AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

R. KUIPER & W.P. DE ROEVER

FAIRNESS ASSUMPTIONS FOR CSP IN A TEMPORAL LOGIC FRAMEWORK

Preprint

kruislaan 413 1098 SJ amsterdam
The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).
Fairness assumptions for CSP in a Temporal Logic Framework *)

by

R. Kuiper & W.P. de Roever **)

ABSTRACT

Six fairness assumptions for the repetitive construct *[... □ bₙ , cₙ → Sₙ □ ...] in a subset of CSP are given and classified with respect to the programs they cause to terminate. A total correctness proof system for the subset of CSP is given, incorporating the different fairness assumptions.

KEY WORDS & PHRASES : CSP, concurrency, correctness proofs, fairness, temporal logic

**) Department of Computer Science, University of Utrecht, Princetonplein 5, Utrecht.
0. INTRODUCTION

The research in this paper originated from work by FRANCEZ AND DE ROEVER [Fr de R]. The aim of the paper is twofold, both cases having to do with temporal logic. On the one hand, we consider six different fairness assumptions for a subset of CSP, i.e. Communicating Sequential Processes, a language for distributed computing without shared variables defined by HOARE in [H]. These assumptions will be expressed using temporal logic, which enables us to formulate them at a level convenient for intuitive understanding of their meaning as well as for use in formal proofs. They will be compared with respect to the sets of programs they cause to terminate. On the other hand we need a framework to reason about the effects of such fairness assumptions. To do so we give a (low level) temporal logic proof system for this subset of CSP. We use the idea of temporal semantics as developed for shared variable languages by PNUEL I [P]. We have been helped by BEN ARIF'S thesis [BA], especially by his way of reasoning with conditional invariants. It is shown here that by this method also non-shared variables and synchronized communication as in CSP can be modelled in a natural way.

The set up is as follows. Section 1 gives the preliminary facts of CSP, section 2 the temporal logic semantics and section 3 the fairness assumptions; section 4 indicates the temporal logic we use. In section 5 several examples are given. Finally section 6 contains discussion.

When this paper was being typed, we received a paper by SMOLKA [S] dealing with related matters.

I. PRELIMINARIES

The syntax of the subset of CSP we use is as follows.
DEFINITION

Statements: \(S := \text{skip} \mid x := t \mid [b_1, c_1 \rightarrow S_1 \sqcup \ldots \sqcup b_m, c_m \rightarrow S_m] \)
where \(t \) is an integer expression
b a boolean expression and
c either \(P_i \mid x \) or \(P_i \mid y \) \(i, j \in \{1, \ldots, n\} \)

Programs: \([P_1 : S_1 \mid \ldots \mid P_n : S_n]\)
where \(P_i, i \in \{1, \ldots, n\}\) is called a process.
Processes have no shared variables.

Neither \([\ldots]\) nor \(*[\ldots]\) is allowed to be used in nested fashion.

2. TEMPORAL SEMANTICS

We introduce control locations \(\ell_i, \ell'_i, i \in I \), as follows. \(\ell_i \) (or \(\ell'_i \)) can be at \(S \) or
after \(S \) for \(S \) in \(P_i \) defined in the natural way (cf. [0], [0]). Obvious identifica-
tions like: "for \(P_i : S_1 \sqcup S_2 \) holds after \(S_1 \equiv S_2 \) and at \(P_i \equiv S_1 ; S_2 \equiv S_1 \)"
are made. The guarded command case needs some further clarification:
1) For \(S \) in \(*[\ldots \sqcup b_p \diamond c_p \sqcup \ldots]\) after \(S \equiv S_t \).
2) There are no control locations concerning the \(b_p, c_p \) construct, as, when control
is active at a guarded command \(*[\ldots]\), all guards are evaluated at the same time
instant, after which control is still at the same point or resides either at one of
the guarded statements or after the whole command.

