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Formal proof systems for program equivalence 

by 

**) J.A. Bergstra & J.W. Klop 

ABSTRACT 

We explore conservative refinements of specifications. These form an 

appropriate framework for a proof theory for program equivalence that is based on 

a logic for partial program correctness. 

We propose two formalized proof methods for program equivalence (inclusion). 

Both are sound w.r.t. the most general semantics of first order specifications. 

In spite of being incomplete the methods cover many natural examples. 
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0. INTRODUCTION 

This paper aims at a detailed study of program equivalence, seen from the point of 
view of Hoare's logic for program correctness. Because program inclusion is just 
halfway program equivalence we can safely restrict our attention to program in
clusion. This moreover has the advantage of connecting closely to the theory of 
prograrrnning using stepwise refinements as described in BACK [2]. 

Our work can be seen as belonging to the subject of axiomatic semantics for prog
rams. :ts novelty lies in the precise mathematical analysis of the situation, i~ 
addition to a rather strict adherence to first order proof systems and first order 
semantics for data type specifications. 

Deriving program equivalence from program correctness properties is not a new idea, 
of course. It occurs in compiler correctness proofs, for instance HEMERIK [12], 
and RUSSELL [16], as well as in the general theory of program correctness as in 
HAREL, PNUELI & STAVI [I I], COUSINEAU - ENJALBERT [9]. 

Because of our interest in a proper theoretical analysis, we try to minimize the 
semantical problems by working with while- programs only; this by no means trivial
izes the problem. We expect that the present theory can be generalized to more 
powerful progrannning concepts, although not without some effort. 

It appears to us to be a worth-while but nontrivial project to relate our proof 
systems to the methods of algebraic semantics, as explained e.g. in GUESSARIAN 
[ I OJ. 

One might expect a close relationship between the present work and MEYER-HALPERN 
[14], which also describes program equivalence from the point of view of first 
order logic. It is an important difference however that their paper focuses on se
mantics, whereas our main interest is in proof systems. 

In the sequel of this introduction an intuitive account is given of the key de
finitions that underly the paper. 

Intuition. Suppose that for s1, s2 E WP(Z) we have 

(I) (semantical inclusion) 

and that we wish to prove this fact. Now obviously, (I) implies 
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(2) Alg(E,T) F' {p}S 1{q}, for all p,q E L(E). 

However, there is no reason to expect that the reverse implication (2) => (1) will 
hold, since (2) states only roughly that s 1 E s2, where 'roughly' refers to the 
limited expressive power of L(E). (In fact, one can show that indeed (2) ,,/,, (I).) 
Now consider 

(3) V(r',T') ~ (E,T) Vp,q E L(r') 

Alg(E' ,T') F' {p}S2{q} => Alg(E' ,T') F' {p}S 1{q}. 

Clearly (1),. (3),. (2). (For (1),. (3), note that if (r',T') ~ (E,T), then the 
reducts of (r',T')-algebras to E form a subset of Alg(E,T); hence Alg(E,T) F' 
s1 E s2 .. Alg(r' ,T') I= s1 E s2.) 

In fact we will restrict our attention to a subclass of all refinements (~) of 
(E,T), namely to the aonser>Vative refinements (~) of (E,T), for reasons which will 
be clear later. So consider 

(4) V(E',T') ~ (E,T) Vp,q E L(E') 

Alg(E',T') F' {p}S/q} ,. Alg(E',T') F' {p}S 1{q}. 

Now we have (I)=> (3) => (4),. (2); and it can be shown that (4),. (I). The con
clusion is that one can treat the 'semantical' inclusion (I) by considering only 
first order properties of s 1, Sf (i.e. asserted programs {p}Si{q}, i = 1,2), 
provided one is willing to consider not only (E,T), but all its (conservative) 
refinements. 

This observation prepares the way for an approach via Hoare's logic of proving 
asserted programs. First of all, define 

(5) s 1 EHL(E,T) s2 iff Vp,q E L(r) 

and consider 

(6) 

HL(E,T) f- {p}S2{q} => HL(E,T) f- {p}S 1{q} 

(prooftheoretiaaZ inalusion) 

(derivable inalusion) 

the prooftheoretical analogue of (4). Indeed, it will turn out that this 'deri
vable' inclusion, written as HL(E,T) f- s1 E s2 , implies the semantical inclusion 
(1). This is our first "proof system" for proving semantical inclusion; we will 
prove that (6), as a relation of s1, s2, is semi-decidable in T. 

