stichting
mathematisch |
centrum MC

AFDELING INFORMATICA IW 196/82 MAART
(DEPARTMENT OF COMPUTER SCIENCE)

J.W. DE BAKKER, J.-J.Ch. MEYER & J.l. ZUCKER

ON INFINITE COMPUTATIONS IN DENOTATIONAL SEMANTICS

Preprint

kruislaan 413 1098 SJ amsterdam

Prninted at the Mathematical Centre, 413 Knuisfaan, Amsterdam.

The Mathematical Centrne , founded the 11-th of February 1946, is a non-
progit institution aiming at the promotion of pure mathematics and its
applications. 1t is sponsored by the Netherlands Government through the
Netherlands Organization for the Advancement of Pure Research (Z.W.0.).

1980 Mathematics subject classification: 68B10, 68C05

1982 CR. Categories: F3.2, F3.3

e sk
On infinite computations in denotational semantics)

by

J.W. de Bakker, J.-J.Ch. Meyer™™) & J.I. Zucker™**)

ABSTRACT

Finite and, especially, infinite computations in languages with
iteration or recursion are studied in the framework of denotational seman-
tics, and a theorem is proved which relates their syntactic and semantic
characterizations. A general proof method is presented to establish this
type of relations, and it is shown how - in an induction on the structure
of the syntactic constructs of the language - the recursive case follows
from the non-recursive one by applying a general definitional scheme. The
method is applidable to a variety of other problems concerning recursive
constructs such as, for example, fixed point characterizations of several
notions of weakest precondition. Also, the connections with the theory of
languages with infinite words are discussed, in particular with a substitu-

tion theorem due to Nivat.

KEY WORDS & PHRASES: <nfinite computations, denotational semantics, infinite

words, recursion, nondeterminacy, weakest preconditions

*) This report will be submitted for publication elsewhere.

*x) Department of Computer Science, Free University, De Boelelaan 1081,
1007 MC Amsterdam

*kk)

Department of Mathematics and Computer Science, Bar-Ilan University,
Ramat Gan, Israel

1. INTRODUCTION

We study finite and, especially, infinite computations in the framework
of denotational semantics, and prove a theorem which relates their syntactic
and semantic characterizations. We consider a simple language with as main
concepts assignments, composition, some form of iteration or recursion, and
nondeterminacy. Let S be any statement in this language. As usual in deno-
tational semantics, its meaning is a mapping from (input) states to sets of
(output) states (sets because of nondeterminacy). Let " 1", by convention,
be the state which is delivered by a nonterminating computation. In general,
for any S and input state o, the set of output states T consists of a so-
called finite part — all states ¢' € T which are #L - and an infinite part,
viz. {1} in case S has at least one nonterminating computation and @ (the
empty set) otherwise. For example, for the statement (x:=0) u (x:=1) U while

true do skip od (with "u" denoting nondeterministic choice) and input o,

the finite part of the output is {o{0/x},0{1/x}}, i.e., the state o with

x set to 0 or 1, and the infinite part is {L}. A first result of our paper
is a syntactic characterization, for each S, of those computations-which
deliver the finite and infinite parts of the output, respectively. More
specifically, we introduce mappings fin and iZnf such that, for each S, Sfin
yields the finite and Sinf the infinite part of the execution of S. In the
course of proving that these mappings have the desired properties, we dis-
covered a rather general proof technique for showing properties of recur-—
sive procedures which can be applied to a variety of problems not neces-
sarily related to that of infinite computations.

An important source of inspiration for our paper was provided by
Nivat's investigations of infinite words generated by context free grammars
(e.g. [2,6,12,13,14]). In an operational semantics, execution of a state-
ment S may be seen as the generation of a sequence of elementary actions,
and an infinite execution then corresponds to an infinite word in the
language of all possible execution sequences corresponding to the (non-
deterministic) statement S. In our paper we do not make these operational
notions precise, but stick to the denotational approach. Though the way
the problems appear here is at first sight quite different, there is a

surprisingly close structural resemblance between the results of language

theory and of denotational semantics. More specifically, the definitions of
fin and inf for the regular case (statements with only iteration, no full
recursion) are of exactly the same form as certain results in Nivat's work
(mentioned e.g. in [6]), and the definition of the general case (statements
with full recursion) is - after some appropriate transliteration - striking-
ly similar to theorem 1 of NIVAT [13]. A new element in our considerations
is that through the semantic approach we obtain a better understanding of
the underlyingstructure of these results. We shall show that they ultimate-
ly rely on a certain simple - and purely semantic - property of fixed points.
We thus hope to clarify the problem which at first may seem purely syntactic
in nature in that it concerns manipulations with program texts or with in-
finite derivations in language theory. In fact, the fixed point property
referred to here appears to be at the heart of a number of seemingly unre-
lated problems concerning, e.g., properties of weakest preconditions studied
in Chapter 8 of DE BAKKER [4]. Briefly, the following argument may be applied
for each of these questions: Suppose we want to justify a certain syntactic
mapping which is intended to embody a certain semantic feature. Normally,
such a justification proceeds by an inductive proof on the syntactic struc-
ture of the statements involved. Now a central result of our paper is that,
provided a number of rather general conditions are fulfilled, it is only
necessary to check those cases of the induction which are not concerned with
the iteration or recursion constructs. Only the, say, straight-line cases
have to be considered individually, and the iteration or recursion cases
are obtained as it were for free from a general definitional scheme.

Our paper is organized in six sections. You are now reading Section 1
which gives the introduction. In Section 2 we define syntax and semantics
of the two languages we consider, one with only iteration (essentially as
provided by the while statement or the do-od guarded command), and the other
with full recursion in the form of parameterless recursive procedures. We
consider these in the syntactic form of the u-calculus ([5,71), since this
is a convenient tool for the mathematical analysis we have in mind. In
Section 5 we translate our results to a more traditional framework with
declarations of mutually recursive (parameterless) procedures. A secondary
feature of our language is a systematic treatment of the notions of fazZlure

and abortion. Contrary to the approach taken by other authors (such as [11]),

we include the empty set (of states) in our considerations and use it to
model failure of a statement. In this way, failure leaves no trace in the
output. Abortion, on the other hand, does leave a trace behind in the form
of a special abort state (for which we use §). Our way of treating failure
has, we think, advantages in that it allows us to express a variety of
constructs involving tests (such as the conditional statement, while state-
ment and guarded commands) all using just one "test statement" in our
language. As a side remark we add here that the empty set can conveniently
be used to model waiting in a context with concurrency, whereas an abort
outcome should be used in case a deadlock situation occurs which one wants
to be signalled. Apart from the introduction of the abort construct, the
definitions of Section 2 follow closely those of Chapter 7 of [4]. In Sec-
tion 3 we give a simple version of our main result, viz. for the case of
regular statements (with only iteration). The general case follows in Sec-
tion 4. Here the fixed point lemma mentioned above is proved, and it is
shown how — in a rather general setting - the relationship between syntac-
tic and semantic mappings between (meanings of) statements can be analyzed
such that the recursion case is obtained as it were automatically. This
part of the paper is rather abstract, and we provide some concrete applica-
tions of the techniques in the subsequent sections. In Section 5 we refor-
mulate our result for systems of recursive procedures — rather than for
statements in the p-calculus -, and clarify its close structural similarity
to Nivat's theorem. In Section 6 we study a variety of weakest preconditions
(to be compared to a similar variety in an operational framework as inves-
tigated by HAREL [8]), and obtain certain fixed point results for the
regular case by straightforward application of the general strategy of
Section 4 - rather than, as in Chapter 8 of [4], by using more or less
elaborate arguments in each specific case. Finally, we briefly mention

some further applications which obviate some of the complications in the
proofs of [4].

The first author gratefully acknowledges the hospitality of Bar Ilan
University and the Weizmann Institute during July 1981. The members of the
MC Working Group on Semantics formed the firvst audience for the ideas pre-

sented here.

2, SYNTAX AND SEMANTICS

We shall be concerned with two simple languages, one with only itera-
tion and the other with full recursion. The former is actually a special
case of the latter, and introduced primarily for didactic reasons. Both
languages contain simple integer and boolean expressions, together with
assignment, composition and nondeterministic choice. The way boolean expres-—
sions are used as statements is somewhat unusual, and will be explained
later in the section. A special symbol A is introduced for the abort state-
ment.

