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Factoring polynomials with rational coefficients. 

A.K. Lenstra, H.W. Lenstra, Jr. & L. Lovasz 

In this paper we present a polynomial-time algorithm to solve the follow

ing problem: given a non-zero polynomial f E m[x] in one variable with 

rational coefficients, find the decomposition of f into irreducible 

factors in m[x]. It is well known that this is equivalent to factoring 

primitive polynomials f E ~[X] into irreducible factors in ~[x]. Here 

we call f E ~[x] primitive if the greatest common divisor of its coeffi

cients (the content of f) is 1. 

Our algorithm performs well in practice, cf. [9]. Its running time, 

measured in bit operations, is 
12 9 3 O(n +n (loglfl) ). Here f E 71,;[X] 

the polynomial to be factored, n = deg(f) is the degree of f, and 

for a polynomial I:. 
J. 

i 
a.X 

J. 
with real coefficients a .• 

J. 

is 

An outline of the algorithm is as follows. First we find, for a 

suitable small prime number p, a p-adic irreducible factor h of f, 

to a certain precision. This is done with Berlekamp's algorithm for factor

ing polynomials over small finite fields, combined with Hensel's lemma. 

Next we look for the irreducible factor h0 of f in 1Z[X] that is 

divisible by h. The condition that h0 is divisible by h means that 

f h0 belongs to a certain lattice, and the condition that h0 divides 

implies that the coefficients of h0 are relatively small. It follows that 

we must look for a "small" element in that lattice, and this is done by 

means of a basis reduction algorithm. It turns out that this enables us to 

determine h0 • The algorithm is repeated until all irreducible factors of 

f have been found. 
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The basis reduction algorithm that we employ is new, and it is de

scribed and analysed in section 1. It improves the algorithm given in [10, 

sec. 3]. The new algorithm has several other applications that we do not 

pursue in this paper. 

The connection between factors of f and reduced bases of a lattice 

is treated in detail in section 2. The theory presented here extends a re

sult appearing in [9, Theorem 2]. It should be remarked that the latter re

sult, which :is simpler to prove, would in principle have sufficed for our 

purpose. 

Section 3, finally, contains the description and the analysis of our 

algorithm for factoring polynomials. 

It may be expected that other irreducibility tests and factoring 

methods that depend on diophantine approximation (Cantor [3], Ferguson and 

Forcade [5], Brentjes [2, sec. 4A], Zassenhaus [16]) can also be made into 

polynomial-time algorithms with the help of the basis reduction algorithm 

presented in section 1. 

Splitting an arbitrary non-zero polynomial f E :.Z[X] into its content 

and its pr imJ[ ti ve part, we deduce from our main result that the problem of 

factoring such a polynomial is polynomial-time reducible to the problem of 

factoring positive integers. The same fact was proved by Adleman and 

Odlyzko [1] under the assumption of several deep and unproved hypotheses 

from number theory. 

The geneiralization of our result to algebraic number fields and to 

polynomials in several variables is the subject of future research. 

Acknowledgements are due to J.J.M. Cuppen for permission to include 

his improvement of our basis reduction algorithm in section 1. 



1. Reduced bases for lattices. 

Let n be a positive integer. A subset L of the n-dimensional real 

vector space lRn is called a lattice if there exists a basis b 1 , b 2 , 

, ... , b 
n 

of such that 

r. E 2Z 
1 

( 1 s i s n) } • 

3 

In this situation we say that • • • I b 
n 

form a basis for L, or 

that they span L. We call n the rank of L. The determinant d(L) of 

L is defined by 

( 1.1) 

the b. being written as column vectors. This is a positive real number 
1 

that does not depend on the choice of the basis [4, sec. I. 2]. 

Let bl, b2, • • • I b E 
n 

lRn be linearly independent. We recall the 

Gram-Schmidt orthogonalization process. The vectors b'!' ( 1 s i s n) and the 
1 

real numbers µ. . ( 1 s j <is n) are inductively defined by 
1] 

( 1. 2) b'!' 
i-1 

µ .. b'!' = b. - L. 1 
1 1 J= 1] J 

( 1. 3) µ_. = (b. , b'!') / (b'!', bj), 
1] 1 J J 

where ( , ) denotes the ordinary inner product on 

is the projection of b. 
1 

on the orthogonal complement of 

i-1 i-1 

Notice that 

i-1 
L. l lRb., 

J= J 

b* 
i 

and 

that L l lRb. = L. l lRb'!', 
J= J J= J 

for 1 sis n. It follows that • • • I 

b* is an orthogonal basis of lRn. 
n 

In this paper, we call a basis 

reduced if 

• • • I 

( 1.4) Iµ .. I s 1/2 
1] 

for 1 s j <is n 

b 
n 

for a lattice L 
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and 

(1.5) I * * 12 > 31 * 12 b · + µ · · lb. 1 - -4 b. 1 l. l. J.- J.- J.-
for 1 <is n, 

where I I denotes the ordinary Euclidean length. Notice that the vectors 

b'!' + µ .. lb'!' 1 
l. l. J.- J.-

and b'!' 1 J.-
appearing in (1.5) are the projections of 

and b. 1 J.-
on the orthogonal complement of 

i-2 
L. 1 JRb .• 

J= J 
The constant 

in (1.5) is arbitrarily chosen, and may be replaced by any fixed real 

number y with 
1 -<y<l. 
4 

3 
4 

b. 
l. 