Of course the proof system given by (6) is sound, i.e. (6),. (!); otherwise it 
did not deserve the name. Some simple program inclusions that are in its scope, 
are program equivalences like 'loop-unwinding', and the kind of program equiva
lences considered in MANNA [13]. This proof system is not yet complete, however. 
In order to prove semantical inclusion (I), it is sufficient that: 

(7) 3(E',T') ~ (r,T) V(r",T") ~ (E',T') s 1 EHL(E",T") s2• 

(Notation: HL(E,T) II- s1 E s2, in words: foraed inalusion.) 

The proof system embodied by (7) is stronger than that of derivable inclusion (6), 
and we will give an example of program inclusion which requires the extra strength 
of this last proof system. 
Still, (7) is not 'complete'. One can prove, however, that the following 'cofinal' 
inclusion is equivalent to semantical inclusion: 

(8) V(E',T') ~ (E,T) 3(E",T"),;:: (E',T') 



One could suspect that there is a multitude of such relations obtained by repeated 
alternating quantification V3V ••• from the basic relation!;HL(E T) (prooftheoret
ical inclusion). It is a pleasant surprise, suggesting the natu:alness of the 
notions involved, that this possible hierarchy does in fact not exist, and that 
one has no more relations than in the following diagram: 

s1 SHL(l:,T)sz 
proof theoreti-

cal inclusion 
(5) 

HL(l:,T) I- S1SS2 

derivable 

inclusion (6) 

3(l:',T')t? (l:,T) 

s1 SHL(i:' ,T')s2 
inclusion in 

some refinement 

I. PRELIMINARIES ABOUT PROGRAMS AND LOGIC 

HL(l:,T) lf-s 1 ss2 

forced 

inclusion (7) 

cofinal 

inclusion 

(8) 

~ 
semantical 

inclusion 

(I) 

The notions of first order language, derivability ( f-) and satisfiability ( I=) are 
supposed known. 

In this paper we will exclusively deal with while-programs. For a signature Ethe 
set WP(E) of while-programs over Eis defined inductively as follows: 

S ::= x := t ls 1;s2 1 if b then s 1 else s 2 fi I while b dos od, 

where t E Ter(E), the set of terms over the signature E, bis a boolean (i.e. 
quantifier free) assertion E L(E), the first order language determined by E. 

A specification is a pair (E,T) where Tc L(E); the semantics of a specification 
is just the collection Alg(E,T) of E-structures A such that A I= T. We write 
Alg(E) for Alg(E,0). 

A,B E Alg(E,T) will be·written as A= (A, ••• ), B = (B, ••• ) where A, Bare the 
underlying sets. 

For A E Alg(E) and SE WP(E) with variables x 1, ••• ,xk the meaning of Sin A is a 
partial function MA(S): Ak + Ak. MA(S) can be defined using conventional methods 
of operational or denotational semantics. 

We write S(1) = b for MA(S)(!) = b; ifs(!)= b for some b we writes(!) i (other
wise s(!) t). 

Important is the following 
➔ ➔ ➔ 

I.I. COMPUTATION LEMMA. Let x = x 1, ••• ,~ and y = y 1, ••• ,yk. Let S = S(x) E WP(E) 
(i.e. S contains precisely the variables~). 
Then for all n E :N there is a quantifier free assertion Comp5 (;)=yin L(E) 

++ n such that for every A E Alg(E) and all a,b EA: ' 

A I= Comps,n<i) = f = ls(!)i :s: n and s(!) = b. 

He1•e i, ~ are constant symbols denoting !, band Is(!) I denotes the length of the 
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➔ 
computation of Son a. 

1.2. Preliminaries on Hoare's logic. 

Let p,q € L(E) and S € WP(E). Then the syntactic object {p}S{q} is called an 
'asserted program'. For A€ Alg(E), we define: 

A I= {p}S{q} iff v!J € A: s(!H and s(~) = b ,. 

Furthermore we define 

Alg(E,T) I= {p}S{q} - VA€ Alg(E,T) A I= {p}S{q}. 

Hoare's logic w.r.t. (E,T) is a well-known proof system designed to prove facts 
like Alg(E,T) I= {p}S{q}. We will call this proof system HL(E,T); it provides one 
axiom (assignment axiom) and four rules: 

(1) Assignment axiom scheme: {p[t/x]} x:=t {p} 

(2) Composition rule: 

(3) Conditional rule: 

(4) Iteration rule: 

(5) Consequence rule: 

{p}S 1{r} {r}S2{q} 

{p}Sl;S2{q} 

{pAb}S 1 {q} {pA7b }S2{q} 

{p} if b then s1 else s2 fi{q} 

{pAb} S {p} 
{p} while b do S od {pA7b} 

p+pl {pl}S{ql} ql+q 

{p}S{q} 

where (E,T) I- p ➔ pl and (E,T) I- q 1 ➔ q. 

These rules constitute an inductive definition of a relation HL(E,T) I- {p}S{q}; 
we assume familiarity with this proof system. 