The following notations are used for the respective syntactic classes
(here and below we use the convention that the phrase "(m €)M such that ..."

introduces a set M, with typical elements m ranging over M, such that ...):

(n €) Icon: integer constants

(x €) Ivar: integer variables

(s €) Texp: integer expressions

(b €) Bexp: boolean expressions

(R €) Regs: regular statements

(S €) Stat: (general) statements

(X €) Stmv: statement variables ’

(serving the same role as procedure variables P in a more

orthodox syntax).

The classes Ivar and Stmv are arbitrary disjoint infinite sets of
symbols - assumed well-ordered for technical convenience. The structure of
the elements of Icon is left unspecified. The other classes are defined

using a self-explanatory variant of the Backus-Naur formalism in

DEFINITION 2.1 (syntax).

a. (integer expressions)

s::= n|X|81+82|---|i£_b then s else Sz.fi

b. (boolean expressions)

b::= truelfalselsl=szl...I—lblb]:b2

Co

d.

(regular statements)
Je
R::= x:=sIbIA|R1;R2|R1UR2lR
(general statements)
S::= x:=sIbIAlSl;SZISIUSZIXIuX[S].

Remarks

1.

At the place of the ... in clauses a and b, other operators (—,<,...)
can be added. In fact, we could omit all specialization to the domain of
integers, and introduce arbitrary function and relation symbols in our
expressions. All results to be obtained below hold for (interpretations
over) arbitrary structures, and we stick to the integers only for ease
of presentation.

Boolean expressions as statements may appear somewhat unusual. They were
introduced as such in [5], and reappear, e.g., in dynamic logic [8] as
test statements (p?). In the framework of denotational semantics - to
be introduced in a moment — a statement determines a mapping from states
to sets of states. A boolean b - viewed as a statement — maps a state
either to itself (for b true in that state) or to the empty set of states
(for b false in that state). In the latter case, b may be said to fazl.
This is a special case of a property of statements S in general, viz,
the possibility of their failure which is modelled by delivery of the
empty set. Failure should be contrasted with abortion, appearing in our
system through the atomic statement A which aborts for all input states.
Abortion is modelled by delivering a special abort state § as output,
whereas nontermination is reflected in the usual way by yielding the
undefined or bottom state 1. '

"u'" denotes nondeterministic choice: Executing R,UR, or S.uUS, means

1772 1772
executing R

or R2 (S1 or SZ)‘
R+

1
denotes finite or infinite repetition of the statement R. It should
be contrasted with the construct R* which is often used in similar
investigations, usually referring only to arbitrary finite repetition
of R. (In a purely relational theory, the difference between R* and R+
remains unobserved since an infinite computation always yields an empty
output set.) Using R” for infinite repetition of R, we have that R+ is

equivalent to R* u rR%. (We prefer "+ " - used in the theory of infinite

words by, e.g., PARK [15] - to "«" - as used e.g. by NIVAT [2,6,12,13,14].)
5. uX[S] is a construct taken from the u-calculus ([5,9]), denoting a call

of a pafameterless recursive procedure. The prefix pX in pX[S] binds oc-

currences of X in S, and, for S of the form ...X...X..., executing uX[S]

corresponds to a call - in a language with a more familiar syntax - of a

procedure P declared by P <« ...P...P... . In case of a system of, say,

two declarations P] = SI(PI’PZ)’ P2 <= SZ(PI’PZ) ((...)denoting possible

free occurrences of ..., not application), the construct in the p-calculus
1 is qu[Sl(X],uXZESZ(Xl,XZ)])]. Much more

about this can be found in [4]. A statement S without free occurrences

corresponding to a call of P

of statement variables is called closed.

We use "=" for syntactic identity, and substitution of S' for X in S -
applying the usual renaming of bound statement variables to prevent clashes -
is denoted by S[S'/X].

In order to help the reader's understanding of our syntax we now list
a number of constructs in the syntax of an ALGOL-like or guarded command
language ([7]), and then present the corresponding construct in our lan-
guage(s):
if b then S, else S, fi ~ (b35)) u ("b;S,)
while b do R od ~ (b3R) 37b
if by > RO...0b_ > R £i~> (b sRDU...u(b SR OUCTD AL AT 58)
gg_bl > RID"'Dbn > Rn od ~> Ehilﬁ.blv°"vbn gg_(bl;Rl)U...u(bn;Rn) od

fail ~»> false y note that these boolean expressions are indeed
} statements

skip ~> true

abort ~> A

while b do S od ~ uX[(b;S;X)U7b] (X not free in S)

(These correspondences work well in a sequential context. In the presence
of concurrency, complications may arise. We know how to deal with these,
but leave an explanation of such issues to a future paper.)

This concludes our discussion of the syntactic aspects of our lan-
guages, and we next turn to their semantics. We begin with a quick intro-
duction to the theory of complete partially ordered sets (cpo's). For de-

tails and proofs we refer to, e.g., [4]. A cpo's a pair (C,C) with C a

non-empty set and " C" a partial order on C, such that (i) there is a least
element 1q with 1o E x for all x € C, and (ii) each ascending L -chain <Xi>i

has a least upper bound L/ X, Usually, explicit mentioning of the ordering
i

"LC" in a cpo(C,C) is omitted; similarly for the index C in L.. For cpo's
= = C P

CI’CZ’ CIXCZ is defined as a cpo in the natural way through component-wise

ordering. We call f: C1 > C2 strict whenever £(1) = L, and monotonic when-—

ever if x, C x, then f(xl)‘E f(xz). The class of all strict (monotonic)

1 2
functions Cl - C2 is denoted by C1
is called continuous whenever, for each chain <Xi>i in Cl’ we have
fll x,) =U £(x.). For f,g: C, =~ C

i1 i 1 1

all x € C

+S C2 (Cl+mCZ). A monotonic function f

s We put £ C g whenever f(x) L g(x) for

Two important properties of cpo's are: (i) For C.,C, cpo's, the

1° 172
class of all continuous functions C1 -> C2 (denoted by [C1+C2]) is a cpo, and

(ii) Each continuous f: C + C has a least fixed point (Lfp) uf (i.e.,
f(uf) = puf, and £(y) C y = uf C y) obtained as uf =Ll fl(i) (where

) - - i
£t = fofo...of, i factors f). Often, we shall encounter flat cpo's: C is

called flat whenever, for all X 5%, € c, XI.E x, iff x, = 1L or x

2 2 1 1 2°
Occasionally we shall need the following further definitions: A cpo C is a

= X

complete lattice whenever each subset X C C has a least upper bound LI X and

(hence) a greatest lower bound [T X. For C a complete lattice and f: C a c,
the least fixed point uf and greatest fixed point vf of f exist. We call

f: C] -> C2 antimonotonic whenever if X, E.xz

antimonotonic f: C] -> 02 is called anticontinuous (for C2’ e.g., a complete

lattice) whenever for each ascending [- chain <x;>. we have f (! Xi) =] f(xi).
- 1 1

then f(xz) E_f(xl), and an

Throughout the paper we use the A-notation for functions: For example,

Ax.x denotes the identity function: C -+ C, and for f € [Cl x C, + C2],

2
Ay .£(x,y)] (eCz) is the least fixed point of the function Ay.f(x,y) in

[C2+C2],
Next, we introduce the semantic notion of state. Let (ce) I denote the
set of all states. We define X =% . u {8} v {L}, where ZO is the set of

0

proper states, I, = Ivat - Z(Z the set of integers). Moreover, § is a

0
special state (the abort state) with & ¢ ZO, and L is a special state

(éZO u {8}), the bottom state. We turn I into a flat cpo by putting, for

each ¢,,0, € I, o,Co,iff o, =1o0ro =0.Letzl=Zu{LZ},

2 2 1 2
W_L =Wu {lw}, where W = {tt,ff} is the set of truth~-values. Za_and Wl are

taken as flat cpo's. Let, moreover, for o € £, and a ¢ Z , o{a/x} denote

0

the proper state such that o{a/xl}(xz) = o for x, = Xo» and

1
c{a/xl}(xz) = c(xz) for x, $ X,

For a language with nondeterminacy, the meaning of a statement is a
mapping from states to sets of states. For the languages dealt with in
our paper it is sufficient to consider only the collection T of all those
subsets of I which, when infinite, contain L. (This is a consequence of the
fact that our languages are of bounded nondeterminacy. In an operatiomal
semantics, the computation tree modelling execution for a given input state
is finitely branching and therefore it allows application of Konig's lemma.
An infinite path in the tree is, denotationally, reflected by the presence
of 1 in the output set, and whenever the output set (set of states labelling
the leaves of the tree) is infinite, L has to be in the set. We shall not
say more about this here; the reader may consult [1,3,4,7,10] for more in-
formation.) On the elements T € T the so-called Egli-Milner ordering is de-

fined:

DEFINITION 2.2.

a. TI.E T, iff either L € a3 and Tl\{l} ST, (c is set inclusion) or 1 ¢ T,

and T] = Tz.

b. Let, for ¢: I >, T, 2 T >, T be defined by ¢y = AT. ogr Y (o)

let y oy, = Ac.@l(wz(c)) and Y, U ¥, = A0.y,(0) U ¥,(0).

c.hdig' [Z g T], and ¢ denotes a typical element of M.

