x2=) A X3=0

{xl=O A x2=) A x2>x3 A x1IO}x1:=x2+1{xl=O A x2=) A X3=0}

{X1=0 A x2=1 A X2>X3}S"{x1=0 A x2=) A x3=0}

x 1=0 A x2=J A x3=o-+ x 1=0 A x2=J

{x1=0 A x2=1 A x2>x3}s"{x1=0 A x2=1}

{xl=O A x2=) }S' {xl=O A x2=) A 7 X2>x3}

{true}x1 :=0; x2:=I; S'{x1=0 A x2=1 A 7x2>x3}

x 1=0 A x2=1 A7x2>x3 -+ x 1+x2=1 A x2=1 A x3~J

{x1+x2=1 A x2=1 A x3~1}x1:=x1+x2{x1=1 A x2=1 A x3~J}

{x1=0 A x2=1 A 7x2>x3} x1 :=x1+x2{x1=J A x2=1 A x3~1}

{true}S{xl=I A x2=1 A X3~1}.

0 0 0 0 4.8. PROPOSITION. Let E =Eu En(S) and T =Tu K(n(S)). Then (E ,T) e (E,T).

PROOF. Take arbitrary p,q such that HL(E,T) r {p}S{q}. (E.g. take q = true.) Let
~{q} E PR(E,T) be the corresponding proof; we may suppose it matches n(S).

Now let A E Alg(E,T), so by soundness of HL we have A I= {p}S{q}. Further, it
is not hard to see that the r.(1) can be interpreted in A just like the matching
assertions in {p}s*{q}. 1 0 0 0

Hence every A E Alg(E,T) can be expanded to an A E Alg(E ,T). So by the
conservativity criterion 2.6, we have (EO,TO) ~ (E,T). D

5. PROOF SYSTEMS

Our interest is in formal criteria that imply program inclusion. The diagram
described in the Introduction contains three such concepts: cV, c3V and cV3 (in
the notation of Remark 3.5). NowcV3 coincides with semantical program inclusion
(3.4 plus 5.1) and therefore c 3V"Is a sufficient criterion (3.4(i)) as well as

cV. -

11

HL(E,T) r s 1 S s2 is a semicomputable relation (5.2). It constitutes a formal
proof system of a conventional nature. r is quite natural and suffices for many
examples. V y3 r (C) is not complete however (5. 4 (i)). The proof system Ir (C) provides
a less effective but considerably stronger method (5.4(ii)). In fact Ir is also
incomplete (5.3). Because c 3V can hardly be considered a formal proof method, we
are left with the problem of finding useful extensions of r and 0- • This seems
to us to be a research topic of considerable importance.

12

5.1. PROPOSITION. Cofina.l inclusion implies semantical inclusion, i.e.

vo::' ,T') t:=: o:,T) 3(I:",T") ~ (I:' ,T') SI SHL(I:",T") s2 =>

Alg(I:,T) F s 1 S s 2•

PROOF. Suppose Alg(I:,T)
-+ -+ -+

++ ➔
~ s 1 S Sz- Choose A E Alg(I:,T), a,b E A with A I= s 1(a) =

Let k = I s 1 (!)I, i.e. A I= Compk S (1) b. One obtains a = b and A l;E s 2 (a) = b.

signature r0 by adding
+ ~ + + •I 0

names~ and~ for a and b. Then let I:'= I: u I:rr(Sz)'

T' =Tu K(rr(S 2)). One proves (I:',T') ~ (I:,T) just like Proposition 4.8. Moreover,
-+ -+ ➔ ➔➔ -+ -+ -+ ➔➔

let 0 = Compk,SJ(~) = £ "Vx (x=~ + r 0 (x)) "Vx (r 1 (x) +7x=£),Here

r 0 (x) = pre(rr(S2)) and r 1(x) = post(rr(S2)) (see Definition 4.3). Then (I:',T' u {0})

is consistent (a model is found by expanding A). Clearly

➔➔ ++
HL(I:' ,T') I- {0} "x=a}S2{7x=b}.

Suppose (I:", T") ~ (I:', T'), then T" u { 0} is consistent and

Assume for a contradiction that s 1 SHL(I:",T") s 2 then:
➔➔ ➔➔

HL(I:"T") I- {0Ax=a}S {7x=b}. , - I -

However in a model B of T" u {0} this asserted program is incorrect because
-+ ➔

B f= Compk s (a) = b. 0
' I - -

5.2. THEOREM. HL(I:,T) I- SIS s2 and HL(I:,T) I- SI = s2 as predicates of (SI ,Sz)
are semidecidable in T.

PROOF. Let I:O = I: u

(I:,T). Now we claim

which implies the theorem because of the semidecidable character of Hoare's Logic.

To prove the claim:=> is immediate. So assume HL(I:o,To) I- {r/i)}s1{r/i)}.
+ * + 0 0 . Let {rO(x)}S 1{r1(x)} E PR(I: ,T). Given some (I:',T') ~ (I:,T) assume

HL(I:' ,T') I- {p}S2{q} •. Let {p}s;{q} E PR(I:' ,T') be the corresponding proof which

we may assume matching with rr(S2). By Lemma 4.7, {p}s;{q} is an instance of rr(S 2)

via some substitution~- Applying the substitution~ on {rO(~)}S7{r 1(~)} we obtain

a proof {p}Hs7){q} in PR(I:' ,T'). Consequently HL(I:' ,T') I- {p}S 1{q}. D

Let A= (:N, O,S,P), I:= I:A and T =TA.These notation conventions will hold
until the end of this paper.

