
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCfENCE)
IW 196/82

J.W. DE BAKKER, J.-J.Ch. MEYER & J. I. ZUCKER

ON INFINITE COMPUTATIONS IN DENOTATIONAL SEMANTICS

Preprint

~
MC

MAART

kruislaan 413 1098 SJ amsterdam

PJu.n:ted at .the Mathema:tlc.al Ce.ntll.e, 413 Kluu.6laan, Am!>.teJr.dam.

The Mathema.:tlc.ai. Centll.e , 6ou.nded .the 11-.th 06 FebJr.u.aJr.y 1946, 1-6 a non
plLO 61..t ,ln6,t,U:u,Uo n aiming at .the plUJmo:Uo n o 6 pWl.e. mathema:tlu and .lt6
appU,c.a:tlont,. 1.t 1-6 .t,pon6oJr.ed by .the Ne.theJLland6 GoveJr.nmen:t .thll.ough .the
Ne.theJLland,.t, 01tga.n.lza:tlon 6oJr. .the Advanc.emen:t 06 PuJr.e RueaJr.c.h (Z.W.O.).

1980 Mathematics subject classification: 68B10, 68C05

1982 CR. Categories: F3.2, F3.3

On infinite computations in denotational semantics*)

by

) *) J.W. de Bakker, J.-J.Ch. Meyer & J.I. Zucker

ABSTRACT

Finite and, especially, infinite computations in languages with

iteration or :recursion are studied in the framework of denotational seman

tics, and a theorem is proved which relates their syntactic and semantic

characterizations. A general proof method is presented to establish this

type of relations, and it is shown how - in an induction on the structure

of the syntactic constructs of the language - the recursive case follows

from the non-recursive one by applying a general definitional scheme. The

method is applicable to a variety of other problems concerning recursive

constructs such as, for example, fixed point characterizations of several

notions of weakest precondition. Also, the connections with the theory of

languages with infinite words are discussed, in particular with a substitu

tion theorem due to Nivat,

KEY WORDS & PHRASES: infinite computations, denotational semantics, infinite

words, recursion, nondeterminacy, weakest preconditions

***)

This report will be submitted for publication elsewhere.

Department of Computer Science, Free University, De Boelelaan 1081,
1007 MC Amsterdam

Department of Mathematics and Computer Science, Bar-Ilan University,
Ramat Gan, Israel

I. INTRODUCTION

We study finite and, especially, infinite computations in the framework

of denotational semantics, and prove a theorem which relates their syntactic

and semantic characterizations. We consider a simple language with as main

concepts assignments, composition, some form of iteration or recursion, and

nondeterminacy. Let S be any statement in this language. As usual in deno

tational semantics, its meaning is a mapping from (input) states to sets of

(output) states (sets because of nondeterminacy). Let "L ", by convention,

be the state which is delivered by a nonterminating computation. In general,

for any Sand input state cr, the set of output states T consists of a so

called finite part - all states cr' ET which are IL - and an infinite part,

viz. {L} in case S has at least one nonterminating computation and 0 (the

empty set) otherwise. For example, for the statement (x:=O) u (x:=1) u while

true do skip od (with" u" denoting nondeterministic choice) and input cr,

the finite part of the output is {cr{O/x},cr{l/x}}, i.e., the state cr with

x set to O or I, and the infinite part is {L}. A first result of our paper

is a syntactic characterization, for each S, of those computations-which

deliver the finite and infinite parts of the output, respectively. More

specifically, we introduce mappings fin and inf such that, for each S, sfin

yields the finite and Sinf the infinite part of the execution of S. In the

course of proving that these mappings have the desired properties, we dis

covered a rather general proof technique for showing properties of recur

sive procedures which can be applied to a variety of problems not neces

sarily related to that of infinite computations.

An important source of inspiration for our paper was provided by

Nivat's investigations of infinite words generated by context free grammars

(e.g. [2,6,12,13,14]). In an operational semantics, execution of a state

ment Smay be seen as the generation of a sequence of elementary actions,

and an infinite execution then corresponds to an infinite word in the

language of all possible execution sequences corresponding to the (non

deterministic) statement S. In our paper we do not make these operational

notions precise, but stick to the denotational approach. Though the way

the problems appear here is at first sight quite different, there is a

surprisingly close structural resemblance between the results of language

2

theory and of denotational semantics. More specifically, the definitions of

fin and inf for the regular case (statements with only iteration, no full

recursion) are of exactly the same form as certain results in Nivat's work

(mentioned e.g. in [6]), and the definition of the general case (statements

with full recursion) is - after some appropriate transliteration - striking

ly similar to theorem I of NIVAT [13]. A new element in our considerations

is that through the semantic approach we obtain a better understanding of

the underlying structure of these .results. We shall show that they ultimate

ly rely on a certain simple - and purely semantic: - property of fixed points.

We thus hope to clarify the problem which at first may seem purely syntactic

in nature in that it concerns manipulations with program texts or with in

finite derivations in language theory. In fact, the fixed point property

referred to here appears to be at the heart of a number of seemingly unre

lated problems concerning, e.g., properties of weakest preconditions studied

in Chapter 8 of DE BAKKER [4]. Briefly, the following argument may be applied

for each of these questions: Suppose we want to justify a certain syntactic

mapping which is intended to embody a certain semantic feature. Normally,

such a justification proceeds by an inductive proof on the syntactic struc

ture of the statements involved. Now a central result of our paper is that,

provided a number of rather general conditions are fulfilled, it is only

necessary to check those cases of the induction which are not concerned with

the iteration. or recursion constructs. Only the, say, straight-line cases

have to be considered individually, and the iteration or recursion cases

are obtained as it were for free from a general definitional scheme.

Our pape:r is organized in six sections. You are now reading Section

which gives the introduction. In Section 2 we define syntax and semantics

of the two languages we consider, one with only iteration (essentially as

provided by the while statement or the do-od guarded coIDIDand), and the other

with full recursion in the form of parameterless recursive procedures. We

consider thes:e in the syntactic form of the µ-calculus ([5,7]), since this

is a convenient tool for the mathematical analysis we have in mind. In

Section 5 we translate our results to a more traditional framework with

declarations of mutually recursive (parameterless) procedures. A secondary

feature of our language is a systematic treatment of the notions of failure

and abortion. Contrary to the approach taken by other authors (such as [I]),

3

we include the empty set (of states) in our considerations and use it to

model failure of a statement. In this way, failure leaves no trace in the

output. Abortion, on the other hand, does leave a trace behind in the form

of a special abort state (for which we use 8). Our way of treating failure

has, we think, advantages in that it allows us to express a variety of

constructs involving tests (such as the conditional statement, while state

ment and guarded connnands) all using just one "test statement" in our

language. As a side remark we add here that the empty set can conveniently

be used to model waiting in a context with concurrency, whereas an abort

outcome should be used in case a deadlock situation occurs which one wants

to be signalled. Apart from the introduction of the abort construct, the

definitions of Section 2 follow closely those of Chapter 7 of [4]. In Sec

tion 3 we give a simple version of our main result, viz. for the case of

regular statements (with only iteration). The general case follows in Sec

tion 4. Here the fixed point lennna mentioned above is proved, and it is

shown how - in a rather general setting - the relationship between syntac

tic and semantic mappings between (meanings of) statements can be analyzed

such that the recursion case is obtained as it were automatically. This

part of the paper is rather abstract, and we provide some concrete applica

tions of the techniques in the subsequent sections. In Section 5 we refor

mulate our result for systems of recursive procedures - rather than for

statements in the µ-calculus-, and clarify its close structural similarity

to Nivat's theorem. In Section 6 we study a variety of weakest preconditions

(to be compared to a similar variety in an operational framework as inves

tigated by HAREL [8]), and obtain certain fixed point results for the

regular case by straightforward application of the general strategy of

Section 4 ~ rather than, as in Chapter 8 of [4], by using more or less

elaborate arguments in each specific case. Finally, we briefly mention

some further applications which obviate some of the complications in the

proofs of [4].

The first author gratefully acknowledges the hospitality of Bar Ilan

University and the Weizmann Institute during July 1981. The members of the

MC Working Group on Semantics formed the first audience for the ideas pre

sented here.

4

2. SYNTAX AND SEMANTICS

We shall be concerned with two simple languages, one with only itera

tion and the other with full recursion. The former is actually a special

case of the latter, and introduced primarily for didactic reasons. Both

languages contain simple integer and boolean expressions, together with

assignment, composition and nondeterministic choice. The way boolean expres

sions are used as statements is somewhat unusual, and will be explained

later in the section. A special symbol 8 is introduced for the abort state

ment.

