
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

,.
P . M . B. V IT ANY I

IW 197/82

EFFICIENT SIMULATIONS OF MULTICOUNTER MACHINES
(PRELIMINARY VERSION}

Preprint

~
MC

MAART

kruislaan 413 1098 SJ amsterdam

Punted at .the Ma:t.hemati.c.al. Ce.ntll.e., 413 K.1r.t.U.6la.a.n, A.m6.teJulam.

The Ma.thematic.al. Cenbl.e , nou.nded .the 11-.th on FebJuuVc.y 1946, .U a. non­
pJr.on,i:t .i.n6tUu-ti.on ttlmlng at .the. pll.Omo:Uon on pWLe. ma.:thema.tiC-6 a.nd ..i;a
a.ppU.cati.on6. 1.t .U tipon6oJc.ed by .the Ne.the.tcl.aru:l6 GoveJLnment .thll.ou.gh .the
Ne.thelli.a.nd6 Oll.ga.n.lza.tlon noJc. .the Adva.nc.ement on PU/Le Ruea.Jc.c.h (Z.W.O.).

1980 Mathematics subject classification: 68C40, 68C25, 68Cl0

ACM - Computing Reviews - category: 5. 23, 5. 25, 5. 26.

. . • *)
Efficient simulations of multicounter machines

(Preliminary version)

by

Paul M. B. Vitanyi

ABSTRACT

An oblivious I-tape Turing machine can on-line simulate a multicounter

machine in linear time and logarithmic space. This leads to a linear cost

combinational logic network implementing the first n steps of a multicounter

machine and also to a linear time/logarithmic space on-line simulation by an

oblivious logarithmic cost RAM. An oblivious log*n-head tape unit can simu­

late the first n steps of a multicounter machine in real-time, which leads

to a linear cost combinational logic network with a constant data rate.

KEY WORDS & PHRASES: Muitiaounter>s, Unear> sirrruZation by oblivious one-head

tape units, efficient aorribinator>iaZ logia networ>ks,

VLSI, RAMs

*) This report will be submitted for publication elsewhere.
To appear in the Proceedings of the 9th International Colloquium on Auto­
mata, Languages and Programming, Lecture Notes in Computer Science,
Springer Verlag, 1982.

l • INTRODUCTION

In many computations it is necessary to maintain several counts such that, at

all times, an instant signal indicates which counts are zero. Keeping k counts in

tally notation,. where a count is incremented/decremented by at most I in each step,

governed by the input and the set of currently zero counts, is formalized in the

notion of a k-counter machine [2]. Multicounter machines have been studied extensive­

ly, because of their numerous connections with both theoretical issues and more or

less practical applications. The purpose of this paper is to investigate the depend­

ence of the required time and storage, to maintain counts, on storage structure and

organization and the cost required by a combinational logic network. To do this, we

use a notion of auxiliary interest: that of an oblivious Turing machine. An oblivious

Turing machine is one whose head movements are fixed functions of time, independent

of the inputs to the machine. The main result obtained here shows that an oblivious

Turing machine with only one storage tape can simulate a k-counter machine on-line in

linear time and in storage logarithmic in the maximal possible count. These bounds

are optimal, up to order of magnitude, also for on-line simulation by nonoblivious

machines.

It is obvious that, for any time function T(n), given a k-counter machine, or a

k-pushdown store machine, which operate in time T(n), we can find a time equivalent

k-tape Turing machine. However, such a Turing machine will, apart from using k tapes,

also use O(T(n)) storage. In [7] it was shown that for the pushdown store, of which

2

the contents can not be appreciably compacted, the best we can do for on-line simula­

tion by an oblivious Turing machine is 2 storage tapes, 0(T(n) log T(n)). time and

0(T(n)) storage. For the multicounter machine, [2] demonstrated a linear time/logari­

thimic space simulation by a 1-tape Turing machine. [9, Corollary 2] showed how to

simulate on-line a T(n) time-, S(n) storage-bounded multitape Turing machine by an

oblivious 2-tape Turing machine in time O(T(n)log S(n)) and storage O(S(n)). Combin­

ing the compacting of counts in [2] and the method of [9] we achieve the best pre­

viously known on-line simulation of a k-counter machine by an oblivious Turing machine:

2 tapes, O(T(n) log log T(n)) running time and O(log T(n)) storage. It is somewhat·sur­

prising to see that we can restrict a Turing machine for on-line simulation of a k­

counter machine to I storage tape, logarithmic storage, oblivious head movements and

still retain a linear running time.

