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Efficient simulations of multicounter machines 

(Preliminary version) 

by 

Paul M. B. Vitanyi 

ABSTRACT 

An oblivious I-tape Turing machine can on-line simulate a multicounter 

machine in linear time and logarithmic space. This leads to a linear cost 

combinational logic network implementing the first n steps of a multicounter 

machine and also to a linear time/logarithmic space on-line simulation by an 

oblivious logarithmic cost RAM. An oblivious log*n-head tape unit can simu­

late the first n steps of a multicounter machine in real-time, which leads 

to a linear cost combinational logic network with a constant data rate. 

KEY WORDS & PHRASES: Muitiaounter>s, Unear> sirrruZation by oblivious one-head 

tape units, efficient aorribinator>iaZ logia networ>ks, 

VLSI, RAMs 
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l • INTRODUCTION 

In many computations it is necessary to maintain several counts such that, at 

all times, an instant signal indicates which counts are zero. Keeping k counts in 

tally notation,. where a count is incremented/decremented by at most I in each step, 

governed by the input and the set of currently zero counts, is formalized in the 

notion of a k-counter machine [2]. Multicounter machines have been studied extensive­

ly, because of their numerous connections with both theoretical issues and more or 

less practical applications. The purpose of this paper is to investigate the depend­

ence of the required time and storage, to maintain counts, on storage structure and 

organization and the cost required by a combinational logic network. To do this, we 

use a notion of auxiliary interest: that of an oblivious Turing machine. An oblivious 

Turing machine is one whose head movements are fixed functions of time, independent 

of the inputs to the machine. The main result obtained here shows that an oblivious 

Turing machine with only one storage tape can simulate a k-counter machine on-line in 

linear time and in storage logarithmic in the maximal possible count. These bounds 

are optimal, up to order of magnitude, also for on-line simulation by nonoblivious 

machines. 

It is obvious that, for any time function T(n), given a k-counter machine, or a 

k-pushdown store machine, which operate in time T(n), we can find a time equivalent 

k-tape Turing machine. However, such a Turing machine will, apart from using k tapes, 

also use O(T(n)) storage. In [7] it was shown that for the pushdown store, of which 



2 

the contents can not be appreciably compacted, the best we can do for on-line simula­

tion by an oblivious Turing machine is 2 storage tapes, 0(T(n) log T(n)). time and 

0(T(n)) storage. For the multicounter machine, [2] demonstrated a linear time/logari­

thimic space simulation by a 1-tape Turing machine. [9, Corollary 2] showed how to 

simulate on-line a T(n) time-, S(n) storage-bounded multitape Turing machine by an 

oblivious 2-tape Turing machine in time O(T(n)log S(n)) and storage O(S(n)). Combin­

ing the compacting of counts in [2] and the method of [9] we achieve the best pre­

viously known on-line simulation of a k-counter machine by an oblivious Turing machine: 

2 tapes, O(T(n) log log T(n)) running time and O(log T(n)) storage. It is somewhat·sur­

prising to see that we can restrict a Turing machine for on-line simulation of a k­

counter machine to I storage tape, logarithmic storage, oblivious head movements and 

still retain a linear running time. 

In Section 2 this result is derived and connected with a linear cost combination­

al network for doing the same job. This network processes the inputs in sequence and 

may incur a time delay of 0(log n) between processing and input and producing the 

corresponding output followed by the processing of the next input. Since we would 

like to obtain a constant data rate, i.e., a constant time delay between processing 

the i-th input at the i-th input port and producing the i-th output at the i-th out­

put port, I 5 i 5 n, we show in Section 3 how to real-time simulate n steps of a multi­

counter machine by an oblivious log*n-head tape unit and use this to obtain a linear 

cost combinational network with such a fast response time. It is not our purpose here 

to introduce an odd machine model with a variable number of access pointers. One 

should rather think of it as an expedient intermediate step to derive the desired 

result for fixed n. Subsequently we note that cyclic networks (or VLSI where the 

length of the wires adds to the cost) can real-time simulate a multi.counter machine 

in logarithmic (area) cost. 

In Section 5 we analyse the cost of on-line simulation of a multi.counter machine 

by a logarithmic cost RAM. This turns out to be O(n) time and O(log n) space on the 

oblivious version, which is optimal, also for nonoblivious RAMs. For the relevant de­

finitions of multicounter machines [l,2], multitape Turing machines [8], combination­

al logic netwmrks [7], real-time and linear time on-line simulation [7] and oblivious 

computations [7,9,IO] we direct the reader to these references. The present paper is 

a preliminary draft; the results in Sections 2 and 4 appeared in Techn. Report IW 167, 

Mathematical Centre, Amsterdam, 1'1.ay 1981. 