The following notations are used for the respective syntactic classes

(here and below we use the convention that the phrase 11 (m E)M such that ••• 11

introduces a set M, with typical elements m ranging over M, such that •••):

(n e:) le.on: integer constants

(x e:) lvaJL: integer variables

(s e:) lexp: integer e:x:pressions

(b e:) Bexp: boolean e:x:pressions

(R e:) Reg.&: regular statements

(s e:) S:ta.t : (general) statements

(Xe:) S.t.mv: statement variables

(serving the same role as procedure variables Pin a more

orthodox syntax).

The classes lvaJL and S.t.mv are arbitrary disjoint infinite sets of

symbols - assumed well-ordered for technical convenience. The structure of

the elements of le.on is left unspecified. The other classes are defined

using a self-explanatory variant of the Backus-Naur formalism in

DEFINITION 2.1 (syntax).

a. (integer expressions)

s::= nlxls 1+s 2 1 ••• Jif b then s 1 else s 2 fi

b. (boolean expressions)

b::= truelfalsels 1=s2 1 ••• l7blb 1~b2

c. (regular statements)
+

R··= .. x:=slblblR1;R2 1R1uR2 1R'

d. (general statements)

S··= x:=slblb1S 1;s2 1s 1us 2 1XlµX[SJ.

Remarks

I. At the place of the ••• in clauses a and b, other operators (-,~, •.•)

can be added. In fact, we could omit all specialization to the domain of

integers, and introduce arbitrary function and relation symbols in our

expressions. All results to be obtained below hold for (interpretations

over) arbitrary structures, and we stick to the integers only for ease

of presentation.

2. Boolean expressions as statements may appear somewhat unusual. They were

introduced as such in [5], and reappear, e.g., in dynamic logic [8] as

test statements (p?). In the framework of denotational seTiantics - to

5

be introduced in a moment - a statement determines a mapping from states

to sets of states. A boolean b - viewed as a statement - maps a state

either to itself (for b true in that state) or to the empty set of states

(for b false in that state). In the latter case, b may be said to fail.

This is a special case of a property of statements Sin general, viz.

the possibility of their failure which is modelled by delivery of the

empty set. Failure should be contrasted with abortion, appearing in our

system through the atomic statement b which aborts for all input states.

Abortion is modelled by delivering a special abort state o as output,

whereas nontermination is reflected in the usual way by yielding the

undefined or bottom state i.

3. "u" denotes nondeterministic choice: Executing R1uR2 or s 1us2 means

executing R1 or R2 (S 1 or s 2).

4. Rt denotes: finite or infinite repetition of the statement R. It should

be contrasted with the construct R* which is often used in similar

investigations, usually referring only to arbitrary finite repetition

of R. (In a purely relational theory, the difference between R* and Rt

remains unobserved since an infinite computation always yields an empty

output set:.) Using Rw for infinite repetition of R, we have that Rt is

equivalent: to R* u Rw. (We prefer "t" - used in the theory of infinite

6

words by, e.g., PARK [15] - to 11 0011 - as used e.g. by NIVAT [2,6,12,13,14].)

5. µX[S] is a construct taken from the µ-calculus ([5,9]), denoting a call

of a parameterless recursive procedure. The prefix µX in µX[S] binds oc

currences of X in S, and, for S of the form ... X ••• X ••. , executing µX[S]

corresponds to a call - in a language with a- more familiar syntax - of a

procedure P declared by P <= ••• P ... P In case of a system of, say,

two declarations P 1 <= s1(P 1,P 2), P2 <= s2 (P 1,P 2) ((•.•) -denoting possible

free occurrences of .•• , not application), the construct in the µ-calculus

corresponding to a call of P 1 is µX 1[S/X 1,µXzCS/X 1,x2)J)J. Much more

about this can be found in [4]. A statement S without free occurrences

of statemi~nt variables is called closed.

We use "=" for syntactic identity, and substitution of S' for X in S -

applying the usual renaming of bound statement variables to prevent clashes -

is denoted by S[S' /X].

In order to help the reader's understanding of our syntax we now list

a number of constructs in the syntax of an ALGOL-like or guarded command

language ([7]), and then present the corresponding construct in our lan

guage(s):

if b then s1 else s2 fi ""--+- (b;S 1) u (7b;S 2)

while b do Rod""+ (b;R)t; 7 b

if bl ➔ R 1 □ ... Db ➔ R fi ""+ (b 1 ;R1)u ... u(b ;R)u('b 1A, •• A,b ;/1)
- n n- n n n
do b ➔ R 1□ ... Ob ➔ R od ""--+- while b 1v ... vb do (b 1 ;R1)u ... u(b ;R) od
- I n n- --- n- n n
fail -+ false } note that these boolean expressions are indeed

skip""+ true statements

abort -+ 11

while b do Sod""+ µX[(b;S;X)u"lb] (X not free in S)

(These correspondences work well in a sequential context. In the presence

of concurrency, complications may arise. We know how to deal with these,

but leave an explanation of such issues to a future paper.)

This concludes our discussion of the syntactic aspects of our lan

guages, and we next turn to their semantics. We begin with a quick intro

duction to the theory of complete partially ordered sets (cpo's). For de

tails and proofs we refer to, e.g., [4]. A cpo's a pair (C~~) with Ca

7

non-empty set and " !:;" a partial order on C, such that (i) there is a Zeast

element J.c with l.c !; x for all x E C, and (ii) each ascending c:- chain <x. >.
- 1 1

has a least upper bound ~ x .•
1 1

Usually, explicit mentioning of the ordering

"C" irt a cpo(C,_~;) is omitted; similarly for the index C in J.C. For cpo's

c1,c 2 , c1xc 2 is defined as a cpo in the natural way through component-wise

ordering. We call f: c1 ➔ c 2 strict whenever f(J.) = .L, and monotonic when

ever if x 1 !:; x 2 then f(x 1) !:; f(x 2). The class of all strict (monotonic)

functions c1 ➔ c 2 is denoted by c1 ➔s c 2 (C 1+mc 2). A monotonic function f

is cal 1 ed continuous whenever, for each chain <x. >. in C 1 , we have
1 1

f(LJ x.) = LJ f(x.). For f,g: c 1 ➔ c 2 , we put f S g whenever f(x) !:; g(x) for
i 1 i 1

all x E c 1 • Two important properties of cpo's are: (i) For c 1,c 2 cpo's, the

class of all continuous functions c 1 ➔ c 2 (denoted by [c(~-c 2J) is a cpo, and

(ii) Each continuous f: C ➔ C has a least fixed point (lfp) µf (i.e.,

f(µf) = µf, and f(y) ~ y ~ µf ~ y) obtained as µf = ~ f 1 (J.) (where
1 1

f = f 0 f 0 ••• 0 f, i factors f). Often, we shall encounter flat cpo's: C is

called flat whenever, for all x 1 ,x2 E C, x 1 g x 2 iff x 1 = J. or x 1 = x 2 .

Occasionally we shall need the following further definitions: A cpo C 1s a

compZete Zattice whenever each subset X C C has a least upper bourid LJ X and

(hence) a greatest lower bound Ir X. For Ca complete lattice and f: C ➔ C,
m

the least fixed point µf and greatest fixed point vf of f exist. We call

f: C 1 ➔ C 2 antimonotonic whenever if x 1 ~ x 2 then f (x2) ~ f (x 1) , and an

antimonotonic f: c 1 ➔ c 2 is called anticontinuous (for c 2 , e.g., a complete

lattice) whenever for each ascending C- chain <x.>. we have f(W x.) = n f(x.).
- 11 i 1 i 1

Throughout the paper we use the >..-notation for functions: For example,

>..x.x denotes the identity function: C ➔ C, and for f E [c 1 x c2 ➔ c2J,

µ[>..y.f(x,y)] (EC 2) is the least fixed point of the function >..y.f(x,y) in

[C2➔C2]'

Next, we introduce the semantic notion of state. Let (0E) E denote the

set of all states. We define E = LO u {o} u {J.}, where LO is the set of

proper states, LO = Iva.Jt ➔ Zl (Zl the set of integers). Moreover, o is a

special state (the abort state) with o i LO' and.Lis a special state

(iLO u {o}), the bottom state. We turn E into a flat cpo by putting, for

each cr 1 ,cr 2 E L, a 1 ~ a2 iff cr 1 = J_ or cr 1 = a 2 . Let 7l.L = 7l u {.17l },

W.L =Wu {1w}, where W = {tt,ff} 1s the set of truth-values. Zll. and W.L are

taken as flat cpo's. Let, moreover, for a E LO and a E Zl, a{a/x} denote

8

the proper state such that o{a/x1}(x2) = a for x 1 = x2, and

o{a/x1}(x2) = o(x2) for x1 $ x2 .