In Section 2 this result is derived and connected with a linear cost combination­

al network for doing the same job. This network processes the inputs in sequence and

may incur a time delay of 0(log n) between processing and input and producing the

corresponding output followed by the processing of the next input. Since we would

like to obtain a constant data rate, i.e., a constant time delay between processing

the i-th input at the i-th input port and producing the i-th output at the i-th out­

put port, I 5 i 5 n, we show in Section 3 how to real-time simulate n steps of a multi­

counter machine by an oblivious log*n-head tape unit and use this to obtain a linear

cost combinational network with such a fast response time. It is not our purpose here

to introduce an odd machine model with a variable number of access pointers. One

should rather think of it as an expedient intermediate step to derive the desired

result for fixed n. Subsequently we note that cyclic networks (or VLSI where the

length of the wires adds to the cost) can real-time simulate a multi.counter machine

in logarithmic (area) cost.

In Section 5 we analyse the cost of on-line simulation of a multi.counter machine

by a logarithmic cost RAM. This turns out to be O(n) time and O(log n) space on the

oblivious version, which is optimal, also for nonoblivious RAMs. For the relevant de­

finitions of multicounter machines [l,2], multitape Turing machines [8], combination­

al logic netwmrks [7], real-time and linear time on-line simulation [7] and oblivious

computations [7,9,IO] we direct the reader to these references. The present paper is

a preliminary draft; the results in Sections 2 and 4 appeared in Techn. Report IW 167,

Mathematical Centre, Amsterdam, 1'1.ay 1981.

2. LINEAR-TIME ON-LINE SIMULATION BY AN OBLIVIOUS ONE-HEAD TAPE UNIT WITH AN

APPLICATION TO COMBINATIONAL LOGIC NETWORKS

We first point out one of the salient features of the problem of simulating

k-CM's on-line by efficient oblivious Turing machines. Suppose we can simulate some

abstract storage device S on-line by an efficient oblivious Turing machine M. Then

we can also simulate a collection of k such devices s 1,s2 , ... ,Sk, interacting through

a common finite control, by dividing all tapes of Minto k tracks, each of which is

a duplicate of the corresponding former tape. Now the same head movements do the same

job on k collections of tracks as formerly on the tapes of M, so the time and storage

complexity of the extended M are the same as those of the original. While the problem

of, say, simulating a k-counter machine in linear time by a k'-tape Turing machine

k' < k, stems precisely from the fact that k' is less thank, the problem of simulat­

ing a k-counte:r machine by a k'-tape oblivious Turing machine in linear time is the

same problem a:s that of simulating a I-counter machine in linear time by a k'-tape

oblivious Turing machine. Hence, for a proof of feasibility it suffices to look f0r

the simulation of I counter only. (For a proof of infeasibility we would have the ad­

vantage of knowing that the head movements are fixed, and are the same for all input

streams. Besides, we could assume that we needed to simulate an arbitrary, albeit

fixed, number of counters.)

In [2] it was shown that a I-TM can simulate a k-CM on-line in linear time. This

simulation uses O(log n) storage, for n steps by the k-CM, which is clearly optimal.

It is a priori by no means obvious that an oblivious multitape TM can simulate one

counter in linear time. We shall show that the result of [2] can be extended to hold

for oblivious Turing machines.

In our investigation we noted that head-reversals are not necessary to maintain

counters. We did not succeed in getting the idea below to work in an oblivious envi­

ronment, and include it here as a curiosity, possibly folklore, item.

Suppose we want to simulate a k-CM1 C with counts x 1,x2,···,xk represented by the

variables n 1 through~- The number of simulated steps of C is contained in the vari­

able n. For i ,= 1 ,2, ... ,k if count x. is incremented by o E: {-1,0,+l} then
].

n. ,- n. +2 for 8 +]
].].

n. ;- n. + for 8 0
]. l

n. -{- n. for 8 -]
].].

Let, for i = l ,2, ... ,k, x. denote the current count on the i-th counter of C.
].

PROPOSITION I. For i 1 , 2, ... , k, x. = 0 i ff n. = n.
].].

PROOF. Let n be the number of steps performed by C, pi be the number of +I's, ri be

the number of O's, and q. be the number of -1 's, added to the i-th counter, I ::; i::; k,
].

during these n steus. Hence Pi+qi+ri = n for all i, I::; i :,k. By definition we have

ni = 2pi + ri. Suppose ni = n. Then it follows that Pi= qi and therefore Pi - qi= xi= 0.

Conversely, let xi= Pi - qi= 0. Then Pi= qi and ni =Pi+ qi+ ri = n. n
Hence we obtain:

COROLLARY. A one-way k-CM C can be sinrulated in real-time by a (k+2)-head one-way

non-1.Jriting finite automaton F of which the heads can detect coincidence. Hence 3 four

heads without head reversals suffice to accept aU recursively enumerable sets.
♦

3

4

(Hint: I head reads the input from left to right, I head keeps the count of n by its

distance to the origin, and the remaining k heads so keep the counts n 1 .through~­

It was shown in [4] that 2-CMs can accept all recursively enumerable sets. We assume

that the tape is unbounded, whatever the input may be.)