States \(S \) are tuples \(S = (\ell, s) = (\ell_1, s_1, \ldots, \ell_n, s_n) \) such that for each \(i \in I \) \(\ell_i \)
is one of the above defined control locations in \(P_i \). Control locations are also
used as predicates \(\ell_i \) (or \(\ell'_i \)) being true in \(s = (\ell, s) \) iff \(\ell_i = \ell'_i \) (respectively
\(\ell_i = \ell'_i \)).

Auxiliary notation:
*\([i] \) denotes a guarded command in \(P_i \); constructs like "for all \(*[i] \) in \(P_i \)" assume
implicit indexing of the \(*[i] \). \(b_{i1}, c_{i1} \rightarrow S_{i1} \sqcup \ldots \) is a guard in a guarded command
*\([\ldots \sqcup b_{i1} \downarrow c_{i1} \rightarrow S_{i1} \sqcup \ldots] \) belonging to the process \(P_i \).

\(c_{i1} \equiv c_{jm} \) iff \(c_{i1} \) and \(c_{jm} \) are syntactically matching communication commands
(e.g.: \(P_i \mid x \) in \(P_i \) and \(P_j \mid y \) in \(P_j \)). \(b_{i1} \) in the guarded command \(*[i] \) is true in the
state \(s \) iff there is a process \(P_i \) such that \(\ell_i = \ell'_i \) and \(\ell_i \equiv \ell'_i \). This indicates semantic
matching. \(c_{i1} \equiv c_{jm} \) is found according to the effect of the communication
between \(c_{i1} \) and \(c_{jm} \) (e.g.: \(g_{ij} = P_i \mid x \) and \(g_{jm} = P_j \mid y \) will lead to
\(\sigma[i] \equiv j [x/y] \)).

Finally, to enable us to include the distributed termination convention we define:
\(t(g_{ij}) \) holds in \(s \) iff the process named (as target) in \(c_{i1} \) is terminated
(e.g.: \(\ell_j = \text{after } P_j \), \(\ell_i = \text{after } P_i \), \(g_{ij} = b_{i1} \), \(g_{ij} = P_i \mid x \))

Now we define the temporal semantics as follows. The meaning of a program is the
set of computation sequences satisfying the following axioms. C is the next time
operator from temporal logic.

Exclusivity Axiom (E)
\(\neg(\ell_i \wedge \ell'_i) \) for all \(i \in I \) and \(\ell_i \neq \ell'_i \).

The Exclusivity Axiom describes that control in each process always is at just one
place at the same time.

Local Semantics Axiom (LS)
(i) at \(\text{skip} \wedge \sigma \equiv \overline{0} \) (at \(\text{skip} \)) \(\wedge 0 \) (after \(\text{skip} \wedge \sigma \equiv \overline{0} \))
(ii) at \(x := t \wedge \sigma \equiv \overline{0} \) (at \(x := t \)) \(\wedge 0 \) (after \(x := t \wedge \sigma \equiv 0 \) \(t/x \))
(iii) Let \(*[i] = *[b_{i1}, c_{i1} \rightarrow S_{i1} \sqcup \ldots \sqcup b_{in}, c_{in} \rightarrow S_{in}] \)
at * [i] ∧ σ = −→ 0 (at * [i])

\[v(\{ V \}_{\neq i} \cup \{ V \}_{= i} \wedge (at * [j] \wedge s_i \leq m \otimes_{\neq i} s_j) \wedge (at s_i \leq s_j \wedge \sigma = −→ [i \leq j])) \]
\[v(\{ V \}_{\neq i} \cup \{ V \}_{= i} \wedge (at * [j] \wedge \sigma = −→ s_i)) \]
\[v(\{ A \}_{\neq i} \{(−→ b) \otimes_{\neq i} t(s_i)\} \otimes (after * [i] \wedge \sigma = −→ s_i)) \]

The Local Semantics Axiom describes what is usually known (in papers not dealing with fairness) as operational semantics of these constructs. Note, that synchronization and the termination convention of CSP come to the fore in (iii).