For a language with nondeterminacy, the meaning of a statement is a

mapping from states to sets of states. For the languages dealt with in

our paper it is sufficient to consider only the collection T of all those

subsets of E which, when infinite, contain .L. (This is a consequence of the

fact that our languages are of bounded nondeterminacy. In an operational

semantics, the computation tree modelling execution for a given input state

is finitely branching and therefore it allows application of Konig's lemma.

An infinite path in the tree is, denotationally, reflected by the presence

of .L in the output set, and whenever the output set (set of states labelling

the leaves of the tree) is infinite, .L has to be in the set. We shall not

say more about this here; the reader may consul~ [1,3,4,7,10] for more in

formation.) On the elements• ET the so-called Egli-Milner ordering is de

fined:

DEFINITION 2.2.

a •• 1 C • 2 iff either.LE • 1 and • 1\{.L} E • 2 (.sis set inclusion) -or.Li • 1

and •1 = •2·
b. Let, for•= E + T, ;: T +s T be defined by$= 1 •• U •(o)

S OET

let • 1°•2 = lo.$ 1(.2(0)) and w2 u w2 = lo.w 1(o) u w2(o).

c. M dJ • [E +s T], and <I> denotes a typical element of M.

A justification of this definition is contained in

LEMMA 2.3.
{

u •• , if i E •. for all i
a. (T,C) is a cpo, where, for a chain< •. >.= 1 "f ~ 1 (f

1 1 •io' 1 .l ~ •io or some
(where "u" denotes set-:-theoretic union)

b. ""'" is a continuous mapping: (E+sT) + (T+sT), and, for <I> continuous i is

continuous.

c. Both 11 0 11 and "u" are continuous in both their arguments.

PROOF. See, e.g., [4].

Remark. We observe that~ and {o} are maximal elements of Tin the Egli

Milner ordering. This mirrors the fact that a statement which fails or

aborts cannot be extended to a statement containing more information. On

9

the other hand, {_L} C T holds for all T, and, in particular, {.L} [: fJ holds;

hence, (J is not the least element of T.

In the non-regular case we need, besides states assigning meaning to

integer variables, also environments assigning meaning to statement variables.

We take (EE) E dJ • Stmv -+ M, and use the notation d<ji/X} analogous to the

a{a./x} notation.

We now introduce the valuation functions V,W,R and M, of the following

types:

V: Iexp -+ (I:-+7l.L)

W: Be.xp -+ (I + W)
.L

K'.: Reg.6 -+ M

M: S.ta.t -+ (E~)

Their definitions are given in

DEFINITION 2.4 (semantics).

a. V(s) (o) == V(s) (.L) = .L7l, and for a # o,.L, V(s) (a) has the usual meaning

(e.g., V(x) (a) = a(x), etc.; for details see [4]) •

b. W(b) (o) == W(b) (.1) = ¾• and, for a # 0,.1, W(b) (a) has the usual meaning

(e.g., W(s 1=s 2)(a) = (V(s 1)(a) = V(s 2)(a)), etc.).

c. R(R)(a) == {a} if a= o or a= .1, and, for a# o, (by convention, Aa ••••

is short for AaEI .•..):

R(x:=s) = Aa{a{ V(s)(a)/x}}

R(b) = Ao,. if· W(b)(cr) then {a} else 0 fi

R(~) = Acr.{o}

R(R1;R2) = R(R 2) 0 R(R 1)

R(R 1uR2) = R(R 1)uR(R2)

R(Rt) = LJ qi., where
i i

¢, 0 = Aa.{.1}

~ = (~.oR(R)Ju(Aa.{a})
't i+l 't' i

d. M(S) (E) (er) = {a} if a = o or a = .1, and, for a # 0,.1,

M(x:=s) (E) = Aa. {a{ V(s) (a) /x}}, ••• ,M(s 1 us 2) (E) = M(s 1) (E) uM(s 2) (E)

IO

M(X) (£) =: £ (X),

M(µX[S])(E) = µ[11.~.M(S)(E{~/X})].

R ema:roks

I. The mapping q, = M .M(S) (d~/X}) in clause d is continuous (i.e.,

q, E [M~]) and, therefore, has a least fixed point µq,.

2. Let us as:sume - for the purpose of our theory rather than as language

extensior.~ for their own sake - that the syntax of Reg-0 is extended with

* w R::= ••• IR IR.

As definition of their semantics we give:

R(R*) = U tjJ. (lub with respect to set-inclusion), where
i 1.

and

lJ,, 0 = A.a .(/J

tjJ. 1 = ·(tjJ.oR(R))u(11.cr.{cr})
1.+ 1.

~'.(Rw) = ~ xi, where

Xo = 11.cr, {.L}

Xi+l = Xi oR(R).

We leave to the reader the proof that, indeed, R(Rt) = R(R*)uR(Rw).
. . . t * . Another way of v1.ew1.ng the difference between R and R 1.s the follow-

ing: Let Q denote the statement that terminates nowhere (i.e.,

R(Q) = 11.cr. if cr ,f,. a then {.L} else {a} fi, and let R1 f R2 abbreviate

R(R 1)(cr) !; R(R2)(cr) for all cr, and similarly for R1 £ R2 • We now have

that - using an informal terminology - Rt corresponds to the least upper

bound of the C: -chain

i i-1 n C: (R;Q) u true C: ••• C: (R ;Q) u R u ... u R u true C: •••

(where RJL stands for R; •.• ;R (i times), and the equivalence R; true =

R is used), and R* is the least upperbound of the s-chain

1 1

1 fa,lse u i-l fa se .s R; ___ true .s,. ,.S R u ••• u R u true _s •••

Here we have used that, for all R, R; false= false. Note that R;n = n

only holds when R fails nowhere. This is a consequence of the fact that

i(0) = 0 holds for all~; in particular, R(n)n(0) = 0.
3. In section 4 we shall introduce a construct in an extension of S:ta:t which

plays the same role with respect to µX[SJ as R* plays with respect to

Rt.

3. INFINITE COMPUTATIONS: THE REGULAR CASE

For each regular R, we syntactically define constructs Rfin and Rinf

where Rfin (Rinf) denotes that part of R which gives precisely the finite

(infinite) part of the computation. The general problem (for any SE S:ta:t)

is addressed in the next section; in the present one we only deal with the

regular case. No proofs are given since the results are just specializations

of the general case.

DEFINITION 3 .1 (semantic finite and infinite parts).

a. For -r E T, we put -rfin = -r\{.L}, -rinf = -r\-rfin (where "\" denotes set-

theoretic difference).

b. For~ EM, we put ~fin= AO.~(a)fin and ~inf= Aa.~(a)inf.

We can now give a precise formulation of the aim of this section:

For RE Reg~, define syntactically constructs Rfin and Rinf such that

R(Rfin) = R(R)fin, R(Rinf) = R(R)inf. From now on, we assume syntax and

semantics of Reg~ extended as described in remark 2 after definition 2.4.
The following definition gives the desired construction:

DEFINITION 3.2 (syntactic finite and infinite parts).

a. (x:=s) fin

bfin

t,fin

- x:=s

- b

Rfin
2f.
R ,z,n

2

12

b. (x :=s) inf' =
binf -

false

false
Rinf (RI ;R2) inf= I u

Rfin. Rinf
I , 2

(RI uR2) inf=

Rtinf _

Rinf
I u

f in* R ;

Rinf
2

R inf u Rfinw .

Remarks

I. Not surprisingly, these formulae have exactly the same structure as the

formulae appearing in the theory of languages with infinite words (e.g.

[6]). In fact, the primary motivation for the present research was our

wish to study these formulae in the framework of denotational semantics,

together with their generalization for the non-regular case, and to in

vestigate the foundations of the proof of their justification.

2. Though we do not really need them, for completeness sake are also give

the formulae for R* and Rw:

*fin R

Rwfin - false

3. Some unde.rstanding for the structure of the formulae for R tinf can be
t * w k obtained by using the fact that R = R u R = true u Ru R;R u ... u R

w inf -- inf u ... u R, and the formulae for (R1uR2) and (R1;R2) . We have

Rtinf (RU R2 Rk Rw)inf -· true u u . .. u u . .. u

inf inf (2)inf k)inf (Rw)inf -· true u R u R u ... u (R u ... u

f 1 Rinf (Rinf Rfin.Rinf) - a se u u u , u ...

u (Rinf u Rfin;(Rk-I)inf) u ... u (Rinf u Rfin;(Rw)inf)

- (after w iterations)

. fin fin k inf fin w t true u R u ... u (R) u ...) ;R u (R)

== Rfin* ;R inf u (Rfin) w

(Note tha.t we do not claim this to be a proof of anything.)