After this digression we show:

THEOREM 2. If C is a k-counter machine, then we can find an oblivious I-tape Turin,g

ma.chine M that simulates Con-line in time O(n) and storage O(log n) for n steps by C.

Following [7], we note that in the above theorem "machine" can be replaced by

"transducer" and the proof below will still hold.

PROOF. It shall follow from the method used, and is also more generally the case for

simulation by oblivious Turing machines (cf. above), that if the theorem holds for

1-0l's then it also holds for k-CM's, k ~ I. Let C be a I-CM. The simulating oblivious

I-TM M will have one storage tape divided into 3 cannels, called then-channel, the

y-channel, and the z-channel. If, in the current step of Cits count c is modified to

c+o, o E {-1,0,+I}, then:

0

0

0

+I • n +- n+I;

0 • n +- n+I;

-1 • n +- n+I;

y + y+I; z + z,

y +- y z +- z,

y + y z + z+I,

where n is the count contained on then-channel, y is the count contained on they­

channel and z is the count contained on the z-channel. Hence, always (I) c = y-z,

and (2) y+z ~ n. The count non then-channel is recorded in the usual binary nota­

tion, with the low order digit on the start square and the high order digit on the

right, see Figure I. At the start of the cycle simulating the i-th step of C, i = p.2j

and pis odd, squares O through j-1 on then-channel contain l's and square j contains

a 0. So in this cycle, M's head, starting from square O, travels right to square j

and deposits a I there. It turns all l's on squares O through j-1 into O's during this

pass. The head then returns to square 0. This maintenance of the count n completely

fixes 11's head movement, sn Mis oblivious. The representation of y and z is in a

redundant binary notation. If y is denoted by YoY I ••. y., y. in square j of they-
• 1. J

channel, then y. {0,1,2}, 0 ~ j < • and - 1 J Similarly for the count € - 1, y - L O y.2 z.
J J= J

So the representation of y[z] over {0,1,2} is not unique. Finally, the head covers 2

squares on the tape, and shifts I square in I step of M, like a mask covering 2 tape­

squares. So it has a look-ahead of I. See Figure I.

He now explain the operation of M. The intuitive idea behind a 2 in square j of

the y[z]-channel is an, as yet unprocessed, carry from the j-th to (j+l)-th position

of the binary representation of y[z]. During the left-to-right sweeps of its head,

governed by the moves indicated for the updating of n, M maintains invariants (I) and

(2). During the corresponding right-to-left sweeps _back to the start square, M

maintains also invariant (3): if y.[z.] > 0 is the contents of square j on the y[z]
J J

channel then z. 1 , z., z.+l [y. 1,Y·,Y•+i] are O or blank. Moreover, every square
J- J J J- J J .

right of a blank square, on that channel, contains blanks and no square containing

a O has a blank right neighbour in that channel. This latter condition gets rid of

leading O's.

The validity of the simulation is now ensured if we can show the following

assertions to hold at the end of M's cycle to simulate the i-th step of C, i?: 0.

(a) For all i, i?: O, M can always add l to either channel y or z in the cycle simu­

lating step i+l of C.

(b) M can maintain invariants (1), (2) and (3) to hold at the end of each simulation

cycle.

(c) The fact that (1), (2) and (3) hold at the end of the i-th simulation cycle of M

ensures that the count of C is O subsequent to C's i-th step iff both they­

channel and z-channel contain blanks on all squares subsequent to the completion

by M of simulating C's i-th step.

CLAJM I. Assertion (a) holds at the start of each simulation cycle.

PROOF SKETCH. In the process of simulating the i-th step of C, M takes care of (a)

during its left-to-right sweeps by propagating all unprocessed carries on squares

0,1, ... ,j on both they-channel and z-channel to the right, leaving O's or I's on

squares 0,1, ... ,j and depositing a digit d, 0 s d s 2, on square j+l of the channel

concerned, for i = p.2j and pis odd. Assuming that M has adopted this strategy, we

prove the claint by induction on the number of steps of C, equivalently, number of

simulation cycles of M. DD

CLAIM 2. Assertion (b) holds at the start of each simulation cycle.

5

PROOF SKETCH. As we saw in the proof of claim I, assertion (a)' is implemented during

the left-to-right sweeps. During the right-to-left sweeps assertion (b) is implemented.

I I I I

0 0 0 0

I 2· - -
'-V"""'

read-write head

I -
I -
- -

- - -

- - -
- - -

-

-
' - (

I
)

} n-channel

} y-channel

} z-channel

Figu:~. The configuration on M's tape after it has simulated

31 steps of C, consisting of, consecutively, 16 "add I"'s,

II "add O"'s, and 5 "add-!" 's. The head has returned

to the start position.

