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ABSTRACT

This paper presents two formal systems for proving equivalence of
parallel programs. Most of the axioms and proof rules of the first system
are taken from [1,2,3]. The second system, which is an extension of the
first system, is developed on the base of the proof system constructed
in [3]. We obtain a completeness result for a certain subset of expressions
of the second system. In particular, this subset includes all expressions
of the first system. The method we use for proving equivalence of parallel
programs exhibits a formal resemblance to the method used by SALOMAA [4]

for proving equivalence of expressions in the algebra of regular events.
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1. INTRODUCTION

A functional approach to programming of parallel algorithms is developed
in this paper. The language of functional schemes (FS) defined in section 2
includes a parallel operation (denoted there by *). A sound system of axioms
and proof rules is given, which allows to make transformations of expressions
into equivalent ones. Expressions of FS are interpreted as partial functions.

Due to the operation *, FS—-expressions have not an 'automaton' represen-
tation, similar to that for regular events [4]. In other words, they can not
be characterized by finite sets of equations of a certain kind.

A more powerful system (FS1) is developed in the subsequent sections.
FS1 is an extension of FS, that is, every FS—expression is also an FSl1-
expression. FSI1 is introduced to be able to characterize the FSl-expressions
(or at least the subset of FS—expressions) by a finite set of equations
analogous to that for regular events, and furthermore to be able to use the
property of equational characterization for proving equivalence of parallel
program schemes.

In section 3 the definition of expressions of FS1 and the set of axioms
and proofs rules of FS1 are given. With respect to the interpretation of
FS1 the soundness of this system is proved.

The notion equational characterization for FSl-expressions is introduced
in section 4. It is settled that each FS—expression is equationally charac-
terized in FSI.

The main result of this paper is obtained in section 5. It is the
following completeness result: if two FS—expressions A and B are semantically
equivalent then the formula (equation) A = B is derivable within FSI.

The paper ends with an example on which the proof method for equivalence

of FS-expressions is demonstrated.
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2. THE FORMAL SYSTEM FS

In this section we shall define the syntax of FS, give a formal proof
system for formulas of FS, and define a function interpretation of FS-

expressions.

2.1. The language FS

The alphabet of FS consists of:
(1) a set of function variables, VAR, with typical elements a,b,c,...3
(ii) two function constants: e and @;
(iii) connective signs: -,+,*,{ };
(iv) parentheses.

The set of expressions‘EXP with typical elements A,B,C,..., is defined
by

A= ale|@|A;~A,) | (A;*A,) | (A +A,) [{A}.

We shall omit the sign "+" in the sequel. Also we shall omit parentheses
when no confusion can arise, assuming the following order of priority of the
operations: < ,*,+,

Looking forward we shall give an informal explanation of the interpreta-
tion of these expressions:

- a function variable a is interpreted as a partial function;
- the constant e is interpreted as the Zdentity function;

- the constant @ is interpreted as the nowhere defined function;

(AB) means the composition of two expressions (interpreted as partial
functions) and the value of (AB)(a) for some argument a, is equal to the
value B(A(a)) (not A(B(a))!):



2.2.

The

Al.
A2.
A3.
A4,
A5.
A6,
A7.
A8.
A9.
Al10.
All.
Al2.
Al3.
Al4,
Al5.
Al6.

2.2.

(AxB) is called the concatenation of two expressions and the value of
(A*B) (a) is equal to the set of ordered pairs <Bl’82>’ where B1 e A(a)
and Bz e B(a);

(A+B) is the union of two expressions and the value of (A+B)(a) is
equal to A(a) u B(a);

{é} is called the Zteration of A and denotes X:=0 Ai, where AY = e,
A o ATl

The set of formulas FORM with typical elements f,... is defined by

Formal proof system for formulas of FS

set of axioms AX is given by

A+ A A
A+B=B+A

(A+B) +C=A+ (B+C)
A+ 0 =A

AP = QA =¢

Ae = eA = A
(AB)C = A(BC)
AxP=0xA=29¢

(A+B)C = (AC) + (BC)

A(B+C) = (AB) + (AC)

(A+B) x C= (AxC) + (B*C)

Ax (B+C) = (A*xB) + (AxC)

A(B*C) = (AB) * (AC) if A does not contain + or { }
{A} = e + A{A}

{A+e} = {A}

{e} = e.

1. DEFINITION. A pussesses the constant e if A satisfies one of the

following conditions:

(1)
(ii)

A=e
A

i

Al + A2 and at least one of Ai (i = 1,2) possesses e



(iii) A = A]A2 and both A] and A2 possess e
(iv) A

{B} where B is an arbitrary expression.
The set of proof rules P consists of:

Rl. (Replacement rule). Let A occur in B and A = C. If D is the expression
obtained from B by replacing A by C, then B = D.
R2. (Solution of an equation). From A = BA + C, where B does not posses e,

one may infer A = {B}C. (This rule is also known as Arden's rule).

2.3. Interpretations of FS

Let M be a nonempty finite set. The set M with typical elements o,B,Y,...
is defined by

o= m|am|<ul,a2>
where m € M.

The interpretation of the constants e, § and function variables a ¢ VAR

is given by a function p, of type
pr X+ (M =+ M)

where X = VAR v {e} u {0}.
Then

(1) p(a) is a partial function, of type
p(a) : M o> M

(ii) p(e) is the identity function, of type
p(e) : M o> M

(iii) p(@) is the nowhere defined function.

The interpretation of expressions of FS is defined by a function ¢M 0’
9
of type
¢ : EXP >~ (P(M) > P(M))
M,p
where P(M) = {El o c Mw}, i.e. P(Mm) is the power set of M with typical

elements 0,B,Yse- o



Then ‘ -

(1) ¢M’p(x)(a) = {p(x) (@) |a € o}, where x € X

(1) dy (AB) () = oy (B (4 (M) (@)

(iii) ¢M’p(A*B)(u)={<Bl,82>|61 € ¢M’p(A)({Y}) and B, € ¢M’p(3)({y}),
. for some Y € a}

(V) gy o (A+B) (@) = by o (A) (@) U 4y (B) (@) s

@ 4y (AN G = Ty AH@, vhere A7 = e, 4T = aa

The interpretation of formulas of FS is given by a function FM 0 of type.
H

F. : FORM +~ (P(M ) > T
oo e » 1)
where the set T = {true,false}.

Then
Fy,p (& = BY@) = (8 (A (YD = ¢y (BY({yD) for all v ¢ a.