2. LINEAR-TIME ON-LINE SIMULATION BY AN OBLIVIOUS ONE-HEAD TAPE UNIT WITH AN 

APPLICATION TO COMBINATIONAL LOGIC NETWORKS 

We first point out one of the salient features of the problem of simulating 

k-CM's on-line by efficient oblivious Turing machines. Suppose we can simulate some 

abstract storage device S on-line by an efficient oblivious Turing machine M. Then 

we can also simulate a collection of k such devices s 1,s2 , ... ,Sk, interacting through 



a common finite control, by dividing all tapes of Minto k tracks, each of which is 

a duplicate of the corresponding former tape. Now the same head movements do the same 

job on k collections of tracks as formerly on the tapes of M, so the time and storage 

complexity of the extended M are the same as those of the original. While the problem 

of, say, simulating a k-counter machine in linear time by a k'-tape Turing machine 

k' < k, stems precisely from the fact that k' is less thank, the problem of simulat­

ing a k-counte:r machine by a k'-tape oblivious Turing machine in linear time is the 

same problem a:s that of simulating a I-counter machine in linear time by a k'-tape 

oblivious Turing machine. Hence, for a proof of feasibility it suffices to look f0r 

the simulation of I counter only. (For a proof of infeasibility we would have the ad­

vantage of knowing that the head movements are fixed, and are the same for all input 

streams. Besides, we could assume that we needed to simulate an arbitrary, albeit 

fixed, number of counters.) 

In [2] it was shown that a I-TM can simulate a k-CM on-line in linear time. This 

simulation uses O(log n) storage, for n steps by the k-CM, which is clearly optimal. 

It is a priori by no means obvious that an oblivious multitape TM can simulate one 

counter in linear time. We shall show that the result of [2] can be extended to hold 

for oblivious Turing machines. 

In our investigation we noted that head-reversals are not necessary to maintain 

counters. We did not succeed in getting the idea below to work in an oblivious envi­

ronment, and include it here as a curiosity, possibly folklore, item. 

Suppose we want to simulate a k-CM1 C with counts x 1,x2,···,xk represented by the 

variables n 1 through~- The number of simulated steps of C is contained in the vari­

able n. For i ,= 1 ,2, ... ,k if count x. is incremented by o E: {-1,0,+l} then 
]. 

n. .... ,- n. +2 for 8 +] 
]. ]. 

n. .... ;- n. + for 8 0 
]. l 

n. -{- n. for 8 -] 
]. ]. 

Let, for i = l ,2, ... ,k, x. denote the current count on the i-th counter of C. 
]. 

PROPOSITION I. For i 1 , 2, ... , k, x. = 0 i ff n. = n. 
]. ]. 

PROOF. Let n be the number of steps performed by C, pi be the number of +I's, ri be 

the number of O's, and q. be the number of -1 's, added to the i-th counter, I ::; i::; k, 
]. 

during these n steus. Hence Pi+qi+ri = n for all i, I::; i :,k. By definition we have 

ni = 2pi + ri. Suppose ni = n. Then it follows that Pi= qi and therefore Pi - qi= xi= 0. 

Conversely, let xi= Pi - qi= 0. Then Pi= qi and ni =Pi+ qi+ ri = n. n 
Hence we obtain: 

COROLLARY. A one-way k-CM C can be sinrulated in real-time by a (k+2)-head one-way 

non-1.Jriting finite automaton F of which the heads can detect coincidence. Hence 3 four 

heads without head reversals suffice to accept aU recursively enumerable sets. 
♦ 

3 
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(Hint: I head reads the input from left to right, I head keeps the count of n by its 

distance to the origin, and the remaining k heads so keep the counts n 1 .through~­

It was shown in [4] that 2-CMs can accept all recursively enumerable sets. We assume 

that the tape is unbounded, whatever the input may be.) 

After this digression we show: 

THEOREM 2. If C is a k-counter machine, then we can find an oblivious I-tape Turin,g 

ma.chine M that simulates Con-line in time O(n) and storage O(log n) for n steps by C. 

Following [7], we note that in the above theorem "machine" can be replaced by 

"transducer" and the proof below will still hold. 