Now to state our last axiom we have to refine our notation such that each statement in the program has a unique name.

Enumerate the control locations in process P_i of form at S_k where S_k = skip or S_k = x:=t by a_i k, i ∈ I, k ∈ K_i. Let a_i ik denote the corresponding after S_k location. Likewise enumerate the control locations of form at *[... Db_iq c_iq + S_iq Db_iq ...] in process P_i by γ_iq, i ∈ I, q ∈ Q_i with corresponding sets of locations

γ_iq = V_k at S_iq k for after *[...], k ∈ L_iq

Then define

A_i k = a_i k ∧ 0 a_i ik for i ∈ I, k ∈ K_i
C_i q = γ_iq ∧ 0 γ_iq for i ∈ I, q ∈ C_i
T = \sum_{i \in I} (after P_i v (at * [i] \wedge A_i k Db_i k ∧ γ_iq) ≤ t(s_i k)))

Notice, that A_i k and C_i q describe that a statement is activated, whereas T indicates that a situation is finished or blocked.

Now let b=0 (respectively 1) denote that b is false (respectively true). Then

\[Σ_{i \in I} = 1 \]

indicates that exactly one of the b_i is true. Moreover, the execution of a guarded command by selecting a guard containing only the boolean part should be seen as a self-communication between two identical processes.

Then finally we state the

Multi-programming Axiom (M)

\[\sum_{i \in I} \sum_{k \in K_i} A_i k + \frac{1}{t} \sum_{i \in I} \sum_{q \in Q_i} C_i q + T = 1 \]

The Multi-programming Axiom describes that either the program is terminated or blocked (i.e., T=1) or exactly one action changing the state takes place at each time instant. Note, that communication between two processes is viewed as one action (cf. the factor \(\frac{1}{t} \) in M).

REMARK. Above we require that, in not terminated or blocked situations, exactly one action is performed at each time instant. Concurrency then is described by considering all sequences of such actions allowed by the semantics; this is the usual treatment in case of concurrent shared variable languages. However, as in CSP the processes have no shared variables, it is more natural to allow atomic actions in different processes to be executed at the same time instant; the same also holds for communications between conjunct pairs of processes. The system can be adapted to this as follows. We now use that s is an n-tuple

\(\langle c_{i_1}, \ldots, c_{i_n} \rangle \rightarrow \langle c_{i_1}, \ldots, c_{i_n} \rangle \) where each process P_i only affects (c_{i_1}, c_{i_n}). Contrary to the situation above, we cannot assume anymore that only the active process determines the state at the next instant. Therefore we explicitly denote that if a process is not activated, it does not change its part of the state.

We now have:

Local Semantics Axiom *(LS)*
(i) \textbf{at skip} \wedge \sigma = \overline{\sigma} \Rightarrow \sigma \wedge (\textbf{at skip} \wedge \sigma_i = \overline{\sigma}_i) \vee 0 \text{ (after skip} \wedge \sigma_i = \overline{\sigma}_i) \\
\text{for skip in } P_i \\
(ii) \textbf{at } x:=t \wedge \sigma = \overline{\sigma} \Rightarrow \sigma \wedge (\textbf{at } x:=t \wedge \sigma_i = \overline{\sigma}_i) \vee 0 \text{ (after } n:=t \wedge \sigma_i = \overline{\sigma}_i[t/x] \\
\text{for } n:=t \text{ in } P_i \\
(iii) \text{Let } [i] = [b_{i_1} c_{i_1} \rightarrow S_{i_1} \square \ldots \square b_{i_n} c_{i_n} \rightarrow S_{i_n}] \\
\text{at } [i] \wedge \sigma = \overline{\sigma} \Rightarrow \sigma \wedge (\textbf{at } [i] \wedge \sigma_i = \overline{\sigma}_i) \\
\forall m \in \{1, 2, \ldots, |i|\} \forall n \in \{1, 2, \ldots, |j|\} \Rightarrow \\
\sigma_j = \overline{\sigma}_j \text{ (after } [i] \wedge \sigma_i = \overline{\sigma}_i) \\
\forall (\neg b_{i_k} \vee t(g_{i_k})) \wedge \neg \tau \Rightarrow (\textbf{at } [i] \wedge \sigma_i = \overline{\sigma}_i) \\

Note, that the Exclusivity Axiom prevents executing more than one of the possible choices in case of a guarded command.