(1. 6) Proposition. Let b 1 , b 2 , ... , bn be a reduced basis for a lattice 

L in 
n 

]R , and let ••• I b* 
n 

be defined as above. Then we have 

( 1. 7) 

(1.8) 

( 1. 9) 

Remark. If 

lb. I 2 
J 

d(L) 

lbl I 

3 
4 

s 2i-l. lb'!'l 2 
l. 

for 1 s j s i 

s 
~=1 

lb. I 
l. 

s 2n(n - 1)/4•d(L), 

s 2 (n-1)/4. d(L)l/n_ 

in (1.5) is replaced by y, with 

s n, 

1 
- < y < 1, 
4 

then the 

powers of 2 appearing in (1.7), (1.8) and (1.9) must be replaced by the 

same powers of 4/ ( 4y - 1) . 

Remark. From (1.8) we see that a reduced basis is also reduced in the sense 

of [10, eq. (7)]. 

Proof of (1.6). From (1.5) and (1.4) we see that 

lb'!'l 2 ~ 3 2 I * 1 2 > !.lb* 1 2 (-4 - µi i-1). bi-1 - 2 i-1 l. 

for 1 <is n, so by induction 

lb'!'l 2 
J 

From (1.2) and (1.4) we now obtain 

for 1 s j sis n. 



1 i 2 = (1 + -(2 - 2))•lb!I 
4 J. 

It follows that 

for 1 ~ j ~ i ~ n. This proves (1.7). 

From (1.1), (1.2) it follows that 

and therefore, since the b* are pairwise orthogonal 
i 

d(L) = rf1 1 lb!I. 
J.= J. 

5 

lb*I < lb I d lb. I <_ 2(i-l)/2 •lb*. I From . _ . an 
J. J. J. J. 

we now obtain (1.8). Putting 

j = 1 in (1.7) and taking the product over i = 1, 2, ••. , n we find 

(1.9). This proves (1.6). 

Remark. Notice that the proof of the inequality 

(1.10) 

did not require the basis to be reduced. This is Hadamard's inequality. 

(1.11) Proposition. Let L c lRn be a lattice with reduced basis b1 , b 2 , 

• • • I b . 
n 

Then 

for every x EL, x # O. 
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Proof. Write ~n b ~n r'b* · h x = "-· 1 r. . = "-. 1 . . wit 
i= ]. ]. i= ]. ]. 

r. E !!Z, 
]. 

r' E JR 
i 

(1::; i 

::; n) • If i is the largest index with r. 'f' 0 
]. 

then r' 
i 

r., 
]. 

so 

By (1.7), we have This proves (1.11). 

(1.12) Proposition. Let L c JRn be a lattice with reduced basis b 1 , b 2 , 

•• 0 , b. Let 
n 

be linearly independent. Then we have 

n-1 2 2 2 
::; 2 •max{ I x 1 I , I x 2 I , ... , I xt I } 

for j = 1 , 2, ... , t. 

Proof. Write with r,. E 2Z 
J.J 

( 1 ::; i ::; n) for 1 ::; j ::; t. 

For fixed j, let i(j) denote the largest i for which r .. 'f' 0. 
J.J 

Then 

we have, by the proof of (1.11) 

(1.13) 

for 1 ::; j ::; t. Renumber the x. such that i(1) ::; i(2) ::; ... ::; i(t). We 
J 

claim that j ::; i(j) for 1 ::; j ::; t. If not, then would 

all belong to JRb 1 + JRb2 + ... + JRbj-l, a contradiction with the linear 

independence of x 1 , x 2 , •.• , xt. From j::; i(j) and (1.7) we obtain, 

using ( 1. 13) : 

::; 2n-1 • lb* 12 ::; 
i(j) 

for j = 1, 2, ... , t. This proves (1.12). 

I 1 2 
Remark. Let A1 , A. 2 , ••• , An denote the successive minima of on L, 

see [4, Ch. VIII], and let b 1 , b 2 , ... , bn be a reduced basis for 

Then ( 1. 7) and ( 1.12) easily imply that 

for 1 ::; i ::; n, 

L. 



7 

so lb. 12 is a reasonable approximation of A,. 
J. J. 

(1.14) Remark. Notice that the number n-1 
2 may in (1.11) be replaced by 

1 sis n} and in (1.12) by 

(1.15) We shall now describe an algorithm that transforms a given basis 

b 1 , b 2 , ••• , bn for a lattice L into a reduced one. The algorithm im

proves the algorithm given in [10, sec. 3]. our description incorporates 

an additional improvement due to J.J.M. Cuppen, reducing our running time 

estimates by a factor n. 

To initialize the algorithm we compute b* 
i 

(1 s i s n) and 

(1 s j <is n) using (1.2) and (1.3). In the course of the algorithm the 

vectors b 1 , b2 , ••• , bn will be changed several times, but always in such 

a way that they form a basis for L. After every change of the b. J. 
we 

shall update the 

valid. 

b'!' J. 
and in such a way that (1.2) and (1.3) remain 

At each step of the algorithm we shall have a current subscript k E 

{ 1 , 2, ••. , n + 1 } . We begin with k = 2. 

We shall now iterate a sequence of steps that starts from, and returns 

to, a situation in which the following conditions are satisfied: 

( 1.16) lµijl < .!. for 1 s j < i < k, - 2 

(1.17) lb'!' + * 12 ~ lib'!' I 2 for 1 < i < k. µ .. lb. 1 J. J. J.- J.- 4 J.-1 

These conditions are trivially satisfied if k = 2. 

In the above situation one proceeds as follows. If k = n + 1 then 

the basis is reduced, and the algorithm terminates. Suppose now that ks n. 

Then we first achieve that 

(1. 18) I I < .!. 
µkk-1 - 2 if k > 1. 
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If this does not hold, let r be the integer nearest to µk k-1' and 

replace bk by bk - rbk-1. The numbers µkj with j < k - 1 are then 

replaced by µk. - rµk-1 j' and µk k-1 by µk k-1- r. The other µij . J 

and all b~ are unchanged. After this change ( 1.18) holds. 
1 

Next we distinguish two cases. 