A justification of this definition is contained in

LEMMA 2.3. . .
—_— UTi, if L € Ti for all 1
. 0) i , f in <t.>, = . .
a. (T,L) is a cpo, where, for a chain T {Tio’ if L g Ty (for some 10)
(where "u" denotes set—theoretic union)

b. """ is a continuous mépping: (Z>T) ~ (T+ST), and, for ¢ continuous ¢ is
continuous.

c. Both "o" and "u" are continuous in both their arguments.
PROOF. See, e.g., [4].

Remark. We observe that ¢ and {8} are maximal elements of T in the Egli-
Milner ordering. This mirrors the fact that a statement which fails or

aborts cannot be extended to a statement containing more information. On

the other hand, {1} C 1 holds for all 7, and, in particular, {1} C ¢ holds;

hence, @ is not the least element of T.

In the non-regular case we need, besides states assigning meaning to
integer variables, also envirownments assigning meaning to statement variables.
We take (ee) E df. S4mv - M, and use the notation e{¢/X} analogous to fhe
o{a/x} notation.

We now introduce the valuation functions V,W,R and M, of the following

types:

V: Texp -~ (Z+Zl)
W: Bexp - (Z—+wl)
R: Regs -~ M

M: Stat > (E-M)

Their definitions are given in

DEFINITION 2.4 (semantics).
a. V(s)(8) = V(s)(L) = Ly and for o # 68,1, V(s) (o) has the usual meaning

(e.g., V(x)(0) = o(x), etc.; for details see [41]).
b, W) (S = W) W) = L and, for o # 6,1, W(b) (o) has the usual meaning
(e.g., W(sl=sz)(c) = (V(sl)(c) = V(sz)(c)), etc.).
c. RR)(0) = {c} if 6 = § or 0 = L, and, for o # §, (by convention, Ac....
is short for AoceZ....):
R(x:=s) = xolo{ V(s) (o) /x}}
R(b) = Ao. if W(b)(c) then {o} else P fi
R(A) = xo.{s8}
R(R 5R,) = R(R,)°R(R)
R(RIURZ) = R(RI)UR(R

R(RT) = U ¢., where
i 1

9)

oy = ro.{L}
050y = (¢ioR(R))u(xo.{o})
{c} if 0 = 8 or 0 = 1, and, for o # §,L,

Ac.{O{V(s)(c)/x}},...,M(S]USZ)(E) = M(Sl)(e)UM(Sz)(a)

d. M(S) (¢) (o)
M(x:=s) (&)

10

M(X) (e) = e(X),
M(uXLSD) (e) = ulre.M(S) (e{o/X}) 1.

Remarks
1. The mapping & = A¢.M(S)(e{¢/X}) in clause d is continuous (i.e.,
® ¢ [M»M]) and, therefore, has a least fixed point nué.
2. Let us assume - for the purpose of our theory rather than as language

extensions for their own sake - that the syntax of Regs is extended with
R::= ...IR*IRw.

As definition of their semantics we give:

R(R*) = l]f wi (lub with respect to set—inclusion), where

l[)o = Xo.0
Vi = W eRE®)IU(0.{o])

and

R(Rw) = lij X;» where

Xg = ro.{1}

Xi+1 XiOR(R)'
We leave to the reader the proof that, indeed, R(Rf) = R(R*) UR(Rw).
Another way of viewing the difference between R+ and R” is the follow-
ing: Let @ denote the statement that terminates nowhere (i.e.,
”R(SZ) = Xo. if o # 6 then {1} else {8} fi, and let R1 C R2 abbreviate
R(R])(c) C R(Rz) (o) for all o, and similarly for R

< R,. We now have

1 2°
that - using an informal terminology - RT corresponds to the least upper-

bound of the E —chain

QC (R;Q) v trueC...C (Rl;Q)] Rl-1 Uu...u Ru true ...

(where R' stands for R;...3R (i times), and the equivalence R; true =

R is used), and R" is the least upperbound of the c-chain

11

false c R; false U true c...c Rl_1 U...U R U true c...

Here we have used that, for all R, R; false = false. Note that R;Q = Q

only holds when R fails nowhere. This is a consequence of the fact that
$(@) = ¢ holds for all ¢; in particular, R (®) = g.

3. In section 4 we shall introduce a construct in an extension of Sfat which
plays the same role with respect to pX[S] as R* plays with respect to

rRT.

3. INFINITE COMPUTATIONS: THE REGULAR CASE

For each regular R, we syntactically define constructs Rfin and Rinf
where R in (Rinf) denotes that part of R which gives precisely the finite
(infinite) part of the computation. The general problem (for any S ¢ Staft)
is addressed in the next section; in the present one we only deal with the
regular case. No proofs are given since the results are just specializations

of the general case.

DEFINITION 3.1 (semantic finite and infinite parts).

a. For T € T, we put Tfin = 1\ {1}, Ttnf = T\Tfin (where "\" denotes set-
theoretic difference).

b. For ¢ ¢ M, we put ¢/ 7 = 20.6()T %" and ¢*% = r0.0(e)*"¥,

We can now give a precise formulation of the aim of this section:
For R € Regs, define syntactically constructs Rfin and Rinf such that
R(R in) = R(R)fin, R(Rinf) = R(R)inf. From now on, we assume syntax and
semantics of Regs extended as described in remark 2 after definition 2.4.

The following definition gives the desired construction:

DEFINITION 3.2 (syntactic finite and infinite parts).

a. (x:=s)fin = x:=s
pf " = b
Afin = A
(R.:R)fin = f%n f@n

(RIJRZ)ftn _ }in ngn

12

b. (x:=s)znf = false

e = false

o NI pinf fin_ _inf
(R;3R) 7= R URTS R
inf_ _inf inf

(RIURZ) = R1 u R2

Rnnf = Rfv,n*; Rtnf U sznw.
Remarks

1. Not surprisingly, these formulae have exactly the same structure as the
formulae appearing in the theory of languages with infinite words (e.g.
[6]1). In fact, the primary motivation for the present research was our
wish to study these formulae in the framework of denotational semantics,
together with their generalization for the non-regular case, and to in-
vestigate the foundations of the proof of their justification.

2. Though we do not really need them, for completeness sake are also give
the formulae for R* and R”: k

R*fin = Rfin* R*%nf - Rf%n*;Rtnf

ROFT < false RV = Rfin*; Ry I,

3. Some understanding for the structure of the formulae for RTlnf

obtained by using the fact that R+'= R* uR” = true U R U R3R U...U Rk

can be

U...U Rw, and the formulae for (RIURz)lnf and (Rl;Rz)inf. We have

sznf (true u R U R2 U...u Rk U...U Rw)inf

erue™ o R 4 @RHTF . @D . @

= false u Rtnf U (Rinf U Rfin;Rinf} U...

y (Rinf U R in;(Rk—l)infS U .U (Rinf U R in;(Rw)infs

(after w iterations)
(true u R u. .0 @K RTT @Y

- Rfin*; inf y (Rfin)w

(Note that we do not claim this to be a proof of anything.)

13

The next theorem expresses the desired result:

THEOREM 3.3. For each R e Regs,
a. R&T™) = rr)T”

R(Rinf) _ R(R)inf .
b. R®) = RER) y REY)

PROOF .

a. Special case of theorem 4.7.
b. Immediate from part a and the fact that R(R) = R(R)fln U R(R)tnf (since

_ Tfin y Tinf).