The next the~orem expresses the des ired result:

THEOREM 3.3 .. For each RE Re.g.6,

a. R (Rfin) -- R (R) fin

R(Rinf) == R(R) inf

b. R(R) = R(Rfin) u R(Rinf)

PROOF.

a. Special case of theorem 4.7.

13

b. Immediate from part a and the fact that R(R) = R(R)fin u R(R)inf (since
fin inf

T = T UT),

4. INFINITE COMPUTATIONS: THE GENERAL CASE

This section presents our treatment of infinite computations in the

general case. We first introduce some auxiliary syntactic (and associated

semantic) definitions. Next, we give the definitions of sfin and Sinf.

Their justification is based on (i) a general (semantic) leI!llila on proper

ties of fixed points (lemma 4 .3), and (ii) a - generally applicable -

theorem enabling us to connect syntactic transformations with semantic ones

(theorem 4.5). Once theorem 4.5 has been established, it is straightforward

to prove that the definitions of fin and inf are indeed the desired ones.

The auxiliary syntactic construct we introduce plays the same role

with respect to µX[S] as R* plays with respect to Rt.

DEFINITION l1- .1 (auxiliary and extended statements).

a. Let (AE) Auu be the class of auxiliary statements. Let (YE) Auxv be the

class of auxiliary statement variahles. We define

(see remark 1)

b. Let (TE) Ero be the class of extended statements. (There is no need to

introduce a separate class of extended statement variables (XE) S.:tmv

serves our purpose here.)

14

c. Let (M,f:) = [E+sT] be as before. Let (M,.s) be the cpo of continuous

functions lj,: I+ T ordered by set-inclusion (i.e.,,, c ,,, iff
s o/1 - o/2

lj, 1(a) .S lj, 2(a) for all a; recall that lj, 1(a), lj, 2(a) are sets in T.)

For 'P E [(M,!~~) + (M,!;)], J.t'P denotes its least fixed point with res·pect

to " !; ", and for '¥ E [(M,_s) + (M,.s)], µc '¥ denotes its least fixed point

with respect to ".s". The class of environments Eis extended to mappings

(S-tmv u Auxv) + M. We define the valuations A: AuXJ:, + (E-M), T: Em+

(E-M) as follows:

A(A)(E)(a) =·{a} for a= o or a=~, and similarly for T(T)(E)(a).

Otherwise,
V(s)(a) A(x:=s)(E) = Aa.{a{ /x}}, ... , A(A1uA2)(E) = A(A1)(E) u A(A2)(E),
V(s)(a) T(x:=s)(E) = Aa.{a{ /x}}, .•. , T(T 1uT 2)(E) = T(T 1)(E) u T(T 2)(E)

A(Y)(E) = E(Y),T(X)(E) = E(X)

A(aY[A])(E) = µ [Alj,.A(A)(E{lj,/Y})]
C

T(µX[T])(E) = J.t[A~.T(T)(E{~/X})]

T(A) (E) = A(A) (£)

Remarks

I. Auxiliary statements A E AuXJ:, are syntactically isomorphic to statements

SE S:ta;t. The only difference is in their semantics in that in defining

the meaning of the aY[A] construct we use least fixed points with re

spect to the _s-ordering. (To emphasize the difference we use a different

notation (a rather thanµ) for recursive constructs.)

2. Extended statements combine the structure of ordinary (S-type) and auxil

iary (A-type) statements. In particular, S.ta...t .s Ex.to and AuXJ:, .s Em.

Note, however, that nested applications of recursive constructs of the

form µX[... aY[A] ... J or aY[... µX[T] •..] with X free in A or Y free in T

are not included. As a consequence, no complications are encountered in

the verification of the usual continuity properties of'¥=

Alj,.A(A) (e:{lj,/Y}), for which '¥ E [(M,;::) + (M,;::)] holds, or of

cp = A~.T(T)(E{~/X}), for which cp E [(M,_!;) + (M,!;)J holds.

3. For subsequent use, we observe that it is straightforward to verify that

(4. la) M(S[S'/X])(E) = M(S)(E{M(S')(E)/X})

(4.lb)

(4.lc)

A(A[A'/YJ)(s) = A(A)(s{A(A')(s)/Y})

T(T[T'/X])(s) = T(T)(s{T(T')(s)/X}).

4. Note that µX[S] can be viewed - again using an informal terminology -

as least upper bound of the C:-chain

rl c: srn/xJ f scsrn/xJ/xJ S · ..

whereas a.Y[A] is least upper bound of the s-chain

false s S[false/Y] s S[S[false/Y]/Y].

15

5. The way in which the regular statements can be embedded in the class of

general or extended statements is given by the following correspondence:

Rt µX[R;X u true]

R* aY[R;Y u true]

Rw µX[R;X]

(Remember that R has, by its definition, no free occurrences of X or Y.)

Two further correspondences we shall have occasion to use, are

µX[R 1 ;X u R2]

a.Y[R1 ;Y u R2]

We now arrive at the central definition of our paper, viz. of sfin

sinf. Let, for each X E: S.:tmv, xfin be some element in Au.xv and Xinf an

element in S.tmv. We assume, moreover, that x t x => xfin t xfin xinf t

define sfin E:
I 2 I 2 ' I

For arbitrary S, we Au.x..6 and sinf E: Ex:t.6 by

DEFINITION 4.2 (syntactic fin and inf).

a. (x :=s)fin - x:=s

bfin
- b

1:::.fin
- I:::.

and

xinf
2 •

16

(S ·S)fin
1' 2 · - 8fin .· ·8fin

I . ' 2

(S1 uS2).fin - 8fin 8fin
1 u 2

µX[S]fin - ~xfin[8fin J

b. inf false (x:=s) -
binf - false

~inf - false

(S1;S2)inf = sinf
I u 8fin. 8inf

I ' 2

(SluS2)inf = 8inf 8inf
1 u 2

µX[S]inf . - µXinf[sinf[µX[S]fin/Xfin]]

Remarks

1. We leave it to the reader to verify that, indeed, sfin E AUX-6, Sinf E

Ex.a.
2. Apart from the definitions for the µ-construct, the definitions are exact

ly as in definition 3.2.

By way of example, we show how the formulae of definition 3.2 can be

obtained as special cases of definition 4.2. Let R be any regular statement.

tfin fin fin fin R ~ µX[R;X u ~] ~ a.X [(R;X u true)]

~ a.xfin[Rfin;xfin u truefin]

~ a.xfin[Rfin ;xfin u true]

~ Rfin*

(since xfin E Auxv, by the correspondence a.Y[R;Y u true]~ R* for any R)

tinf inf inf inf tfin fin R ~ µX[R;X u true] ~ µX [(R;X u true) [R /X.]]

~ µXinf[((R;X)inf u trueinf)[Rtfin1yjin]J

~ µXinf[(Rinf u Rfin;Xinf)[... J] ~ (xfin not in(...))

~ µXinf[Rinf u Rfin;Xinf]

~ Rfin* Rinf u Rfinw

17

(since Xinf E S~mv, we can apply the correspondence µX[R 1;X u R2] ~
* w R1 ;R2 u R1, for any R1, R2)

The remainder of this section 1.s devoted to the proof that definition

4.2 is indeed the right one. We shall show that, for each cfosed S,

A(sfin) = M(s)fin, T(Sinf) = M(S)inf. (For S' not closed, the claim has to

be somewhat refined, as will become clear from the subsequent discussion.)

We first need the following simple property of fixed points:

LEMMA 4 .3. Let f E [C-+CJ, g E [C+ C' J, h E C' + C'. Assume that, for aU x, s m

(4. 2) g(f(x)) = h(g(x)).

Then µh exists, and

(4. 3) g(µf) = µh.

PROOF. Putting x =µfin (4.2) we obtain g(µf) = h(g(µf)). Thus, g(µf) is

a fixed point of h. We shall show that it is, in fact, the least fixed point

of h. Let x0 be any
I •

l. that µf = U f (i).
i i

(*):g(f (i)) s XO'

fixed point of h. We shall show that g(µf)_!; x0 • We use

By continuity of git is sufficient to prove

for all i. The case i = 0 follows from strictness of g.
i+l i+l 1. Now assume(*), to show g(f (i)) _!; x0 • By (4.2), g(f (i)) = g(f(f (i)) =

= h(g(f1.(i)) _!; (by monotonicity of hand(*)) h(x0) = x0 . D

Remark. A similar result is used in [I]. The lemma is a slight extension of

exercise 5-3 of [4 J, in that h is assumed monotonic rather than continuous.