2.3.1. NOTATION. The assertion that a formula f is valid for all M and p we

denote by writing

Ef.

2.3.2. NOTATION. The assertion that a formula f is formally derivable within

the system FS we denote by writing

I-st.
The usual notion of soundness of the formal system with the set of

axioms AX and proof rules Pr is equivalent to the assertion

F.FS f = EFf.

To prove this assertion it is enough to prove it for all axioms AX and to
show that all proof rules P1 preserve the validity of this assertion.

We omit here the proof of the soundness of FS. We shall give below the

similar proof of the soundness of FSI.



The usual aim is to have a complete formal system, i.e. a system for which

the following holds:
E f =-F-FS £.

In the sequel we shall define a system FS1 which extends the system FS and

show the following:

E A=B «=~P—FS] A=B

where A € EXP and B ¢ EXP.
3. THE FORMAL SYSTEM FSI

In this section we shall define the syntax of the system FS1, give a

formal proof system for formulas of FS1 and an interpretation of expressions
of FS1.

3.1. The language FS1

The alphabet of FS1 consists of:
(1) the set of variables VAR (as for FS);
(ii) function constants: e and @;
(iii) connective signs:
*  (composition),
+ (union)
v (fork),
| (separate union),
A (Join),
* (econcatenation),
{ } (dteration);
(iv) parentheses.
Each expression of FSI will be characterized by its type as follows.
The set of input (output) types TYPE with typical elements t,... is defined
by

tre= T | (t)>t,).



Here 1 is an atomic type. Then, by t, = t, we denote the set of all expres-

2
sions of FS1, which have t, € TYPE and t, € TYPE as input and output type,

respectively. The set of expressions EXPl with typical elements A,B,C,...,

. . \ .
is defined as £i,t J% TYPE (ti=#tj) as follows:
(1) ae 1T=1 for all a € VAR;

e € T=T;

(ii) @ e t =»t2 for all tyst, € TYPE;

(iii) 1if A € t1 t, and B € t, = 3 then (A*B) € t =»t3,

(iv) if A e t, =t and B ¢ t, =t then (A+B) ¢ t 1=ty

(v) if A € t, = t2 and B ¢ t = tq then (AVB) ¢ t:1 = (tz,t3);
(vi) if A € t, =ty and B ¢ ty=t, then (A | B) € tl,t3) = (tz,t4);
(vii) 1if A € k=T and B € ty) = 7 then (AAB) ¢ (tl’tz) = T,

(viii) if A € t]=v1'andBe L= then (A% B) € t, =T

(ix) if Ae t, = t, then {A} e t, = t

1 1 1 1,

"." in the sequel, and likewise we shall omit

Again we shall omit the sign
parentheses when no confusion can arise.

To aid the intuitive understanding, we give in Figure 3.1.1 the diagrams
corresponding to FS1 expressions.

The set of Zdentity expressions, IDEN, with typical elements €,..., is

described by
1= e | (ell ez)l €€y

The set of formulas FORMI with typical elements f£,..., is defined by
f::= A =3B where A,B ¢ EXPI.

3.2. Formal proof system for formulas of FSI

The set of axioms Ax] is given by:

Axl1, A+ A=

Ax2. A+B=3B+A

Ax3. (A+B) +C=A+ (B+C)

A4, A+ @ =A

Ax5. AQ =0A =0 (continued on p. 92)
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Ax6. Ae =e¢A = A

Ax7. (AB)C = A(BC)

Ax8. @GlA=Al0=290

Ax9. (A+B) C= (AC) + (BC)
Ax10. A(B+C) = (AB) + (AC)
Ax11. (A+B)|lCc=(AlC)+(B]C)
Ax12., A|(B+C) = (A|B) + (A)C)

Ax13. (A]B)(cID) = (ACc) | (BD)
Ax14, (AvB)(C| D) = (AC) v (BD)
Ax15. (A]B)(CAD) = (AC) A (BD)

Ax16. A(BVC) = (AB) VvV (AC) if A does not contain + and {}
Ax17. ACx BD = (AVB)(CAD)

Ax18. {A} = e + A{A}

Ax19. {A+e} = {A}

Ax20. {e} = €.

3.2.1. DEFINITION. A possesses € if A satisfies one of the following con-

ditions:

(1) A= ¢

(i1) A = A1 + A2 and at least one of Ai(i ‘= 1,2) possesses €
(I1I) A = A1 A2 and both A1 and A2 possess €

(iv) A = {B} where B is an arbitrary expression.

The set of proof rules Pal consists of:
Rl. (Replacement rule). Let A occur in B and A = C. If D is the expression
obtained from B by replacing A by C, then B = D.
R2. (Solution of an equation). From A = BA+ C, where B does not possess €,

one may infer A = {B}C.

3.3. Interpretations of FSI

Let M be a nonempty finite set. The set M' with typical elements Q,..., is

dfined by
Q::=m| Qm | <Q19Q2>

where m € M.



10
The set M with typical elements a,B,Y,... is defined by
as:= Q| (alguz).

(We assume that no confusion will arise from using here the same notation
Mw, as in section 2.3 for another set. This set plays a rile analogous to
that in section 2.3.)

The interpretation of the constants e, § and function variables is given

by a function p, of type
p: X+ (M > M)

where X = VAR u {e} u {@}
Then

(i) p(a) is a partial function, of type
p(a) : M' > M'

(ii) p(e) is the identity function of type
p(e) : M' > M'

(iii) p(@¥) is the nowhere defined function.