Multiprogramming Axiom \((M^*)\)
\[
\exists i, k \in K_i \sum_{k \in K_i} A_{ik} + \sum_{i \in I} \sum_{q \in Q_i} C_{i,q} + T \geq 1
\]

The further material in this paper can without change (up to \(\ast\)'s) be taken as based on either of these alternatives.

3. FAIRNESS ASSUMPTIONS

Our aim is to define in the context of CSP a variety of intuitively reasonable fairness assumptions depending on different implementations of the guarded command construction (cf.[DL]) as well as on synchronized communication, both being specific CSP features. We compare the different assumptions with respect to the programs they cause to terminate.

We start by considering what kind of fairness is induced by the temporal semantics so far. Note, that the multi-programming axiom \((M)\) ensures that no unnecessary idling occurs; only a blocked or terminal state can (and always will) be repeated unchanged. \((M)\) also ensures that as long as somewhere action is possible, some action will be taken, i.e. the temporal semantics so far imposes minimal liveness (cf.[OL]). So

Minimal Liveness Axiom: ---

Next, as in the presence of one process looping all the time this allows starvation of all other processes, it seems reasonable to impose a stronger liveness requirement. The usual one chosen is fundamental liveness (cf.[OL]) ensuring that if a process is continuously enabled to proceed, it eventually will. To express this, we first give the usual axiom for atomic statements, using the temporal operators \(\Diamond\) (eventually) and \(\Box\) (always).

Atomic Statement Liveness Axiom (ASL)
\[
\Box \text{ at } S \Rightarrow \emptyset \text{ after } S \equiv \text{ skip or } S \equiv x := t
\]

We now are faced with treating the guarded command in the same way. If all boolean guards are false the axiom is obvious.

Guarded Command Skip Axiom (GCS)
\[
\Box (\textbf{at } [\square i] \wedge A_{ik} (\neg b_k \vee t(g_k)) \Rightarrow \emptyset \text{ after } [\square i])
\]

Now to deal with enabled guarded commands there are various possibilities, depending on two parameters. Firstly, we consider two fairness assumptions: weak (respectively strong) fairness, stating that those moves which are eventually continuously (respectively eventually infinitely often) enabled are eventually taken (cf. e.g.,[GPSS]). Secondly, in CSP we can distinguish three varieties of these two
assumptions, depending on what is taken to be a move in the case of executing guarded commands. As will become clear from the assumptions to follow, we can distinguish a move with respect to a process, a guard or a pair of semantically matching guards, i.e. a channel. Hence the concept of fundamental liveness is captured by requiring the following.

Fundamental Liveness Axiom
(i) Atomic Statement Liveness Axiom
(ii) Guarded Command Skip Axiom
(iii)\[\square \ast[] \land \Diamond \square (\ast[] \Rightarrow V_{\ell} g_{\ell}) \Rightarrow \Diamond V_{\ell} \text{ at } S_{\ell} \]

As will be seen below, we shall concentrate or different possibilities for (iii), having the above one as the weakest possibility.