HL(E,T) is sound in the following sense: for all p,q € L(E) and S € WP(E): 
HL(E,T) I- {p}S{q} ,. Alg(E,T) F {p}S{q}. 

1.2.1. DEFINITION. HL(E,T) is logically complete if£ for all p,q € L(E) and 
S € WP(E): HL(E,T) I- {p}S{q} - Alg(E,T) I= {p}S{q}. 

(In general, HL(E,T) is not logically complete. The notion of logical completeness 
is studied in BERGSTRA-TUCKER [6].) 

2. REFINEMENTS OF SPECIFICATIONS 

In this section we will collect some facts concerning the notion of refinement and 
especially, conservative refinement. These notions will be of fundamental impor
tance in the sequel. All the material in this section is standard in Mathematical 
Logic and can be found (e.g.) in SHOENFIELD [17] and MONK [15]. 

2.1. DEFINITION (refinements) 
(i) If E1 ~ E and T' ~ T we write (E',T') ~ (E,T) and call (E',T') a refinement 
of (E,T). Here T = {p-€ L(E)IT I- p}. 
We will always suppose that T, T' are consistent. 
(ii) Let A be some algebra. Then EA is the signature of A and TA is the theory of 
A: TA = {p € L(EA) IA I= p}. 
Note that A I= p - Alg(EA,TA) I= p. 
(iii) Let (E, T) be a specification. Then T is complete if Vp € L(E), T I- p or 
T I- 7p. 



2.2. DEFINITION (conservative refinements) 
Let (E' ,T') ~ (E,T) be a refinement such that: Vp e: L(E) T' f- p - T f- p. In 
other words, such that T' n L(E) = T. Then this refinement is called conservative 
over (E,T). 
(So a conservative refinement does not yield more theorems in the 'original' 
language L(E).) 
Notation: (E' ,T') ~ (E,T). 

2.2.1. Note that if Tis complete: (E',T') ~ (E,T),. (E',T') ~ (E,T). 

2.3. DEFINITION. (Expansions and restrictions). Let E' ~ E. 
(i) If (E',T') is a specification, then the restriction of (E',T') to the sig
nature Eis (E,T) where T = T' n L(E). 
(ii) If A' e: Alg(E',T'), then the restriction of A' to Eis obtained by deleting 
all constants, functions, predicates in A' corresponding to symbols in E' -E. The 
resulting A is also called a reduct of A'; and A' is called an expansion of A. We 
will also write A~ A'. 

2.3.1. Note that if A' ~ A, then (EA''TA,) ~ (EA,TA). 

In the sequel we will always deal with conservative refinements (~). They have the 
pleasant property that two refinements (E.,T.) ~ (E,T) (i = I 2) can be joined to 
a r 7fi~ement ~r 1.u r 2 , T1 u T2) ~ (E,T), bro~ided the require~ent r 1 n E = r is 
satisfied. This is a (strong) form of A. Robinson's Consistency Theorem {RCT). 

2.4. ROBINSON'S CONSISTENCY THEOREM. 

Let (E.,T.) ~ (E0 ,T0), i = 1,2, such that r 1 n r 2 
( .) i i • • d 

i T 1 u T2 ~s cons~stent, an moreover 
(ii) (El u L2' Tl u T2) ~ (Eo,To). 

PROOF. See Exercise 22. 15 p.375 MONK [15] or BOOLOS - JEFFREY LBJ p.244. D 
We conclude this section with a useful criterion for conservativity. 

2.5. DEFINITION. Let (r',T') be a refinement such that every A e: Alg(E,T) can be 
expanded to an A' e: Alg(E',T'). Then this refinement is called simple. 

2.6. PROPOSITION. (Criterion for conservativity). Simple refinements are conser
vative. 

PROOF. Suppose (E',T') is a simple refinement of (E,T), i.e. VA e: Alg(E,T) 
3A'E Alg(E' ,T') A' ~ A. Let T If p for some closed assertion p. Then by Godel' s 
Completeness Theorem, A II p for some A e: Alg(E,T). So there is an A' e: Alg(E',T') 
such that A' ~ A. Hence A' I= 7 p; and reasoning backwards we have T' If p. D 

3. PROGRAM INCLUSIONS 

We will now introduce the various notions of inclusion (S.) between programs s1, 
s2 e: WP(E) which we will study, and prove some important facts about them. 

Let Se: WP(E) and A= (A, ••• ) e: Alg(E,T). Let S contain the variables x1, ••• ,x 
(n~I). Then MA(S):An +Anis the partial function defined in Section I. n 

5 
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3.1. DEFINITION. Let s1, s2 E WP(E). 

(i) Semantiaal inalusion: 

Alg(E,T) F s1 ~ s2 - MA(S 1) .=. MA(s 2), for all A E Alg(E,T). 