The interpretation of FSl-expressions is given by a function ¢1M
H]

of type

61 :EXP1 + (P() » P(M))

M,p
where P(M ) is the power set of M with typical elements 6 and E,E,;,...
Now we define:
(L) ¢ly (@@ = {pG)(@ [ Qe Q}, where a c VAR
(i1) o1y (@@ = {p((@ Qe Q)
(i) o1y, (@) (Q) is empty
(1v) ¢l (AB) (@) = oy ((B)(oy (&) (e))
() ol (AVB)(@) = {(B38,) [ B) € ¢1y (AU N
and 8, € ¢l (B)({y}),y ¢ o}
i) o1y ((AIB)(@p5a,) = {(8)38y | By € 41y (W) and B, < 41y ((B)())
(vii) o1y (AAB)(ajsa)) = {<Bj,B,> | B) € o1y ((A)(a)) and B, € o1, (B)(a))}
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(viii) ¢1M’p(A * B)(0) = {<Bl,62> I By € ¢1M,p(A)({Y}) and B, € ¢1M’p(B)({Y}),

Y. € a}
i 1 (A+B)(3) = o1, (A)(3) v o1, (B)(a).
(ix) ¢M’p( ) () ¢M’p( ) (o) ¢M’p( ) (@)
The interpretation of formulas of FSI is given by a function FIM 0 of
5
type
Fl : FORMI + (P(M ) + T).
Voo ) > 1)
Then

FlM’p(A=B) (a) = (fblM,p(A)({Y}) = ¢1M,p(B)({y}) for all y e a.

As usual we write F f, when the formula f is valid for all M and p.

3.4. Soundness of FSI

To prove soundness of FS1 it is necessary to prove that for any possible M
and p and Q€ P(Mé) all axioms are valid and all proof rules preserve
validity.

Validity of all axioms can be checked immediately. Validity of formulas,
which can be derived using the first proof rule, is apparent. It remains to

prove that the second proof rule preserves validity also.

3.4.1. NOTATION. (i) The assertion that ¢1M ¢(A)(a) c ¢1M p(B)(a) for any
9 9

M,po and any singleton set {y},y € E, is denoted by writing
E A c B.

(ii) We shall write in the sequel ¢1M p(A)(a),a e M instead of
35
¢1M p(A)({a}), to denote the meaning of the function ¢1M p(A) on the single-
b o) b
ton set {a} ¢ P(M ).

3.4.2. LEMMA. If EFA = BA+C then E {B}C c A.

PROOF. Let B € ¢1M p({B}C)(u) for some M,p and a ¢ M . This means that
9
B € ¢1M p(BnC)(a) for some n. Then, making n replacements of A by (BA+C) in
?
the right hand side of the equation A = BA+ C, we obtain

Bn+1

A= A+B% + ... +BC+C.
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Thus, B € ¢1M p(BnC)(a) c ¢1M p(A)(oa). Since this inclusion holds for any
EL ’
M,p and o € M® we conclude that '

E{B}C c A. 0

3.4.3, DEFINITION. The lengith of any element a ¢ M equals the number of

elements from M occurring in a.
3.4.4. LEMMA. If EA = BA+C and B does not possess e then EA c {B}C.

PROOF. Let B € ¢1M,p(A)(a) for some M,p and o € M. To prove the required
inclusion we shall introduce a new interpretation ¢1M',p" where M' = Mu {m}
(m ¢ M) and p' is defined below.

First we introduce some notations: m" denotes a string of n consecutive
m's; furthermore, we use the (ambiguous) notation o™ e M'" if o contains
exactly n occurrences of the new symbol m and yields o ¢ M after erasing
these occurrences.

Now p' is defined as follows:

for all n =2 0, a € VAR and y € M

o' (@ (™ = (g™ |8 € p(a) (M)}

The point of the interpretation ¢1M',p' is tbat it increases the number
of occurrences of the symbol m in any resulting element after passing each
variable a € VAR.

Thus, if B € ¢1M’D(A)(a) then for some n, Bn e ¢1 M,’p'(A)(ou). Let the
length of the element 8" be k. Replace A in the right hand side of the equa-
tion A = BA + C, k times. Then we obtain:

A= Aa+Bc+B¥ o+ ... +BC+C.

Since B does not possess € each summand of B contains either a variable
or operations V,A,*, where V and A are paired. In both cases the length of
any resulting element which belongs to ¢1M,’p,(Bk+1A) is mdre than k, as, in
the first case, it contains at least k+l occurrences of the symbol m, and, in
the second case, each operation V (or %) doubles the length of an input

element after each execution of B.



Thus, we have:

n k+1
B £ #lyr (BT M) (@)

Hence

(BkC + 5104 ..+ BC C) (a)

As this inclusion holds for any a ¢ M'w, we conclude that:

1 M"p.(A)(a) c ¢1M"p.({B}C)(a)

and also
Bl o) (@) € o1y ({BIC) (a).
As this inclusion holds for all M and p, we have
EA c {BlC. 4 g

The soundness of the second proof rule (section 3.2, Rule 2) immediately
follows from Lemma 3.4.2 and Lemma 3.4.4, and we also have the following

theoren.

3.4.5. THEOREM. The formal system FS1 is sound, <.e.

= f = Ef.

FS1

3.4. Correspondence between FS and FSI

3.5.1. LEMMA. FS %s a subsystem of FSI1.

PROOF. It suffices to prove:

(a) EXP c EXPl; (b) all axioms AX and proof rules Pa are derivable in FSI.
(a) is apparent from the definitions of EXP and EXPI.
(b) Axioms Al : A7, A9, Al0, Al4 + Al16 and proof rules Pr follow

13
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straight from the corresponding axioms Ax1+ Ax7, Ax9, Ax10, Ax18 : Ax20 and
proof rules Prl. Axioms A8, All :+ Al3 follow immediately from Ax17 and Ax6,
Ax8, Axll : Axl6. [J

3.5.2, PROPOSITION. For any M,p and o € M :

(a) ¢M’p(A)(a) = ¢ly p(A)(a) for any A ¢ EXP;
) FM,p(A = B)(a) = FlM,p(Aﬁ=B)(a) for any A ¢ EXP, B ¢ EXP.
PROOF.

(a) Immediate from the definitions of ¢M 0

d ¢1
’ and ¢ M,p
(b) Immediate from (a). [J

This reduces the problem of equivalence for the FS-expressions to the

same problem for the corresponding FSl-expressions.