Below, we shall need a simple generalization of lemma 4.3 to the case

of systems of mappings g 1 ,g2, h 1 ,h2:

COROLLARY 4.4. Let f E [C-+C], g. E [C➔ C.], i = 1,2, h. E cl ➔ (C2➔ C.), 1. s 1. 1. m m 1.
i"' 1,2. Then from

g 1(f(x)) = h 1(g 1(x))(g2(x))

g2(f(x)) = h2(g 1(x))(g2(x))

18

it foUows t;hat

g 1(µf) = µ[Ay.h 1(y)(g2(µf))J

g2 (µf) = µ[Az.h 2(g 1(µf))(z)J.

PROOF. Easy extension of the proof of lemma 4.3. D

The prdperty of least fixed points as stated in lennna 4.3 is at the

heart of a number of results concerning recursive procedures. More specif

ically, it can be used to justify a variety of syntactic transformations

(such as fin and inf studied here) by connecting them to one or more seman

tic transformations such as the mappings g,g 1,g2 encountered above. The

general pattern of this connection is the following: Let Syn.t1, Syn:t2 be

two syntactic classes with typical elements D, ••• , F, .•. , respectively.

Each of them has certain constructs we leave unspecified, furthermore clas

ses of variables VM 1, VM2 , with typical elements x, .•. , and y, ••• , respec

tively, and µ-forming operators µx[••• J and µy[...]. Thus, we assume a syn

tax

D: := ••• lx!µx[D]

F: := .•• IYlµy[F].

We also assume that substitutions D[D'/x], F[F'/y] are defined in the usual

manner. Next we assume that the elements of Syn:t1, Syn:t2 obtain meanings

through valuations V,F- with respect to the usual environment E; its precise

definition as ED or EF is 1 ef t to the reader - yielding results in cpo' s

(~E) ~, (nE::)¾,, respectively. More specifically let

1J: Syn:t1 + (E~)

f: Syn:t2 + (E~)

be defined for variables and µ-terms in the usual way:

1J(x) (e) = E(x), F(y) (e) = E(y), and

(4.4)
V(µx[DJ)(e) = µ[A~.V(D)(e{~/x})J

F(µy[F])(e) = µ[An.F(F)(e{n/y})J.

(In (4.4), we take least fixed points with respect to the ordering in

[~➔~], [¾,➔¾,] respectively.) Furthermore, we require that V, F satisfy

the conditions

(4. 5)
V(D[D'/x])(e) = V(D)(i{V(D')(e)/x})

F(F[F'/y])(e) = F(F)(e{F(F')(e)/y})

19

The reader should observe that all we do here is to give a somewhat abstract

version of the properties of Sta;t, Aux.6, with valuations M, A.
Now let "~" be a (syntactic) mapping: Synt1 ➔ Synt2• Usually, it is

reasonably easy in a specific instance of a transformation 11~11 to establish

how it should be defined for the non-recursive case, and one would expect

the 11~11 definition for µ-constructs to be the more difficult part. However,

it was a pleasant surprise for us to discover that, on the contrary, once

one has found the appropriate definition for the non-recursive case, it is

possible - under the quite general assumptions mentioned above - to provide

a standard treatment of the case of a µ-term.

Let us assume that 11~11 satisfies the general property that, for each

x E Vall. 1, i is an element of Vall.2 , and that, moreover, 11~11 is an injection.

We also require for each D that D contains no free variables other than

those induced by 11~11 from the free variables of D. Let us furthermore pos

tulate that "~" is defined for a µ-term by

(4 .6)

We shall show that (4.6) is eatisfactory in the following sense: Often, we

want to justify the definition of"~" by showing that it induces a certain

semantic property, say K, which can be seen as mapping between the semantic

domains, i.e., we take K: ~ ➔ ¾,· (In.the example ~f fin, the semantic

counterpart is the mapping fin:$ e-+ $f~n = AO.$(a)f~n.) We then wish to

establish commutativity of the diagram

20

V v

..
K

The commutativity_ req4ir-ement· for vazoiabZes specializes .t;o (*): K(e:(x))

= e:(i) (since V(x)(e:) = e:(x), F(y)(e:) = e:(y)). In case e: satisfies (*) for

all x, we call e: consistent.

In order to analyze the relationship between "~" and "K", is particular

for µ-terms, we introduce two operators i 0 ,~0 in the following way: Let, for

DE Synt1, var(D) = {x 1, ••• ,xn} be the set of free variables of D, and let

{i1, ••• ,i} be the free variables of D. Let; abbreviate x 1, ••• ,x (in some
n + + n

arbitrary, but fixed order), and let~= ~1, ••• ,~, n = n1, ••• ,n • We now
n n·

define J0 : ~ + K0 , ~0 : ~+¾,by

and we investigate whether the relationship

(4. 7)

+
holds for all~- Indeed for

i = 1, ••• ,n, and using that

e:{e:(x.)/x.}. = e:{e:(i.)/i.}.
1 1 1 1 1 1

consistent e:, taking~-= e:(x.), n. = K(e:(x.)),
1 1 1 1

K(e:(x.)) = e:(i.), i = 1, ••• ,n,
1 1

= e:, we see that (4.7) is equivalent with

(4.8) K(V(D))(e:) = F(D)(e:),

which is the same as the connnutativity of the diagram above. For example,

for ",.J' and "K" instantiated to the syntactic and semantic fin, and with

21

the natural corres~ondence ~etween Synt1 and S.ta;t, etc., (4.7) reduces to.

the claim M(S)(e)f~n = A(sf~n)(e) - where consistency now means that e(xf~n)

= e(x)fin.

In order to prove (4.7) in the general case, one proceeds by induction

on the complexity of D. One would expect the non-recursive cases of such an

induction to oo reasonably easy, whereas the difficult case would be that

of recursion. However, we claim that - provided that the various properties

of~, K, V and F listed above are satisfied - the µ-case of the induction is

automatically obtained. In fact the following theorem holds.

THEOREM 4.5. Assume that~, K, V, F satisfy the properties mentioned ahove.

(In particular, (4.4) to (4.6) hoZd.) Assume, moreover, that K E [~-+s¾,],
n n ·

4>D E [1);-+~J, 'l'D E ~ -+m ¾,· Then, if (4.7) holds for D = DO (and n=k+I),

then it holds for D = µx[D O] (and n=k).

PROOF. By an easy extension of lennna 4.3 we obtain that if, for all ~1, ••• ,~n'

(4.9)

We now show that if (4.7) holds for D = DO (and n=k+I) then it holds for

D = µx[D O] (and n=k). Let D = µx[D OJ. By the definition of 4>D and 'l'D we

have to show that, for all ~1, ••• ,~n'

~• ~ K(~•) ~ K(V(µx[Do])(e{ 1 /x.}.) = F(µx[Do])(€{ 1 /x.}.).
1 1 1 1

We only consider the subcase that x t x 1, ••• ,.xn,' andleave the other sub

case to the reader. By applying (4.4) and (4.6) to the left-hand side (lhs)

and right-hand side (rhs), respectiv.ely, what we have to prove reduces to

By the assumption we know that (4.7) holds for 4>D, 'l'D, and we can rewrite
0 0

22

the lhs using (4.9). Also applying the definition of F to the rhs, we ob

tain

lhs = µ[An.F(n0)(dK(~i) /;i}i{n/i})J,

rhs = µ[An.F(n0)(e:{K(~i) /i.}.{n/i})J.
1 1

· We see that lhs and rhs are identical, thus completing the proof. D

Based on corollary 4.4, we can formulate a direct generalization of

this theorem in

COROLLARY 4 • 6. Assume the f o Uowing framework :

(DE)Synt,(FE)Synt1,(GE)Synt2,(xE)VM,(yE)VM1,(zE)VM2,

D::= ·••lxlµx[D], F::= ••• IYlµy[F], G::= ••• lzlµz[G], V(x)(E) = E(x),

V(µx[D]) = µ[A~.V(D)(g{~/x})J and. simiZarly for F, G, V(D[D 1 /xJ)(E) =

= V(D)(E{V(D')(E) /x}), and similarly for F, G, ~i Synt + Synt., i = 1,2,
~i 1
x E Vair.., ~i are injections, i = 1,2,

1

(4. 10)

µx[D]~l = µi 1[n1[µx[DJ~2Ji2JJ

µx[D]~ 2 = µi2[D2[µx[DJ~ 1Ji1JJ

+ 1 + +
Kl(~D(~)) = fD(Kl(~))(K2(~))

+ 2 + +
K2(~D(~)) = fD(Kl(~))(K2(~))

holds for D = n0 (and n=k+l), then it holds for D = µx[D 0J (and n=k).

PROOF. Follows the same lines as the proof of theorem 4.5, now based on the

semantic property of corollary 4.4. D

We are finally ready for the proof of the main result of the paper~

Analogous to the above definitions, we call E consistent if, for all X,

E(X)fin = E(Xfin), and E(X)inf = E(Xinf).