(ii) Prooftheoretiaal inalusion: 

SI~ HL(E,T) s2 iff for all p,q E L(E): HL(E,T) I- {p}S2{q} 

HL(E, T) I- {p}S 1 {q}. 

(iii) Derivable inalusion: 

HL(E,T) I- s 1 s_ s2 - V(E' ,T') 12: (E,T) 

(iv) Foraed inalusion: 

HL(E,T) II- s 1 s_ s 2 - 3(E' ,T') I=! (E,T) 

(v) Cofinal inalusion: the inclusion s 1 S s 2 is aofinal, if 

V(E',T') I=! (E,T) 3(E",T") I=! (E' ,T') 

3.2. REMARK. (i) Note the direction of the implication in 3.1 (ii). Intuitively: 
s1 is less defined than S2, so {p}S 1{q} is more often trivially true. 
(ii) The phrase 'derivable' in 3.1 (iii) and the choice of the notation' I- ' 
is justified by results in Section 5: it will be proved that derivable inclusion 
w.r.t. (t,T) is semi-decidable in T. 
(iii) In all cases 3.l(i) - (v) there is the corresponding notion of equivalence, 
defined in the obvious way; e.g. for forced equivalence: 

It is clear that all inclusions (C) defined above are partial orders and that all 
equivalences (=)are equivalencerelations, except for forced and cofinal in
clusion resp. equivalence. For the last case, 'cofinal', we will prove in Section 
5 that cofinal inclusion coincides with semantical inclusion, hence cofinal in
clusion is indeed transitive. 

3.3. PROPOSITION. Foraed inalusion is transitive. (Henae it is a partial order and 
foraed equivalenae is an equivalenae relation.) 

PROOF. Let s1,s2,s3 E WP(E), HL(E,T) Ir s 1 ~ s 2 and HL(E,T) II- s 2 s_ s3• Then for 
i = 1,2: 

3("' T') "" (" T) V("'.',T'.') .... ("'. ,T'.) S C S "i' i "" "• "i i o:: "i i i -HL(E'.',T'.') i+t • 
i i 

Now consider such (E!,T!), i = 1,2. We may suppose that r; n E2 = E. 
Now by Robinson's Cofisi§tency Theorem 2.4, 

(E*,T*) = (E; u E2, T; u T2) ~ (E,T). 

. * * * * Evidently, HL(E ,T) I- S1 ~ S2 and HL(E ,T) I- S2S S3-
By transitivity of derivable inclusion, therefore HL(E* ,T*) I- s 1 S s 3• Hence 
HL(E,T) 11- s 1 s_ s3• □ 

The main result of this section consists in establishing the various logical inter
relationships between the previously defined notions of inclusion (and equivalence), 
as they are displayed in the diagram in the Introduction. There are only three non
trivial cases and two of them are dealt with in the following proposition. 

3.4. PROPOSITION. (i) Foraed inalusion implies aofinal inalusion. 



(ii) Semantical inclusion implies cofinal inclusion. 
(See Proposition (5.1) for the other direction.) 

PROOF. (i) Suppose HL(E,T) II- s 1 s_ s 2 , i.e.: 

(I) 3(E' ,T') ~ O:,T) V(E",T") ~ (E' ,T') 

To prove: 

(2) 

Take (E',T') as in (I), 
We may assume that E' n 
and (E',T'); by RCT 2.4 
(ii) To prove: Alg(E,T) 

3(E" T") 1> (E' T') 
I' 1 - I' I 

and consider a (Ej,Tj) as 
E' = E. Then take (E",T") 
J. . 'bl I I tfiis is possi e. 

I= SI s_ S2 ,. 

sl SHL(E" T") s2 
I ' 1 

in (2). 
in (2) as the union of (Ej,Tj) 

V(E',T') I:?: (E,T) 3(E",T") I:?: (E',T') S C S 1 -HL(E",T") z· 

Suppose Alg(E,T) I= s 1 ,S Sz, and consider (E' ,T') I:?: (E,T). 
According to BERGSTRA-TUCKER [7] there is a (E",T") I:?: (E',T') for which HL is 
logically complete (See Def. 1.2.1). 
Consequently: s 1 ~L(E",T") s2 • D 
3.5. REMARK. All inclusions introduced above, except semantical inclusion, were 
obtained by quantification over the 'basic' prooftheoretical inclusions_HL" This 
suggests looking at all inclusions of the following general form: 

V(E3,T3) ~ (Ez,Tz) ••• 3 (E2n'T2n) ~ (E2n-l'T2n-l) SI s_HL(E T ). Sz, 
2n' Zn 

d l 'k ' CV3V ••• V S d h d 1 ' b . db ' h ' 3 A an i ewise s 1 -HL(E,T) 2 , an t e ua notions o taine y interc anging , • 

