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DECIDING EQUIVALENCE OF FUNCTIONAL SCHEMES FOR PARALLEL PROGRAMS*) 

by 

. **) Yu. P. Korablin 

ABSTRACT 

This paper presents two formal systems for proving equivalence of 

parallel programs. Most of the axioms and proof rules of the first system 

are taken from [l,2,3]. The second system, which is an extension of the 

first system, is developed on the base of the proof system constructed 

in [3]. We obtain a completeness result for a certain subset of expressions 

of the second system. In particular, this subset includes all expressions 

of the first system. The method we use for proving equivalence of parallel 

programs exhibits a formal resemblance to ~he method used by SALOMAA [4] 

for proving equivalence of expressions in the algebra of regular events. 
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1. INTRODUCTION 

A functional approach to progrannning of parallel algorithms is developed 

in this paper. The language of functional schemes (FS) defined in section 2 

includes a parallel operation (denoted there by*). A sound system of axioms 

and proof rules is given, which allows to make transformations of expressions 

into equivalent ones. Expressions of FS are interpreted as partial functions. 

Due to the operation*, FS-expressions have not an 'automaton' represen

tation, similar to that for regular events [4]. In other words, they can not · 

be characterized by finite sets of equations of a certain kind. 

A more powerful system (FSI) is developed in the subsequent sections. 

FSI is an extension of FS, that is, every FS-expression is also an FSl

expression. FSI is introduced to be able to characterize the FSl-expressions 

(or at least the subset of FS-expressions) by a finite set of equations 

analogous to that for regular events, and furthermore to be able to use the 

property of equational characterization for proving equivalence of parallel 

program schemes. 

In section 3 the definition of expressions of FSI and the set of axioms 

and proofs rules of FSI are given. With respect to the interpretation of 

FSI the soundness of this system is proved. 

The notion equational characterization for FSl-expressions is introduced 

in section 4. It is settled that each FS-expression is equationally charac

terized in FSI. 

The main result of this paper is obtained in section 5. It is the 

following completeness result: if two FS-expressions A and Bare semantically 

equivalent then the formula (equation) A= Bis derivable within FSI. 

The paper ends with an example on which the proof method for equivalence 

of FS-expressions is demonstrated. 
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2. THE FORMAL SYSTEM FS 

In this section we shall define the syntax of FS, give a formal proof 

system for formulas of FS, and define a function interpretation of FS

expressions. 

2.1. The language FS 

The alphabet of FS consists of: 

(i) a set of function variables, VAR, with typical elements a,b,c, ••• ; 

(ii) two function constants: e and~; 

(iii) connective signs: •,+,*,{ }; 

(iv) parentheses. 

The set of expressions EXP with typical elements A,B,C, ••• , is defined 

by 

We shall omit the sign"·" in the sequel. Also we shall omit parentheses 

when no confusion can arise, assuming the following order of priority of the 

operations: •,*,+. 

Looking forward we shall give an informal explanation of the interpreta-

tion of these expressions: 

a function variable a is interpreted as a partial function; 

the constant e is interpreted as the identity function; 

the constant~ is interpreted as the nowhere defined function; 

(AB) mean.s the composition of two expressions (interpreted as partial 

functions) and the value of (AB) (a) for some argument a, is equal to the 

value B(A(a)) (not A(B(a))!); 



(A*B) is called the aoncatenation of two expressions and the value of 

(A*B)(a) is equal to the set of ordered pairs <S 1,a2>, where a1 E A(a) 

and a2 E B(a); 

(A+B) is the union of two expressions and the value of (A+B)(a) is 

equal to A(a) u B(a); 

{A} is called the iteration of A and denotes I~=O Ai, where AO - e, 
Ai+l = AiA. 

The set of formulas FORM with typical elements f, ••• is defined by 

f::= A=B. 

2.2. Formal proof system for formulas of FS 

The set of axioms Ax is given by 

Al. A+ A= A 

A2. A + B = B + A 

A3. (A+ B) + C = A + (B + C) 

A4. A + (/J = A 

AS. A(/J = (/JA = (/J 

A6. Ae = eA = A 

A7. (A B)C = A(B C) 

A8. A* (/J = (/J * A = (/J 

A9. (A+ B)C = (AC) + (BC) 

AlO. A(B + C) = (AB) + (AC) 

All. (A+B) * C = (A*C) + (B*C) 

Al2. A* (B+C) = (A*B) + (A*C) 

Al 3. A(B* C) = (AB) * (AC) if A does not contain+ or { } 

Al4. {A}= e + A{A} 

A15. {A+ e} = {A} 

Al6. {e} = e. 