THEOREM 4.7. For all consistent E,

M(S)(E)fin = A(sfin)(E)

M(S)(E)inf = T(Sinf)(E).

23

PROOF. Induction on the complexity of S. First we consider the case that S

is not a µ-term.

a. s - x:=s, b, ti. Trivial.

b. s - Sl;S2. This case follows since, for all '[

fin Ad.${in(¢{in(a)) (i) $(-r)\{J.} = $(-r\{J.})\{J.}, hence Aa.$ 2(0)) =

(ii) $ (-r) i:nf = • inf u $ inf (.fin), hence
inf_ inf Ainf fin

ACT.$2(¢1(0)) - ACT,[¢! (a) u ¢2 (¢1 (a))]

c. S - s 1 u s2. Obvious

d. S _ X. Follows from the consistency requirement.

e. S - µX[S O]. Follows from corollary 4.6. We take ~I= fin, ~2 = inf,

Kl= fin, K2 = inf (syntactic and semantic fin and inf, respectively),

Synt = S.ta.:t., Syn.ti = Au.u, Synt2 = Em, VM = S.:tmv, VMI = Au.xv,

VM. 2 = Stmv, V = M, F = A, G = T, ~ = (M,S), ¾, = (M,~), KG= (M,S).

Str.ictness of Kl follows from {.L}\{J.} = (/J (the least element of (T,~)),

and continuity from (LJ ••)\{J.} = U(.. \{J.}). Strictness of K2 follows
f • i i i i

from {.L}\{J.} ~n = {J.}, and continuity from (LJ -r.)\(W -r.\{J.}) =
i i i i

= LJ (-r.\(-r.\{.L})), i.e., from J. E LJ •· if£ J. E •· for all i. Finally,
i i i i i i

we verify whether (4.10) is satisfied, i.e., whether

(4.11)
µX:[s /in _ axfin[sfin[µX[s J inf /X inf J J

µX:[s J inf _ µX inf [s inf [µX[8 /in /xfin] J .

Observing that Xinf does not occur free in sfin, we see that (4.11) re

duces to

24

which is indeed the form of definition 4.2. D

We have thus completed the justification of definition 4.2 on the basis

of a general argument concerning properties of recursive procedures.

5. SYSTEMS OF RECURSIVE PROCEDURES AND NIVAT's THEOREM

We discuss the relationship between the results of the previous section

and a theorem of Nivat on infinite words generated by a context free grannnar.

We begin with a reformulation of our theorem for a language which has sys

tems of (simultaneously declared) recursive procedures rather than theµ

terms of the preceding sections. Since the structure of a system of recur

sive procedures closely resembles that of a context free grannnar, we thus

obtain a framework facilitating the comparison with Nivat's result. We re

define syntax and semantics of our language S.ta..t as follows:

DEFINITION 5.1 (syntax and semantics of a language with systems of recur

sive procedures, fin and inf).

a. Let (PE) PvaJL be the set of proaedUPe variables. Let (Sc) S.ta..t be rede

fined by

and let (RE) Pnog be the class of programs of the form <<P. <= S.>. IS>:
].].].

A program Risa pair consisting of a set of declarations P . ., S.,
].].

i = 1, ••• , n, and .. a (main) statement S.

b. Let E: PvaJL + M be as usual, and let N: Pnog + (E-+M) be defined by

N(«P . ..S.>,IS>)(E) = M(S)(d~i/P.}.)
].].].].].

where Mis as before for Snot a procedure variable, M(P)(E) = E(P) and

~- = µ.[~ 1, ••• ,~], withµ.[•••] denoting the i-th component of the
l. l. n l.

simultaneous least fixed point of then-tuple of continuous functions

~1, ••• ,~, and~.= X~ 11 ••••• X~'.M(S.)(d~i/P.}.).
n J n J i l.

c. Let (Ac) A~ and (TE) Em be defined as before for the non-procedure

cases and let (QE) Auxv be the set of auxiliary procedure variables.

25

Programs <<Q. <= A.>. I A> and <<P. <= T.>.,<Q. <= A.>. I T> obtain meaning
J J J 1. 1. 1. J J J

with valuations B and U defined by

B(«Q.<=A.>,IA>)(E:) = A(A)(di/Jj/Q.}.)
. J J J J J ¢i 1/J·

U(«P.<=T.>.,<Q.<=A.>. jT>)(E:) = T(T)(d /P.}.{ J/Q.}.)
1. 1. 1. J J J 1. 1. J J

where A(A)(E:) and T(T)(e) are defined in the natural way for A,T not a

procedure variable, and, moreover, A(Q)(E:) = E(Q),T(P)(s) = s(P), and

I

1/J. = µ .[IJ:' 1, ... ,IJ' J, IJ'. = Ai/1 11 ... Ai/J'.A(A.)(di/Ji/Q.}.)
J ~, J n J n J 1. 1.

I

¢. = u..- .[<P 1, ••• ,<P],<P. = A¢ 11 ••• A¢'.T(T.)(c{¢i/P.}.{1/Jj/Q.}.)
1. ·.1::.,1. n 1. n 1. 1. 1. J J

d. We define fin and inf by

<<P. <= S.>.
1. 1. 1.

S> fin _ pfin 8fin I 5fin = << . <= . >. >
1. 1. 1.

<<P. <= S.>.
1. 1. 1.

inf_ inf inf fin 5fin S> = <<P. <= S. >.,<P. <= . >.
1. 1. 1. 1. 1. 1.

fin inf . where S , S are defined as usual for Snot a procedure variable,

pfin E Auxv, and Pinf E PvM..

Remarks

I . In this section, R ranges over P1tog rather than over Re.g.6.

2. Note that, by the definitions of fin and inf, Pinf does not occur in sfin;

hence, again (as with definition 4.2) sfin E Auu.

3. Note that in the definition of N(<<P.<=S.>. IS>), least fixed points are
1. 1. 1. .

taken with respect to 11 C11 and in that of B(<<Q.<=A.>, IA>), least fixed
- , J J J

points are taken with respect to 11~ 11 • The former least fixed points are

least upper bounds of chains S(k) defined inductively by S(O) = Q,

S(k+I) = S[S~k) /P.]., whereas the latter are least upper bounds of chains
(k) . 1. ,_ 1. (k+l) (k)

A defined by A(O) = false, A = A[A. /Q.J .• Finally, in the de-
J J J

a mixture of the two orderings is finition of U(<<P.<=T.>.,<Q.<=A.>. IT>)
1. 1.1. J JJ

used. Since the P. do not occur in the A., the definition does not have
1. J

to be fully simultaneous in the P.,Q. together: in the definition of the
1. J

¢., we may assume the 1/J. to be already determined.
1. J

26

Example. Let C., i = 1, .•• , stand for arbitrary statements without occur-
1

rences of procedure variables, and let R be defined by

Pl<= c1;P 1;P2 u c2;P2;P1;c3 u c4,

p2 <= C5;P2;C6 u C7;P2;P2 I Pl>.

fin _ inf _ Then, using that C. = C., C. = false, we obtain
1 1 1

and

fin fin <P 1 <= • , • , P 2 <== • • • (as above) ,

Pinf <= C ,pinf C ,pfin,pinf C ,pinf u
1 I' 1 u I' I ' 2 u 2' 2

Pinf <== C ,pinf C ,pinf u C ,pfin,pinf
2 5' 2 u 7' 2 7' 2 ' 2

fin Observe that programs Rand R are syntactically isomorphic (just as S

and sfin in section 4). The difference between them lies only in the way

their meaning is defined.

We now state Nivat's theorem. Consider a context free grannnar

G = (VN, VT,P), where VN = {X 1, •.. }, VT = {a, ... } are the alphabets of non

terminal and terminal symbols, and Pis the set of production rules

* a E (VNuVT) . (We have no reason here to X. ➔ M., M. a finite set of words
1 1 1

single out a start symbol.) Let, for finite or infinite terminal words x',

x", x' < x" denote that x' is a prefix of x". Let a finite derivation

* a ~- a' be defined in the usual way. Moreover, we say that, for infinite x,
1

X ~ x (the nonterminal X derives the infinite word x Ev; in an infinite

number of steps) whenever there exist finite prefixes x., i = 1,2, ... , of
• 1

the infinite: word x such that, for all i, xlx.a. for some a., and
1 1 1

x 1 < x 2 < ••• < x. < ... < x = V x., i.e., xis the least upper bound of the
1 • 1

with respect to the prefix ordering. Let L(G,X.)f stand for
1

<-chain <x.>.
1 1

the set of finite words generated by X., and
1

finite words: generated by X .• We then have
1

L(G,X.)w for the set of in-
1

27

THEOREM 5.2 ([13]). Let G, with production ruZes P = <X. + M.>. be a dontext
I. I. I.

free grammar as deseribed above, anil Zet Gw be the context free grammar

(VN,vNuvT,P), where VN = {X1, ••• }, and Pis the set of production ruZes

<X. ➔ M.>., where the M. are finite subsets of (VNuVNuVT)* defined by
I. I. I. I.