REMARK. In the axioms we use constructs like \(\square \Diamond \) at \(\ast[...] \Rightarrow \Diamond \) at \(S_{\ell} \) and \(\square \ast[...] \Rightarrow \Diamond \) at \(S_{\ell} \), which seem self-contradictory. As to the first one, this can eventually happen: \(\square \Diamond \) at \(\ast[\text{true } \Rightarrow S_{\ell}] \Rightarrow \Diamond \) at \(S_{\ell} \), even if \(\Diamond \) at \(S_{\ell} \) is possible. As in the second one, the axiom is there to exclude all computation sequences for which \(\square \ast[...] \) holds, so logically there is no contradiction: the axiom might be replaced by \(\square \ast[...] \). We have chosen the above representation as it covers all cases in a uniform way and indicates the next control location to be reached, thus providing intuition for the design of proofs.

We now formulate the fairness assumptions for the \(\ast[...] \square \ell \Rightarrow \ell \square \ldots \) construct. When requiring one of the fairness assumptions the Atomic Statement Liveness Axiom and the Guarded Command Skip Axiom are presupposed. The abbreviations should be obvious.

Weak Process Fairness (WPF)
\[\square \ast[] \land \Diamond \square (\ast[] \Rightarrow V_{\ell} g_{\ell}) \Rightarrow \Diamond V_{\ell} \text{ at } S_{\ell} \]

Weak Guard Fairness (WGF)
\[\Diamond \ast[] \land \Diamond \square (\ast[] \Rightarrow g_{\ell}) \Rightarrow \Diamond V_{\ell} \text{ at } S_{\ell} \]

Weak Channel Fairness (WCF)
\[\Diamond (\ast[] \land \ast[\ldots]) \land \Diamond \square (\ast[] \Rightarrow g_{\ell}) \Rightarrow \Diamond V_{\ell} \text{ at } S_{\ell} \]

Strong Process Fairness (SPF)
\[\square \ast[] \land \Diamond \square V_{\ell} g_{\ell} \Rightarrow \Diamond V_{\ell} \text{ at } S_{\ell} \]

Strong Guard Fairness (SGF)
\[\Diamond (\ast[] \land g_{\ell}) \Rightarrow \Diamond V_{\ell} \text{ at } S_{\ell} \]

Strong Channel Fairness (SCF)
\[\Diamond (\ast[] \land \ast[\ldots]) \land \Diamond \square (\ast[] \Rightarrow g_{\ell} m_{S_{\ell}^{S_{\ell}^{\ell}}}) \Rightarrow \Diamond (\ast[] \land \ast[\ldots]) \]

We now compare the various fairness assumptions with respect to the C sets of programs they cause to terminate.

DEFINITION. \(T(f) \), where \(f \) is one of the above fairness assumptions, is the set of CSP programs for which, when executed under the fairness assumption \(f \) in any initial state \(s \), all execution sequences contain a state \(s \) for which \(\ell_{i} = \ast[] \land \ell_{i} \text{ after } P_{i} \) for all \(i \in \{ 1, \ldots, n \} \) (i.e., the program terminates).

THEOREM. \(T(\text{WPF}) \subset T(\text{SPF}) \)
\(T(\text{WGF}) \subset T(\text{SGF}) \)
\(T(\text{WCF}) \subset T(\text{SCF}) \)
PROOF. The inclusions and inequalities between the corresponding weak and strong cases are evident. An example for the inequality for the most interesting case, T(WCF) ≠ T(SGF) is the following.

\[P_1: x = 0; y = 1; \star x = 0, P_1; P_2; y \rightarrow \text{skip} \]
\[P_2: u = 0; v = 1; \star u = 0, P_2; u \rightarrow v \rightarrow \text{skip} \]

The inclusions and inequalities for the weak cases are easy; for the more interesting strong cases as follows.