Case 1. Suppose that k ~ 2 and 

( 1.19) 

Then we interchange bk- l and bk, and we leave the other b. unchanged. 
1 

The vectors and b* 
k 

and the numbers 

µik' for j < k-1 and for i > k, have now to be replaced. This is done 

by formulae that we give below. The most important one of these changes is 

that b:-1 is replaced by b* 
k + µkk-lb:_1; so the new value of 

is less than 
3 

times the old These changes being made, we 
4 

one. 

by k - 1. Then we are in the situation described 

and we proceed with the algorithm from there. 

Case 2. Suppose that k = 1 or 

( 1. 20) lb* b* ,2 > 3lb* ,2 
k + µk k-1 k-1 - 4 k-1 • 

In this case we first achieve that 

(1.21) 
1 :s; 
2 

for lSjSk-1. 

by ( 1.16) and 

lb* 12 
k-1 

replace 

(1.17), 

(For j = k - 1 this is already true, by ( 1.18) • ) If ( 1. 21) does not hold, 

k 

let t be the largest index < k with 
1 

lµktl > 2, let r be the integer 

nearest to The numbers 

j < t are then replaced by µkj - rµtj'· and µkt by µkt - r; 

with 

the other: 

and all b* 
i 

are unchanged. This is repeated until (1.21) holds. 

Next we replace k by k + 1. Then we are in the situation described 
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by (1.16) and (1.17), and we proceed with the algorithm from there. 

This finishes the description of the algorithm. Below we shall prove 

that the algorithm terminates. 

(1.22) For the sake of completeness we now give the formulae that are 

needed in case 1. Let • • • I b n 
be the current basis and 

as in (1.2), (1.3). Let k be the current subscript for which (1.16), 

( 1. 1 7) , ( 1. 18) and ( 1. 19) hold. By C., 
l. 

c* 
i 

and V .• 
J.) 

we denote the 

µ,. 
J.J 

vectors and numbers that will replace b., 
l. 

b* 
i 

and respectively. 

The new basis c 1 , c 2 , ••• , en is given by 

Since 

~-2 
j=l JRbj 

c. = b. 
l. l. 

for ii k - 1, k. 

is the projection of bk on the orthogonal complement of 

we have, as announced: 

(cf. the remark after (1.5)). To obtain c: we must project b:_1 on 

the orthogonal complement of lRc:_1 • That leads to 

For i i k - 1 , k we have c'!' = b'!'. 
l. l. 

Let now i > k. To find Vi k-1 

and we substitute 
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in 
i-1 

b. = b'!' + L. l µ .. b'!'. 
i i J= iJ J 

Finally, we have 

That yields 

for 1 ~ j < k - 1, and vij = µij if 1 ~ j < i ~ n, {i, j} n 

{k-1,k}=0. 

We remark that after the initialization stage of the algorithm it is 

not necessary to keep track of the vectors It suffices to keep track 

of the numbers in addition to and the vectors b .• 
i 

Notice 

(1.23) To prove that the algorithm terminates it is useful to introduce 

the quantities 

(1.24) 

for O ~ i ~ n. It is easily checked that 

(1.25) d . = TT~ l I b'!' I 2 
i J= J 

for O ~ i ~ n. Hence the d. are positive real numbers. Notice that 
i 

and d = d(L) 2 . 
n 

...n-1 
D = II. l d .. 

i= i 

Put 

By (1.25), the number D only changes if some b'!' 
i 

is changed, which only 

occurs in case 1. In case 1, the number dk-l is reduced by a factor 
3 

< -4' 
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by (1.25), whereas the other d. 
l. 

are unchanged, by (1.24); hence D is 

3 reduced by a factor < 4. Below we prove that there is a positive lower 

bound for d. that only depends on L. It follows that there is also a 
l. . 

positive lower bound for D, and hence an upper bound for the number of 

times that we pass through case 1. 

In case 1, the value of k is decreased by 1, and in case 2 it is 

increased by 1. Initially we have k = 2, and ks n + 1 throughout 

the algorithm. Therefore the number of times that we pass through case 2 

is at most n - 1 more than the number of times that we pass through case 

1, and consequently it is bounded. This implies that the algorithm termi-

nates. 

To prove that d. 
l. 

has a lower bound we put 

m(L) = min{lxl 2: x EL, xi O}. 

This is a positive real number. For i > o, we can interpret d. 
l. 

as the 

square of the determinant of the lattice of rank i spanned by b 1 , b 2 , 

••• I b. 
l. 

in the vector space i 
I:. 1 lRb .• 

J= J 
By [4, Ch. I, Lemma 4 and Ch. II, 

Theorem I], this lattice contains a non-zero vector x with lxl 2 s 

as required. 

We shall now analyse the running time of the algorithm under the added 

hypothesis that 
n 

b. E 11; 
l. 

for 1 sis n. By an arithmetic operation we 

mean an addition, subtraction,multiplication or division of two integers. 

Let the binary length of an integer a be the number of binary digits of 

lal. 

(1.26) Proposition. Let 

and let B E :R, B ~ 2, 

L c ?i;n be a l~ttice with basis b 1 , b 2 , 

be such that lb. 12 s B for 1 sis n. 
l. 

••• I b , 
n 

Then 

the number of arithmetic operations needed by the basis reduction algorithm 
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described in (1.15) is 
4 

O (n log B), and the integers on which these oper-

ations are performed each have binary length o (n log B) . 