M. = {ax I ax.a€ M. for some a,e € (VNUVT)*,
I. J I.

Let L{ abbreviate L(G,x.)f, and Zet, for any Zanguage Lover the terminaZs

VN u ?T, L[L{;xj] denot~ the resuZt of substituting the Zanguages Lr for the

(terminaZ!) X. in the words of L (with the precaution that substitution in
J

an infinite word yieZds an infinite word; this is made precise [13]). We

then have, for i = l, ... ,n,

w - w - f L(G,X.) - L(G ,X.)[L./X.] ..
I. I. J J J

PROOF. See [13]. 0

ExampZe. Consider the context free gra.nnnar with productions P:

XI ➔ alxtx2la2X2X1a3la4

x 2 ➔ a5x2a 6 1a7x 2x2•

For the set of productions P we obtain by the construction of the theorem

XI ➔ alxl la1X1X2la2X2la2X2X1

x2 ➔ a5X2la7X2la7X2X2·

We observe a remarkable similarity between the system P and the definition

of Rinf in the example following definition 5.1. In fact, we shall formu

late a commutativity result which makes this observation precise. First we

need a number of preparations. Each program R of the form <<P. <= S.>. IPk>
I. I. I.

can be viewed as a grammar - with start symbol Pk - generating (finite or

infinite) words over the alphabet of "terminals" x:=s,b,Li in a natural way.

E.g., the program RO = <P <= Ci;P;C2 u c3 IP> determines the language

28

C~ u {C~;c3 ;c~ In~ l} (with Ci, as before, statements without free occur

rences of P). Let us, till the end of this section and essentially without

lack of generality, restrict attention to programs of the form

R = <<P . ., S.>,IS>, where S = Pk for some k, 1 ~ k ~ n, and each of the Si.
].].].

is of the form S. = S. 1, u ••• u S. . , with each S.. of the form
l. l. J.ni l.J

c 1;Pk1;c2;Pk2; ••• ;Pkr;Cr+l' and, conventionally, with true taking the role

of the empty word. It should be clear how such an R can be seen as a gram

mar generating (finite or infinite) sequences of (elementary) statements as

indicated by the above example of program R0 • For each such R, its asso

ciated language is denoted by L(R). Furthermore, for a progra.IJ,1 R of the

form <<P. <= T.>., <Q. <= A.> I Pk>~ with analogous restrictions on the form
].].]. J J

of the T., A. - we have as associated language L(R) all words which can be
]. J

derived starting from Pk, where for the nonterminals Pi finite or infinite

derivations are used, and for the Q. only finite derivations. The next step
J -

consists in the observation that the mapping M~ M (as described in the

statement of the theorem) is isomorphic to the mapping Se+ Sinf, where oc-
- - · -Pin inf inf currences X.,X. in M correspond to occurrences of P". , P. in S . For

1. 1. - - inf 1. inf 1. -Pin .inf
example, ax 1x 2 i+ ax 1 u ax?2, whereas C;P 1 ;P2 "+ C;P1 u C;P"1 ;P2 •

Finally, we observe the following: The expression L(G00 ,X.)[1,/x.J. occurring
]. f - J J f

in the statement of theorem 5.2 can be rewritten as L(GwuG ,X.), where G
].

indicates that for the nonterminals X. from G. only finite derivations are
J J

allowed. Putting all these observation together, we obtain the following

theorem:

THEOREM 5.3. Let R = <<P . ., S.>. I Pk> be a pPogPam satisfying the above
].].].

constpaints. The diagPam

R inf

L L

L(R) w

commutes.

Dfin
PROOF. Let D = <P. ~ S. >.,

].].].

Then

-fin ~ sfin> Dinf - <F-'. • • :,
].].].

L(<DjPk>)w = (by Nivat's theorem and the isomorphism mentioned

above)

29

This concludes our discussion of the relationship between infinite com

putations and languages with infinite words.

6. APPLICATIONS TO WEAKEST PRECONDITIONS

In this section, we discuss a number of applications of the proof tech

niques presented in section 4. In particular, we obtain a variety of results

concerning weakest preconditions - mostly for regular statements - including

many of those described in Chapter 8 of [4].

We first state an auxiliary result which is a variation on Lemma 4 .3:

LEMMA 6.1. Let C be a cpo, C' a complete lattice, f E [C4-C] and g: C + C'

an antistx-ict and anticontinuous function. I.e., fox- T the gx>eatest element

of c', g(L) = T and, fox- each ascending chain <x.>. in C',
l. l.

g(U x.) = rJ g(x.) .) Let h: C' ➔ C'. Then fx>om g 0 f = h 0 g it foUOl.,)s that
• 1. l. l. m

vh1.exists and that vh = g(µf) holds.

PROOF. Similar to the proof of Lemma 4.3. 0

We leave to the reader statement and proof of a theorem which expresses

the corresponding variation for theorem 4.5. The main changes are that the

semantic mapping K is now required to be antistrict and anticontinuous,

and that definition (4.6)is replaced by

(6. 1)

where the prefix v~[••• J denotes the gx-eatest fixed point operator.

30

We now introduce four notions of weakest precondition. They are pre

sented through a variety of semantic composition formulae; later a syntac

tic notation corresponding to the four semantic notions is proposed. Let

(7TE)IT be the set of predicates, defined as IT= t + {tt,ff}, where+ <le-
ss ss

notes functions 7T such that 1r(o) = 1r(.L) = ff. Let {tt,ff} be ordered by

ff S tt, and let 1r 1 S 1r 2 hold iff 1r 1 (o) ~ 1r2 (o) for all o EI. Observe that

it is immediate that IT is a complete lattice.

DEFINITION 6. 2. For TE T, 7T E IT, ct> EM we put

a. 1T[T] <=:> 7T (o) holds for all o E T

1r{T} <=:> 7T(O) holds for all o E T\{.L}

7T<T> <=:> 7T(O) holds for all o E T\{o}

7T (T) <=:> 7T(O) holds for all o (C T\{.L,o}

b. cj>[7T J <=:> A0.1r[cj>(o)]

cj>{7T} <=:> Ao.1r{¢(0)}

cj><7T> <=:> AO. 1r<cj> (o) >

cj>(7T) <=:> A0.1r(cj>(o)).

LEMMA 6.3.

a. The compositions 7T[T], 1r{T}, 7T<T>, 7T (T) are all monotonic in 1r

b. The compositions 7T[T]' 7T<T> are strict and continuous in T

c. The compositions rr{T}' 'IT(T) are antistrict and anticontinuous in T •

PROOF. Direct from the definitions. D

Next, w,e introduce the syntactic class of conditions (pE) Cond, which

extends the class of assertions (first order formulae) in two ways: Firstly,

syntactic versions of the weakest precondition constructs as suggested by

definition 6.2b are added, and secondly we introduce least fixed point and

greatest fix,ed point forming operators. Let (ZE) Cndv be the class of con

dition variables. As in sections 2 to 4, R denotes a regular statement.

DEFINITION 6.4 (syntax and semantics of conditions).

a. The class (pE) Cond is defined by

P. ·= .. true I false I s 1=s 21,,,l..,PiP1vp 2 13x[pJIR[p]IR{p}IR<p>IR(p)I

ziµZ[pJlvz[pJ

31

where in the last two clauses pis required to be syntactically monotonic

in Z (Z does not occur in the scope of an odd number of ?-signs)

b. Let E = Cndv + II, and let R be as in section 2. The valuation C: Cond
+ (E+II) is defined by C(p)(E)(o) = C(p)(E)(i) = ff, and, for cr E rO,

C(true)(E) = Acr.tt, .•. ,C(3x[p])(E) = Acr.3aC(p)(E)(cr{a/x}),

C(R[p])(E) = R(R)[C(p)(E)]

C(R{p})(E) = R(R){C(p)(E)}

C(R<p>)(E) = R(R)<C(p)(E)>

C(R(p))(E) = R(R)(C(p)(E))

C(Z) (E) = E(Z)

C(µZ[pJ)(E) = µ[ATI.C(p)(E{TI/z})J

C(vZ[pJ)(E) = v[ATI.C(p)(E{TI/z})J

c. We put F p 1 = p 2 whenever, for all E,cr,C(p 1) (E) (cr) = C(p 2) (E) (cr).

Remarks

I. A similar variety of weakest preconditions has been investigated in an

operational setting by HAREL [8].

2. Clearly, we can now introduce four notions of correctness of a statement

R (or in general, S) with respect to conditions p,q, viz. [p]R[q] de

fined asp~ R[q], .•. ,(p)R(q) defined asp~ R(q).