PROOF. It shall follow from the method used, and is also more generally the case for 

simulation by oblivious Turing machines (cf. above), that if the theorem holds for 

1-0l's then it also holds for k-CM's, k ~ I. Let C be a I-CM. The simulating oblivious 

I-TM M will have one storage tape divided into 3 cannels, called then-channel, the 

y-channel, and the z-channel. If, in the current step of Cits count c is modified to 

c+o, o E {-1,0,+I}, then: 

0 

0 

0 

+I • n +- n+I; 

0 • n +- n+I; 

-1 • n +- n+I; 

y + y+I; z + z, 

y +- y z +- z, 

y + y z + z+I, 

where n is the count contained on then-channel, y is the count contained on they­

channel and z is the count contained on the z-channel. Hence, always (I) c = y-z, 

and (2) y+z ~ n. The count non then-channel is recorded in the usual binary nota­

tion, with the low order digit on the start square and the high order digit on the 

right, see Figure I. At the start of the cycle simulating the i-th step of C, i = p.2j 

and pis odd, squares O through j-1 on then-channel contain l's and square j contains 

a 0. So in this cycle, M's head, starting from square O, travels right to square j 

and deposits a I there. It turns all l's on squares O through j-1 into O's during this 

pass. The head then returns to square 0. This maintenance of the count n completely 

fixes 11's head movement, sn Mis oblivious. The representation of y and z is in a 

redundant binary notation. If y is denoted by YoY I ••. y., y. in square j of they-
• 1. J 

channel, then y. {0,1,2}, 0 ~ j < • and - 1 J Similarly for the count € - 1, y - L O y.2 z. 
J J= J 

So the representation of y[z] over {0,1,2} is not unique. Finally, the head covers 2 

squares on the tape, and shifts I square in I step of M, like a mask covering 2 tape­

squares. So it has a look-ahead of I. See Figure I. 

He now explain the operation of M. The intuitive idea behind a 2 in square j of 

the y[z]-channel is an, as yet unprocessed, carry from the j-th to (j+l)-th position 

of the binary representation of y[z]. During the left-to-right sweeps of its head, 

governed by the moves indicated for the updating of n, M maintains invariants (I) and 

(2). During the corresponding right-to-left sweeps _back to the start square, M 



maintains also invariant (3): if y.[z.] > 0 is the contents of square j on the y[z] 
J J 

channel then z. 1 , z., z.+l [y. 1,Y·,Y•+i] are O or blank. Moreover, every square 
J- J J J- J J . 

right of a blank square, on that channel, contains blanks and no square containing 

a O has a blank right neighbour in that channel. This latter condition gets rid of 

leading O's. 

The validity of the simulation is now ensured if we can show the following 

assertions to hold at the end of M's cycle to simulate the i-th step of C, i?: 0. 

(a) For all i, i?: O, M can always add l to either channel y or z in the cycle simu­

lating step i+l of C. 

(b) M can maintain invariants (1), (2) and (3) to hold at the end of each simulation 

cycle. 

(c) The fact that (1), (2) and (3) hold at the end of the i-th simulation cycle of M 

ensures that the count of C is O subsequent to C's i-th step iff both they­

channel and z-channel contain blanks on all squares subsequent to the completion 

by M of simulating C's i-th step. 

CLAJM I. Assertion (a) holds at the start of each simulation cycle. 

PROOF SKETCH. In the process of simulating the i-th step of C, M takes care of (a) 

during its left-to-right sweeps by propagating all unprocessed carries on squares 

0,1, ... ,j on both they-channel and z-channel to the right, leaving O's or I's on 

squares 0,1, ... ,j and depositing a digit d, 0 s d s 2, on square j+l of the channel 

concerned, for i = p.2j and pis odd. Assuming that M has adopted this strategy, we 

prove the claint by induction on the number of steps of C, equivalently, number of 

simulation cycles of M. DD 

CLAIM 2. Assertion (b) holds at the start of each simulation cycle. 

5 

PROOF SKETCH. As we saw in the proof of claim I, assertion (a)' is implemented during 

the left-to-right sweeps. During the right-to-left sweeps assertion (b) is implemented. 

I I I I 

0 0 0 0 

I 2· - -
'-V"""' 

read-write head 

I -
I -
- -

- - -

- - -
- - -

-

-
' - ( 

I 
) 

} n-channel 

} y-channel 

} z-channel 

Figu:~. The configuration on M's tape after it has simulated 

31 steps of C, consisting of, consecutively, 16 "add I"'s, 

II "add O"'s, and 5 "add-!" 's. The head has returned 

to the start position. 
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Clearly, assertion (b) holds at the start of the I-th cycle. During its right­

to-left sweeps, at each step M subtracts the 2-digit numbers covered on· they- and z­

channel from each other, leaving the covered positions on at least one channel con­

taining only O's. M also changes (by marking the most significant digits) leading O's 

on either channel into blanks during its right-to-left sweeps. Suppose the claim holds 

at the start of simulation cycles 1,2, ••• ,i. We show that it then also holds at the 

start of simulation cycle i+l. It is obvious that M's strategy outlined above main­

tains invariants (1) and (2). It is left to show that it also maintains invariant (3). 