Remark. Using the classical algorithms for the arithmetic operations we 

find that the number of bit operations needed by the basis reduction algo-

rithm is O (n 6 (log B) 3 ) • This can be reduced to 
5+£ 2+£ 

O(n (logB) ), for 

every £ > 0, if we employ fast multiplication techniques. 

Proof of (1.26). We first estimate the number of times that we pass through 

cases 1 and 2. In the beginning of the algorithm we have d. :;; 
1. 

i 
B , by 

(1.25) t so < n(n-1)/2 
D - B . Throughout the algorithm we have D 2 1, since 

d. E zz; 
1. 

by (1.24) and d > 0 by (1.25). So by the argument in (1.23) the 
i 

number of times that we pass through case 1 is 2 O (n log B) , and the same 

applies to case 2. 

The initialization of the algorithm takes O(n3 ) arithmetic operations 

with rational numbers; below we shall see how they can be replaced by oper

ations with integers. 

For (1.18) we need O(n) arithmetic operations, and this is also true 

for case 1. In case 2 we have to deal with O(n) values of Jl, that each 

require O(n) arithmetic operations. Since we pass through these cases 

2 
O(n log B) times we arrive at a total of 

4 
O (n log B) arithmetic operations. 

In order to represent all numbers that appear in the course of the 

algorithm by means of integers we also keep track of the numbers d. 
1. 

defined by (1.24). In the initialization stage these can be calculated by 

(1.25). After that, they are only changed in case 1. In that case, dk-l 

I * 12/ I * I 2 - • I * I 2 is replaced by dk_ 1 • ck-l bk-l - dk_ 2 ck-l (in the notation of 

(1 • 2 2) ) whereas the other d. 
1. 

are unchanged. By (1.24), the d. 
1. 

are inte-

gers, and we shall now see that they can be used as denominators for all 

numbers that appear: 
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(1. 27) I b'!' I 2 = d ./ d . l 
J. J. J.-

(1 :S i :S n), 

(1.28) d. 1b'!' e: :ll;n (1 :S i :S n), 
J.- J. 

(1.29) djµij e: 11; (1 :S j < i :S n) • 

The first of these follows from ( 1. 25). For the second, we write b'!' = J. 
i-1 

A .. b. with A .. Solving \1' A .. 1 from the b. - I:j=l e: JR. • • • I system 
J. J.J J l.J J. J.-

(1 :S t :S i - 1) 

and using (1.24) we find that d. 1A .. e: 11;, 
J.- J.J 

whence (1.28). Notice that 

the same argument yields 

for i :S k; 

this is useful for the calculation of b* 
k 

at the beginning of the algo-

rithm. To prove (1.29) we use (1.3), (1.27) and (1.28): 

d. µ. . = d. (b. , b'!') / (b'!°, b'!°) = d. l (b. , b'!°) = (b. , d. 1b'!') e: 11;. 
J J.J J J. J J J J- J. J J. J- J 

To finish the proof of (1.26) we estimate all integers that appear. 

Since no d. is ever increased we have d. :S Bi throughout the algorithm. 
J. J. 

This estimates the denominators. To estimate the numerators it suffices to 

find upper bounds for lb.1 2 
J. 

At the beginning we have lb'!'l 2 
J. 

and lµ .. I. 
J.J 

:S lb. 12 :SB, 
J. 

is non-increasing; to see this, use that lc:_1 12 

lb* 12 
k-1 in (1.22), the latter inequality because 

and max{lb'!'l 2 : 
J. 

< i.lb* 12 and 
4 k-1 

1 :S i :Sn} 

lc:1 2 :S 

c* 
k 

is a projection of 

Hence we have lb'!'l 2 :SB throughout the algorithm. 
J. 

To deal with lbil 2 and µij we first prove that every time we arrive 

at the situation described by (1.16) and· (1.17) the following inequalities 

are satisfied: 
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(1.30) lb. 12 
1. 

::;; nB for i f: k, 

(1.31) lb 12 
k 

::;; n 2 (4B)n if k f: n + 1 , 

(1.32) Iµ .. I ::;; 1 
for 1 j < i, i < k, 

2 
::;; 

J.. J 

(1.33) Iµ .. I 
l..J 

::;; (nBj)l/2 for 1 ::;; j < i, i > k, 

(1.34) I ]Jkj I ::;; 2n-k(nBn-1)1/2 for 1 ::;; j < k, if k f: n + 1. 

Here (1.30), for i < k, is trivial from (1.32), and (1.31) follows from 

(1.34). Using that 

(1.35) 
2 

d.llb.l/d. 
J- ]. J 

we see that (1.33) follows from (1.30), and (1.32) is the same as (1.16). 

It remains to prove (1.30) for i > k and to prove (1.34). At the beginning 

of the algorithm we even have lb. I 2 ::;; B and 
]. 

by (1.35), so it 

suffices to consider the situation at the end of case 1 and case 2. Taking 

into account that k changes in these cases, we see that in case 1 the set 

of vectors {b.: 
]. 

if: k} is unchanged, and that in case 2 the set {b.: 
]. 

i > k} is replaced by a subset. Hence the inequalities (1.30) are pre-

served. At the end of case 2, the new values for µkj (if k f: n + 1) are 

the old values of µk+l j' so here (1.34) follows from the inequality (1.33) 

at the previous stage. To prove ( 1. 34) at the end of case 1 we assume that 

it is valid at the previous stage, and we follow what happens to µkj. To 

achieve (1.18) it is, for j < k - 1, replaced by µkj - rµk-l j, with 

and 

( 1. 36) 

1 ::;; -
2' so 

by (1.34). 
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In the notation of (1.22) we therefore have 

for j < k - 1 

and since k - 1 is the new value for k this is exactly the inequality 

(1.34) to be proved. 