T(SPF) ⊆ T(SGF)
By the Local Semantics Axiom, □ at \(\star \) and \(\lozenge \) \(\forall \mathcal{E} g_\mathcal{E} \) is equivalent to
\(\Box \) (at \(\star \)) \(\land \forall \mathcal{E} g_\mathcal{E} \), as this is the only way in which control can proceed. As
\(g_\mathcal{E} \supset \forall \mathcal{E} g_\mathcal{E} \) and at \(\mathcal{E} S_\mathcal{E} \supset \forall \mathcal{E} g_\mathcal{E} \) at \(\mathcal{E} \mathcal{E} \), this gives \(T(SPF) \subseteq T(SGF) \).

\[T(SPF) \neq T(SGF) \text{ by } \]
\[b := \text{true}; \star [b \rightarrow \text{skip} \Box b \rightarrow b := \text{false}] \]

T(SGF) ⊆ T(SCF)
This follows from the fact that there are only finitely many guards, whence
\(\Box \) \(g_\mathcal{E} \) implies that there is a \(g'_\mathcal{E} \) such that
\(\Box \) \(g'_\mathcal{E} \models g_\mathcal{E} \).
T(SGF) ≠ T(SCF) follows from the first example in this proof.

4. TEMPORAL LOGIC

We assume as given a temporal logic axiom system and rules for linear time like DUX as presented in, e.g., [P]; to handle assignment we assume extension of this system to predicate logic as outlined in, e.g., [HC].
In proofs we make use of derived rules as presented in [BA]. E.g.: if
\(\vdash \Box p \land q = 0 \) then
\(\Box p \rightarrow q \rightarrow q \), the conditional invariant rule.

5. EXAMPLES. We start by giving a very easy example, (i), in all detail. In (ii) we show how synchronization is treated. In practice most of the elementary steps in a proof can be left out, as (iii) shows. As the examples will show, the Local Semantics Axiom and the conditional invariant rule are crucial to enable application of the fairness assumptions; namely to obtain the left hand side of the stated implication,

(i) Under the assumption of WGF a simple CSP program can model mutual exclusion and infinitely often access for two critical sections \(CS_1 \) and \(CS_2 \) consisting of sequentially composed atomic statements. Note, that WFP is not sufficient to guarantee access.

\[P::\star[\text{true} \rightarrow CS_1 \Box \text{true} \rightarrow CS_2] \]

PROOF. Mutual exclusion holds by the Exclusivity Axiom. Proving mutual access amounts, by symmetry, to proving
\(\vdash \star[\ldots] \supset \Diamond \) at \(CS_1 \).

As follows: (in \(S = at S \lor \forall S' \), at \(S', S' \) substatement of \(S \))

1) \(\vdash \star[\ldots] \supset \Box (at \star[\ldots] \lor \in CS_1 \lor \in CS_2) \)

\[I := \]

2) \(\vdash \star[\ldots] \supset I \land \star[\ldots] \)

\[(1, \text{T.L. i.e. by temporal logic}) \]

3) \(\vdash \star[\ldots] \supset I \land \Diamond \star[\ldots] \)

\[(\text{T.L.}) \]

4) \(\vdash I \land \Diamond \star[\ldots] \supset 0(\Diamond \star[\ldots]) \)

\[(\text{LS, ASL}) \]

5) \(\vdash I \land \Diamond \star[\ldots] \supset \Box (\Diamond \star[\ldots]) \)

\[(4, \text{T.L.: cond.invariant rule}) \]
Now the fairness assumption is used;

6) \(\square \Diamond \) at \(\ast[\ldots] \Rightarrow \Diamond \) at CS

7) \(\Diamond \) at \(\ast[\ldots] \Rightarrow \Diamond \) at CS

(ii) Termination of a program with synchronization under the assumption of WGF shall be proved. Again we give the proof in much detail.

Let \(b \) and \(\varepsilon \) be initially true and not depend on \(x \) and \(y \). Then the following program terminates under WGF,

\[P_1:: \ast[b, P_2 ! x \rightarrow \text{skip}_1 \square b, P_2 ? x \rightarrow b := \text{false}] \]
\[P_2:: \ast[c, P_1 ! y \rightarrow \text{skip}_2 \square c, P_1 ! y \rightarrow c := \text{false}] \]

Note, that WGF is not sufficient to guarantee termination, but SGF is.