6

Clearly, assertion (b) holds at the start of the I-th cycle. During its right­

to-left sweeps, at each step M subtracts the 2-digit numbers covered on· they- and z­

channel from each other, leaving the covered positions on at least one channel con­

taining only O's. M also changes (by marking the most significant digits) leading O's

on either channel into blanks during its right-to-left sweeps. Suppose the claim holds

at the start of simulation cycles 1,2, ••• ,i. We show that it then also holds at the

start of simulation cycle i+l. It is obvious that M's strategy outlined above main­

tains invariants (1) and (2). It is left to show that it also maintains invariant (3).

Again this is done by induction on the number of simulation cycles of M. DD

CLAIM 3. Assertion (c) holds at the start of each simulation cycle.

PROOF OF CLAIM. That a square on a channel can only contain a blank if all squares

right of it, on that channel, contain blanks, and that the representations of y and

z have no leading O's, at the start of each simulation cy~}e, is a consequence of

the proof of claim 2. That y-z =cat the conclusion of the i-th simulation cycle

of M, where c is the count of C after i steps, follows because in the left-to-right

sweep we add the correct amount to a channel according to claim I, and in the right­

to-left sweep we subtract equal amounts from either channel. It remains to show that

as a consequence of the maintainence of condition (3) assertion (c) holds under these

conditions.

Suppose that, at the end of the i-th simulation cycle of M, not both they- and

z-channel contain but blanks and that, by way of contradiction, y-z = 0. Then there

is one channel, say y, which has a leading digit in position j, j > 0, while the

digits on the positions j and j-1 on the z-channel are blank. So the count represented

by y is greater or equal to 2j while the count on z is smaller or equal to 2 ~1:~ 2i

2j-2. So y-z 2 2 which contradicts the assumption. (For j = O, y-z 2 I.)

It remains to show that if C 'f 0 then not both channels y and z contain only

blanks. Since always, at the start of a cycle, c = y-z holds, if C 'f 0 then y 'f z· , so

in that case at least one of they-channel and z-channel must contain a count 'f o.
Hence there must be a square which contains a digit d > 0 on one of these channels.DD

By claims I, 2 and 3 the on-line simulation of C by Mis correct as outlined.

It is easy to see that the simulation uses O(log n) storage for simulating n steps by

C. We now estimate the time required for simulating n steps by C. In the i-th simula­

tion cycle M needs to travel to square j, for i p.2j and pis odd. Therefore, M

needs 2j steps for this cycle. For i = p.2j and pis even, i.e., i is even, M needs

I step. Hence, for simulating 2h+l steps by C, M needs all in all:

h 2h-j.2j 2h 2h+I. l:~ . 2-j 2h h+I oo . 2-j
l:. I + = J. + < 2 • l:. I J. +

J= J=l J=.

2.2h+l 2h h
s + 5.2 .

Now, given n, choose h

5.2h s Sn.

llog nJ so that 2h s n < 2h+l. Then T(n) s T(2h+l) s

7

2h

Since the movement of M's head has nothing to do with the actual counts y and z,

but only with the number of steps passed since the start of C, we observe that a k-CM

can be simulated on-line by an oblivious]-tape TM 1\• which is just like M, but

equipped with y.- and z.-channels, I
. l l

< .
- l s k, and therefore with a total of 2k+l

channels. Just like M, Mk uses 0(log n) storage and T(n) s Sn steps to simulate n

steps of Ck, the simulated k-CM, which proves the Theorem.

The covering of 2 or 3 tape squares by the head of M can be simulated easily by

cutting out I or 2 squares of the storage tape and buffering it in the finite control.

The swapping to and fro, from tape to buffer, according to the storage head movement,

is easily handled in the finite control, of which the size is blown up a bit. This is

similar to the way to achieve the speed-up in [3]. D

It is well-known that oblivious Turing machine computations correspond to those

of combinational logic nen;Jorks [7,9]. The networks we consider are acyclic intercon­

nections of gates by means of wires that carry signals. It will be assumed that there

are finitely many different types of ~ates available and that these form a "universal"

basis, so that any input-output function can be implemented by a suitable network.

Each type of a gate has a cost, which is a positive real number, say I for each. The

cost of a network is the sum of the costs of its gates. The method used above can be

used to construct a combinational logic network that implements the first n steps of

the computation by a k-CM. Such a network will haven inputs carrying suitable encod­

ings of the syinbols read from the input terminal and n outputs carrying encodings of

the symbols written on the output terminal, where we assume, for technical reasons,

that the k-CM is a transducer. If the input- and output-alphabets have more than two

symbols, the inputs and outputs of the network will be "cables" of wires carrying

binary signals. Using standard techniques, [7,9], it is easy to show, by imitation

of the oblivious Turing machine constructed in the proof of Theorem 2, that:

COROLLARY. If C is a k-CM transducer, then uJe can construct a co17UJinational logic

network implementing n steps of C with cost O(kn).