4, INFINITE COMPUTATIONS: THE GENERAL CASE

This section presents our treatment of infinite computations in the
general case. We first introduce some auxiliary syntactic (and associated
semantic) definitions. Next, we give the definitions of Sfin and Sinf.
Their justification is based on (i) a general (semantic) lemma on proper-—
ties of fixed points (lemma 4.3), and (ii) a - generally applicable -
theorem enabling us to connect syntactic transformations with semantic ones
(theorem 4.5). Once theorem 4.5 has been established, it is straightforward
to prove that the definitions of fiZm and Znf are indeed the desired ones.

The auxiliary syntactic construct we introduce plays the same role

with respect to pX[S] as R plays with respect to R+.

DEFINITION 4.1 (auxiliary and extended statements).

a. Let (Ae) Auxs be the class of auxiliary statements. Let (Ye) Auxv be the

class of auxiliary statement variables. We define
As:= x:=s|b|a|A 34, |A VA, [Y]aY[A]

(see remark 1)
b. Let (Te) Exts be the class of extended statements. (There is no need to
introduce a separate class of extended statement variables (Xe) Stmv

serves our purpose here.)

14

T::= x:=s|b|A|Tl;TZITIUTZIXIuX[T]]A

c. Let (M,0) = [Z+ST] be as before. Let (M;g) be the cpo of continuous

functions Y: I g T ordered by set-inclusion (i.e. wl c wz iff

wl(c) = wz(c) for all o3 recall that w](o), wz(o) are sets in T.)

- For ¢ ¢ [(M,0) » (M,D) 1, H-® denotes its least fixed point with respect

to "C ", and for ¥ ¢ [(M,2) > (M,9)], u_ ¥ denotes its least fixed point

"n_.mn

with respect to "c". The class of enviromments E is extended to mappings

(Stmv v Auxv) -> M. We define the valuations A: Auxs > (E-M), T: Exts -
(E-M) as follows:

{0} for 0 = § or 0 = L, and similarly for T(T)(e) (o).

A(A) (e) (o) =
Otherwise, :
AGx:=s) (e) = ro.{o{V @ 3y, ., ACa A (6) = AGA) (&) U A (o),

Txi=s) (&) = Aa.{ol’ (D /a1, .., T (e) = T () v T(X,) (o)
A(Y) (e) = e(¥),T(X) (e) = e(X)

A(aY[AD) (g) uc[Aw.A(A)(e{w/Y})]

TGXITD) (&) = wl2e.T(T) (e4/xD)]

T(A) () = A(a) (o)

Remarks

1

. Auxiliary statements A ¢ Aux4 are syntactically isomorphic to statements

S ¢ Stat. The only difference is in their semantics in that in defining
the meaning of the aY[A] construct we use least fixed points with re-
spect to the c-ordering. (To emphasize the difference we use a different

notation (o rather than u) for recursive constructs.)

. Extended statements combine the structure of ordinary (S-type) and auxil-

iary (A-type) statements. In particular, Sfat c Exts and Auxs c Exts.
Note, however, that nested applications of recursive constructs of the
form pX[...aY[A]...J or o¥[...uX[T]...] with X free in A or Y free in T
are not included. As a consequence, no complications are encountered in
the verification of the usual continuity properties of ¥ =

Ap.A(A) (e{y/Y}), for which ¥ ¢ [(M,s) > (M,c)] holds, or of

® = 2.T(T)(e{¢/X}), for which ¢ € [(M,E) »~ (M,C)] holds.

3. For subsequent use, we observe that it is straightforward to verify that

(4.1a) M(SLS'/X1) (e) = M(S) (e{M(8") () /X})

15

(4.1b) AACA" /YD) (e) = AQAa) (e{AA") (e) /X))

(4.1c) T(TLT' /X7) (e)

T(T) (e{T(T") (e) /XD) .

4. Note that pX[S] can be viewed - again using an informal terminology -

as least upper bound of the C-chain
® C sCa/x1C sCsCe/x1/X]IEL...

whereas aY[A] is least upper bound of the c-chain
false c S[false/Y] c S[S[false/Y]/Y].

5. The way in which the regular statements can be embedded in the class of

general or extended statements is given by the following correspondence:

R’ ~~ uX[R;X u true]
R" ~~ aY[R;Y u true]
R® ~~ uX[R;X]

(Remember that R has, by its definition, no free occurrences of X or Y.)

Two further correspondences we shall have occasion to use, are

* w
uX[Rl,X U Rz] R],R2 u Rl

Y[R ;Y u R,] ~ R};R
b R 1382
. e e . fin
We now arrive at the central definition of our paper, viz. of S and
Stnf. Let, for each X ¢ Stmv, Xftn be some element in Auxv and thf an
1 4 X2 ='Xlln y Xzzn’ X?nf 4 X;nf.
For arbitrary S, we define Sfin ¢ Auxs and ST ¢ Exts by

element in Stmv. We assume, moreover, that X

DEFINITION 4.2 (syntactic fin and Znf).

a. (x:=s)f¢n = x:=8
bf@n -1
Afin _—

16

(Sl;sz)fin - S{iﬁ;szin
(Slusz)fin = S{in U Sgin
uxLs P = oxf sl

b. (x:=s)inf = false
binf = false
Ainf = false |
(Sl;Sz)inf = anf U S{in;sgnf

inf _ Jinf inf
(SIUSZ) = S1] %2
uX[S]znf - qunf[S@nf[uxtsjfin/xfin]]
Remarks

1. We leave it to the reader to verify that, indeed, Sfin e Auxs, Sznf €
Exts.

2. Apart from the definitions for the u-construct, the definitions are exact-

ly as in definition 3.2.

By way of example, we show how the formulae of definition 3.2 can be

obtained as special cases of definition 4.2. Let R be any regular statement.

RTf%n ~~ uX[R3;X u true]fin ~~ aX 7’n[(R;X] true)fin]

~r~ aXftn[Rfin;Xftn] truefin]

~~ aXfin[Rfin;Xfin U truel

— Rfin*

(since Xfin € Auxv, by the correspondence oY[R;Y u true] ~~ R" for any R)

R7F e LxiRsX v trued™ kT (R5x U true) PR
X (50 7y erue™ R
. uxinf[(Rinf U Rfin;xi”fs[.‘_]] e (T pot in (...))
o uxinf[Rinf y Rfin;xinf]

o Rf@n* Rznf y Rfinw

17

(since Xﬁnf e Sitmv, we can apply the correspondence uX[R];X U RZJ ~~

RT;R u RT, for any R Rz)

2 1’

The remainder of this section is devoted to the proof that definition
4.2 is indeed the right one. We shall show that, for each closed S,
A(Sfin) = M(S)fin, T(Sinjs = M(S)inf. (For S' not closed, the claim has to
be somewhat refined, as will become clear from the subsequent discussion.)

We first need the following simple property of fixed points:

LEMMA 4.3. Let £ € [C»C], g € [C+SC'], heC' +mp'. Assume that, for all x,

(4.2) g(f(x)) = h(g(x)).

Then ph exists, and

(4.3) g(uf) = uh.

PROOF. Putting x = uf in (4.2) we obtain g(uf) = h(g(uf)). Thus, g(uf) is

a fixed point of h. We shall show that it is, in fact, the least fixed point
of h. Let X, ?e any fixed point of h. We shall show that g(uf)C Xy We use
that uf = U fl(i). By continuity of g it is sufficient to prove

(*):g(fi(L;) E;xo, for all i. The case i = 0 follows from strictness of g.
Now assume (x), to show g(f™" (1)) C x,. By (4.2), g(£7' (1)) = g(e(s1 (1)) =
= h(g(fi(L)).E (by monotonicity of h and (%)) h(xo) = x,- 0

Remark. A similar result is used in [1]. The lemma is a slight extension of

exercise 5-3 of [41], in that h is assumed monotonic rather than continuous.

Below, we shall need a simple generalization of lemma 4.3 to the case

of systems of mappings 81289> hl’hZ:

COROLLARY 4.4, Let £ e [C+C], g; € [C+SCi], i=1,2, hi € Cl +m(cz+ﬁci),

i=1,2. Then from

g, (£(x)) = h, (g, (x))(g,(x))

gz(f(x)) = hz(gl(X))(gz(X))

18

it follows that

gl(uf) u[Ay-hl(y)(gz(uf))]

uliz.h, (g, (uf)) (2) 1.