Finally, we have to estimate lb.1 2 
]. 

and at the other points in 

the algorithm. For this it suffices to remark that the maximum of lµkll, 

lµk 2 1, ••• ,lµkk-ll is at most doubled when (1.18) is achieved, by (1.36), 

and that the same thing happens in case 2 for at most k - 2 values of i. 

Combining this with (1.34) and (1.33) we conclude that throughout the 

course of the algorithm we have 

for 1 s j <is n 

and therefore 

for 1 sis n. 

This finishes the proof of (1.26). 

(1.37) Remark. Let 1 s n' s n. If k, in the situation described by 

(1.16) and (1.17), is for the first time equal to n' + 1, then the first 

n' vectors b 1 , b2 , •.• , bn' form a reduced basis for the lattice of rank 

n' spanned by the first n' vectors of the initially given basis. This 

will be useful in section 3. 

2. Factors and lattices. 

In this section we denote by p a prime number and by k a positive inte-

ger. We write '0../pk'O.. for the ring of integers modulo k and F for p ' p 

the field '0../p'O... g = :r:. i 
E 'O..[X] we denote by (g mod pk) the For a.x 

]. ]. 
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polynomial 
k .. i k 

I:. (a. mod p )X E (72:/p ~) [x]. 
1 1 

We fix a polynomial f E 72:[X] of degree n, with n > 0, and a 

polynomial h E 72:[X] that has the following properties: 

(2. 1) 

( 2 ._2) 

(2.3) 

(2.4) 

h has leading coefficient 1, 

(h mod pk) divides k (f mod p) 

(h mod p) is irreducible in JF [X], 
p 

2 (h mod p) does not divide (f mod p) 

We put t = deg(h); so O < t ~ n. 

in JF [X] 
p 

(2.5) Proposition. The polynomial f has an irreducible factor h 0 in 

72:[X] for which (h mod p) divides (h0 mod p), and this factor is 

uniquely determined up to sign. Further, if g divides f in :;;z[x], 

then the following three assertions are equivalent: 

divides (g mod p) in F [xJ, 
p 

(i) 

(ii) 

(iii) 

(h mod p) 

(h mod pk) divides k (g mod p ) in (72:/pk:;;z) [x], 

h0 divides g in :;;z[x]. 

In particular k (h mod p) divides k (h0 mod p) in 

Proof. The existence of h0 follows from (2.2) and (2.3), and the unique

ness, up to ±1, from (2.4). The implications (ii)• (i) and (iii)• (i) 

are obvious. Now assume (i); we prove (iii) and (ii). From (i} and {2.4) 

it follows that {h mod p) does not divide {f/g mod p) in F [x]. 
p 

Therefore h0 does not divide f/g in 72:[X], so it must divide g. 

This proves (iii). By (2.3) the polynomials {h mod p) and {f/g mod p) 

are relatively prime in JF [xJ' p 
so in F [X] 

p 
we have 

{A 1 mod p)•{h mod p) + {µ 1 mod p)•(f/g mod p) = 1 
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for certain .x 1 , µ 1 E :?Z[X]. Therefore 

'V l E :2Z [X] . Multiplying this by 1 + p'V l 

g we obtain 

.X 1h + µ 1f/g = 1 - pv1 for some 

2 2 k-1 k-1 
+ p v1 + .•• + p v 1 and by 

for certain .x 2 , µ 2 E :?Z[X]. Since the left hand side, when taken modulo 

pk, is divisible by k 
(h mod p ), the same is true for the right hand 

side. This proves (ii). 

The final assertion of (2.5) follows if we take g = h0 • This 

proves (2.5). 

(2.6) In the remainder of this section we fix an integer m with m ~ i, 

and we let L be the collection of all polynomials in :?Z[X] of degree 

s m that, when taken modulo 
k 

p ' are divisible by k (h mod p) in 

(:?Z/pk:?Z) [X]. This is a subset of the (m + 1) -dimensional real vector 

m m+l 
space lR + lR•X + ••• + lR•X • This vector space is identified with lR 

by identifying with Notice that the length 

of a polynomial, as defined in the introduction, is equal to 

the ordinary Euclidean length of (a0 , a 1 , .•• ,am). It is easy to see 

that L is a lattice in lRm+l and, using (2.1), that a basis of L is 

given by 

{pkXi: 0 s i < l} u {hXj: 0 s j s m - t}. 

• 
From (1. 1) it follows that d(L) 

ki = p 

In the following proposition ho is as in (2.5). 

(2.7) Proposition. Let b EL satisfy 

(2.8) 
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Then b is divisible by h 0 in :iZ[X], and in particular gcd(f, b) 1 1. 

Remark.Aweaker version of (2.7), which could also be used to obtain a 

polynomial-time factoring algorithm for polynomials, asserts that gcd(f, 

b) 1 1 under the same conditions. The proof of this version is less com

plicated than the proof given below, see [9, Theorem 2]. 

Proof of (2.7). We may assume that b 1 O. Let g ~ gcd(f, b). By (2.5) 

it suffices to show that (h mod p) divides (g mod p). Suppose that this 

is not the case. Then by (2.3) we have 

(2.9) 

for certain A3 , µ 3 , v3 E :iZ[X]. We shall derive a contradiction from this. 

Put e = deg(g) and m' = deg(b). Clearly O ~ e ~ m' ~ m. We define 

M = {Af + µb: A, µ E :iZ[X], deg(A) < m' - e, deg(µ_) < n - e} 

n+m'-e-1 
C :iZ + :iZ•X + ... + :iZ•X • 

Let M' be the projection of M on 

e e+l n+m'-e-1 
:ll•X + :iZ•X + ... + :iZ•X • 

Suppose that Af + µb projects to O in M', with A,µ as in the defi

nition of M. Then deg(Af + µb) < e, but g divides Af + µb, so 

Af + µb = 0. From A•(f/g) = -µ•(b/g) anQ gcd(f/g, b/g) = 1 it follows 

that f/g divides µ. But deg(µ) < n - e = deg(f/g), so µ = O, and 

therefore also A= 0. 