The remainder of our paper is devoted to a proof of the following

completeness result:

EA=3B = F-FSI A=B
where a ¢ EXP and B ¢ EXP.
To this end we shall introduce the notion of equational characterization
and prove that each A ¢ EXP can be equationally characterized. We shall do

it in a way analogous to that for regular events in SALOMAA [4].
4. EQUATIONAL CHARACTERIZATIONS

First we shall give some auxiliary definitions and propositionms.

4.1. DEFINITION (i) An expression A € EXPl, which does not contain +

and iterations of type t = t, where t # 1, is open if it satisfies one of

the following conditions:

1) A = {B} for some B ¢ EXP;

2) A has one of the forms: Al v AZ’ A1 | A
one of Ai (1 =1,2) is open;

29 Al A A2, Al * A2’ and at least
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3) A= eA1 and A1 is open:

4) A = AlAz, where A,
5) A = AIAZ’ where A1 has one of the forms: Ai v AY, Ai [ AY, and, corre-

c . \ " 1 n
9 has one of the forms: A2 l 29 A2 A A2

one of the expressions A;Aé or ATA; is open.

(So this means that there is an iteration at the beginning of some

e t=r1, Al ¢ IDEN and Al is open.

spondingly, A , and, at least,

parallel branch, possibly preceded by an identity expression).
(ii) An expression A ¢ EXPl, which does not contain + and iterations of type

t = t, where t # T is closed, if it is not open.

NOTATION. In view of Ax3 , we can write sums of several expressions asso-
ciatively. In the sequel we use the notation Z?=l A; to denote A + A, +

. + A .
n

4.2, PROPOSITION. Let A € EXPl where the only iterations contained by A are

of type 1t = 1. Then for some closed Ap,A A (n 2 1) not containing + :

-
n
Frs1 A= iZ] A (*)

PROOF. Induction on the structure of A.

Basis: for a € VAR, an identity expression € e IDEN and @, the assertion
(*) holds trivially.

Induction step: Let A1 and A2 satisfy (x). Then we have to prove that:

1) for A | Ay, A V Ay, Aj MMy, A x Ay, A+ Ay, AA, the assertion (x)
holds; (2) if Al € T = 1, then for {Al} the assertion (%) also holds.

1) Let A = Al | Az.‘By the induction hypothesis, there are some closed

All’Alz""’Aln and A21’A22’°"’A2m’ such that:
n m
Fpsy A= (.Z A |l (.Z A2j)‘
i=1 j=1

Using distributive laws (Ax 11,12) and Ax 2,3, we obtain:

n m
A=) L (Al AD

l_
Fsl i1 3=1 J

.|l A

i is closed (see Definition 4.1).

where for each i and j, A 2
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For the next three cases the proof is analogous. We have only to use
instead of axioms Ax 11,12 the corresponding distributive laws, which are
easily derivable in FSI.

In the case A = A, + A2 the assertion (%) evidently holds.

1
Let A = A]Az. Then, by the induction hypothesis:

Fpsi A= CLaDCT 40
1=] j=1
where all Ali (i=1,2,...,n) and A2j (j =1,2,...,m), are closed.

Using axioms Ax 9,10, we obtain:

n
F A=) Y A_.A,.
FSl 21 =1 11723

where, by Definition 4.1, AliAZj is closed for each i and j.

2) Let A = {Al}. By the induction hypothesis:

}_

n
Fs1 A = {iz At

1

where all Ali (i=1,2,...,n) are closed and do not contain +.

Using axiom Ax 19, we obtain either,

F]FSI A= {e}
or.
m
Fegy A= {jzl A]j}

where m < n and all Alj ¢ IDEN and A1j € T=T.
In the first case, by Ax 20, we obtain:

Fpgy A= €

and, therefore, {Al} satisfies the assertion (x).

Using Ax 18 and Ax 9 in the second case, we derive:

m
F 'Z Alj} + €
3=l

m
Fs1 A4 7 'Zx Apst



where, since for each j (j =

17

1,2,...,m), A . ¢ IDEN, Alj € T=1 and is

1]

closed, we have, by Definition 4.1, that Alj{2?=l Alj} is closed. [

Now we shall introduce the notions of prefix and suffix of a closed

expression A ¢ EXPl. We write A and A to denote the prefix and suffix of A,

respectively.

4.3. DEFINITION. The prefix and suffix of a closed expression which does

not contain + and iterations of type t = t, where t # 1, are defined by:

(1)

(ii)

(iii)

(iv)

(v)

a)

e

oflp o
it

b)

= g

c)

s s,
il

€
¢
€

a) (A A B)
(A A B)
b) (e A €)

(e A €)

ATB
AlB
a) (A x B)
(A * B)
b) (A * B)
(A * B)
c) (e * €)
(e xe)
a) (A Vv B)
(A v B)
b) (AV B)
(v B
c) (e ve)

(e Vv €)

(A | B
(A A B)
(e A €)
€
2| B
AlB
A
(A * B)
(A v B)
(A A B)
(e v g)
(e A €)
A
(A v B)
(A v B)
(A | B)
(e A e)
£1

- a, where a € VAR

}ifAéIDEN or B ¢ IDEN
}ifAéIDEN or B ¢ IDEN
}iszEéIDEN

if A # B and: A ¢ IDEN or B ¢ IDEN

if A = B ¢ IDEN

if A # B and: A ¢ IDEN or B ¢ IDEN

, where if ¢ € t =t then €, € (tl’tl) =»(tl,tl)
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(vi) a) } if Ae t =1 and A ¢ IDEN

| Wllé !

b) } if A ¢ IDEN

& &l& &l

c) (A VA, | By = (A48, VAB,)

(4, Vv A) (B, | B,) = (A/B, vV AB)

d) (A1 v Az)(B1 A BZ) = (AlBl * AZBZ)

p VA By ABY = (4B « AB)

e) (4, | A)) (B, | B, = (AB, | A.B))
(A [ A @B [ By = (&8 | AB))

£) (4, { A)) (B, A By) = (AB, A AB,)

A = A
(A | 20y A By) = (A8 " AB))

4.4. REMARK. By means of this definition we take as a prefix ome variable,

if it is possible, from each parallel branch of the expression, supplementing
the other parallel branches by €. In cases when A = A
A = A] v A2 (clause (v)) andK1 = Zﬁ ¢ IDEN, A
whole expression A.