82(uf)

PROOF. Easy extension of the proof of lemma 4.3. [

The property of least fixed points as stated in lemma 4.3 is at the
heart of a number of results concerning recursive procedures. More spec¢if-—
ically, it can be used to justify a variety of syntactic transformations
(such as fin and Znf studied here) by connecting them to one or more seman-—
tic transformations such as the mappings 8:8,58, encountered above. The
general pattern of this connection is the following: Let Synil, Syntz be
two syntactic classes with typical elements D,..., F,..., respectively.
Each of them has certain constructs we leave unspecified, furthermore clas-

ses of variables Var,, Var,, with typical elements x,..., and y,..., respec—

1’ 2
tively, and p-forming operators px[...] and uy[...]. Thus, we assume a syn-

tax

D::= ...

x|ux[D]

F::= ...

y]uy[F].

We also assume that substitutions D[D'/x], F[F'/y] are defined in the usual
manner. Next we assume that the elements of Syntl, Syntz obtain meanings
through valuations D,F- with respect to the usual enviromment E; its precise
definition as E_ or E is left to the reader - yielding results in cpo's

D F
(ge) KD’ (ne)KF, respectively. More specifically let

D: Syntl > (E+KD)‘
F: Synt, + (EKp)

be defined for variables and u-terms in the usual way:

D(x)(e) = e(x), F(y)(e) = e(y), and

19

D(ux[D]) (&)
F(uylFD) (e)

ulrg.0(D) (efe/xD)]
ulan.F(F) (e{n/yDH 1.

(4.4)

(In (4.4), we take least fixed points with respect to the ordering in
[KD+KD], [KF+KF] respectively.) Furthermore, we require that D, F satisfy

the conditions

D(ID' /x7) (&)

D(D) (e{D(D") (e) /x})
(4.5)
F(FLF'/yD) (e)

F(E) (e{F(FE") (&) /¥y D)

The reader should observe that all we do here is to give a somewhat abstract
version of the properties of Staft, Auxs, with valuations M, A.

Now let "~'" be a (syntactic) mapping: Synil - Syntz. Usually, it is
reasonably easy in a specific instance of a transformation "~" to establish
how it should be defined for the non-recursive case, and one would expect
the "~" definition for u-constructs to be the more difficult part. However,
it was a pleasant surprise for us to discover that, on the contrary, once
one has found the appropriate definition for the non-recursive case, it is
possible - under the quite general assumptions mentioned above - to provide
a standard treatment of the case of a u-term.

Let us assume that '"~"

satisfies the general property that, for each
X € Van], X is an element of Va&z, and that, moreover, "~" is an injection.
We also require for each D that D contains no free variables other than
those induced by "~" from the free variables of D. Let us furthermore pos-

tulate that "~" is defined for a p—term by
(4.6) px[D1” = ux[D]

We shall show that (4.6) is satisfactory in the following sense: Often, we
want to justify the definition of "~" by showing that it induces a certain
semantic property, say «, which can be seen as mapping between the semantic
domains, i.e., we take k: KD - KF. (In.the example qf fin, the semantic
counterpart is the mapping fin: ¢ = ¢f$n = Ao.¢(o)f$n.) We then wish to

establish commutativity of the diagram

20

—
4
N

N :
%p k Xp
The commutativity_reqﬁirement'for variables specializes to (*): k(e(x))
= £(x) (since D(x)(e) = e(x), F(y)(e) = e(y)). In case ¢ satisfies (x) for
all x, we call e consistent.

In order to analyze the relationship between "~" and '"k'", is particular
for pu-terms, we introduce two operators @D,WD in the following way: Let, for
D e Syni], var(D) = {xl,...,xn} be the set of free variables of D, and let

{gl,...,;n} be the free variables of D. Let x abbreviate XpseoesX (in some

arbitrary, but fixed order), and let E = gl,...,gn, ; = Myseeesn - We now
. n _ n
define QD' KD +~KD, WD. KF > KF by

B

AE.D(D) (elE, /x,})

Y

b = M.F®) (eln, /x; 1))

and we investigate whether the relationship
->
(4.7) k(e (B)) = ¥ (x(E))

holds for all E. Indeed for consistent e, taking Ei = e(xi), n; = K(E(Xi)),
i=1,...,n, and using that K(e(xi)) = 8(;i)’ i=1,...,n,

s{e(xi)/xi}i = e{e(;i)/;i}i = ¢, we see that (4.7) is equivalent with
(4.8) k(D(D)) (e) = F(D)(e),

which is the same as the commutativity of the diagram above. For example,

for "~' and "k" instantiated to the syntactic and semantic fZn, and with

21

the natural corresgondence Qetween Syntl and Stat, etc., (4.7) reduces to
the claim M(S)(e)fin = A(Sfin)(e) - where consistency now means that e(Xfin)
= e(X)fin.

In order to prove (4.7) in the general case, one proceeds by induction
on the complexity of D. One would expect the non-recursive cases of such an
induction to be reasonably easy, whereas the difficult case would be that
of recursion. However, we claim that - provided that the various properties
of ~, k, D and F listed above are satisfied - the p-case of the induction is

automatically obtained. In fact the following theorem holds.

THEOREM 4.5. Assume that ~, «, D, F satisfy the properties mentioned above.
(In particular, (4.4) to (4.6) hold.) Assume, moreover, that x € [KD+SKF],
o, € (KK 1, ¥y e K; > K. Then, if (4.7) holds for D = D, (and n=k+1),
then it holds for D = ux[DOJ (and n=k).

PROOF. By an easy extension of lemma 4.3 we obtain that if, for all g],...,gn,
(o (B (D) = ¥ (K(ED) en (K(E)

then, for all gl,...,gn_l,

(4.9) CQUEAE. @ (E) - (B D)D) = LAY (k(E) v . (k(E__ D)) () 1.

We now show that if (4.7) holds for D = D0 (and n=k+1) then it holds for
D = ux[Do] (and n=k). Let D = ux[Do]. By the definition of @D and WD we
have to show that, for all gl,...,gn,

€ (DQux[D D) (e{"H/x,},) = F(ux[DOJN>(:{K(5i)/§i}i).

We only consider the subcase that x % x ..,xn; andleave the other sub-

1
case to the reader. By applying (4.4) and (4.6) to the left-hand side (lhs)

and right-hand side (rhs), respectively, what we have to prove reduces to
(g D) (%1 /x5 D) = FORIB, D 1D /7,3).

By the assumption we know that (4.7) holds for @D . WD , and we can rewrite
0 0

22

the lhs using (4.9). Also applying the definition of F to the rhs, we ob-

tain

lhs

WO F@ (10 &3, (V5D 3,

rhs

uCan. FB,) (e 0 /%3, (VA 1.

We see that lhs and rhs are identical, thus completing the proof. [

Based on corollary 4.4, we can formulate a direct generalization of

this theorem in

COROLLARY 4.6. Assume the following framework:
(De)Synt,(Fe)Syntl,(Ge)Syntz,(xe)Van,(ye)Vahl,(ze)Va&z,

D::= ...|x|ux[D] F:]yluy[F] G: |z|uz[G] D(x)(e) = e(x),
D(ux[D1) = ulxrg. D(D)(e{ /x})] and szmzlarly fbr F G, D(D[/x])(s) =

= D(D)(e{p(D)(8)/x}), and similarly for F, G, : Synt -~ Synti, i=1,2,

"‘1.
X € Vani, ~1i are injections, i = 1,2,

w2 B uxlp1™2 /%277

UX[D]~1
(4.10)

ux[DJN2 u§2[52[ux[D]~1 /;1 1]

o Ag D(D)(s{gllx 1) w = \MALFD)(e{nl/x }{El/x },), and stmzlarly
n

for WD’ Ky € [KD+ KF], K, € [KD K 1, @ € [KD+KD] W € KF »h G mKF),

and s¢m¢larly for WS T%en, £, fbr aZZ £,

€ (@) = ¥ (e, B)) (e, (B))
€ (8 () = 20k @) (k, (B))

holds for D

D0 (and n=k+1), then it holds for D = ux[DOJ (and n=k).

PROOF. Follows the same lines as the proof of theorem 4.5, now based on the

semantic property of corollary 4.4. [

We are finally ready for the proof of the main result of the paper.