PROOF. Proving termination amounts, by symmetry, to proving
\(\vdash \) at \(\ast[1] \land \ast[2] \land b \land c \Rightarrow \Diamond \) after \(\ast[1] \)

As follows:

1) \(\vdash \) at \(\ast[1] \land \ast[2] \land b \land c \Rightarrow \Diamond \) (at \(b := \text{false} \land \ast[2] \land \Diamond \))

\(\lor \square ((\ast[1] \lor \text{skip}_1) \land (\ast[2] \lor \text{skip}_2 \land \Diamond)) \)

Case 1

2) \(\vdash \) at \(b := \text{false} \land \ast[2] \land \Diamond \Rightarrow \Diamond \)

3) \(\vdash \) at \(\ast[1] \land \Diamond \Rightarrow \Diamond \) after \(\ast[1] \)

Case 2

4) \(\vdash \) I \land \ast[1] \land \ast[2] \Rightarrow I \land \Diamond \) (at \(\ast[1] \land \ast[2] \))

5) \(\vdash \) I \land \Diamond \) (at \(\ast[1] \land \ast[2] \)) \Rightarrow \Diamond \) (at \(\ast[1] \land \ast[2] \))

6) \(\vdash \) I \land \Diamond \) (at \(\ast[1] \land \ast[2] \)) \Rightarrow \Diamond \) (at \(\ast[1] \land \ast[2] \))

7) \(\vdash \) I \land \Diamond \) (at \(\ast[1] \land \ast[2] \)) \Rightarrow \Diamond \) (at \(\ast[1] \land \ast[2] \land I \))

Now the fairness assumption is used

8) \(\vdash \) I \land \Diamond \) (at \(\ast[1] \land \ast[2] \)) \Rightarrow \Diamond \) (at \(\ast[1] \land \Diamond \land I \))

9) \(\vdash \) at \(b := \text{false} \Rightarrow \Diamond \) after \(\ast[1] \)

10) \(\vdash \) at \(\ast[1] \land \ast[2] \land \Diamond \Rightarrow \Diamond \) after \(\ast[1] \)

(iii) Termination of a program consisting of three processes under WGF shall be proved. We now leave out some straightforward detail to show how it practice proofs are not difficult to handle.

Let \(a, b \) and \(c \) be initially true and not depend on \(x, y \) and \(z \). Then the following program terminates under WGF.

\[P_1:: \ast[b, P_2 ! x \rightarrow \text{skip}_1 \square b, P_2 ? x \rightarrow b := \text{false}] \]
\[P_2:: \ast[c, P_1 ! y \rightarrow \text{skip}_2 \square c, P_3 ! y \rightarrow c := \text{false}] \]
\[P_3:: \ast[d, P_2 ! z \rightarrow \text{false}] \]

PROOF. To prove: \(\vdash \) at \(\ast[i] \land \Diamond \land \Diamond \Rightarrow \Diamond \) after \(\ast[1] \)

As follows:
1) \[\vdash \diamondsuit \text{ at } *[i] \land b \land c \land d \supset \diamondsuit \text{ after } *[i] \]

\[\lor \square ((\text{at } *[1] \lor \text{at skip}_1) \land (\text{at } *[2] \lor \text{at skip}_2) \land \text{at } *[3] \land b \land c \land d) \]

Analogous to (ii) this leads to

2) \[\vdash \square \diamondsuit \text{ at } *[i] \]

Now the fairness assumption is used

3) \[\vdash \square \diamondsuit \text{ at } *[i] \supset \diamondsuit (\text{at } c := \text{false} \land \text{at d := false}) \]

\[\land \square (\text{in } *[1] \lor \text{after } *[1]) \] (WGF)

\[\land \square (\text{after } *[2] \lor \text{after } *[3]) \] (LS)

4) \[\vdash \text{at } c := \text{false} \supset \diamondsuit \text{ after } *[2] \supset \diamondsuit \square \text{ after } *[2] \] (ASL, GCS, M)