1 * A2 (clause (iv)) or

1 is taken as a prefix of the

4.5, EXAMPLE. Let A = ab * ac. Then A = a and A =D * c.

Now we shall expand the notions of prefix and suffix, given in
Definition 4.3, to cover also some expressions which contain +. We do not
need, nor want, to define A, A for all expressions; e.g. not in case
A = aB + cD. However, for a sum of expressions, which have the same prefix,

we shall define prefix and suffix as in the next definition.

4.6. DEFINITION. (i) A and A are a prefix and a suffix of A, respectively,
if they are obtained by Definition 4.3; (ii) if A,B and A,B are prefixes
ﬁ; then A + B = A and

1

and suffices of A and B, respectively, and A
A+B=AH+B.

4.7. PROPOSITION. For all A such that A, A are defined:

Fpgp A=A A



19
PROOF. Straightforward from Definition 4.6. [J

4.8. EXAMPLE. Let A = (a1 v e)(blb2 A azb3)c + A]c * azb].

Let A1 = (a1 v e)(blb2 A a2b3)c and A2 = acx aZbl' So APAZ are closed and

hence we can take their prefixes and suffixes. By Definition 4.3, we have

K] = (by vi,a)

(a1 v e)(blb2 A azb3) = (by vi,d)
abb, * ea2b3 = (by vi,b)
alblb2 v eazb3 = (by vi,a)
El Vea, = (by i,a and vi,b)

2 vV 2

Al = (by Vi’a)

(al v e)(b]b2 A a2b3)c = (by vi,d)

(alblb2 * ea2b3)c = (by iv,b)

alb]b2 A ea2b3)c = (by vi,a)

gflPle A eazb3)c = (by i,a and vi,b)

(eblb2 A eb3)c.

Thus, A, = A, Al = (a1 v az)(eblb2 A eb3)c by Proposition 4.7.

I-'FSI 1 1
Furthermore,

Kz = (by iv,b)

acv azbl = (by vi,a)
‘El V'EZ = (by i,a)
a1 \4 az.

ac A azbl = (by vi,a)
f]c A fzbl = (by i,a)
ec A eb

Thus, F-FSI A2 = A2 A2 = (a1 v az)(ec A eb]) by Proposition 4.7.
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Since A, = Kﬁ, we have, by Definition 4.6:

> =l
i

Al = (al v a2)
A

—

+ A2 = (eblb2 A eb3)c + (ec A ebl)'

Therefore, I
tion 4.7.

A= Ké= (a] v a2)((eb1b2 A eb3)c + (ec A ebl)) by Proposi-

The diagrams in Figure 4.8.1 demonstrate graphically what has happened

in the preceding example.

4.9. DEFINITION. An expression A e EXPl is equationally characterized if
there exists a finite set of expressions A ,,A, ,...,A , such that A = A, and
1°77°2 n 1

A, = Z A.. Ai' + 5(Ai) (i=1,2,...,n)
jes(N) ]
where:
- 6(Ai) ¢ IDEN or 6(Ai) = @;
-N={1,2,... } and S(N) is a finite subset of Nj;
- Vi,j 3k, 1 < k £ n, such that Aij = Ak;‘

- Vi the Aij are pairwise syntactically different.
4,10. THEOREM. Every A e EXP 78 equationally characterized.

PROOF. Induction on the structure of A,
Basis: for a ¢ VAR, an identity expression € ¢ IDEN and $#, the equational
characterization holds trivially.

Induction step: let A ¢ EXP and B ¢ EXP be equationally characterized. Then

we have to prove that A * B, A + B, AB and {A} are equationally characterized.
By the induction hypothesis, there are finite sets AI’AZ""’An and

BI’BZ""’Bm’ such that A = Al’ B = Bi and

F A. = A.. A.. + §(A)) (i=1,2,...,n) (*%)
FS1 "1 jeS (V) 1] 1] 1
+ FS1 Bi = Bik Bik + G(B]'.) i=1,2,...,m (#%x)

keS(N) —



22

Case 1. A * B. We denote

(1)
(1)

n(u,v) =

l
c!>
*
=
<

1

>
>
o~]

E(u,v) =

(u=20,1,2,...on3 v=20,1,2,...,m)

We write A0 and B0 instead of €. The number of expressions (1) and (1'")

is finite.

For n(u,v) we have the following:
Fogp N@,v) = C ) A A . +38A)N*x( ) B B +8(B)).
FSl jeS () uj “uj u keS (N) vk vk v

Using the distributive laws (axioms Al2,13 of FS, which are derivable

in FS1) and Ax 2,3, we obtain:
F nu,v)= ) ) (A.A.*xB_B_.)+ ) (A.A.x68(B))
Fsi jeSN) keSQuy W Bl VR VKT oL gy wlwio v

+ keg(N)(G(Au) * -B:;Ezls) +(8(a) * 8(B)).

Then, by Definition 4.6 of prefix and suffix:

- n(u,v) = ) A. (A .*B_)

Fsl jesM)skes(yy W Ul vk
+ 3 }  BLVvBE )M .AB )+ T (ELVS(B)I(A .Ae)
jeS@) kes(ny VR 8L YK ggqgny WV

+ keg(N)(G(Au) v i;;)(s A EZE) + (G(Au) v 5(BV))(8 A €)

where all expressions (A.uj * ka) are as in (1), and (A.uj A ka), (Auj A €),

Ul )
(e A ka), (e A €) are as in (1').

For £(u,v), by assumption, we have:

ey Eu,v) = (7 AL A . +8(A))A( BB, + §(B)).
FS1 jeS (W) uj “uj u keg(N) vk vk v
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Using the distributive laws ((A+B) A C= (AAC) + (B AC) and
AA (B+C) = (AAB) + (AAC), axioms Ax 2,3 and Definition 4.6 of prefix

and suffix, we obtain:

FowE(u,v) = ) Y GA.|B.D)W@M.AB )+ ) (A.|S(BI)(A .AE)
Fsl jeS(N) kes(my U VR Wl VKT gy wd VT ul

* L ) [B (e

)+ (8(A ) A 8(B)
keS(N) u v

ka

where all expressions (Auj A ka), (Auj Ae€), (e A ka) and (6(Au)A-6(BV))

are as in (1'). Since n(1,1) = A * B, we conclude that A * B is equationally

characterized.