Analogous to the above definitions, we call € consistent if, for all X,
e’ = e@™), and e = @),

THEOREM 4.7. For all consistent e,

Mes) @7 = A (o)
sy ()7 = 157y (o).

23

PROOF. Induction on the complexity of S. First we consider the case that S

is not a u-term.
a. S = x:=s, b, A. Trivial.
b. § = S],S2 This case follows since, for all T])
(i) (O\{L} = $(\{LH\{L}, hence Ao.@z(c))'ﬁn =)\o‘.$‘§7’n(¢{7’n(o))
(i1) 30" = oy g (rﬁ”>,
208,60, (@) = ro.Le] nf

c. S = S1 U Sz. Obvious

hence

(@) v 357 T (@)

. S = X. Follows from the consistency requirement.
e. S = uX[SOJ. Follows from corollary 4.6. We take ~1 = fin, ~2 = inf,
k., = fin, x, = inf (syntactic and semantic fZn and Znf, respectively),

1 2
Synt = Stat, Syn,t] = Auxs, Syn/tz = Exts, Var = Simv, Vc:Uz.1 = Auxv,

VGULZ =S/tmv, D = M’ F =A, G = T’ K-D = (M’E)’ I(F = (M’_C_)’ KG = (M’E)'

Strictness of k., follows from {L}\{L} = @ (the least element of (T,<)),

1
and continuity from (U Tt.)\{L} U(T \{L}). Strictness of K, follows
i
from {L}\{l}f%n = {1}, and contlnulty from (U T,)\GJ T. \{L})
=L (. \(Tl\{l})), i.e., from 1 € Ll T, iff L €T, for all i. Finally,
i i

we verify whether (4.10) is satisfied, i.e., whether

x5 = oxd T x5 1
4.11) . o T
wxis 19 = s ke s 7 xTM.

1

Observing that Xinf does not occur free in Sfin, we see that (4.11) re-

duces to

KIs P = oxf sl

gt uRLS ¥ fing;

uX[S]inf

24

which is indeed the form of definition 4.2. [

We have thus completed the justification of definition 4.2 on the basis

of a general argument concerning properties of recursive procedures.

5. SYSTEMS OF RECURSIVE PROCEDURES AND NIVAT's THEOREM

We discuss the relationship between the results of the previous section
and a theorem of Nivat on infinite words generated by a context free grammar.
We begin with a reformulation of our theorem for a language which has sys-
tems of (simultaneously declared) recursive procedures rather than the p-
terms of the preceding sections. Since the structure of a system of recur-
sive procedures closely resembles that of a context free grammar, we thus
obtain a framework facilitating the comparison with Nivat's result. We re-

define syntax and semantics of our language Stat as follows:

DEFINITION 5.1 (syntax and semantics of a language with systems of recur-

sive procedures, fin and inf).
a. Let (Pe) Pvar be the set of procedure variables. Let (Se) Stat be rede-
fined by

S::= x:=s|b|A|s];szlslus |p

2
and let (Re) Prog be the class of programs of the form <<Pi <= Si>i S>:
A program R is a pair consisting of a set of declarations Pi~= Si’
i=1,...,n, and a (main) statement S.

b. Let E: Pvar -~ M be as usual, and let N: Prog - (E-M) be defined by
- rbi
N(<<Pi=8i>i|3>)(€) = M(S) (e{ /Pi}i)

where M is as before for S not a procedure variable, M(P)(e) = €(P) and

¢i = uifél,...,én], with ui[...] denoting the i-th component of the
simultaneous least fixed point of the n-tuple of continuous functions
1
= v 1 ¢]‘_
@1,...,®n, and Qj A¢1.....A¢H.M(Sj)(e{ /Pi}i)'
c. Let (Ae) Auxs and (Te) Exts be defined as before for the non-procedure

cases and let (Qe) Auxv be the set of auxiliary procedure variables.

25

Programs <<Q. « A,>, | A> and <<P, « T.>,,<Q, < A,>, | T> obtain meaning
J 1 11 J J 3

with valuations B and U defined by

B(<<Qeh >, [4) (o) = A (%, 9
U(<<P 1>, Queh > [T (0) = T(T)(e{"’l/P 3, {“’J/Q 1)

where A(A) (¢) and T(T)(e) are defined in the natural way for A,T not a
procedure variable, and, moreover, A(Q)(e) = £(Q),T(P)(e) = €(P), and

<
I

_ v [lpt
3 “S’j[‘yl’---,‘l’n], ‘l’j = Awl Awn.A(Aj)(E{ l/Qi}i)

} o : ¢ v
$. = ﬂ;,itél"“’én]’Qi = Ay ... A¢n.T(Ti)(s{ 1/Pi}i{ J/Qj}j)
d. We define fin and Znf by

<<P, « S.>. | 557 = <cpf™ o I [SN
1 11 1 1

. nf _ inf inf fin fin inf>
<<Pi <= Si>i ‘ S> = <<Pi «= Si >i’<Pi = Si >i ‘ S

where Sfin Sznf are defined as usual for S not a procedure variable,

Pfi e Auxv, and P inf e Puvan.

Remarks

1. In this section, R ranges over Prog rather than over Regs.

2. Note that, by the definitions of f7Zm and Znf, P’ nf does not occur in Sfﬂn
hence, again (as with definition 4.2) Sfin Auxs .

3. Note that in the definition of N(<<P GS >, |S>), least fixed points are
taken with respect to "[", and in that of B(<<Q =AJ> |A>), least fixed

points are taken with respect to "c'". The former least fixed points are

(k) 0) .

least upper bounds of chains S
s(F*1) 2 grg

defined inductively by S
(k)/P 1. 5 whereas the latter are least upper bounds of chains
A(k) defined by A(O) = false, (k+l) A[A(k)/Q] . Finally, in the de-

finition of U(<<P£¢Ti>i,<Qj=Aj>j|T>) a mlxture of the two orderings is

used. Since the Pi do not occur in the Aj, the definition does not have
to be fully simultaneous in the Pi’Qj together: in the definition of the

¢i, we may assume the wj to be already determined.

26

Example. Let Ci’ i=1,..., stand for arbitrary statements without occur-

rences of procedure variables, and let R be defined by

P, = C 3P 3P, U Cy3P 5P 5C5 U C

P, & C53P,3C, U Co3P o3P, | P

4

>,

1

Cf%n =c., tnf

Then, using that] ; = false, we obtain

fin _ n ofin, fin ofin fin,
R = <« C Pf Pg u CZ,Pg ,P{ ,C3 u Cé’
in fin ofin _fin in
Pf = Cgsby 3G v C7’P]20 ’PJ; IPJIC >
and
Rinf = <Pf¢n = ..., Pgin < ... (as above),

Ptnf‘¢= c Ptnf y C Pfin.Ptnf U C Ptnf U C Pfin inf

1 1°%1 2 2552 1 ’
anf inf tnf fin, znf f
P, < C3P Y U CosB ™ U CosPy P | P

Observe that programs R and thn are syntactically isomorphic (just as S

and Sf%n in section 4). The difference between them lies only in the way

their meaning is defined.