(Note that only alternating strings of quantifiers are interesting, since clearly 
-VW-- = --V-- and likewise for 3.) So derivable inclusion w.r.t. (E,T) is 
SHL(E,T)' forced inclusion is s:tcr,T)' and cofinal inclusion is s~~(E,T). (Inclu-

sion in some refinement, s:L(E,T)' was not mentioned in this Section, because it 

seems to be of less importance). 
Now it is easy to show (using RCT 2.4) that (dropping the subscript 

HL(E,T)) c 3V = cV3V and cV3 = c 3V~, which implies that only five essentially 
different-inclusions exist, viz Ci where i = empty, V,3,V3,3V. 

4. PROTOTYPE PROOFS 

In this section we will define the notion of 'prototype proof', which will 
play an important role in the sequel. Its main property is that every proof of 
some {p}S{q} is a substitution instance of the prototype proof w(S) corresponding 
to S. First we need an auxiliary concept. 

4.1. DEFINITION. The class IWP(E) (with typical elements s*, s**, ••• ) of inter
polated while-programs is inductively defined by 

s* ::= s I {p}s* I s*{p} I if b thens~ else s; fi I 
while b dos* od. 

Here SE WP(E). So the class of interpolated statements contains next to the usual 
statements also asserted statements and statements interlaced with assertions in 
an arbitrary way; but it contains also proofs of asserted statements. These will 
be singled out by means of the following extended proof rules. 

4.2. DEFINITION. By means of the following axioms and extended proof rules we can 
derive proofs of asserted programs: 

7 
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(I) Assignment a:x:iom scheme: {p(t)} X := t {p} 

* {p}S 1 {r} 
(2) Extended composition rule: 

(3) Extended ciontitional rule: 

* {pAb} s 1 {q} * {pA 7 b} s2 {q} 

* {p} if b then {pAb} s 1{q} else 

* {pAb} S {p} 
(4) Extended iteration rule: 

* {p} while b do{pAb} S {p} od {pA7 b} 

(5) Extended consequence rule: 
* p-+ P1 {pl} S {qi} qi-+ q 

* {p}{pl }S {qi }{q} 

4.3. DEFINITION AND NOTATION. 

(i) Let PR(Z,T) be the class of proofs (interpolated programs) which can be 
derived using this axiom scheme and extended proof rules, such that in (S) only 
implications provable from Tare used. 
(ii) Ifs* E IWP(Z), then a(S*) will denote the underlying program obtained by 
erasing all {p} ins*. 
(iii) Ifs* E PR(Z,T), then K(S*) will denote the set of implications p-+ p' used 
in the derivation of S*. Note that these implications can be read of directly 
from S*: 

K(s*) = {p-+ p' I {p} {p'}-=- s*}. 

(Here "c" denotes the relation of being contained as a 'subword'.) 
(iv) Ifs* E PR(Z,T) ands*= {p} s7 {q}, then pre(S*) = p and post(S*) q. 
(v) Lets* E PR(Z,T). Thens* is called a reduced proof, iff it contains no 
occurrence of a triple {p} {q} {r}. 
(By the transitivity of-+, every proof may be supposed reduced, up to equivalence.) 
(vi) Two interpolated programs s*, s** such that a(s*) = a(S**) =Sare called 
matching if at every place the same number of assertions occur ins*, s**. 
(vii) Lets*= --{p}-- be an interpolated statement containing {p}. Thens** 
= --{p} {p}-- is called a trivial expansion of s*. 

In the following definition we will use a set of n-ary relation symbols {r.li~O}. 
Ifs* E IWP contains some of these r-syrnbols, [s*Jj will be the result of fe
placing each occurrence of r • in S * by r ( i j) where ( , ) : :N2 -+ :N is the usual 
bijective pairing function. tThis device m~rely serves to 'refresh' the r-syrnbols 
where necessary.) 

4.4. DEFINITION. 

(i) Let SE WP(Z) involve the variables i (= x 1, ••• ,xn). By induction on the 
structure of S we define 1r'(S) as follows: 

(I) 

(2) 

1r'(x.:=t) 
l. 

x. :=t 
l. 

(That is, 1r'(S 1) and 1r'(S2) are concatenated, without infix. Moreover, the r-syrn
bols in [1r'(S 1)JO are made distinct from those in [1r'(S2)J 1.) 



(3) 1r'(if b then s 1 else s2 fi) = 

{r0 (;)} if b then {r0 (;)Ab}[1r'(S 1)J2 {r1(i)} 

-+ -+ else {r0(x)A7b} [1r'(s2)J3 {r 1(x)} 

fi {r 1 (;)}. 