This proves that the projections of 

on M' are linearly independent. Since these projections span M', it 



follows that M' is a lattice of rank n + m' - 2e. From Hadamard's 

inequality (1.10) and (2.8) we obtain 

(2.10) 

Below we deduce from (2.9) that 

(2.11) 

Hence, if 

{v EM: 
k 

deg(v) < e + JI,} c p 7.l[X]. 

we choose a basis b , b 
e+1' • • • I b 

e n+m'-e-1 

deg(b.) = j, then the leading coefficients of b , b 
J e 

k 

of M' with 

e+1' • • • I b 
e+t-1 
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are divisible by (Notice that fl, 1 ~ n + m' 1 p . e + - - e - because 

g divides b and (h mod p) divides (f/g mod p) .) Since d(M') 

equals the absolute value of the product of the leading coefficients of 

b b b we find that d(M') ~ pkt_ Combined with (2.10) e' e+l ·· ., n+m'-e-1 

this is the desired contradiction. 

To prove (2.11), let v EM, deg(v) < e + JI,. Then g divides v. 

Multiplying (2.9) by v/g and by 
2 2 k-1 k-1 

1 + pv3 + p v 3 + ... + p v 3 we 

obtain 

(2.12) 

with 11 4 , µ 4 E Zl[X]. From V E M and b E L it follows that 
k 

(v mod p) 

k k 
is divisible by (h mod p). So by (2.12) also (v/g mod p) is divis-

ible by (h mod pk). But (h mod pk) is of degree JI, with leading coef

ficient 1, while 
k 

(v/g mod p) has degree < e + JI, - e = t. Therefore 

v/g = 0 mod pkZl[X], so also v = 0 mod pkZl[X]. This proves (2.11). 

This concludes the proof of (2.7). 

(2.13) Proposition. Let p, k, f, n, h, JI, be as at the beginning of this 

section, h 0 as in (2.5), and m, L as in (2.6). Suppose that b 1 , b 2 , 

... , b 1 is a reduced basis for L (see (1.4), (1.5)), and that 
m+ 
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(2.14} pki > 2mn/2(2m)n/2lflm+n. 
m 

Then we have deg(h0 } s m if and only if 

(2.15} 

Proof. The "if"-part is immediate from (2.7}, since deg(b1} s m. To 

prove the "only if"-part, assume that deg(h0 } s m. Then ho EL by 

(2.5}, and 1h0 1 s (:) 112 •1fl by a result of Mignotte [11; cf. 8, exerc. 

4.6.2.20]. Applying (1.11} to x = h 0 we find that lb1 1 s 2m/2 •ih0 1 s 

2m/2. (2m) 1/2. If I • } } By (2.14 this implies (2.15 • This proves (2.13}. 
m 

(2.16} Proposition. Let the notations and hypotheses be the same as in 

(2.13}, and assume in addition that there exists an index j E {1, 2, ••• , 

m + 1} for which 

(2.17} 

Let t be the largest such j. Then we have 

deg(h0 } = m + 1 - t, 

and (2.17} holds for all j with 1 s j st. 

Proof • Let J = { j E { 1 , 2 , ... , m + 1 } : ( 2 . 1 7} holds} . From ( 2 • 7} we 

know that h 0 divides b. 
J 

for every j € J. Hence if we put 

then h 0 divides h 1 . Each b., 
J 

degree s m, so belongs to 

j € J, is divisible by h 1 and has 
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Since the are linearly independent this implies that 

(2.18) 

By the result of Mignotte used in the proof of (2.13) we have lh0xil = 

for all i:::: 0. For i = O, 1, .•. , m - deg(h0) we 

have h0xi EL, so from (1.12) we obtain 

for 1 ~ j ~ m + 1 - deg(h0). • By (2.14), this implies that 

(2.19) {1, 2, ••• , m + 1 - deg(ho)} c J. 

From (2.18), (2.19) and the fact that h0 divides h 1 we now see that 

equality must hold in (2.18) and (2.19), and that 

J = {1, 2, ••• , t}. 

It remains to prove that ho is equal to hl, up to sign, and for this 

it suffices to check that hl is primitive. Choose j .E J, and let dj 

be the content of b .• Then bj/dj is divisible by ho, and hO E L, 
J 

so But belongs to a basis for L, 

is primitive, and the same is true for the factor h1 

finishes the proof of (2.16). 

so 

of 

d. = 1 
J 

and 

This 

Remark. If t = 1 then we see from (2.16) that b1 is an irreducible 

factor of f, and that no gcd computation is necessary. 

Remark. From the proofs of (2.13) and (2.16) we see that (2.14) may be re-

placed by 
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where S = max{lb.l/lb!I: 1 s j sis m + 1} (cf. (1.14)) and where y 
. J 1 

is such that lg! s y for every factor g of f in ?l;[X] with deg(g) 

3. Description of the algorithm. 

Denote by f a primitive polynomial in 2Z[X] of degree n, with n > 0. 

In this section we describe an algorithm that factors f into irreducible 

factors in l~[X]. We begin with two auxiliary algorithms. 

(3.1) SupposE: that, in addition to f and n, a prime number p, a po

sitive integE:r k and a polynomial h E ?l;[X] are given satisfying (2.1), 

(2.2), (2.3) and (2.4). Assume that the coefficients of h are reduced 

modulo 
k 

p I so 

where t = deg(h). Let further an integer m ~ t be given, and assume 

that inequality (2.14) is satisfied: 

kt 
p > 2mn/2,(2m)n/2.lflm+n. 

m 

We describe am algorithm that decides whether deg(h0) s m, with h0 as 

in (2.5), and determines h0 if indeed deg(h0 ) s m. 