8

* 3. REAL-TIME SIMULATION BY AN OBLIVIOUS log n-HEAD TAPE UNIT AND A CORRESPONDING

CCMBINATIONAL LOGIC NETWORK

In the simulations of the previous section we may incur a time delay of 0(1og n)

between the processing of an input and the production of the corresponding output.

For the combinational logic network with n input ports and n output ports this is in­

terpreted as follows. The (i+l)-th input port is enabled by a signal of the i-th out­

put port. Between this enabling and the production of the (i+J)-th output 0(1og n)

time may pass. Note that we can only process the (i+l)-th input after the i-th output

is produced, since the set of zero counts at step i influences the translation of the

j-th input to incrementing/decrementing the various counters for j > i. To eliminate

the unbounded time delay we construct as an intermediate step, for each n, a real­

time simulation by an oblivious log*n-head tape unit. While this doesn't solve the

problem of simulating an arbitrary multicounter machine in real-time by a Turing ma­

chine with a fixed number of tapes [J,2], it turns out that with respect to the re­

sulting combinational logic network this gives as good a result as could be expected

from simulating an arbitrary multicounter machine in real-time by an oblivious Turing

machine with a fixed number of tapes. In the sequel we call a combinational network

with 0(1) time delay, between enabling the i-th input port and the production of the

i-th output, a constant data rate network.

* For the log n-head simulation we use basically that of the previous section with

the tape divided into log*n blocks of increasing sizes, each with a resident head.

The size of the 0-th block is x = s(O) for some constant x, of block I, s(l) = 2x-l

fb k . · (') 2s(i-l) s· d0(1)1 h · 1 and o loc 1, 1 > I, s 1 = . 1nce we nee - og n engt tape to s1mu ate

* * . n steps, we need less than log n blocks, where log n is the number of consecutive

iterations of taking the logarithm to get a number less or equal to I when we start

from n. The 0-th block is maintained in the finite control and, assuming the blocks

are marked, all heads can travel around on local information alone. Only the head on

block I needs to be connected with the finite control to exchange information regard­

ing the counts. See Fip,ure 2.

Each head covers four squares, like a window, and is said to be scanning the

leftmost square it covers. Each head, on information which is put in the first square

of its block by the head on the previous block, makes a sweep from left-to-right over

its block until it scans the end cell and then back from right-to-left until it scans

the first cell. There it waits until the next sweep is due. Hence such a complete

sweep over block i by the resident head takes ?.s(i) steps. We maintain three invari­

ant:$.

(I)

(2)

At all times t > 0 holds:

y+z s: t

y-z = current count

Figure 2.

(3)

,, .. , ... -----........... ,
' ' / FINITE \

input - f CONTROL \ ----,,. output
I
I

\ 0
\

~--. _____ /

rf r, I G:'••n-,
1----~ 1-----~

s(l) s(2) s (log*n - I)

log n

7<
for all positions j on blocks O through log n:

y. > 0 ~ zj-l 'zj ,zj+I E {0,-} &
J

z. > 0 ~ yj-1 'yj ,Yj+I E {0,-} &
J

(y. = - <=> z. = -) & 7(y. z. 0 & Yj+I = zj +I J] J]
= -) .

(For j = 0 the obvious allowances are made.) The movements of the heads are governed

by the count on then-channel. Here this count may contain 2's representing unpro­

cessed carries. This does not occur on the segment of n maintained on block 0, which

is incremented. by I in each step. When that count reaches O again (modulo 2x steps)

a carry is sent to the head on block I which then resides on the first square. Upon

receiving a carry from block O, the head on block I makes a full sweep over block

processing the carry and returning to the first square. Since this takes 2•s(I) = 2x

steps, it is in position to receive the next carry. lfuen the segment of the n count

on block I reaches O again (modulo 2s(I) sweeps), at the right extreme Cif this last

sweep a carry is propagated to the first square of block 2, starting a sweep of the
s (i) .

resident head. In general, each cycle of 2 sweeps over block 1 produces a carry

to the first square of block i+l starting a sweep by the resident head. Since this

sweep takes 2•s(i+l) steps, and a carry is produced each cycle of T(i) ~ 2•s(i)•2s(i)

steps, the head on block i+I is in position to start its sweep upon receiving the

carry if

for i ~ I.