5) \[\vdash \text{at } d := \text{false} \supset \diamondsuit \text{ after } *[3] \supset \diamondsuit \square \text{ after } *[3] \] (ASL, GCS, M)

6) \[\vdash \square (\text{after } *[2] \land \text{after } *[3] \land (\text{in } *[1] \lor \text{after } *[1])) \supset \diamondsuit \text{ after } *[1] \] (ASL, WGF, GCS)

7) \[\vdash \text{at } *[i] \land b \land c \land d \supset \diamondsuit \text{ at } *[i] \] (1, 2, 3, 4, 5, 6, T.L.)

(iv) Changing in example (iii) \(P_2 \) to

\[P_2^* := (c_1, P_1, y \rightarrow c_2 := \neg c_2, \Box c_2, P_3) \land y \rightarrow c_1 := c_2 := \text{false} \]

gives an example of a program for which SF is, but WGF is not sufficient to ensure termination. The termination proof is analogous to the one for example (iii), employing an invariant \(I' \) changed accordingly to the change in \(P_2 \).

6. DISCUSSION

The above system enables us to study termination and other liveness properties of CSP programs under various fairness assumptions.

As to future goals the following:

1) Extending the system to full CSP is expected to be more or less straightforward, but careful and simple notation should be used in order not to obscure the intuition behind the axioms.

2) Termination due to properties of the natural numbers might be described by adding a well-foundedness rule to DUX, like

\[\text{if } \vdash \exists n \in \mathbb{N} \ P(n) \]

and \[\vdash \forall u \in \mathbb{N} \ P(u) \supset \diamondsuit P(u-1) \]

then \[\vdash \diamondsuit F(0) \].

3) Abstracting to a higher level axiom system might be facilitated by studying examples using the low level system; it is expected that invariants used in the proofs may indicate more general proof principles.

4) Developing a notion of completeness for the system might be helped by comparing it to other total correctness systems for CSP, like given in [A].

5) P. van Emde Boas suggested that using branching time it might be possible to formulate fairness assumptions not defined as a restriction on one computation sequence, but involving several. It then might be possible to enforce, say, termination of programs not terminating under any of the fairness assumptions in this paper.

We consider as an example, starting with \(b = c = d = e = \text{true} \),
\[P_1 ::= [b, P_2] x \rightarrow \text{skip} \quad \square (b, P_3) x \rightarrow b := \text{false}] \]
\[P_2 ::= [c, P_1] y \rightarrow \text{skip} \quad \square (c, P_4) y \rightarrow c := \text{false}] \]
\[P_3 ::= [d, P_4] z \rightarrow \text{skip} \quad \square (d, P_1) z \rightarrow d := \text{false}] \]
\[P_4 ::= [e, P_3] u \rightarrow \text{skip} \quad \square (e, P_2) u \rightarrow e := \text{false}] \]

which is not guaranteed to terminate under any of the above fairness assumptions, but should terminate under the intuitively formulated, assumption that if there always is a terminating branch in the future, then such branch will eventually be chosen.

ACKNOWLEDGEMENT. We are very grateful to Amir Pnueli, who gave an outline of CSP semantics as worked out for a subset in this paper. We wish to thank Nissin Francez for both directly and indirectly contributing to this paper. Leslie Lamport we thank for illuminating discussions.

The research reported in this paper originated from work by Frances and de Roever. Frances' stay at the University of Utrecht was supported by the Netherlands Organization for the advancement of Pure Research (Z.W.O), as was part of the research of de Roever in the form of numerous travel grants for collaborating with Frances at the Technion and Pnueli at the Weizmann Institute, both in Israel. De Roever's collaboration with Pnueli was partly supported by the Department of Applied Mathematics of the Weizmann Institute of Science.
REFERENCES

[BA] Ben Ari, M., Complexity of proofs and models in programming logics, Thesis, Tel Aviv University, Tel Aviv (1981).