(4) 1r' (while b do S od) 

{r0 (t)} while b do {r0(l)Ab} s* od {r0(i)A7b} {r 1 (i)} 

* -+ * where S = [1r'(S)J4 and r 0 (x) = post(S ). 

(ii) Now 1r(S) = {r0 (l)} [1r'(S)J0 {r1 (;)}. 

1r(S) is called the prototype proof of S. 

4.5. EXAMPLE. Let S be: x1 := 0; 

x2 := 1; 

while Xz > X3 

do if x 1 = 0 

then x3 := 0 

else xi := Xz+l 

fi 

x 1 := x1+x2 

Then 1r(S) is as follows. (The assertions to the right of the vertical bar are for 
use in Example 4.7.1.) 

1r(S) = 

{r 1 (xi ,xz ,x3)} 
{r2(0,x2 ,x3)} 

x 1 :=O 

{r2(xl,x2,x3)} 
{r3 (x1,I,x3)} 

x2 :=t 

{r3(Xl ,xz,X3)} 

{r6(xl,x2,x3)} 

while Xz > X3 do 

{r6(x1,x2,x3)Ax2>x3} 

{r4 (xi ,x2,x3)} 

if x 1=0 then 

{r4(x1,x2,x3)Ax)=0} 

{r5 (x 1 ,x2 ,0)} 

{true} 

{O=O} 

{x1=0} 

{x1=0 A 1=1} 

{x =O 1 A x2=J} 

{x =O 1 A x2=1} 

{x =O 1 AX =I . 2 
{x =O I AX =I 2 

A x2>x3} 

A x2>x3} 

{xl=O A Xz=l A x2>x3 A x)=O} 

{x1=0 A x2=1 A 0=0} 
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x3 :=Q 

{r5(xl,x2,X3)} 

{r6(x1,xz,x3)} 

else 

{r 4 (x1 ,x2 ,x3) " 7 x 1 = O} 

{r/x2+l ,xz,X3)} 

x 1 :=x2+ 1 

{r7(xl ,xz,x3)} 

{r6 (xi ,x2,x3)} 

fi 

od 

{r6 (x1,x2,x3) A7x2>x3} 

{r8(xl+x2,x2,x3)} 

xi :=xi +x2 

{r8(xl ,x2,x3)} 

{r9 (x1 ,x2,x3)} 

{x1=0 /\ x2=1 A x3=0} 

{x1=0 A x2=1} 

{xl=O " Xz=l " X2>X3 " 7 xi = O} 

{x2+1=0 "Xz=l "x3=0} 

{x1=0 "x2=1 "x3=o} 

{x1=0 /\ x 2=J} 

{xl=O "xz=l "7x2>X3} 

{xl+xz=l "Xz=l "X3~l} 

{x1=1 "x2=I "x3~t} 

{xi=) "Xz=l "x3~1} 

* 4.6. DEFINITION. Let S E IWP(E) contain the n-ary relation symbol r, and let 
p = p(x 1, ••• ,xn) E L(E). (Note: p may contain other variables than those display
ed,) 

Then ~~(s*) is the result of replacing each r(t 1, ••• ,tn)' occurring ins*, by 
pl' ... ,p 

p(t 1, ••• ,t ). Likewise we define~ n(s*) • 
n r 1, ••• ,rn 

4.7. LEMMA. Lets* E PR(E,T) be a reduced proof such that cr(s*) = s. Then 
~:TI(S~* for some substitution~ as in Definition 4.6. (So every proof is an 
instance of the prototype proof.) 

PROOF. Take S, s* as in the lemma. We may supposes* and TI(S) are matching; other
wise only some trivial expansions (Definition 3.3) of s* are required. Then we can 
construct by induction on the structure of Sa substitution as required. This con
struction is entirely straightforward and routine; it will be left to the 
reader. 0 

4.7.1. EXAMPLE. Let S be as in Example 4.5; we use the abbreviations 

S" = if x 1=0 then x3:= 0 else x 1:=x2+1 fi 

S' = while Xz>X3 do S" od 

S = x 1 :=0; x 2:=l; S'; x 1 :=x 1+x2• 

Then the following proof of {true}S{x1=1 "x2=1 "x3~1}, written as a column of 
asserted programs and implications, is a substitution instance of TI(S) as in Ex
ample 4.5, via the substitution~ displayed there (see the assertions to the right 
of the bar). 



o. 

I. 