Case 2. A + B. We denote

gE(u,v) = A +B, (2)

(u=0,1,2,...,n; v=20,1,2,...,m).

We write (A, + B ) instead of B_ and (A + B.) instead of A . The
0 v v u 0 u

number of expressions (2) is finite. By the induction hypothesis, we have:

FogiEuyv) = () A A .+68(A))+( ) B_ B +8(B)).
FS1 5eS(N) uj uj u KkeS (N) vk vk v
Using Ax 1,2,3,10 and Definition 4.6 of prefix and suffix, we obtain:

F £(u,v) = z A . A", + z A A+ Z B. B, + §(u,v)
FS1=77 jesay W Wl sesany WM sy VRK

where all expressions Aﬂ. = Auj
Auj and BVk are also as in (2). Since £(1,1) = A + B, we conclude that A + B

+ ka for some j and k, are as in (2),

is equationally characterized.

Case 3. AB. We denote

n(u,v],...,vr) = AuB + Bv1 + ...+ BV (3)

(u=0,l,...,0, v 20, 1

in
<
A
B
A
e
i
N
-
H
Nt
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We write AgB + By + ... + By instead of By, + ... + By . The number

of expressions (3) is finite. By the induction hypothesis, we have:

F nu,v,,...,v_) = z A.A . +8(A)B
FS1 1 r jeS () uj _uj u
+ )y B_. B . +68B_ )+...+ ) B B. . + 8(B_).
kes(n) ViE Vik vy keS(N) Vr<  ViK Ve

Using Ax 9 and Ax 2, the following is derivable:

F N(UyV,500.,V_ ) = 2 A .A.B+
Fsl ! Tojesan W B ks

BVlk Bvlk + ... +

)

B B
KeS () Vrk Vrk + G(Au)B + 6(Bvl) + ...+ G(Bvr)

where all A ., A . e t=>1and A . A . ¢ IDEN, and for all p = 1,2,...,r,
uj “uj uj “u

vak vak e t =1 and vak vak ¢ IDEN. If G(Au) € IDEN, then replace the

last occurrence of B by its representation (*xx) for B

1° Then, using axioms
Ax 1,2,3,7,10 and Definition 4.6 of prefix and suffix, we obtain:

= n(u,v,,...,v.) = Z . AL+ Z B .B', +
FSl ! roGesany WM geSm) jesny 93 4l

6(u,v,...,vr)
where all expressions A&j and Béj are as in (3). Since n(1,1) = AB, we con-

clude that AB is equationally characterized.

Case 4. {A}. We denote £(0) = {A},

E(ul,...,ur) = (Aul + ... + Aur){A} (4)

(r=0,1c¢% u, <n, 1=1,2,...,1).

The number of expressions (4) is finite. By the induction hypothesis,

we have:

F g(0) ={ ] A, A.+38(AD}.
FS1 jesany WU 1
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Using Ax 19, we obtain either:

A {e}

or:

{ Y A, A.}

- £(0)
FSl jeS ) 13 713

where all expressions AL AL eT=T and A . A,. ¢ IDEN.
i_13 15 713
In the first case, by Ax 10, we obtain:

l—FSl £(0) = ¢

and, therefore, {A} is equationally characterized.
Using in the second case Ax 18, then Ax 19 (to restore the original

form of A) and Ax 9, we derive:

Foey ECO) = 3 AL AL {A} + e
FS1 sesan W4

Then, using Ax 2,3,7,10 and Definition 4.6 of prefix and suffix, we

obtain:
Fpgy £C0) = ] A _A_ii + 8(0) (5)

where all expression Aij are as in (4).

For E(ul,...,ur), by the induction hypothesis, we have:

Fpgy ECuyseeesu) = ( Y A . A .+ 8

jesy %13 ¥l Pt

A . A .+ 68(A )){A}.
jeS(N) Upd Ul YUr

Using Ax 2,3,7,9, we obtain:

Frgy EC@pseeesu) = L A A L {A}+ L.

1S (V) Aurj Aurj {A} + (8(A, ) + ... + 8(a )){A}
i _r | u_
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where for all j ¢ S(N) and p = 1,2,...,r, A.u F Au ; € t =1 and
P P

Au i Au j ¢ IDEN.
P %

Now consider the last summand (G(Aul) R S(Aur)){A}. If all S(Aup),
p=1,2,...,r, are @, this summand vanishes. If one of 6(Aup) = e, we replace
{A} in this summand by its representation (5). Then, using Ax 1,10 and

Definition 4.6 of prefix and suffix, we obtain:

F E(uy,eeesu) = ) Y o OK.. Al +8(u,...,u)
Fs1 ieS(N) jesany ! r

where all expressions Aij are as in (4). Therefore, {A} is equationally

characterized. [0

* a,.b.lc.

4.11., EXAMPLE. Let A = {alblb2 2P3

Suppose A1 = A. Then:

A = {alblb2 * a2b3}c = (by Proposition 4.2)

c + (alb]lb2 * asz){alblb2 * a2b3}c = (by Definition 4.3)

cAy + (a; Vv ay)A,

A2 = e

A3 = (eblb2 A eb3){alb1b2 * a2b3}c = (by Definition 4.3)
(bl lb3)A4

A4 = (eb2 A e){a]blb2 * azb3}c = (by Definition 4.3)
(bzl e)A5

A5 = (e A e){alblb2 * a2b3}c = (by Definition 4.3)
(e A e)A6

A6 = e{alblb2 * a2b3}c = (by Proposition 4.2)
c + (alblb2 * a2b3){alb1b2 * a2b3}c = (by Definition 4.3)
cA2 + (a] v az)A3

5. EQUIVALENCE OF FS EXPRESSIONS

In this section we shall show that if A € EXP, B ¢ EXP and FA = B,
then there are sets of expressions A]’AZ""’An’ BI’BZ""?Bn’ such that

A = Al and B = B1 and
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= A, = z A.. A.. + 8§(A)) (i=1,2,...,n) (%)
FS1 "1 jeS () ij "ij 17
F o B, = L B, B, +38(8.) (1=1,2,...,0) (%)
FS1 "1 jes (M) 1] 1] 1
where Vi, j Aij = Bij , 6(Ai) = 6(Bi) and Aij = Ar’ Bij = Br for some

r, 1 <r <n.