2.2.1. DEFINITION. A possesses the aonstant e if A satisfies one of the 

following conditions: 

(i) A= e 

(ii) A= A1 + A2 and at least one of Ai (i = 1,2) possesses e 

3 
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(iii) A= A1A2 and both A1 and A2 possess e 

(iv) A= {B} where Bis an arbitrary expression. 

The set of proof rules P~ consists of: 

RI. (Replaaement rule). Let A occur in Band A= C. If Dis the expression 

obtained from B by replacing A by C, then B = D. 

R2. (Solution of an equation). From A = BA + C, where B does not posses e, 

one may infer A = {B} C • (This rule is also known as Arden's rule). 

2.3. Interpretations of FS 

(X) • 

Let M be a nonempty finite set. The set M with typical elements a,S,y, ••• 

is defined by 

where m e: M. 

The interpretation of the constants e, 0 and function variables a e: VAR 

is given by a function p, of type 

(X) (X) 

p: X + (M + M ) 

where X = VAR u {e} u {0}. 

Then 

(i) p(a) is a partial function, of type 
(X) (X) 

p(a) : M + M 

(ii) p(e) is the identity function, of type 
(X) (X) 

p(e) : M + M 

(iii) p(0) is the nowhere defined function. 

The interpretation of expressions of FS is defined by a function ~M , 
,P 

of type 
(X) (X) 

~ M : EXP + (P (M ) + P (M ) ) 
,P 

where P (M00
) = {; I ~ S;. M00

}, i.e. P (M00
) is the power set of M00 with typical 

elements a, 8, y,... . 



Then 

(i) 
(ii) 

(iii) 

(iv) 

(v) 
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The interpretation of formulas of FS is given by a function FM of type_ 
,P 

00 

F FORM+ (P(M) + T) M,p 

where the set T = {true,false}. 

Then 

FM (A= B)(;) = (~M (A)({y}) = ~M (B)({y})) for ally Ea. 
,P ,P ,P 

2.3.1. NOTATION. The assertion that a formula f is valid for all Mand p we 

denote by writing 

I=. f. 

2.3.2. NOTATION. The assertion that a formula f is formally derivable within 

the system FS we denote by writing 

I- FS f. 

The usual notion of soundness of the formal system with the set of 

axioms Ax and proof rules P~ is equivalent to the assertion 

I- FS f _,. I= f • 

To prove this assertion it is enough to prove it for all axioms Ax and to 

show that all proof rules P~ preserve the validity of this assertion. 

We omit here the proof of the soundness of FS. We shall give below the 

similar proof of the soundness of FSI. 
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The usual aim is to have a complete form.al system, i.e. a system for which 

the following holds: 

F f .. I- FS f. 

In the sequel we shall define a system FSI which extends the system FS and 

show the following: 

F A = B ..,. I- FS I A = B 

where A E EXP and B e: EXP. 

3. THE FORMAL SYSTEM FSI 

In this section we shall define the syntax of the system FSI, give a 

formal proof system for formulas of FSI and an interpretation of expressions 

of FS I. 

3.1. The language FSI 

The alphabet of FSI consists of: 

(i) the set of variables VAR (as for FS); 

(ii) function constants: e and 0; 
(iii) connective signs: 

(oonrposition), 

+ (union) 

v (fork), 

(separate union), 

A (join), 

* (oonoatenation), 

{ } (iteration); 

(iv) parentheses. 

Each expression of FSI will be characterized by its type as follows. 