Again this is done by induction on the number of simulation cycles of M. DD 

CLAIM 3. Assertion (c) holds at the start of each simulation cycle. 

PROOF OF CLAIM. That a square on a channel can only contain a blank if all squares 

right of it, on that channel, contain blanks, and that the representations of y and 

z have no leading O's, at the start of each simulation cy~}e, is a consequence of 

the proof of claim 2. That y-z =cat the conclusion of the i-th simulation cycle 

of M, where c is the count of C after i steps, follows because in the left-to-right 

sweep we add the correct amount to a channel according to claim I, and in the right­

to-left sweep we subtract equal amounts from either channel. It remains to show that 

as a consequence of the maintainence of condition (3) assertion (c) holds under these 

conditions. 

Suppose that, at the end of the i-th simulation cycle of M, not both they- and 

z-channel contain but blanks and that, by way of contradiction, y-z = 0. Then there 

is one channel, say y, which has a leading digit in position j, j > 0, while the 

digits on the positions j and j-1 on the z-channel are blank. So the count represented 

by y is greater or equal to 2j while the count on z is smaller or equal to 2 ~1:~ 2i 

2j-2. So y-z 2 2 which contradicts the assumption. (For j = O, y-z 2 I.) 

It remains to show that if C 'f 0 then not both channels y and z contain only 

blanks. Since always, at the start of a cycle, c = y-z holds, if C 'f 0 then y 'f z· , so 

in that case at least one of they-channel and z-channel must contain a count 'f o. 
Hence there must be a square which contains a digit d > 0 on one of these channels.DD 

By claims I, 2 and 3 the on-line simulation of C by Mis correct as outlined. 

It is easy to see that the simulation uses O(log n) storage for simulating n steps by 

C. We now estimate the time required for simulating n steps by C. In the i-th simula­

tion cycle M needs to travel to square j, for i p.2j and pis odd. Therefore, M 

needs 2j steps for this cycle. For i = p.2j and pis even, i.e., i is even, M needs 

I step. Hence, for simulating 2h+l steps by C, M needs all in all: 



h 2h-j.2j 2h 2h+I. l:~ . 2-j 2h h+I oo . 2-j 
l:. I + = J. + < 2 • l:. I J. + 

J= J=l J=. 

2.2h+l 2h h 
s + 5.2 . 

Now, given n, choose h 

5.2h s Sn. 

llog nJ so that 2h s n < 2h+l. Then T(n) s T(2h+l) s 

7 

2h 

Since the movement of M's head has nothing to do with the actual counts y and z, 

but only with the number of steps passed since the start of C, we observe that a k-CM 

can be simulated on-line by an oblivious ]-tape TM 1\• which is just like M, but 

equipped with y.- and z.-channels, I 
. l l 

< . 
- l s k, and therefore with a total of 2k+l 

channels. Just like M, Mk uses 0(log n) storage and T(n) s Sn steps to simulate n 

steps of Ck, the simulated k-CM, which proves the Theorem. 

The covering of 2 or 3 tape squares by the head of M can be simulated easily by 

cutting out I or 2 squares of the storage tape and buffering it in the finite control. 

The swapping to and fro, from tape to buffer, according to the storage head movement, 

is easily handled in the finite control, of which the size is blown up a bit. This is 

similar to the way to achieve the speed-up in [3]. D 

It is well-known that oblivious Turing machine computations correspond to those 

of combinational logic nen;Jorks [7,9]. The networks we consider are acyclic intercon­

nections of gates by means of wires that carry signals. It will be assumed that there 

are finitely many different types of ~ates available and that these form a "universal" 

basis, so that any input-output function can be implemented by a suitable network. 