Block O is instantly updated, and therefore we need 2 s (I) $ 2s (O). Si.nee the

9

inequalities are satisfied by the chosen block sizes, each propagated carry to a block

is processed immediately. Having fixed the oblivious head movements, by starting a

sweep over block i+I each time a carry arrives from block ion then channel, it re­

mains to prove that invariants (I) - (3) can be maintained at all times during the real­

time simulation. (Before proceeding, we remark that it is not necessary to assume

that the blocks are delimited on the tape initially. Using four extra counters we can,

as soon as we have the size of block ion one of them, determine s(i+I) before the

first sweep over block i+I is due. Determining the size of block I by the finite con­

trol, we can bootstrap the simulation of these four counters in the main simulation

itself, which will be able to simulate an arbitrary number of counters, and so suc­

cessively determine the blocks as they are needed. However, for the present objective

of eventually producing a combinational logic network, there is no advantage in ampli­

fying dn this construction.)

We have to show:

(a) Each block can always receive incoming carries on the first square of its

y- [z-] channel, and, in particular, block O receiving the inputs never overflows.

I.e., (1) and (2) are maintained at all times.

(b) Invariant (3) holds at all times.

From (a) and (b) it follows, by the same reasoning as in the last section, that the

current count y-z = 0 iff bothy= z = 0 iff bothy- and z-channel currently contain

blanks only. The finite control, containing block 0, therefore knows instantly when

the count is zero.

CLAIM I. (a) can be maintained.

PROOF SKETCH. By induction on the consecutive blocks i.

Base case. A sweep over block I takes 2 s(l) = 2s(O) steps. Since a channel y, z on
s (0)

block O can accomodate a count of 2•(2 -I), subsequent to propagation of a carry

to block I (signifying a count of 2s(O)) block O contains at most 2s(O) - I on either

channel. In the next 2s(O) - I steps the count may rise to 2•(2s(O)_I), but at the

2s(O)_th step a new carry is propagated to block I, resulting from the current count

on the channel plus the current input to that channel, restoring a count of at most
2s (O) _ I.

Induction. During its left-to-right sweeps, the head on block i, i > 0, processes a

2 deposited in the first square of the y,z-channels by propagating it as far as pos­

sible on the left two squares covered. So a 2 in the first square of a channel of

block i may increment the contents of the first square of that channel on block i+l

by I. Assume that the first square of a channel on block j, I~ j ~ i, is not incre~

mented by more than in between the starts of two consecutive sweeps over that block.

Identifying O's and blanks, and considering only one channel, let block i contain

00 ••. 0 or 10 ••. 0 at the start of the t 1-th sweep. ~y assumption, if block i contains

11

s (i)
211 ••• 1 at the start of the t 2-th sweep, then t 2 - t 1 ~ 2 -1. So sweep t 2 causes

an increment of I on the first square of block i+I, by propagating the 2 right leav­

ing O's. Also by assumption, at the start of the (t 2 - t 1 + 1)-th sweep block i con­

tains 00 ••• 0 or 10 •.• 0 again. Since block i contains only blanks initially, and

t 2 - t 1 + I ~ 2s(i), while a sweep over block i+I takes less time than 2s(i) sweeps

over block i, the assumption holds for block i+J. The assumption holds for block I by

the base case.
s (i) .

So no channel on a block i, i > 0, ever contains more than 2 + I which, to-

gether with the base case, proves the claim. DD

CLAI'-i 2. (b) can be maintained.

PROOF SKETCH. Contrary to the simulation in the previous section, we preserve invari­

ant (3) while going from left-to-right on a block in propagating a carry. Going from

right-to-left nothing is changed, so invariant (3) will hold at all times. We do so

by subtracting the 3 bit pieces of they- and z-count, covered by the left three posi­

tions of the head while going from left to right. If a nonzero digit replaces a O or

a blank on a channel this is in the middle position of the three positions covered

and the three positions covered on the other channel are replaced by O's (or blanks).

This still allows us to propagate a 2 as far as the central position of the 3 covered,

so to the first square on the next block at the right extreme of the sweep. From the

proof of the previous claim we have seen that a carry to the first square of the next

block was sufficient. The rightmost (fourth) square covered by the head serves to

detect adjacent blanks so as to return created leading O's to blanks immediately. Due

to the fact that invariant (3) holds and 2's occur only on the first square of a

block and underneath a head, only one new leading O can be created per channel in a

sweep on the rightmost nonblank block. DD

Hence we have:

THEOREM 3. We can simulate the fiPst n steps of a multicounteP machine by an oblivious

log*n-head tape unit in Peal-time and loganthmic space. (SimilaPly we can diPectly

construct an oblivious log*n-tape Tu:r>ing machine fop the same job.)

Just as argued in the previous section, we can construct a corresponding combin­

ational logic network. Since only squares which are being rewritten need to be repre­

sented by logic components, and the time to make a sweep on block i+J is 2•s(i+J) ,,

while there is only one such sweep in each cycle T(i), T(i) ~ 2•s(i)·2s(i)

* 2•s(i)•s(i+I) steps, the cost of this network is reduced from the expected O(nlog n)

by not representing squares covered by a head which does no rewriting.