The set· of input (output) types TYPE with typical elements t, ••• is defined 

by 
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Here Tis an atomic type. Then, by t 1 => t 2 we denote the set of all expres

sions of FSl, which have t 1 E TYPE and t 2 E TYPE as input and output type, 

respectively. The set of expressions EXPl with typical elements A,B,C, ••• , 

is defined as U TYPE (t. => t.) as follows: ti,tj E l. J 

(i) a ET=> T for all a E VAR; 

e E T => T; 

(ii) 0 E ti => t2 for all t 1,t2 E TYPE; 

(iii) if A E ti => t2 and BE t2 => t3 then (A• B). E ti => t3; 

(iv) if A E tl => t2 and BE ti => t2 then (A+ B) E tl => t2; 
(v) if A E ti => t2 and B E tl ""°; t3 then (AV B) E tt => (tz,t3); 

(vi) if A E tl => t2 and B E t3 => t4 then (A I B) E tl,t3) => (tz,t4); 

(vii) if A E tl => T and BE tz => L then (A AB) E (tl,t2) => .; 

(viii) if A E tl _,. T and B E t 1 => T then (A* B) E tl => L; 

(ix) if A E tl ..,. tl then {A} E tl ..,. tt; 

Again we shall omit the sign"•" in the sequel, and likewise we shall omit 

parentheses when no confusion can arise. 

To aid the intuitive understanding, we give in Figure 3.1.1 the diagrams 

corresponding to FSl expressions. 

The set of identity expressions, IDEN, with typical elements e, ••• , is 

described by 

The set of formulas FORMl with typical elements f, ••• , is defined by 

f::= A=B where A,B E EXPl. 

3.2. Formal proof system for formulas of FSl 

The set of azioms Ax7 is given by: 

Axl. A + A = A 

Ax2. A + B = B + A 

Ax3. (A+ B) + C = A + (B + C) 

Ax4. A + 0 = A 

AxS. A0 = 0A = 0 (continued on p. 9) 
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Figure 3.1.1. 



Ax6 • A e = e A = A 

Ax7. (A B)i C = A (B C) 

Ax8. r/J I A = A I r/J = r/J 

Ax9. (A+B) C= (AC)+ (BC) 

AxlO. A(B + C) = (AB)+ (AC) 

Axl 1. (A+ B) I C = (A I C) + (B I C) 

Ax12. A I (B+C) = (Al B) + (Al C) 

Ax I 3. (A I B) ( C I D) = (A C) I ( B D) 

Ax14. (Av B) (CI D) = (AC) v (B D) 

Ax15. (A I B) (C /\ D) = (AC) A (BD) 

Axl 6. A(B v C) = (AB) v (AC) if A does not contain + and {} 

Ax17. AC* BD = (AVB)(CAD) 

Ax18. {A} = e + A{A} 

Axl 9. {A+ d = {A} 

Ax20. {d = e. 

3.2.1. DEFINITION. A possesses e if A satisfies one of the following con

ditions: 

(i) A - £ 

(ii) A - Al + A2 and at least one of Ai(i ·= 1 , 2) possesses £ 

(III) A - Al Az and both A1 and A2 possess e 

(iv) A - {B} where B is an arbitrary expression. 

The set of proof rules P~1 consists of: 

RI. (Replacement rule). Let A occur in Band A= C. If Dis the expression 

obtained from B by replacing A by C, then B = D. 

9 

R2. (Solution of an equation). From A = BA+ C, where B does not possess e, 

one may infer A = {B} C • 

3.3. Interpretations of FSI 

Let M be a nonempty finite set. The set M' with typical elements Q, ... , is 

dfined by 

where m E M. 
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CX) 

The set M with typical elements a,S,y, •.. is defined by 

(We assume that no confusion will arise from using here the same notation 
CX) 

M, as in section 2.3 for another set. This set plays a rile analogous to 

that in section 2.3.) 

The inte1rpretation of the constants e, 0 and function variables 1.s given 

by a function p, of type 

CX) CX) 

p: X-+ (M-+ M) 

where X = VAR u {e} u {0} 

Then 

(i) p(a) is a partial function, of type 

p(a) : M' -+ M' 

(ii) p(e) is the identity function of type 

(iii) p(0) is the nowhere defined function. 

The interpretation of FSl-expressions 1.s given by a function cj>IM 
,P 

of type 
CX) CX) 

cj>ll"' : EXPI-+ (P(M)-+ P(M )) 
:i, p 

where P(M00
) is the power set of M00 with typical elements Q and a,S,y, .... 