5.3. THEOREM. II- is incomplete. In fact there are s 1 ,s2 E WP(I:) with Alg(I:,T) F
SIS s2 but HL(I:,T) llf SIS s2.

PROOF. An essentially straightforward verification shows that Alg(I:,T) 5 s 1 S s 2
is a complete II~ predicate of (S 1 ,s2) whereas HL(I:,T) II- s 1 S s 2 is a r2 predicate
of (S 1,s2). Recursion theory then tells that both predicates must differ. 0

5.4. PROPOSITION. Let s 1, s 2 be the following programs over I::

s 1= y:=O; S' where S '= while x f. 0 do y:=Sy; x:=Px od

s 2= y:=x; x:=O

then (i) HL(E,T) If SI s_ s2 but (ii) HL(E,T) II- SI s_ s2.

PROOF. (i) s1 ~HL(E,T) s2 because

(l) HL(E,T) I- {x=z}S2{x=O A y=z}

(2) HL(E,T) If {x=z}S 1{x=0Ay=z}.

Here (2) requires a proof: suppose not (2), then

Hence there must be an invariant r(x,y,z) such that T I- <P 1 A <P 2 A <1> 3 where

<P = x=z A y=O + r(x,y,z)
I

<Pz= 3x',y' [x'+o A x=Px' A y=Sy' A r(x',y',z)] + r(x,y,z)

<t> 3= x=O A r(x,y,z) + y=z.

Also A I= <Pi /\ <Pz /\ <l>J• However, a simple proof shows then that A I= r(!!,~•!:) -
- a+b=c, in contradiction with the non-definability of+ in A.
(ii). Let A'= (::N, O,S,P,+). Because (E,T) is complete, we have (EA',TA') ~ (E,T).
Using the method of prototype proofs, HL(EA 1 , TA') I- s1 S s2 is established as
follows: consider n(S 2), this is

{r0(x,y)}{r 1(x,x)} y:=x {r1(x,y)}{r2(0,y)} x:=O {r2(x,y)}{r3(x,y)}.

So we have to find a proof of {r0(x,y)} s1 {r3(x,y)} in the theory

TA, u {r0(x,y) + r 1(x,x),

r 1(x,y) + r 2(0,y),

r 2(x,y) + r 3(x,y)}.

This is indeed possible:

y:=O

{r3(0,x) /\ y=O}

{3x0[r3(0,x0) A x=xo /\ y=O]}

{3xo[r3(0,xo) /\ x+y=xo]}

while x+o do

{3x0[r3(o,x0) A x+y=xo /\ xjO]}

{3x0[r3(0,x0) A Px+Sy=xO A xjO]}

y:=Sy

x:=Px

13

14

od

{3xo[r3(0,xo) A x+y=xo] A x=O}

{3xolr3(0,xo) A y=xo A x=OJ}

{r3 (x,y)}.

REFERENCES.

[I] Back, R .. J., Correctness preserving program refinements: proof theory and
applications, Mathematical Centre Tracts 131, Mathematical Centre, Amsterdam,
1980.

[2] De Bakker, J.W., Recursive procedures, Mathematical Centre Tracts 24,
Mathematical Centre, Amsterdam, 1973.

[3] De Bakker, J.W., Mathematical theory of program correctness, Prentice-Hall
International, London, 1980.

[4] Bergstra,. J.A. & J.W. Klop, Proving program inclusion using Hoare's logic,
Mathematical Centre, Department of Computer Science, Research Report IW 176,
Amsterdam I 98 I.

[5] Bergstra, J.A. & J. Terlouw, A characterization of program equivalence in
terms of Hoare's logic, Proceedings of the G.I. Jahrestagung Miinchen 1981,
Springer LNCS 123.

[6] Bergstra,, J.A. & J.V. Tucker, Expressiveness and the completeness of Hoare's
logic, Mathematical Centre, Department of Computer Science Research Report
IW 149, Amsterdam, 1980. To appear in JCSS.

[7] Bergstra, J.A. & .J.V. Tucker, Two theorems about the completeness of Hoare's
logic, Mathematical Centre, Department of Computer Science Research Report
IW 165, Amsterdam, 1981.

[8] Boolos, G.S. & R.C. Jeffrey, Computability and Logic, Cambridge University
Press (1974, 1980).

[9] Cousineau, G. & P. Enjalbert, Program equivalence and provability, Mathemati
cal Foundations of Computer Science 1979, Proc. 8th Symp., Olomouc
(Czechoslovakia), Springer Lecture Notes in Computer Science 74, p.237-245.

[IO] Guessarian, I., Algebraic Semantics, Springer Lecture Notes in Computer
Science 99, 1981 .

[II] Harel, D., A. Pnueli & J. Stavi, A complete axiom system for proving deduc
tions about recursive programs, in Proc. 9th ACM Symp. Theory of Computing,
Boulder, I 977.

[12] Hemerik, C., Relaties tussen taaldefinitie en taalimplementaie, in Colloquium
Capita Implementatie van Programmeertalen, J.C. van Vliet (red.), MC Syllabus
42, Mathematical Centre, Amsterdam 1980.

[13] Manna, Z., Mathematical theory of computation, McGraw-Hill, New York, 1974.

[14] Meyer, A.R. & J.Y. Halpern, Axiomatic definitions of programming languages.
A theoretical assessment, Proceedings 7th ACM Symp. on Principles of Program
ming Languages, ACM, New York, 1980, p.203-212.

[15] Monk, J.D., Mathematical Logic, Springer-Verlag (1976).

[16] Russell, B., Correctness of the compiling process based on axiomatic semantics,
Acta Informatica 14, p.1-20, 1980.

[17] Shoenfield, J., Mathematical Logic, Reading, Addison-Wesley (1967).

3 0