0, 1 : 2 

3 

2,3: 4 

5 

4,5: 6 

7 

8 

7,8: 9 

10 

11 

10, 11: 12 

9, 12: 13 

14 

13, 14: 15 

15: 16 

6, 16: 17 

18 

19 

18,19: 20 

17,20: 21 

true-+ O=I 

{O=O}x1:=0{x1=0} 

{~}x1:=0{x1=0} 

x 1=0-+ x 1=0 A l=I 

{true}x1 :=O{x1=0 A l=I} 

{xl=O A 1=1}x2:=l{x1=0 A x2=)} 

{true}x1:=0; x2:=I {x1=0 A x2=1} 

x 1=0 A x2=1 A x2>x3 A x 1=0-+ x 1=0 A x2=J A O=O 

{xl=O A x2=) A O=O}x3:=0{x1=0 A x2=l A X3=0} 

{xl=O A x2=I A x2>x3 A x1=0}x3:=0{x1=0 A x2=) A X3=0} 

{x2+1=0 A x2=) A X3=0}x1:=X2+){x1=0 A x2=) A X3=0} 

xl=O A X2=) A X2>X3 A xl+o-+ x2+1=0 A x2=) A X3=0 

{xl=O A x2=) A x2>x3 A x1IO}x1:=x2+1{xl=O A x2=) A X3=0} 

{X1=0 A x2=1 A X2>X3}S"{x1=0 A x2=) A x3=0} 

x 1=0 A x2=J A x3=o-+ x 1=0 A x2=J 

{x1=0 A x2=1 A x2>x3}s"{x1=0 A x2=1} 

{xl=O A x2=) }S' {xl=O A x2=) A 7 X2>x3} 

{true}x1 :=0; x2:=I; S'{x1=0 A x2=1 A 7x2>x3} 

x 1=0 A x2=1 A7x2>x3 -+ x 1+x2=1 A x2=1 A x3~J 

{x1+x2=1 A x2=1 A x3~1}x1:=x1+x2{x1=1 A x2=1 A x3~J} 

{x1=0 A x2=1 A 7x2>x3} x1 :=x1+x2{x1=J A x2=1 A x3~1} 

{true}S{xl=I A x2=1 A X3~1}. 

0 0 0 0 4.8. PROPOSITION. Let E =Eu En(S) and T =Tu K(n(S)). Then (E ,T) e (E,T). 

PROOF. Take arbitrary p,q such that HL(E,T) r {p}S{q}. (E.g. take q = true.) Let 
~{q} E PR(E,T) be the corresponding proof; we may suppose it matches n(S). 

Now let A E Alg(E,T), so by soundness of HL we have A I= {p}S{q}. Further, it 
is not hard to see that the r.(1) can be interpreted in A just like the matching 
assertions in {p}s*{q}. 1 0 0 0 

Hence every A E Alg(E,T) can be expanded to an A E Alg(E ,T ). So by the 
conservativity criterion 2.6, we have (EO,TO) ~ (E,T). D 

5. PROOF SYSTEMS 

Our interest is in formal criteria that imply program inclusion. The diagram 
described in the Introduction contains three such concepts: cV, c3V and cV3 (in 
the notation of Remark 3.5). NowcV3 coincides with semantical program inclusion 
(3.4 plus 5.1) and therefore c 3V"Is a sufficient criterion (3.4(i)) as well as 

cV. -

11 

HL(E,T) r s 1 S s2 is a semicomputable relation (5.2). It constitutes a formal 
proof system of a conventional nature. r is quite natural and suffices for many 
examples. V y3 r ( C ) is not complete however (5. 4 (i)). The proof system Ir ( C ) provides 
a less effective but considerably stronger method (5.4(ii)). In fact Ir is also 
incomplete (5.3). Because c 3V can hardly be considered a formal proof method, we 
are left with the problem of finding useful extensions of r and 0- • This seems 
to us to be a research topic of considerable importance. 
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5.1. PROPOSITION. Cofina.l inclusion implies semantical inclusion, i.e. 

vo::' ,T') t:=: o:,T) 3(I:",T") ~ (I:' ,T') SI SHL(I:",T") s2 => 

Alg(I:,T) F s 1 S s 2• 

PROOF. Suppose Alg(I:,T) 
-+ -+ -+ 

++ ➔ 
~ s 1 S Sz- Choose A E Alg(I:,T), a,b E A with A I= s 1(a) = 

Let k = I s 1 (!)I, i.e. A I= Compk S (1) b. One obtains a = b and A l;E s 2 (a) = b. 

signature r0 by adding 
+ ~ + + •I 0 

names~ and~ for a and b. Then let I:'= I: u I:rr(Sz)' 

T' =Tu K(rr(S 2)). One proves (I:',T') ~ (I:,T) just like Proposition 4.8. Moreover, 
-+ -+ ➔ ➔➔ -+ -+ -+ ➔➔ 

let 0 = Compk,SJ(~) = £ "Vx (x=~ + r 0 (x)) "Vx (r 1 (x) +7x=£),Here 

r 0 (x) = pre(rr(S2)) and r 1(x) = post(rr(S2)) (see Definition 4.3). Then (I:',T' u {0}) 

is consistent (a model is found by expanding A). Clearly 

➔➔ ++ 
HL(I:' ,T') I- {0} "x=a}S2{7x=b}. 