Now we define: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

{p (x) (Q) I Q E Q}, where a E VAR 

{p (e)(Q) j Q E Q} 
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(viii) qilM,/A * B)(~) = {<131'132> j 13 1 E qilM,/A)({y}) and 13 2 E qilM,/B)({y}), 

YE;'.} 

(ix) 

type 

Then 

qilM (A+B)(~) = qilM (A)(~) u qilM (B)(~). 
,P ,P ,P 

The interpretation of formulas of FSl is given by a function FIM of 
,P 

00 

FlM FORMl + (P(M) + T). 
,P 

FlM (A=B)(~) = (qilM (A)({y}) = qilM (B)({y}) for ally Ea. 
,P ,P ,P · 

As usual we write I= f, when the formula f is valid for all M and p. 

3.4. Soundness of FSl 

To prove soundness of FSl it is necessary to prove that for any possible M 
~ 00 

and panda E P(M) all axioms are valid and all proof rules preserve 

validity. 

Validity of all axioms can be checked immediately. Validity of formulas, 

which can be derived using the first proof rule, is apparent. It remains to 

prove that the second proof rule preserves validity also. 

3.4.1. NOTATION. (i) The assertion that qilM,q>(A)(~) £ qilM,p(B)(~) for any 
~ M,p and any singleton set {y},y Ea, is denoted by writing 

t= A ~ B. 

00 

(ii) We shall write in the sequel q>lM (A)(a.),a. EM instead of 
,P 

qilM (A)({a.}), to denote the meaning of the function qilM (A) on the single-
,P 00 ,P 

ton set {a} E P(M ). 

3.4.2. LEMMA. If FA= BA+ C then ~ {B}C £ A. 

00 

PROOF. Let 13 E qilM ({B}C)(a.) for some M,p and a EM. This means that 
n ,P 

13 E qi IM (B C) (a) for some n. Then, making n replacements of A by (BA+ C) in 
,P 

the right hand side of the equation A = BA+ C, we obtain 
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Thus, BE <!>IM p(BnC)(a) ~ <!>IM (A)(a). Since this inclusion holds for any 
, . ,P 

M,p and a E M"° we concl!..1de that 

F {B}C ~ A. □ 

00 

3.4.3. DEFINITION. The Zength of any element a EM equals the number of 

elements from M occurring in a. 

3.4.4. LEMMA. If r= A= BA+ C and B does not possess £ then r= A~ {B}C. 

00 

PROOF. Let BE <!>IM (A)(a) for some M,p and a EM. To prove the required 
,P 

inclusion we shall introduce. a new interpretation <I> 1 M' , , where M' = Mu {m} . ,P 
(m / M) and p' is defined below. 

First we introduce some notations: mn denotes a string of n consecutive 

m's; furthermore, we use the (ambiguous) notation an E M100 if an contains 
• 00 

exactly n occurrences of the new symbol m and yields a EM after erasing 

these occurrences. 

Now p' is defined as follows: 

00 

for all n ~ 0, a E VAR and y EM 

p'(a)(yn) = {Bmn+l I BE p(a)(y)}. 

The point of the interpretation <!>IM, , is that it increases the number 
,P 

of occurrences of the symbol min any resulting element after passing each 

variable a E VAR. 

Thus, if BE <!>IM (A)(a) then for some n, Bn E <pl M' ,(A)(a). Let the 
,Pn ,P 

length of the element B be k. Replace A in the right hand side of the equa-

tion A= BA+ C, k times. Then we obtain: 

k+I k k-1 
A = B A + B C + B C + ••• + BC+ C. 

Since B does not possess£ each sunnnand of B contains either a variable 

or operations v,A,*, where v and A are paired. In both cases the length of 

1 . 1 h. h b 1 J ( k+ I ) · - • any resu ting e ement w ic e ongs to <I> M' , B A is more than k, as, in 
,P 

the first case, it contains at least k+l occurrences of the symbol m, and, in 

the second case, each operation v (or*) doubles the length of an input 

element after each execution of B. 



Thus, we have: 

Hence 

n k k-1 
8 € ~lM',~' (BC+ B C + ••• +BC+ C)(a) 

£ ~lM',p' ({B}C)(a). 

As this inclusion holds for any a€ M' 00
, we conclude that: 

and also 

As this inclusion holds for all Mand p, we have 

I= A £ {B}C. □ 

The soundness of the second proof rule (section 3.2, Rule 2) immediately 

follows from Lenma 3.4.2 and Lenma 3.4.4, and we also have the following 

theorem. 

3.4.5. THEOREM. The formaZ system FSl is sound, i.e. 

r- FS 1 f .,. I= f. 