3. A fifth weakest precondition could be based on the composition

7r[,] <=> TI(cr) holds for some cr E ,. We shall not pursue this possibility

here.

We are now sufficiently prepared for the main theorem of this section:

THEOREM 6.5. Far z not free in p,

a. I= Rt[p] = µZ[R[Z] Ap]

b. f= Rt{p} = vZ[R{Z}Ap]

c. f= R t<p> = µZ[R<Z>Ap]

d. f= Rt(p) = vZ[R(Z)Ap]

PROOF. We only prove part b, the other cases being quite similar.

In order to be able to apply the theory of section 4, we slightly extend the

class of regular statements as introduced before. Recall that a statement

is called closed whenever it has no free occurrences of a statement variable.

32

We now put - for the duration of this proof only -

where the R1,R2 on the right-hand side of the definition are required to be

closed. (Thus, an extended regular statement has at most one free occurrence

of (at most) one statement variable.) Let Reg-0 stand for the class of ex

tended regular statements. From section 2 it should be clear how to define

R: RegJ + (E-+M); environments £(EE) are now defined for both statement vari

ables and condition variables. We next define a syntactic mapping:

Reg~+ Cond - depending on a parameter p - which maps each statement R to a

concertion written as {R} p (though similar to R{p}, it should for the moment

be distinguished from it). For a statement variable X, {X} pis some element

of Cndv - where XI $ x2 • {XI} p f {X2} p -; for the other cases we put

(for RI,R2 closed):

{x:=s}p _ p:, {b}p = (b~p),{~}p = false, {R1;R2}p = {R1}{R2}p,

{RIUR2}p - {RI}p A {R2}p, {RI;XuR2}p = {Rl}({X}p) A {R2}p,

{µX[RI;XuR 2J} = v({X}p)[{R1;XuR2}p]

(Note that the last definition has the form of formula (6.1) .)

Here ps denotes an extended condition - used for the purpose of this proof

only -xwhich has as its meaning C(ps)(e)(cr) = C(p)(e)(cr{V(s)(cr) /x}).
X

(Note that the substitution p[s/x] is defined only for pan assertion, i.e.,

a first-order formula.) We now first prove that, for all R and p, l=c{R}p =

= R{p}, where f= denotes validity assuming consistency of the environments,
C

defined here as e({X}p) = e(X){C(p)(e)}. Thus, we show that, for all con-

sistent e, C({R}p)(e) = C(R{p})(e), or, by the definition of C (definition

6.4b) that(*): C({R}p)(e) = R(R)(e){C(p)(e)}. By theorem 4.5 (in its version

adapted to greatest fixed points), taking the semantic mapping

K (~) = ~{C(p)(e)} - where K depends on the parameter p - we have to es-
p

tablish the coilllllutativity result (*) only for R not a µ-term. Verification

of (*) for this case is quite standard, and omitted here. This concludes

the proof that != {R}p = R{p}. As a consequence, replacing R by
t C •

R = µX[R;X u true] (with R closed) and dropping the consistency requirement

33

since Rt is closed, we obtain that I= {µX[R;X u ~]}p = Rt {p}. From this

it follows that fV({X}p)[{R;X u true}p] = Rt{p}, or f'V({X}p)[{R}({X}p) A

A p] = Rt{p}. Taking for {X}p its value Z € Cndv, we then obtain

I= vZ[{R}Z A p] = Rt {p}, and using the equivalence F {R}Z = R{Z} then yields

the desired result f= vZ[R{Z} A p] = Rt{p}. D

By way of conclusion of the paper we briefly discuss two further results

of [4] which can be proved using the general strategy from section 4. Both

results concern general statements S € S.ta.t (i.e. including general µ-terms).

For the first result we extend the definition of Cond with constructs

S[p], ••• (rather than R[p]). Let the syntactic mapping~: S.ta.t + Cond be de

fined by (x:=s) = b =~=true, (S 1;s2)~ = s1A(S 1{s2}),(S1us 2)~ = s1 A s2,

and, as central case

(6. 2) µX[S]~ - µX[S[µX[S]/X]]

where X € Cndv. We show that Sis the condition which syntactically expresses

that S terminates. This is the content of

THEOREM 6.6. f= S = S[true], provided the usuaZ consistency condition is

satisfied.

PROOF. Along the same lines as the previous proofs, but now based on a

version of theorem 4.5 which starts from the following extension of Lemma

4.3: let f € [C~], g € [C+ C'], h € C+ (C'+ C'). Assume
s m m

(6.3) g(f(x)) = h(x)(g(x)).

Then µ[h(µf)] exists and g(µf) = µ[h(µf)] holds. The general argument of

theorem 4.5 ,- appropria-tely axte:ad-ed .,. applies, where K: M + II is the se

mantic mapping yielding, for each$€ M, the predicate K($) defined by:

K($) = AO.(it$(cr)). □

The second result concerns a transliteration of the theorem of section

8.3 of [4]. We shall only sketch this case, without developing the full

framework necessary for its formulation. Let us consider the following

syntactic mapping~: S.ta.t + (Cond + Cond)

34

~ s ~ (x:=s) = Ap.p, b = Ap.b ~ p, ~ = Ap. false,
X

(Sl;S2)~ - s1°s2,<s1uS2)~ - st A s2,µX[S]~ = µX[SJ.

Here psis defined as in the proof of theorem 6.5. Let P denote the valua
x

tion assigning meaning to S (in TI ➔ TI) in the natural way. We have

THEOREM 6.7. P(S)(E) = ATI.M(S)(E)[TI], provided the usuaZ consistency con

dition for£ is satisfied.

PROOF. By the same general argument as used in the preceding proofs. 0

As a final remark we mention that we expect the definitions of upper

and lower derivative ([9,4]) also to be amenable to a treatment using the

general approach of our paper. However, we have not yet found a semantic

characterization which might be used to justify the syntactic definitions.

REFERENCES

[1] APT, K.R. & G.D. PLOTKIN, A Cook's tour of countabZe nondeterminism,

Proc. 8th ICALP (S. Even & O. Kariv, eds), 479-494, Lecture

Notes in Computer Science, 115, Springer, 1981.

[2] ARNOLD, A. & M. NIVAT, Metric interpretations of infinite trees and se

mantics of nondeterministic recursive programs, Theoretical Com

puter Science 11, 181-206, 1980.

[3] BACK, R.J., Semantics of unbounded nondeterminism, Proc. 7th ICALP

(J.W. de Bakker & J. van Leeuwen, eds), 51-63, Lecture Notes in

Computer Science, 85, Springer, 1980 •.

[4] DE BAKKER, J.W., Mathematical Theory of Program Correctness, Prentice

Hall International, 1980.

[5] DE BAKKER, J.W. & W.P. DE ROEVER, A caZcuZus for recursive program

schemes, Proc. 1st ICALP (M. Nivat, ed.), 167-196, North-Holland,

1973.

35

[6] BOASSON, L. & M. NIVAT, Adherences of languages, J. Comp. Syst.

Sc.iences, 20(3), 281-309, 1980.

[7] DIJKSTRA, E.W., A discipline of programming., Prentice-Hall, 1976.

[8] HAREL, D., First-Order Dynamic Logic., Lecture Notes in Computer Science,

68:, Springer, 1979.

[9] HITCHCOCK, P. & D. PARK, Induction rules and termination proofs, Proc.

ls:t ICALP (M. Nivat, ed.), 225-251, North-Holland, 1973.

[10] KUIPER, R., An operational semantics for bounded nondeterminism equiv

alent to a denotational one., IFIP TC2-MC Symp. on Algorithmic

Languages (J.W. de Bakker & J.C. van Vliet, eds), 373-398, North

Holland, 1981.

[11] MILNE, R. & C. STRACHEY, A Theory of Prograrrming Language Semantics.,

2 Vols., Chapman & Hall, 1976.

[12] NIVAT, M., Mots infinis engendres par une grammaire algebrique, RAIRO

Informatique Theorique 11, 311-327, 1977.

[13] NIVAT, M., Sur Zes ensembles de mots infinis engendres par une grammaire

aZ.gebrique., RAIRO Informatique Theorique 12, 259-278, 1978.

[14] NIVAT, M., Infinite words., infinite trees., infinite computations.,

Foundations of Computer Science III 2 (J.W. de Bakker &

J. van Leeuwen, eds) 3-52, Mathematical Centre Tracts 109, 1979.

[15] PARK, D., On the semantics of fair parallellism., Abstract Software

Specification (D. Bj\6rner, ed.), 504-526, Leet. Notes in Computer

Science, 86, 1980.

ONTVANGEN O 7 APR. 1982