THEOREM 4. We can implement the fiPst n steps of a k-counteP machine on an O(kn) cost

corru;)inational logic netwoPk with constant data Pate.

12

PROOF. The network has a constant data rate, i.e. a time interval 0(1) between enabl­

ing the i-th input port by the (i-1)-th 09tput and producing the i-th output, 1 ~ i ~ n,

since it is derived from a real-time simulation. Each piece of logic circuitry, repre­

senting four squares covered by a head which is moving, has cost c(k), depending only

on the munber k of counters simulated but not on the number of steps n. The state of

the finite control (containing block 0) is represented by cost d(k) pieces of logic

connected to the input ports. In each cycle T(i) ~ 2 s(i)•2s(i) steps, the head on
s(i) block i+I is active for only 2•2 steps. Hence such a head is active for only

O(ri/s(i)) steps out of n, I ~ i < log*n. Sunnning this for all blocks i, I ~i ~log*n,

and adding the cost for the blocks O connected to the input ports we obtain a total

cost C(k,n):

C(k,n)
* log n-1

((l n•c(k)/s(i)) + n(c(k) +d(k)))
i=I

= O(n•k).

4. SIMULATION BY CYCLIC NETWORKS (AND VLSI)

□

When we are not restricted to acyclic logic networks, but are allowed cyclic

logic networks, or work in the framework of the VLSI model of computation recently

advanced in [SJ, it is not difficult to see that:

THEOREM 5. If C is a k-CM transducer, then we can construct

(i) a cyclic "logic network simulating n steps of C with cost O(k log n) in rea"l-time;

(ii) a VLSI simulating n steps of C in rea"l-time with area O(k log n).

PROOF. We prove (ii), and (ii) clearly implies (i). The VLSI circuit realizing the

claimed behaviour could look as follows:

on-line gJ input
CON- gJ TROL k rows

LO- in gO output GIC

flog nl columns

Figure J. VLSI circuit simulating k-CM.

Each row stores a count in ordinary binary notation, with the low digit contained in

the left block. Each block stores two bits: one for the binary digit of the count,

and one to indicate whether the count digit contained is the most significant bit of

that count. Carries are propagated along the top wire of each row, borrows along the

bottom wire. The middle wires of each row transport information concerning the most

significant bit in that row. Each block contains the necessary logic to process and

transmit correctly carries, borrows and information concerning the most significant

bit. The finite-control-logic rectangle processes the input signals and the informa­

tion from the first blocks of each row, whether they contain a most significant bit 0

of the corresponding count, to issue carries or borrows to the first block of each

13

row and to compute the output signal. We leave it to the reader to confirm that, sub­

sequent to receiving the input signal, the corresponding output signal can be computed

in time O(log k), which corresponds to the bit length of an input signal for driving

k counters. Hence the VLSI circuit simulates the k-CM in real-time. Since the area

occupied by the wires emanating from each block can be kept to the same size as the

area occupied by the block itself, the blocks take O(k log n) area. The finite control

logic structure contains some trees of depth log k, so its area can be kept to

O(klogk). Under the assumption. that k E O(n) this yields the required result. D

To fit a long thin rectangle in a square, as often is necessary to implement the

structure on chip, we can fold it without increasing the surface area significantly.

Note that the structure contains no long wires, and that it does not have to be over­

all synchronized: local synchronization is all we need. Hence it is a practicable

design.

5. SIMULATION BY RAMs

For simulation with a uniform cost RAM it is clear that we can simulate a multi­

counter on-line with constant delay and constant storage. Constant delay is the RAM

analogue for real-time, i.e. if T(n) is the time for simulating n steps by the multi­

counter then the RAM simulates on-line with constant delay if T(n+l) - T(n) < c for

some constant c and all n. It is easy to see, that a logarithmic cost RAM cannot simu­

late a counter machine on-line with constant delay, since it can only address regi­

sters of bounded index and bounded contents.

At first glance it seems that we cHn do no better than O(n log n) time for simu­

lation of a countermachine by a logarithmic cost RAM, If we simulate with a tally

mark in each register, we have to use indirect addressing to maintain the top of the

counter requiring O(n log n) time and O(n) storage to simulate n steps. Using a binary

count we need only k registers for a k-counter machine, but need again O (n log n) time

and O(log n) storage. Define an oblivious FAM as one in which the sequence of executed

instructions, as well as the sequence of accessed storage locations, is a function of

time alone. Due to the usual restrictions of the arithmetic operations of RAMs to+

14

and-, as well as to the needed translation of input commands with respect to the set

of currently zero counters into counter instructions, we need to augment the RAM with

some constant bit length boolean/arithmetic instructions in order not to be artifi­

cially precluded from obtaining the following result by imitation of the simulation

in Section 2. (If we do not add these extra operations the Theorem below might only

hold for nonoblivious RAMs by purely irrelevant definitional reasons.) Since we view

the RAM as an abstract storage device performing a transduction we also assume it is

connected to the input and an output terminal and dispense with the usual 'accept'

ins.truction. Using the simulation in Section 2 we obtain:

THEOREM 6. We can simulate a k-counter machine on-line by an oblivious logarithmic

cost RAN in O(k•n) time and O(k log n) storage.