Each type of a gate has a cost, which is a positive real number, say I for each. The 

cost of a network is the sum of the costs of its gates. The method used above can be 

used to construct a combinational logic network that implements the first n steps of 

the computation by a k-CM. Such a network will haven inputs carrying suitable encod­

ings of the syinbols read from the input terminal and n outputs carrying encodings of 

the symbols written on the output terminal, where we assume, for technical reasons, 

that the k-CM is a transducer. If the input- and output-alphabets have more than two 

symbols, the inputs and outputs of the network will be "cables" of wires carrying 

binary signals. Using standard techniques, [7,9], it is easy to show, by imitation 

of the oblivious Turing machine constructed in the proof of Theorem 2, that: 

COROLLARY. If C is a k-CM transducer, then uJe can construct a co17UJinational logic 

network implementing n steps of C with cost O(kn). 
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* 3. REAL-TIME SIMULATION BY AN OBLIVIOUS log n-HEAD TAPE UNIT AND A CORRESPONDING 

CCMBINATIONAL LOGIC NETWORK 

In the simulations of the previous section we may incur a time delay of 0(1og n) 

between the processing of an input and the production of the corresponding output. 

For the combinational logic network with n input ports and n output ports this is in­

terpreted as follows. The (i+l)-th input port is enabled by a signal of the i-th out­

put port. Between this enabling and the production of the (i+J)-th output 0(1og n) 

time may pass. Note that we can only process the (i+l)-th input after the i-th output 

is produced, since the set of zero counts at step i influences the translation of the 

j-th input to incrementing/decrementing the various counters for j > i. To eliminate 

the unbounded time delay we construct as an intermediate step, for each n, a real­

time simulation by an oblivious log*n-head tape unit. While this doesn't solve the 

problem of simulating an arbitrary multicounter machine in real-time by a Turing ma­

chine with a fixed number of tapes [J,2], it turns out that with respect to the re­

sulting combinational logic network this gives as good a result as could be expected 

from simulating an arbitrary multicounter machine in real-time by an oblivious Turing 

machine with a fixed number of tapes. In the sequel we call a combinational network 

with 0(1) time delay, between enabling the i-th input port and the production of the 

i-th output, a constant data rate network. 

* For the log n-head simulation we use basically that of the previous section with 

the tape divided into log*n blocks of increasing sizes, each with a resident head. 

The size of the 0-th block is x = s(O) for some constant x, of block I, s(l) = 2x-l 

fb k . · (') 2s(i-l) s· d0(1 )1 h · 1 and o loc 1, 1 > I, s 1 = . 1nce we nee - og n engt tape to s1mu ate 

* * . n steps, we need less than log n blocks, where log n is the number of consecutive 

iterations of taking the logarithm to get a number less or equal to I when we start 

from n. The 0-th block is maintained in the finite control and, assuming the blocks 

are marked, all heads can travel around on local information alone. Only the head on 

block I needs to be connected with the finite control to exchange information regard­

ing the counts. See Fip,ure 2. 

Each head covers four squares, like a window, and is said to be scanning the 

leftmost square it covers. Each head, on information which is put in the first square 

of its block by the head on the previous block, makes a sweep from left-to-right over 

its block until it scans the end cell and then back from right-to-left until it scans 

the first cell. There it waits until the next sweep is due. Hence such a complete 

sweep over block i by the resident head takes ?.s(i) steps. We maintain three invari­

ant:$. 

(I) 

(2) 

At all times t > 0 holds: 

y+z s: t 

y-z = current count 



Figure 2. 

(3) 

,, .. , ... -----........... , 
' ' / FINITE \ 

input - f CONTROL \ ----,,. output 
I 
I 

\ 0 
\ 

~--. _____ / 

rf r, I G:'••n-, 
1----~ 1-----~ 

s(l) s(2) s (log*n - I) 

log n 

7< 
for all positions j on blocks O through log n: 

y. > 0 ~ zj-l 'zj ,zj+I E {0,-} & 
J 

z. > 0 ~ yj-1 'yj ,Yj+I E {0,-} & 
J 

(y. = - <=> z. = -) & 7(y. z. 0 & Yj+I = zj +I J ] J ] 
= -) . 

(For j = 0 the obvious allowances are made.) The movements of the heads are governed 

by the count on then-channel. Here this count may contain 2's representing unpro­

cessed carries. This does not occur on the segment of n maintained on block 0, which 

is incremented. by I in each step. When that count reaches O again (modulo 2x steps) 

a carry is sent to the head on block I which then resides on the first square. Upon 

receiving a carry from block O, the head on block I makes a full sweep over block 

processing the carry and returning to the first square. Since this takes 2•s(I) = 2x 

steps, it is in position to receive the next carry. lfuen the segment of the n count 

on block I reaches O again (modulo 2s(I) sweeps), at the right extreme Cif this last 

sweep a carry is propagated to the first square of block 2, starting a sweep of the 
s (i) . 

resident head. In general, each cycle of 2 sweeps over block 1 produces a carry 

to the first square of block i+l starting a sweep by the resident head. Since this 

sweep takes 2•s(i+l) steps, and a carry is produced each cycle of T(i) ~ 2•s(i)•2s(i) 

steps, the head on block i+I is in position to start its sweep upon receiving the 

carry if 

for i ~ I. 