Furthermore, we shall show how to construct such sets of expressions.
Next it will be shown that if A and B are equationally characterized by the
sets of equations (%) and (*x), respectively, then P'FSI A =B,

A straightforward consequence of these two facts will be a completeness

result for expressions of EXP:

E A=B= F'FSI A = B,

Together with the earlier obtained soundness of FS1, this yields the

following main result:

E A=B<=>}—F81A=B,

where A ¢ EXP and B ¢ EXP.

5.1. LEMMA. If F A = B and

F A

FS1 j Ay T8

jesavy J

- B

S ) B, B, + 6(B)

keS(N) —

then for any j e€ S(N) there exists k € S(N) (and vice versa) such that
(i)'KE =B, , (ii) F=Aj = B, and (iii) §(a) = §(B).

k
PROOF.
(i) Assume that for some j € S(N) there does not exist k € S(M) such that
Aj = Bk' We shall show that in this case F A = B, i.e. there exists an

interpretation ¢1M',p" such that ¢1M',p'(A) # ¢1M',p'(B)' To prove this
we introduce an auxiliary interpretation ¢1M, o as follows.
5
Let ¢MM pbe an interpretation of FS1 for some M and p. Let M' =M u X
5
where X = {a' | a ¢ VAR} u {e'}.
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Before defining p', we introduce some notations:

we use the notation o, to denote that a,, ¢ M'", i.e. contains both

M M 'y
elements from M and X and yields o ¢ M after erasing all elements of X;
furhtermore, we use the (ambiguous) notation oy to denote that oy ¢ X* and
is obtained from oy, by erasing ‘all elements of M and supplementing all empty
places (if there are any) in the constructions of the kind < , > by the new
element e'.
Now p' is defined as follows:

for all a € VAR and y ¢ M* we have
p'(a)(vy) = {By,a' | B € p(a) (1) }.

The point of the interpretation ¢1M, 0! is that any resulting element
2

Yy contains the trace Yy of the expression which has been executed to ob-
tain this result.
Example. Let A = (a * b)c, a € M® for some M, and ¢1M p(a)(a) = Bl;
b
¢1M’p(b)(a) = B, (and hence ¢1M’p(a * b)(a) = <B;,8,>), ¢1M,p(c)(<81’82> =Y,
where B,,B,,Y ¢ M*°. Then M' = M u {a',b',c'} u {e'}. Therefore,

‘ = 1, = 1. = ' TS .
¢1Ml’pl (a)(a) B]a E ¢1M’,p'(b)(a) sz 3 ¢1M',p'(a * b)(a) <Bla 582b >’
61, (c)(<B.,a',B.b'>) = y<a',b'>c'. Here B_. = < a',b"'> ¢ X”, where X =

M',p 1 2 X

{a",b',c'} u {e'}, and is obtained from SM' = <Bla',62b'> € M'® after erasing

i

all elements of M. Obviously the element Yy <a',b'>c' corresponds in a
unique way to the expression (a * b)c, which has been executed to obtain the
resulting element Yy e End of example.
Thus, if Zg.i E;, then the traces of K} and ﬁ;, occurring in

BM' € ¢1M,’¢,(KE)(uM,) and Yy € ¢1M.,¢,(§;)(aM,) are syntactically different.
Therefore, Yy F4 BM" Since the interpretation ¢l preserves this difference
in all subsequent transformations of the elements of M'®, ¢1M, p'<K§ Aj)(aM,)#

e — > —
¢1M',p'(Bk EE?ESM,);—Further, if for some Aj there does not exist k,
such that Aj = B, then ¢1M',p'(A)(aM') # ¢1M,,p,(B)(aM,), and, hence,
A # B. But that contradicts the assumption.

Hi

(1ii) Assume that K} E; for some j and k and Aj # Bk' Then for some inter-

pretation ¢1M 0 and a ¢ M® there exists some B such that B ¢ ¢1M p(Aj)(oc)
H > —
and B ¢ ¢1M p(Bk)(u) or vice versa. Let us take the first case. Then, we
9

have also that BM' € ¢1M,’p.(Aj)(uM,) and BM' ¢ ¢1M,’p'(EE)(aM,), and, hence,
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. ' . —
there exists some B M such that B M' € ¢1M',p'(Aj éi)(YM') and

] R 100
B'yr ¢ ¢1M.,p'(Bk %E)(YM,) for some vy, ¢ M'".
Now, from Kgli ﬁ;'(i # k), it follows, by clause (i) of this Lemma, that
1 o . '
B " ¢ ¢1M"¢'(Bi.ii) for all i # k. Hence B o' ¢ ¢1M,’pKB)(YM,) and,
therefore, A # B, which contradicts the assumption.

(iii) Similar to the proof of (i). [

5.2. LEMMA. If A € EXP, B € EXP and F A = B then for A and B there are sets
2""’An’ Bl’BZ""’Bn’ such that A = A,, B = BE’ and
(x) and (**) (as in the introduction of Section 5) hold.

of expressions A,A 1’

PROOF. We will give a simultaneous construction of sets of equations as in
(*) and (%) for A and B respectively.

Since, by Theorem 4.9, A and B are equationally characterized, there
exist sets of expressions A= {AI’AZ""’Ar} and B = {BI’BZ""’Bm}’ such

that A = Al’ B = B1 and:

F A, = ) ZT;'Ai. + 8(A)) (i=1,2,...,1)

FS1 "1 jeS (V) i J

F B, = ) B, B, +8(B) (i=1,2,...,m).