Let L be the lattice defined in (2.6), with basis 

Applying algorithm (1.15) we find a reduced basis b b b for 1' 2' ... ' m+l 

I I kt I 1m 1/n L. If b 1 ~ (p / f ) then by (2.13) we have deg(h0 ) > m, and the 

algorithm stops. If lb I < (pkt/lflm)l/n then by (2.13) and (2.16) we 
1 

have deg(h0 ) s m and 
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with t as in (2.16). This gcd can be calculated by repeated application 

of the subresultant algorithm described in [8, sec. 4.6.1]. This finishes 

the description of algorithm (3.1). 

(3.2) Proposition. The number of arithmetic operations needed by algorithm 

(3.1) is 
4 . 

O(m k log p), and the integers on which these operations are 

performed each have binary length O(mk log p). 

Proof. We apply (1.26) with m + 1 in the role of n and with B = 
2k 1 + tp • From t:,; n and (2.14) we see that m = O(klogp), so logt 

< R, :,; m implies that log B = O (k log p) • This leads to the estimates in 

(3.2). It is straightforward to verify that the gcd computation at the end 

satisfies the same estimates. This proves (3.2). 

(3.3) Next suppose that, in addition to f and n, a prime number p 

and a polynomial h E !2Z[X] are given such that (2.1), (2.2), (2.3) and 

(2.4) are satisfied with k replaced by 1. Assume that the coefficients 

of h are reduced modulo p. We describe an algorithm that determines h0 , 

the irreducible factor of f for which (h mod p) divides (h0 mod p), 

cf. (2.5). 

Write t = deg(h). If t = n then h0 = f, and the algorithm stops. 

Let now t < n. We first calculate the least positive integer k for 

which (2.14) holds with m replaced by n - 1: 

pkt > 2 (n-l)n/2. (2 ~n_-/) )n/2 •If 12n-1. 

Next we modify h, without changing (h mod p), in such a way that (2.2) 

holds for the value of k just calculated, in addition to (2.1}, (2.3) and 

(2.4). This can be accomplished by the use of Hensel's lemma, see [8, exerc. 
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4.6.2.22; 14; 15; 13]. We may assume that the coefficients of h are 

reduced modulo 
k 

p . 

Let u be the greatest integer for which £ ~ (n - 1)/2u. We perform 

algorithm (3.1) for each of the values m = [(n - 1)/2u], [(n - 1)/2u-l], 

••• , [ (n 1)/2], n 1 in succession, with [x] denoting the greatest 

integer ~ x; but we stop as soon as for one of these values of m algo-

rithm (3.1) succeeds in determining h 0 • If this does not occur for any m 

in the sequence then deg(h0 ) > n - 1, so h = f 
0 

and we stop. This fin-

ishes the description of algorithm (3.3). 

(3.4) Proposition. Denote by m0 = deg(h0 ) the degree of the irreducible 

factor h 0 of f that is found by algorithm (3.3). Then the number of 

arithmetic operations needed by algorithm (3.3) is 

3 
n logp)), and the integers on which these operations are performed each 

have binary length 
3 2 

0 (n + n log If I + n log p). 

Proof. From 

k-1 
p 

it follows that 

~ p(k-1)£ ~ 2 (n-1)n/2(2(n-1))n/2lfl2n-1 
n-1 

klogp = (k- l)logp + logp = O(n2 + nloglfl + logp). 

Let be the largest value of m for which algorithm (3.1) is per-

formed. From the choice of values for m it follows that m1 < 2m0 , and 

that every other value for m that is tried is of the form 
i 

[m/2 ], 

with i ~ 1. Therefore we have 
4 4 

I: m = o (m0 ) • Using (3.2) we conclude 

that the total number of arithmetic operations needed by the applications 

of algorithm (3.1) is which is 

4 2 o (m0 (n + n log If I + log p)) , 



and that the integers involved each have binary length O (m1 k log p), 

which is 

2 o (m0 (n + n log If I + log p)) . 

With some care it can be shown that the same estimates are valid for a 
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suitable version of Hensel's lemma. But it is simpler, and sufficient for 

our purpose, to replace the above estimates by the estimates stated in 

(3.4), using that m0 ~ n; then a very crude estimate for Hensel's lemma 

will do. l~he straightforward verification is left to the reader. This 

proves (3.4). 

(3.5) We now describe an algorithm that factors a given primitive poly

nomial f E zz[x] of degree n > 0 into irreducible factors in zz[x]. 

The first step is to calculate the resultant R(f, f') of f and 

its deriv2Ltive f', using the subresultant algorithm [8, sec. 4.6.1]. 

If R(f, f') = 0 then f and f' have a greatest common divisor g in 

zz[x] of positive degree, and g is also calculated by the subresultant 

algorithm .. This case will be discussed at the end of the algorithm. Assume 

now that R(f, f') ~ 0. 