Block O is instantly updated, and therefore we need 2 s (I) $ 2s (O). Si.nee the 

9 



inequalities are satisfied by the chosen block sizes, each propagated carry to a block 

is processed immediately. Having fixed the oblivious head movements, by starting a 

sweep over block i+I each time a carry arrives from block ion then channel, it re­

mains to prove that invariants (I) - (3) can be maintained at all times during the real­

time simulation. (Before proceeding, we remark that it is not necessary to assume 

that the blocks are delimited on the tape initially. Using four extra counters we can, 

as soon as we have the size of block ion one of them, determine s(i+I) before the 

first sweep over block i+I is due. Determining the size of block I by the finite con­

trol, we can bootstrap the simulation of these four counters in the main simulation 

itself, which will be able to simulate an arbitrary number of counters, and so suc­

cessively determine the blocks as they are needed. However, for the present objective 

of eventually producing a combinational logic network, there is no advantage in ampli­

fying dn this construction.) 

We have to show: 

(a) Each block can always receive incoming carries on the first square of its 

y- [z-] channel, and, in particular, block O receiving the inputs never overflows. 

I.e., (1) and (2) are maintained at all times. 

(b) Invariant (3) holds at all times. 

From (a) and (b) it follows, by the same reasoning as in the last section, that the 

current count y-z = 0 iff bothy= z = 0 iff bothy- and z-channel currently contain 

blanks only. The finite control, containing block 0, therefore knows instantly when 

the count is zero. 

CLAIM I. (a) can be maintained. 

PROOF SKETCH. By induction on the consecutive blocks i. 

Base case. A sweep over block I takes 2 s(l) = 2s(O) steps. Since a channel y, z on 
s (0) 

block O can accomodate a count of 2•(2 -I), subsequent to propagation of a carry 

to block I (signifying a count of 2s(O)) block O contains at most 2s(O) - I on either 

channel. In the next 2s(O) - I steps the count may rise to 2•(2s(O)_I), but at the 

2s(O)_th step a new carry is propagated to block I, resulting from the current count 

on the channel plus the current input to that channel, restoring a count of at most 
2s (O) _ I. 

Induction. During its left-to-right sweeps, the head on block i, i > 0, processes a 

2 deposited in the first square of the y,z-channels by propagating it as far as pos­

sible on the left two squares covered. So a 2 in the first square of a channel of 

block i may increment the contents of the first square of that channel on block i+l 

by I. Assume that the first square of a channel on block j, I~ j ~ i, is not incre~ 

mented by more than in between the starts of two consecutive sweeps over that block. 

Identifying O's and blanks, and considering only one channel, let block i contain 

00 ••. 0 or 10 ••. 0 at the start of the t 1-th sweep. ~y assumption, if block i contains 
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s (i) 
211 ••• 1 at the start of the t 2-th sweep, then t 2 - t 1 ~ 2 -1. So sweep t 2 causes 

an increment of I on the first square of block i+I, by propagating the 2 right leav­

ing O's. Also by assumption, at the start of the (t 2 - t 1 + 1)-th sweep block i con­

tains 00 ••• 0 or 10 •.• 0 again. Since block i contains only blanks initially, and 

t 2 - t 1 + I ~ 2s(i), while a sweep over block i+I takes less time than 2s(i) sweeps 

over block i, the assumption holds for block i+J. The assumption holds for block I by 

the base case. 
s (i) . 

So no channel on a block i, i > 0, ever contains more than 2 + I which, to-

gether with the base case, proves the claim. DD 

CLAI'-i 2. (b) can be maintained. 

PROOF SKETCH. Contrary to the simulation in the previous section, we preserve invari­

ant (3) while going from left-to-right on a block in propagating a carry. Going from 

right-to-left nothing is changed, so invariant (3) will hold at all times. We do so 

by subtracting the 3 bit pieces of they- and z-count, covered by the left three posi­

tions of the head while going from left to right. If a nonzero digit replaces a O or 

a blank on a channel this is in the middle position of the three positions covered 

and the three positions covered on the other channel are replaced by O's (or blanks). 