We now state Nivat's theorem. Consider a context free grammar
G = (VN’ T,P), where VN = {Xl""}’ VT

terminal and terminal symbols, and P is the set of production rules

= {a,...} are the alphabets of non-

Xi > Mi’ Mi a finite set of words o € (VNUVT)*. (We have no reason here to
single out a start symbol.) Let, for finite or infinite terminal words x',
x", x' < x" denote that x' is a prefix of x". Let a finite derivation

o ;1 a' be defined in the usual way. Moreover, we say that, for infinite x,
X3 x (the nonterminal X derives the infinite word x € V¥ in an infinite
number of steps) whenever there exist finite'prefixes X5 i=1,2,..., of
the infinite word x such that, for all i, X é-xiui for some o, and

X <Ky ... X, <LL.<x S X X5 i.e., x is the least upper bound of the
<-chain x> with respect to the prefix ordering. Let L(G,Xi)f stand for
the set of finite words generated by Xi’ and L(G,Xi)w for the set of in-

finite words generated by Xi' We then have

27

THEOREM 5.2 ([13]). Let G, with production rules P = <Xi > Mi>i be a context
free grammar as deseribed abeve, and let ¢" be the context free grammar
(VN’VNUV ,P), where VN ='{§],...} and P is the set of production rules

<X - M, ner where the M are finite subsets of (V UVNUVT)* defined by

M, = {oX | oXB € M, for some a,B e (V UV X. e V. .},

*
T) 3 j N
Let Lf abbrevzate L(G,X.)f; and let, for any language L over the terminals
Vg U Voo L[J/XJ] denote the result of substituting the languages Lf for the
(terminall) XJ in the words of L (with the precaution that substwtutton in
an infinite word yields an infinite word; this is made precise [13]). We

then have, for i = l,...,n,
L, x.)% = L, x.)rl/x. 1. .
71 S RO R B

PROOF. See [13]. [

Example. Consider the context free grammar with productions P:

X, > aXxXx, la XX a]a,
X, > a5X2a6|a

2 2 2°

For the set of productions P we obtain by the construction of the theorem
X, > aXlaX x2]a2x

X, > aX,la.X,[a,X,X .

olaX.X

We observe a remarkable similarity between the system P and the definition
of Rinf in the example following definition 5.1. In fact, we shall formu-
late a commutativity result which makes this observation precise. First we
need a number of preparations. Each program R of the form <<Pi <« Si>ilPk>

can be viewed as a grammar - with start symbol P, - generating (finite or

k
infinite) words over the alphabet of "terminals" x:=s,b,A in a natural way.

E.g., the program RO = <P « Ci;P;C2 u C3 | P> determines the language

28

? U {C1;03,02 | n 21} (with Ci’ as before, statements without free occur-

rences of P). Let us, till the end of this section and essentially without
lack of generality, restrict attention to programs of the form

R = <<Pi <= Si>i|S>, where S = Pk for some k, 1 £ k < n, and each of the Si
ip Y-y Sin-’ with each Sij of the form

i v
Cl;Pkl;C2;Pk2;...;Pkr;Cr+l, and, conventionally, with true taking the role

is of the form Si =S

of the empty word. It should be clear how such an R can be seen as a gram-
mar generating (finite or infinite) sequences of (elementary) statements as

indicated by the above example of program R.,. For each such R, its asso-

0"
ciated language is denoted by L(R). Furthermore, for a program R of the

form <P, = T.>. <Q <= AJ> | P,> - with analogous restrictions on the form

of the Ti’ Aj - we have as assoglated language L(R) all words which can be
derived starting from Pk, where for the nonterminals Pi finite or infinite
derivations are used, and for the Q only finite derivations. The next step
consists in the observation that the mapping M M (as descrlbed in the
statement of the theorem) is 1somorph1c to the mapplng S & S f, Where oc-
currences X X in M correspond to occurrences of szn tnf S f. For
example, aX]X2 s aX1 U aXlXZ’ whereas C'Pl; 2 znf C: P?nf Pfin tnf
Finally, we observe the following: The expression LG ,X.)[J/X] occurring
in the statement of theorem 5.2 can be rewritten as L(GwUGf X.), where Gf
indicates that for the nonterminals Xj from Gj only finite derlvatlons are
allowed. Putting all these observation together, we obtain the following

theorem:

THEOREM 5.3. Let R = <P, = S >4 | P> be a program satisfying the above

constraints. The diagram

R inf R
>
LY v L
N
rd

L(R) @ LY = L™

29

commutes.

PROOF. Let D = <P, « §.>,, DV " = «pft" & P, pinf = pinf _ ginf,
_— 1 1 1 1 1 1 1 1
Then

L(<D|Pk>)(u = (by Nivat's theorem and the isomorphism mentioned

above)

L™ oy tLa? ™) 2T, = L™ un (2> = L.
' 0
This concludes our discussion of the relationship between infinite com-—

putations and languages with infinite words.
6. APPLICATIONS TO WEAKEST PRECONDITIONS

In this section, we discuss a number of applications of the proof tech-
niques presented in section 4. In particular, we obtain a variety of results
concerning weakest preconditions - mostly for regular statements - including
many of those described in Chapter 8 of [4].

We first state an auxiliary result which is a variation on Lemma 4.3:

LEMMA 6.1. Let C be a cpo, C' a complete lattice, £ € [C>C] and g: C > C'

an antistrict and anticontinuous function. I.e., for T the greatest element
of C', g(1) = T and, for each ascending chain x>, in C',

gdf Xi) = q g(xi).) Let h: C' o C'. Then from gof = hog <t follows that

vh exists and that vh = g(uf) holds.

PROOF. Similar to the proof of Lemma 4.3. [

We leave to the reader statement and proof of a theorem which expresses
the corresponding variation for theorem 4.5. The main changes are that the
semantic mapping k is now required to be antistrict and anticontinuous,

and that definition (4.6)is replaced by
(6.1) ux[D]" = vx[D]

where the prefix vx[...] denotes the greatest fixed point operator.

30

We now introduce four notions of weakest precondition. They are pre-
sented through a variety of semantic composition formulae; later a syntac-—
tic notation corrésponding to the four semantic notions is proposed. Let
(me)Il be the set of predicates, defined as I = I +Ss{tt,ff}, where Tas de-
notes functions m such that w(8) = w(1) = £f. Let {tt,ff} be ordered by
ff C tt, and let ™ C Ty hold iff wl(c) E_wz(o) for all o € I. Observe that

it is immediate that Il is a complete lattice.

DEFINITION 6.2. For T ¢ T, m € I, ¢ ¢ M we put

a, 7[1] <> w(o) holds for all o € T
{1t} <> 7(o) holds for all o e T\{L}
m<t> <= 7w(o) holds for all o e t\{8}
m(t) <= 7(o) holds for all o ¢ t\{L,8}
b. ¢[7] <= Ac.ml¢(0)]
¢{r} <= Aro.m{¢(0)}
p<m> = Ao.m<¢(o)>
¢(m) = Aro.m(¢(0)).
LEMMA 6.3.

a. The compositions wltl, w{t}, m<t>, w(t) are all monotonic in w
b. The compositions mltl, m<t1> are strict and continuous in t

c. The compositions m{t}, w(t) are antistrict and anticontinuous in t.
PROOF. Direct from the definitions. [J

Next, we introduce the syntactic class of conditions (pe) Cond, which
extends the class of assertions (first order formulae) in two ways: Firstly,
syntactic versions of the weakest precondition constructs as suggested by
definition 6.2b are added, and secondly we introduce least fixed point and
greatest fixed point forming operators. Let (Ze) Cndv be the class of con-

dition variables. As in sections 2 to 4, R denotes a regular statement.

DEFINITION 6.4 (syntax and semantics of conditions).

a. The class (pe) Cond is defined by

p::= true | false | sl=szl.aq]7p|plvp2|3x[p]]R[p]]R{p}[R<p>|R(p)|

Z|uzlpl|vzlp]

31

where in the last two clauses p is required to be syntactically monotonic

in Z (Z does not occur in the scope of an odd number of 7-signs)

b. Let E = Cndv » I, and let R be as in section 2. The valuation C: Cond
+ (E»T) is defined by C(p)(e)(8) = C(p)(e) (L) = ff, and, for o € ZO’
C(true)(e) = Ao.tt,...,C(3x[pI) () = A0.3aC(p) (e) (o{*/x}),
CRIpD (e) = RR)LC(p)(e)]

CR{pH (e) = RR){C(p)(e)}

C(R<p>) (e) = R(R)<C(p) (e)>

C(R(p)) (e) = R(R) (C(p)(e))

C(z)(e) = e(2)

CuzlpD) (e) = ulam.C(p) (e{™/2})]

CzlpD (e) = vIAm.C(p) (e{™/2})]
c. We put F=p1 =P, whenever, for all e,o,C(pl)(s)(c) = C(pz)(s)(c).
Remarks

1. A similar variety of weakest preconditions has been investigated in an

3.

operational setting by HAREL [8].

. Clearly, we can now introduce four notions of correctness of a statement

R (or in general, S) with respect to conditions P»4, viz. [pIR[q] de-
fined as p » R[ql,...,(p)R(q) defined as p > R(q).

A fifth weakest precondition could be based on the composition

m[t] < 7(o) holds for some o € T. We shall not pursue this possibility

here.

We are now sufficiently prepared for the main theorem of this section:

THEOREM 6.5. For Z not free in p,

a.
b.
c.

d.