3.4. Correspondence between FS and FSl 

3.5.1. LEMMA. FS is a subsystem of FSl. 

PROOF. It suffices to prove: 

(a) EXP£ EXPl; (b) all axioms Ax and proof rules P~ are derivable in FSl. 

(a) is appa-rent from the definitions.of'EXP and EXPl. 

(b) Axioms Al f A7, A9, AlO, Al4 f A16 and proof rules P~ follow 

13 
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straight from the corresponding axioms Ax11Ax7, Ax9, AxlO, Axl8 f Ax20 and 

proof rules Prl. Axioms AS, All f Al3 follow i1IDD.ediately from Axl7 and Ax6, 

Ax8, Axil + Axl6. 0 

00 

3.5.2. PROPOSITION. For any M,p and a€ M: 

~M (A)(a) = ~IM (A)(a) ,P ,P 
for any A€ EXP; (a) 

(b) FM (A = B)(a) = FlM (A= B)(a) for any A € EXP, B € EXP. 
,P ,P 

PROOF. 

(a) IlIDD.ediate from the definitions of ~M and ~IM • 
,P ,P 

(b) Immediate from (a). 0 

This reduces the problem of equivalence for the FS-expressions to the 

same problem for the corresponding FSI-expressions. 

The remainder of our paper is devoted to a proof of the following 

completeness result: 

I= A = B ,. f- FS I A = B 

where a€ EXP and B € EXP. 

To this end we shall introduce the notion of equational characterization 

and prove that each A€ EXP can be equationally characterized. We shall do 

it in a way analogous to that for regular events in SALOMAA [4]. 

4. EQUATIONAL CHARACTERIZATIONS 

First we shall give some auxiliary definitions and propositions. 

4.1. DEFINITION (i) An expression A€ EXPl, which does not contain+ 

and iterations of type t ~ t, where t 1 ,, is open if it satisfies one of 

the following conditions: 

I) A= {B} for some B € EXP; 

2) A has one of the forms: A1 v A2, A1 I A2, A1 A A2, A1 * A2, and at least 

one of A. (i = 1,2) is open; 
1 



3) A - eA1 a.nd A1 is open: 

4) A - A1A2, where A1 Et_,. T, A1 i IDEN and A1 is open. 

5) A _ A1 A2, where A1 has one of the forms: Aj v Aj', Aj I Aj', and, corre

spondingly, A2 has one of the forms: Az I 2' Az A Az, and, at least, 

one of the expressions AjAz or AIA2 is open. 

(So this means that there is an iteration at the beginning of some 

parallel branch, possibly preceded by an identity expression). 

15 

(ii) An expression A E EXPl, which does not contain+ and iterations of type 

t.,. t, where t t Tis aZosed, if it is not open. 

NOTATION. In view of Ax3, we can write sums of several expressions asso

ciatively. In the sequel we use the notation Ir=l Ai to denote Al+ A2 + 

••• + A • 
n 

4.2. PROPOSITION. Let A E EXPl where the only iterations aontained by A are 

of type T..,. T. Then for some aZosed A1,A2, ••• ,An (n ~ 1) not aontaining +: 

n 
I- FS 1 A = l A .• 

i=l 1 

PROOF. Induction on the structure of A. 

Basis: for a E VAR, an identity expression£ EIDEN and 0, the assertion 

(~) holds trivially. 

Induction step: Let A1 and A2 satisfy(*). Then we have to prove that: 

1) for A1 I A2, A1 v A2, A1 A A2, A1 * A2, A1 + A2, A1A2 the assertion(*) 

holds; (2) if A1 ET.,. T, then for {A1} the assertion(*) also holds. 

I) Let A= A1 I A2. ,By the induction hypothesis, there are some closed 

A11 ,A12 , ••• ,A1n and A21 ,A22 , ••• ,A2m, such that: 

Using distributive laws (Ax 11,12) and Ax 2,3, we obtain: 

where for each i and j, A1il A2j is closed (see Definition 4.1). 
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For the next three cases the proof is analogous. We have only to use 

instead of axioms Ax 11,12 the corresponding distributive laws, which are 

easily derivable in FS I. 

In the case A= A1 + A2 the assertion(*) evidently holds. 

Let A= A1A2 • Then, by the induction hypothesis: 

r- l~S I A 

where all Ali (i = 1,2, •.. ,n) and A2j (j = 1,2, •.• ,m), are closed. 