This still allows us to propagate a 2 as far as the central position of the 3 covered, 

so to the first square on the next block at the right extreme of the sweep. From the 

proof of the previous claim we have seen that a carry to the first square of the next 

block was sufficient. The rightmost (fourth) square covered by the head serves to 

detect adjacent blanks so as to return created leading O's to blanks immediately. Due 

to the fact that invariant (3) holds and 2's occur only on the first square of a 

block and underneath a head, only one new leading O can be created per channel in a 

sweep on the rightmost nonblank block. DD 

Hence we have: 

THEOREM 3. We can simulate the fiPst n steps of a multicounteP machine by an oblivious 

log*n-head tape unit in Peal-time and loganthmic space. (SimilaPly we can diPectly 

construct an oblivious log*n-tape Tu:r>ing machine fop the same job.) 

Just as argued in the previous section, we can construct a corresponding combin­

ational logic network. Since only squares which are being rewritten need to be repre­

sented by logic components, and the time to make a sweep on block i+J is 2•s(i+J) ,, 

while there is only one such sweep in each cycle T(i), T(i) ~ 2•s(i)·2s(i) 

* 2•s(i)•s(i+I) steps, the cost of this network is reduced from the expected O(nlog n) 

by not representing squares covered by a head which does no rewriting. 

THEOREM 4. We can implement the fiPst n steps of a k-counteP machine on an O(kn) cost 

corru;)inational logic netwoPk with constant data Pate. 
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PROOF. The network has a constant data rate, i.e. a time interval 0(1) between enabl­

ing the i-th input port by the (i-1)-th 09tput and producing the i-th output, 1 ~ i ~ n, 

since it is derived from a real-time simulation. Each piece of logic circuitry, repre­

senting four squares covered by a head which is moving, has cost c(k), depending only 

on the munber k of counters simulated but not on the number of steps n. The state of 

the finite control (containing block 0) is represented by cost d(k) pieces of logic 

connected to the input ports. In each cycle T(i) ~ 2 s(i)•2s(i) steps, the head on 
s(i) block i+I is active for only 2•2 steps. Hence such a head is active for only 

O(ri/s(i)) steps out of n, I ~ i < log*n. Sunnning this for all blocks i, I ~i ~log*n, 

and adding the cost for the blocks O connected to the input ports we obtain a total 

cost C(k,n): 

C(k,n) 
* log n-1 

(( l n•c(k)/s(i)) + n(c(k) +d(k))) 
i=I 

= O(n•k). 

4. SIMULATION BY CYCLIC NETWORKS (AND VLSI) 

□ 

When we are not restricted to acyclic logic networks, but are allowed cyclic 

logic networks, or work in the framework of the VLSI model of computation recently 

advanced in [SJ, it is not difficult to see that: 

THEOREM 5. If C is a k-CM transducer, then we can construct 

(i) a cyclic "logic network simulating n steps of C with cost O(k log n) in rea"l-time; 

(ii) a VLSI simulating n steps of C in rea"l-time with area O(k log n). 

PROOF. We prove (ii), and (ii) clearly implies (i). The VLSI circuit realizing the 

claimed behaviour could look as follows: 

on-line gJ input 
CON- gJ TROL k rows 

LO- in gO output GIC 

flog nl columns 

Figure J. VLSI circuit simulating k-CM. 



Each row stores a count in ordinary binary notation, with the low digit contained in 

the left block. Each block stores two bits: one for the binary digit of the count, 

and one to indicate whether the count digit contained is the most significant bit of 

that count. Carries are propagated along the top wire of each row, borrows along the 

bottom wire. The middle wires of each row transport information concerning the most 

significant bit in that row. Each block contains the necessary logic to process and 

transmit correctly carries, borrows and information concerning the most significant 

bit. The finite-control-logic rectangle processes the input signals and the informa­

tion from the first blocks of each row, whether they contain a most significant bit 0 

of the corresponding count, to issue carries or borrows to the first block of each 
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row and to compute the output signal. We leave it to the reader to confirm that, sub­

sequent to receiving the input signal, the corresponding output signal can be computed 

in time O(log k), which corresponds to the bit length of an input signal for driving 

k counters. Hence the VLSI circuit simulates the k-CM in real-time. Since the area 

occupied by the wires emanating from each block can be kept to the same size as the 

area occupied by the block itself, the blocks take O(k log n) area. The finite control 

logic structure contains some trees of depth log k, so its area can be kept to 

O(klogk). Under the assumption. that k E O(n) this yields the required result. D 

To fit a long thin rectangle in a square, as often is necessary to implement the 

structure on chip, we can fold it without increasing the surface area significantly. 

Note that the structure contains no long wires, and that it does not have to be over­

all synchronized: local synchronization is all we need. Hence it is a practicable 

design. 