E R'Cpl = uzlRIZ] Ap]
k= RT{p} = vZ[R{Z}Ap]
E R+<p> = uz[R<Z>Ap]
E Rf(p) = vZ[R(Z)Ap]

PROOF. We only prove part b, the other cases being quite similar.

In order to be able to apply the theory of section 4, we slightly extend the

class of regular statements as introduced before. Recall that a statement

is called closed whenever it has no free occurrences of a statement variable.

32
We now put — for the duration of this proof only -
R::= x:=s|b|AlRl;R2]R1UR2]R1;XURzluX[Rl;XURZJ

where the RI’RZ on the right-hand side of the definition are required to be
closed. (Thus, an extended regular statement has at most one free occurrence
of (at most) one statement variable.) Let Regd stand for the class of ex-
tended regular statements. From section 2 it should be clear how to define

R: Regs -+ (E»M); enviromments e€(eE) are now defined for both statement vari-
ables and condition variables. We next define a syntactic mapping:

Regs - Cond — depending on a parameter p - which maps each statement R to a
concertion written as {R} p (though similar to R{p}, it should for the moment
be distinguished from it). For a statement variable X, {X} p is some element

of Cndv - where X, E: X2 ='{X]} p ¥ {Xz} p —; for the other cases we put

(for RI’RZ closed):
{x:=s}lp = p;, {b}p = (bop),{A}p = false, {Rl;Rz}p = {Rl}{RZ}p’
{R,URIp = {R Jp A {R,}p, {R;XuR,}p = {R;}({X}p) A {RZ}P,

{uX[R];XURZJ} = v({X}p)[{RI;XURZ}p]
(Note that the last definition has the form of formula (6.1).)

Here pi denotes an extended condition - used for the purpose of this proof
only - which has as its meaning C(pi)(e)(o) = C(p)(e)(c{v(s)(o)/x}).

(Note that the substitution p[s/x] is defined only for p an assertion, i.e.,
a first-order formula.) We now first prove that, for all R and p,kﬂjR}p =

= R{p}, where Fc denotes validity assuming consistency of the environments,
defined here as e({X}p) = eX){C(p)(e)}. Thus, we show that, for all con-
sistent €, C({R}p) (e) = C(R{p})(e), or, by the definition of C (definition
6.4b) that (*): C({R}p)(e) = R(R)(e){C(p)(e)}. By theorem 4.5 (in its version
adapted to greatest fixed points), taking the semantic mapping

Kp(¢) = ¢{C(p) (e)} - where « depends on the parameter p — we have to es-
tablish the commutativity result (%) only for R not a u-term. Verification
of (*) for this case is quite standard, and omitted here. This concludes

the proof that Fc {R}p = R{p}. As a consequence, replacing R by

R+ = uX[R;X u true] (with R closed) and dropping the consistency requirement

33

since R+ is closed, we obtain that [{uX[R;X u truellp = R+{p}. From this
it follows that Fv({X}p)[{R;X u truelp] = R+{p}, or Ev({XIp)[{R}({X}p) A
Apl = R+{p}. Taking for {X}p its value Z e Cndv, we then obtain

Evz[{R}Z A p] = Rf{p}, and using the equivalence [{R}Z = R{Z} then yields
the desired result [vz[R{Z} A p] = RT{p}. 0

By way of conclusion of the paper we briefly discuss two further results
of [4] which can be proved using the general strategy from section 4. Both
results concern general statements S € Staf (i.e. including general u-terms).
For the first result we extend the definition of Cond with constructs
SCpl,... (rather than R[pl]). Let the syntactic mapping ~: Stat - Cond be de-
fined by (x:=s) = b = A = true, (sl;sz)N = §1A(51{§2})’(51U52)~ = '§l A §2,
and, as central case

(6.2) ux[s1™ = uXCS[ux[s1/x]]

where X e Cndv. We show that S is the condition which syntactically expresses

that S terminates. This is the content of

THEOREM 6.6. F S = s[truel, provided the usual consistency condition s

satisfied.

PROOF. Along the same lines as the previous proofs, but now based on a
version of theorem 4.5 which starts from the following extension of Lemma

4.3: let £ € [C+C], g e [C>C'], h € C> (C'>C"). Assume
[m m
(6.3) g(f(x)) = h(x) (g(x)).

Then ulh(uf)] exists and g(uf) = ulh(puf)] holds. The general argument of
theorem 4.5 — appropriately extended - applies, where k: M - II is the se-
mantic mapping yielding, for each ¢ € M, the predicate k(¢) defined by:
kK(¢) = ro.(Lép(0)). O

The second result concerns a transliteration of the theorem of section
8.3 of [4]. We shall only sketch this case, without developing the full
framework necessary for its formulation. Let us consider the following

syntactic mapping ~: Stat + (Cond ~+ Cond)

34

~

» b = Ap.b > p,

>?

(x:=s) = Ap.p = Ap. false,

LR

~

"
(7>}
>

(8,38,) = 5,°5,,(8,US,)

§,.uxrs1” = uXC83.
Here pi is defined as in the proof of theorem 6.5. Let P denote the valua-

tion assigning meaning to S (in I - II) in the natural way. We have

THEOREM 6.7. P(S) (e) = Am.M(S)(e)[n], provided the usual consistency con-—
dition for e is satisfied.

PROOF. By the same general argument as used in the preceding proofs. [J

As a final remark we mention that we expect the definitions of upper
and lower derivative ([9,4]) also to be amenable to a treatment using the
general approach of our paper. However, we have not yet found a semantic

characterization which might be used to justify the syntactic definitionms.

REFERENCES

(1] APT, K.R. & G.D. PLOTKIN, 4 Cook's tour of countable nondeterminism,
Proc. 8th ICALP (S. Even & 0. Kariv, eds), 479-494, Lecture

Notes in Computer Science, 115, Springer, 1981.

[2] ARNOLD, A. & M. NIVAT, Metric interpretations of infinite trees and se-
mantics of nondeterministic recursive programs, Theoretical Com-—
puter Science 11, 181-206, 1980.

[3] BACK, R.J., Semantics of umbounded nondeterminism, Proc. 7th ICALP
(J.W. de Bakker & J. van Leeuwen, eds), 51-63, Lecture Notes in

Computer Science, 85, Springer, 1980. .

[4] DE BAKKER, J.W., Mathematical Theory of Program Correctness, Prentice-—
Hall International, 1980.

[5] DE BAKKER, J.W. & W.P. DE ROEVER, A calculus for recursive program
schemes, Proc. lst ICALP (M. Nivat, ed.), 167-196, North-Holland,
1973.

L6]

£7]
[81]

[9]

L10]

L11]

£12]

[13]

[14]

[15]

35

BOASSON, L. & M. NIVAT, Adherences of languages, J. Comp. Syst.
Sciences, 20(3), 281-309, 1980.

DIJKSTRA, E.W., A discipline of programming, Prentice-Hall, 1976.

HAREL, D., First-Order Dynamic Logic, Lecture Notes in Computer Science,

68, Springer, 1979.

HITCHCOCK, P. & D. PARK, Induction rules and termination proofs, Proc.
st ICALP (M. Nivat, ed.), 225-251, North-Holland, 1973.

KUIPER, R., An operational semantics for beounded nondeterminism equiv-
alent to a denotational one, IFIP TC2-MC Symp. on Algorithmic
Languages (J.W. de Bakker & J.C. van Vliet, eds), 373-398, North-
Holland, 1981, |

MILNE, R. & C. STRACHEY, A Theory of Programming Language Semantics,
2 Vols., Chapman & Hall, 1976.

NIVAT, M., Mots infinis engendrés par une grammaire algébrique, RAIRO
Informatique Théorique 11, 311-327, 1977.

NIVAT, M., Sur les ensembles de mots infinis engendrés par une grammaire
algébrique, RAIRO Informatique Théorique 12, 259-278, 1978.

NIVAT, M., Infinite words, infinite trees, infinite computations,
Foundations of Computer Science III 2 (J.W. de Bakker &

J. van Leeuwen, eds) 3-52, Mathematical Centre Tracts 109, 1979.

PARK, D., On the semantics of fair parallellism, Abstract Software
Specification (D. Bjdrner, ed.), 504-526, Lect. Notes in Computer
Science, 86, 1980.

ONTVANGEN 0 7 APR, 1982