Suppose (I:", T") ~ (I:', T' ), then T" u { 0} is consistent and 

Assume for a contradiction that s 1 SHL(I:",T") s 2 then: 
➔➔ ➔➔ 

HL(I:"T") I- {0Ax=a}S {7x=b}. , - I -

However in a model B of T" u {0} this asserted program is incorrect because 
-+ ➔ 

B f= Compk s (a) = b. 0 
' I - -

5.2. THEOREM. HL(I:,T) I- SIS s2 and HL(I:,T) I- SI = s2 as predicates of (SI ,Sz) 
are semidecidable in T. 

PROOF. Let I:O = I: u 

(I:,T). Now we claim 

which implies the theorem because of the semidecidable character of Hoare's Logic. 

To prove the claim:=> is immediate. So assume HL(I:o,To) I- {r/i)}s1{r/i)}. 
+ * + 0 0 . Let {rO(x)}S 1{r1(x)} E PR(I: ,T ). Given some (I:',T') ~ (I:,T) assume 

HL(I:' ,T') I- {p}S2{q} •. Let {p}s;{q} E PR(I:' ,T') be the corresponding proof which 

we may assume matching with rr(S2). By Lemma 4.7, {p}s;{q} is an instance of rr(S 2) 

via some substitution~- Applying the substitution~ on {rO(~)}S7{r 1(~)} we obtain 

a proof {p}Hs7){q} in PR(I:' ,T'). Consequently HL(I:' ,T') I- {p}S 1{q}. D 

Let A= (:N, O,S,P), I:= I:A and T =TA.These notation conventions will hold 
until the end of this paper. 

5.3. THEOREM. II- is incomplete. In fact there are s 1 ,s2 E WP(I:) with Alg(I:,T) F 
SIS s2 but HL(I:,T) llf SIS s2. 

PROOF. An essentially straightforward verification shows that Alg(I:,T) 5 s 1 S s 2 
is a complete II~ predicate of (S 1 ,s2) whereas HL(I:,T) II- s 1 S s 2 is a r2 predicate 
of (S 1,s2). Recursion theory then tells that both predicates must differ. 0 

5.4. PROPOSITION. Let s 1, s 2 be the following programs over I:: 

s 1= y:=O; S' where S '= while x f. 0 do y:=Sy; x:=Px od 

s 2= y:=x; x:=O 



then (i) HL(E,T) If SI s_ s2 but (ii) HL(E,T) II- SI s_ s2. 

PROOF. (i) s1 ~HL(E,T) s2 because 

(l) HL(E,T) I- {x=z}S2{x=O A y=z} 

(2) HL(E,T) If {x=z}S 1{x=0Ay=z}. 

Here (2) requires a proof: suppose not (2), then 

Hence there must be an invariant r(x,y,z) such that T I- <P 1 A <P 2 A <1> 3 where 

<P = x=z A y=O + r(x,y,z) 
I 

<Pz= 3x',y' [x'+o A x=Px' A y=Sy' A r(x',y',z)] + r(x,y,z) 

<t> 3= x=O A r(x,y,z) + y=z. 

Also A I= <Pi /\ <Pz /\ <l>J• However, a simple proof shows then that A I= r(!!,~•!:) -
- a+b=c, in contradiction with the non-definability of+ in A. 
(ii). Let A'= (::N, O,S,P,+). Because (E,T) is complete, we have (EA',TA') ~ (E,T). 
Using the method of prototype proofs, HL(EA 1 , TA') I- s1 S s2 is established as 
follows: consider n(S 2), this is 

{r0(x,y)}{r 1(x,x)} y:=x {r1(x,y)}{r2(0,y)} x:=O {r2(x,y)}{r3(x,y)}. 

So we have to find a proof of {r0(x,y)} s1 {r3(x,y)} in the theory 

TA, u {r0(x,y) + r 1(x,x), 

r 1(x,y) + r 2(0,y), 

r 2(x,y) + r 3(x,y)}. 

This is indeed possible: 

y:=O 

{r3(0,x) /\ y=O} 

{3x0[r3(0,x0) A x=xo /\ y=O]} 

{3xo[r3(0,xo) /\ x+y=xo]} 

while x+o do 

{3x0[r3(o,x0) A x+y=xo /\ xjO]} 

{3x0[r3(0,x0) A Px+Sy=xO A xjO]} 

y:=Sy 

x:=Px 

13 
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od 

{3xo[r3(0,xo) A x+y=xo] A x=O} 

{3xolr3(0,xo) A y=xo A x=OJ} 

{r3 (x,y)}. 
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