5. SIMULATION BY RAMs 

For simulation with a uniform cost RAM it is clear that we can simulate a multi­

counter on-line with constant delay and constant storage. Constant delay is the RAM 

analogue for real-time, i.e. if T(n) is the time for simulating n steps by the multi­

counter then the RAM simulates on-line with constant delay if T(n+l) - T(n) < c for 

some constant c and all n. It is easy to see, that a logarithmic cost RAM cannot simu­

late a counter machine on-line with constant delay, since it can only address regi­

sters of bounded index and bounded contents. 

At first glance it seems that we cHn do no better than O(n log n) time for simu­

lation of a countermachine by a logarithmic cost RAM, If we simulate with a tally 

mark in each register, we have to use indirect addressing to maintain the top of the 

counter requiring O(n log n) time and O(n) storage to simulate n steps. Using a binary 

count we need only k registers for a k-counter machine, but need again O (n log n) time 

and O(log n) storage. Define an oblivious FAM as one in which the sequence of executed 

instructions, as well as the sequence of accessed storage locations, is a function of 

time alone. Due to the usual restrictions of the arithmetic operations of RAMs to+ 
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and-, as well as to the needed translation of input commands with respect to the set 

of currently zero counters into counter instructions, we need to augment the RAM with 

some constant bit length boolean/arithmetic instructions in order not to be artifi­

cially precluded from obtaining the following result by imitation of the simulation 

in Section 2. (If we do not add these extra operations the Theorem below might only 

hold for nonoblivious RAMs by purely irrelevant definitional reasons.) Since we view 

the RAM as an abstract storage device performing a transduction we also assume it is 

connected to the input and an output terminal and dispense with the usual 'accept' 

ins.truction. Using the simulation in Section 2 we obtain: 

THEOREM 6. We can simulate a k-counter machine on-line by an oblivious logarithmic 

cost RAN in O(k•n) time and O(k log n) storage. 

PROOF. Do the simulation of Section 2 with the RA~, storing the head position of the 

I-tape Turing machine in register I and thej-th square contents in register j+I. Then 

the sequence of executed instructions in the RAM program, and the sequence of access­

ed registers can be made a function of time alone. So the RAM is oblivious. The time 

for simulating sweeps of length j on the RAM is O(k z:i!1 log i) = O(kj log j). So if 

T(2h+I) is the time needed to execute the first 2h+I steps of the multicounter we 

obtain: 

h 
0( l k•2h-j • j log j + k•2h) 

j=I 

0(k•2h+I). 

So T(n) E O(kn) and the storage used is O (k log n). D 

This simulation is optimal in both space and time, even for nonoblivious RAMs. 

6. FINAL REMARKS 

Comparing our solution of the linear time simulation of a k-CM with the nonob­

livious one in [2], the reader will notice that our average time complexity is the 

same as the worst case time complexity in [2]. So in actual fact, the solution in [2] 

runs faster in most cases than the one presented here. In [I] it was shown that the 

Origin Crossins Problem: "report when all k counts simultaneously reach O" admits a 

real-time one-tape Turing machine solution. Contrary to the linear time simulation of 

[2], the method in [I] seems to contain inherently nonoblivious features, preventing 

us from turninB it into an oblivious version. It has been a classic question [1,2], 

whether or not the Axis Crossing Problem: "report when one out of k counters reaches 

O" or more generally "on-line simulate a k-counter machine" can be done in real-time 

by a (nonoblivious) k'-tape Turing machine fork' < k. A reasonable approach may seem 

to show that, anyway, a real-time simulation of multicounter machines by oblivious 
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one-head tape units is impossible. In the event, intuition is wrong. We have noticed, 

cf. Section 2, that if we restrict the simulating device to its oblivious counterpart 

we have the advantage that if I counter is simulatable then k counters can be simulat­

ed in just the same way. This key observation has led us in the meantime, by augment­

ing the ideas presented here with an involved tape manipulation technique, to a real­

time simulation of multicounter machines by oblivious one-head tape units, thus solv­

ing the above problem with a considerable margin,[! I]. Although superficially it would 

seem that this farther reaching result obviates the present ones we like to point out 

that: 

The present results are far simpler to derive and will suffice for many applications, 

as will some of the distinctive techniques. 

- To derive the linear cost constant datarate combinational logic network the present 
* . . route by way of a log n-head tape unit suffices. 

- The RAM simulation result seems difficult to derive, if at all, from the simulation 

in [II] without regressing to the simulation given here. 
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