FS1 "1 KkeS (N) ik “ik

According to Lemma 5.1, we have:

= A = ) A .A.+8()
FS1 1 sesa 15 “13 1

- B, = ) B.. B, + §(B,)
FS1 U1 - sy Yk 1k 1

where for any j there exists k (and vice versa) such that A,. =

15 = Brwe
F:Alj = Blk . 6(A1) G(Bl), and moreover A]. = A.p € A for some p, 1 < p < r,

]

Blk = Bq € B for some q, 1 < q < m.

I
o~}
-

Further, for any new pair of expressions Ap and Bq, since F=AP
we have again by Lemma 5.1:

F A = ) A fBi + G(Ap)

FSI 7P sesany P
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B

Frsy B ak Bax

FS1 * 8(B)

T kesW)
where for any j there exists k (and vice versa) such that A 3 = B

~ qI:',

We can continue this procedure for all new pairs until no new pairs

appear. Since the number of all possible different pairs is finite (= nxm)

this process is finite. Hence the result follows. [J

5.3. LEMMA. Let A ¢ EXP and B ¢ EXP. Suppose the following holds:

Fooy Ar = ) P.. A, + 8(A,) (i =1,2,...,n)
FS1 "1 5eS ) j 1

F B, = P.. B. + §8(B.) (i=1,2,...,n)
FS1 "1 jeS ) h| i

where noneof the expressions Pij possesses € € IDEN, and G(Ai = G(Bi). Then

Fesy A = B; (i=1,2,...,n).

PROOF. Induction in n.

Basis: for n = 1 the proof immediately follows from the soundness of FSI.

Induction step: assume that the assertion holds for i = n-1. For i = n we

have:
= A = ) P .A[+P A1+ 68(A) (1)
FSI "n jeS(N)&j#n n nn n n
F wi B = Y P _,B.[+P A ]+ §(B) (2)
FS1 "n jeS(N)&j#n nn n n

where the part of the expression inside [ ] may be absent.

Now we solve these equations for A.n and Bn and replace in the remaining
equations for Ai and Bi (i=1,2,...,n0~1) all occurrences of A.n and Bn by
their solutions. We obtain sets of n-1 equations, which satisfy the condi-
tions of the Lemma, i.e. none of the expressions Pij possesses £ € IDEN,

Thus, by the induction hypothesis:

F A. = B, (i=1,2,...,n~-1).
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|
W

Hence, by (1) and (2), F A

FS1 “n "n' U

5.4, MAIN THEOREM. Let A ¢ EXP, B ¢ EXP. Then:

lo~]

(1) EA
(ii) FA

B« |

Fs1 A=
B Zs8 decidable.

PROOF. (i) Immediate from Lemma 5.2, Lemma 5.3 and Theorem 3.4.5.
(ii) Evident, since the proof of Lemma 5.2 provides also an algorithm for

deciding the equivalence of two expressions. []

We conclude the paper with an example to demonstrate how semantical

equivalence of two expressions can be decided.

5.5. EXAMPLE. Let A = ({p+c}d*k)n and B = ({{p}+{c}}d* k)n. Check if A

and B are equivalent or not.

A=A = (by Proposition 4.2) B =B = (by Proposition 4.2 and Ax 1)
(d * k)n + (d * K)n +
(pip*cld * K)n + (pipH{p} + {d}}d * K)n +
(c{p+c}d * kK)n _ (c{cH{p} +{c}}d * K)n
= (by Definition 4.3) = (by Definition 4.3)
(dv k)(e A €)n + (dVvk)(e A€e)n +
(p v k) ({ptcld A €)n (p v k){pH{pt+{c}ld A e)n +
(¢ v kK)({ptcld A €)n (¢ v k) ({c}{{p} +{c}}d A kK)n
=(dvk)A2+ =(dvk)132+
(p Vv k)A3 + (p v k)33 +
(c v k)A4 (c v k)B4
A2 = (e A €)en B2 = (e A €)en
= (e A E)A5 = (e A s)B5
Aq = ({ptc})d A €)n B, = ({pH{pt+{c}ld A &)n
= (by Proposition 4.2) = (by Proposition 4.2 and Ax 1)
(d A €)n + (d A e)n +
(p{p+c}d A €)n + (p{pH{p}+{c}}d A &)n +
(c{p+c}d A €)n (c{c}{{p}+{c}}d A &)n
= (by Definition 4.3) = (by Definition 4.3)
(d A €)en + (d A g)en +
(p | e)({ptcld A €)n + (p | e){pHipt+{c}}d A €)n +
(c | e){p +}d A &)n (c | e)({cH{pt+{cl}d A €)n
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Since the pairs of expressions en and en, ({p+cld A €)n and
({pH{p} +{c}}d A e)n, ({p+c}d A €)n and ({c}{{p}+{c}}d A €)n, are syntac-

A, and B A

tically equivalent to the earlier obtained pairs A5 and B5, 3 3

4
and B4, we have:

A3 = (d A e)A5 + B3 = (d A e)B5 +
(p | €)A; + (p | €)By +
(c | e)A4 (c | e)B4
A, = ({p+c}d A €)n B, = ({cH{p}+{c}}d A K)n
= (by Proposition 4.2) = (by Proposition 4.2 and Axl1)
(d A €)n + : (d A e)n +
(p{ptcld A €)n + (p{pH{pl+{cl}}d A €)n +
(c{p+c}d A €)n (c{cH{p}+{c}}d A €)n
= (by Definition 4.3) (by Definition 4.3)
(d A €)en + (d A g)en +
(p | e)({ptcld A €)n + (p | &) UpH{p} +{c}}d A e)n +
(c | e)({p+cld A €)n (c | e)({cH{ct+{c}}d A €)n.

Again, since all pairs of suffixes are syntactically equivalent to the

earlier obtained pairs of expressions, we have:

A4 = (d A s)A5 + B4 = (d A s)B5 +
(p | €)A; + (p | €)By +
(c | e)A4 (c | E:)B4

A5 = en = (by Definition 4.3) B5 = en = (by Definition 4.3)
ne = nA6 ne = nB6

A6 =€ B6 =

Thus '—FSI A = B, and hence A = B.
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