PROOF. Do the simulation of Section 2 with the RA~, storing the head position of the

I-tape Turing machine in register I and thej-th square contents in register j+I. Then

the sequence of executed instructions in the RAM program, and the sequence of access­

ed registers can be made a function of time alone. So the RAM is oblivious. The time

for simulating sweeps of length j on the RAM is O(k z:i!1 log i) = O(kj log j). So if

T(2h+I) is the time needed to execute the first 2h+I steps of the multicounter we

obtain:

h
0(l k•2h-j • j log j + k•2h)

j=I

0(k•2h+I).

So T(n) E O(kn) and the storage used is O (k log n). D

This simulation is optimal in both space and time, even for nonoblivious RAMs.

6. FINAL REMARKS

Comparing our solution of the linear time simulation of a k-CM with the nonob­

livious one in [2], the reader will notice that our average time complexity is the

same as the worst case time complexity in [2]. So in actual fact, the solution in [2]

runs faster in most cases than the one presented here. In [I] it was shown that the

Origin Crossins Problem: "report when all k counts simultaneously reach O" admits a

real-time one-tape Turing machine solution. Contrary to the linear time simulation of

[2], the method in [I] seems to contain inherently nonoblivious features, preventing

us from turninB it into an oblivious version. It has been a classic question [1,2],

whether or not the Axis Crossing Problem: "report when one out of k counters reaches

O" or more generally "on-line simulate a k-counter machine" can be done in real-time

by a (nonoblivious) k'-tape Turing machine fork' < k. A reasonable approach may seem

to show that, anyway, a real-time simulation of multicounter machines by oblivious

15

one-head tape units is impossible. In the event, intuition is wrong. We have noticed,

cf. Section 2, that if we restrict the simulating device to its oblivious counterpart

we have the advantage that if I counter is simulatable then k counters can be simulat­

ed in just the same way. This key observation has led us in the meantime, by augment­

ing the ideas presented here with an involved tape manipulation technique, to a real­

time simulation of multicounter machines by oblivious one-head tape units, thus solv­

ing the above problem with a considerable margin,[! I]. Although superficially it would

seem that this farther reaching result obviates the present ones we like to point out

that:

The present results are far simpler to derive and will suffice for many applications,

as will some of the distinctive techniques.

- To derive the linear cost constant datarate combinational logic network the present
* . . route by way of a log n-head tape unit suffices.

- The RAM simulation result seems difficult to derive, if at all, from the simulation

in [II] without regressing to the simulation given here.

16

REFERENCES

[l] FISCHER, M.J. & A.L. ROSENBERG, Real-time solutions of the or>igin-crossing prob­
lem, Math. Systems Theory I (1968), 257-264.

[2] FISCHER, P.C., A.R. MEYER & A.L. ROSENBERG, Counter machines and counter lan­
guages, Math. Systems Theory~ (1968), 265-283.

[3] HARTMANIS, J. & R.E. STEARNS, On the computational complexity of algorithms,
Trans. Amer. Math. Soc. _!_!2. (1965), 285-306.

[41 MINSKY, M., Recursive unsolvability of Post's problem of tag and other topics in
the theory of Turing machines, Ann. of Math. 74 (1961), 437-455.

[SJ MEAD, C.A. & L.A. CONWAY, Introduction to VLSI Systems, Addison-Wesley, NewYork,
1980.

[6] PATERSON, M.S., M.J. FISCHER & A.R. MEYER, An improved overlap argument for on­
line multiplication, SIAM-AMS Proceedings, Vol. 7, (Complexity of Computation)
1974, 97-112.

[7] PIPPENGER, N. & M.J. FISCHER, Relations among complexity measures, Journal ACM,
26 (1979), 361-384.

[8] ROSENBERG, A.L., Real-time 11,efinable languages, Journal ACM~ (1967), 645-662.

[9] SCHNORR, C.P., The network complexity and Turing machine complexity of finite
functions, Acta Informatica!_, (1976), 95-107

[JO] VITANYI, P.M.B., Relativized Obliviousness, in Lecture Notes in Computer Science
88 (1980), 665-672, Springer Verlag, New York. (Proc. MFCS '80).

[11] VITANYI, P.M.B., Real-time simulation of multicounters by oblivious one-tape
Turing machines, Proceedings 14th ACM Symp. on Theory of Computing, 1982.

2 6