In the second step we determine the smallest prime number p not di-

viding R(f, f'), and we decompose (f mod p) into irreducible factors 

in F [X] by means of Berlekamp's algorithm [8, sec. 4.6.2]. Notice that 
p 

R(f, f') is, up to sign, equal to the product of the leading coefficient 

of f and the discriminant of f. So R(f, f') -r/- 0 mod p implies that 

(f mod p) still has degree n, and that it has no multiple factors in 

F [X]. Therefore (2 .4) is valid for every irreducible factor (h mod p) 
p 

of (f mod p) in F [x]. 
p 

In the third step we assume that we know a decomposition f = f 1f 2 in 

ZZ[X] such that the complete factorizations of f 1 in ZZ[X] and (f2 mod p) 
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in F p[X] are known. At the start we can take f 1 

situation we proceed as follows. If f = +1 2 - then 

1, f 2 = f. In this 

f = +f - 1 is completely 

factored in :,i;[x], and the algorithm stops. Suppose now that f 2 has 

positive degree, and choose an irreducible factor (h mod p) of (f2 mod p) 

in F [x]. We may assume that the coefficients of h are reduced modulo 
p 

p and that h has leading coefficient 1. Then we are in the situation 

described at the start of algorithm (3.3), with f 2 in the role of f, 

and we use that algorithm to find the irreducible factor ho of f 2 in 

:?Z[X] for which (h mod p) divides (h0 mod p). We now replace f 1 and 

f 2 by f 1h0 and f 2/h0 , respectively, and from the list of irreducible 

factors of (f2 mod p) we delete those that divide (h0 mod p). After 

this we return to the beginning of the third step. 

This finishes the description of the algorithm in the case that 

R(f, f') ~ 0. Suppose now that R(f, f') = O, let g be the gcd of f 

and f' in :iZ[X], and put f 0 = f/g. Then f 0 has no multiple factors 

in :iZ[X], so R(f0 , f 0) ~ 0, and we can factor f 0 using the main part 

of the algorithm. Since each irreducible factor of g in :iZ[X] divides 

f 0 we can now complete the factorization of f = f 0g by a few trial di

visions. This finishes the description of algorithm (3.5). 

(3.6) Theorem. The above algorithm factors any primitive polynomial f E 

:iZ[X] of positive degree n into irreducible factors in :,i;[x]. The 

number of arithmetic operations needed by the algorithm is 6 5 
O (n + n log If I) , 

and the integers on which these operations are performed each have binary 

length 
3 2 

O (n + n log If I ) . Here is as defined in the introduction. 

Using the classical algorithms for the arithmetic operations we now arrive 

at the bound O(n12 + n 9 (1oglfl) 3 ) for the number of bit operations that 

was announced in the introduction. This can be reduced to O(n9+£ + 
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n 7+£(loglfl) 2+£), for every £ > 0, if we employ fast multiplication tech-

niques. 

Proof of (3.6). The correctness of the algorithm is clear from its descrip

tion. To prove the estimates we first assume that R(f, f') f 0. We begin 

by deriving an upper bound for p. Since p is the least prime not divid

ing R ( f, f ' ) we have 

(3.7) TT q ~ IR(f, f')I. 
q < p, q prime 

It is not difficult to prove that there is a positive constant A such that 

(3.8) TT q > eAp 
q < p, q prime 

for all p > 2, see [7, sec. 22.2]; by [12] we can take A= 0.84 for 

p > 101. From Hadamard's inequality (1.10) we easily obtain 

Combining this with (3.7) and (3.8) we conclude that 

(3. 9) p < (nlogn + (2n - 1)1oglfl)/A 

or p = 2. Therefore the terms involving logp in proposition (3.4) are 

absorbed by the other terms. 

The call of algorithm (3.3) in the third step requires 

5 4 
O(m0 •(n + n loglf2 1)) arithmetic operations, by (3.4), where m0 is the 

degree of the factor h 0 that is found. Since f 2 divides f, Mignotte's 

theorem [11; cf. 8, exerc. 4.6.2.20] that was used in the proof of (2.13) im

plies that loglf2 1 = O(n + loglfl). Further the sum ~ m0 of the degrees 

of the irreducible factors of f is clearly equal to n. We conclude 

that the total number of arithmetic operations needed by the applications 

of (3.3) is 
6 5 

O(n + n loglfl). By (3.4), the integers involved in (3.3) 
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each have binary length 
3 2 

O{n + n loglfl). 

We must now show that the other parts of the algorithm satisfy the 

same estimates. For the subresultant algorithm in the first step and the 

remainder of the third step this is entirely straightforward and left to 

the reader. We consider the second step. 

Write P for the right hand side of (3.9). Then p can be found with 

O{P) arithmetic operations on integers of binary length O{P); here one 

can apply [6] to generate a table of prime numbers < P, or alternatively 

use a table of squarefree numbers, which is easier to generate. From p < P 

it also follows that Be~lekamp's algorithm satisfies the estimates stated 

in the theorem, see [8, sec. 4.6.2]. 

Finally, let R{f, f') = O, and. f 0 = f/gcd{f, f') as in the algo

rithm. Since f 0 divides f, Mignotte's theorem again implies that 

loglf0 1 = O{n + loglfl). The theorem now follows easily by applying the 

preceding case to f 0 • 

This finishes the proof of (3.6). 

{3.10) For the algorithms described in this section the precise choice of 

the basis reduction algorithm is irrelevant, as long as it satisfies the 

estimates of proposition {1.26). A few simplifications are possible if the 

algorithm explained in section 1 is used. Specifically, the gcd computation 

at the end of algorithm (3.1) can be avoided. To see this, assume that m0 

= deg{h0 ) is indeed ~ m. We claim that h0 occurs as b 1 in the course 

of the basis reduction algorithm. Namely, by {1.37) it will happen at acer-

tain moment that 

of rank m0 + 1 

bl' b2' •.• , bmo+l 

spanned by {pkXi: 

form a reduced basis for the lattice 

0 ~ j ~ m - t}. 
0 

At that moment, we have h0 = b 1 , by {2.13) and {2.16), applied with m0 

in the role of m. A similar argument shows that in algorithm (3.3) one 

can simply try the values m = t, t + 1, •.. , n - 1 in succession, 
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until ho is found. 
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