Using axioms Ax 9,10, we obtain: 

where, by Definition 4.1, A1iA2j is closed for each i and J• 

2) Let A= {A1}. By the induction hypothesis: 

f- FS I A 

where all Ali (i = 1,2, ..• ,n) are closed and do not contain+. 

Using axiom AK 19, we obtain either, 

r- FS I A = {d 
or: 

where m :o; n and all Al j i IDEN and A1 j E T ~ T. 

In the first case, by Ax 20, we obtain: 

r- l~S I A = £ 

and, therefor1=, {A1} satisfies the assertion (*). 

Using Ax 18 and Ax 9 in the second case, we derive: 

l- J~S I A = 
m m 
l AI.{ l AIJ.} + £ 

j=l J j=l 



where, since for each j (j = 1,2, .•. ,m), Alj i IDEN, Alj ET~ T and is 

closed, we have, by Definition 4.1, that A1j{L;=l A1j} is closed. D 
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Now we shall introduce the notions of prefix and suffix of a closed 

expression A E EXPI. We write A and A to denote the prefix and suffix of A, 

respectively. 

4.3. DEFINITION. The prefix and suffix of a closed expression which does 

not contain+ and iterations of type t ~ t, where t t ,, are defined by: 

(i) a) a=- a, where a E VAR 

(ii) 

(iii) 

(iv) 

(v) 

a == e 

b) E: = E: 

c) 0 := (/J 

(/J = E: 

a) (A A 

(A A 

b) (E: A 

(E: A 

A 

A 

a) (A* 

(A* 

b) (A* 

(A* 

c) (E: * 

B) 

B) 

E:) 

E:) 

B 

B 

B) 

B) 

B) 

B) 

E:) 

(E: * E:) 

a) (AV B) 

(AV B) 

b) (AV B) 

(Av B) 

c) (E: V E:) 

(E: V E:) 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

CA I B) } if Ai IDEN or B / IDEN 
(!_ A !) 
( E: A E:) 

E: 

A B } if Ai IDEN or Bi IDEN 
A B 

} A if A= Bi IDEN 
(A* !) 
(AV B) } if A t B and: Ai IDEN or Bi IDEN 
(!_ A !) 
(E: V E:) 

( E: A E:) 

A } ifA=Bi IDEN 
(AV B) 

(AV B) } if At Band: Ai IDEN or Bi IDEN 
(!_ I !) 
(E: A E:) 

E:1 wher~ if E: E t 1 ~ ti then El E (tl,tl) ~ (tl,tl) 
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(vi) a) AB == AB } if A Et=> T and A/ IDEN 
AB == AB 

b) AB == B 
} if A E IDEN 

AB := B 

c) (Al v A2)(B 1 I B2) = (AlBl V A2B2) 

(Al v A2)(Bl I B2) = (AlBl V A2B2) 

d) (Al v A2)(B 1 A B2) = (Al Bl * A2B2) 

(Al v A2)(B1 A B2) = (Al Bl * A2B2) 

e) (Al Az)(Bl B2) = (AlBI A,}2) 

(Al A2)(Bl B2) = (Al Bl A2B2) 

f) (Al A2)(Bl A B2) = (Al Bl A A2B2) 

(Al A2)(Bl A B ) = (Al B 1 A A2B2) 2 

4.4. REMARK. By means of this definition we take as a prefix one variable, 

if it is possible, from each parallel branch of the expression, supplementing 

the other parallel branches by E, In cases when A= A1 * A2 (clause (iv)) or 

A= A1 v A2 (clause (v)) and A1 = A2 i IDEN, A1 is taken as a prefix of the 

whole expression A. 

4.5. EXAMPLE. Let A= ab* ac. Then A= a and A= b * c. 

Now we shall expand the notions of prefix and suffix, given in 

Definition 4.3, to cover also some expressions which contain+. We do not 

need, nor want, to define!, A for all expressions; e.g. not in case 

A= aB + cD. However, for a sum of expressions, which have the same prefix, 

we shall define prefix and suffix as in the next definition. 

4.6. DEFINITION. (i) A and! are a prefix and a suffix of A, respectively, 

if they are obtained by Definition 4.3; (ii) if A,B and!,! are prefixes 

and suffices of A and B, respectively, and A= B, then A+ B = A and 

A+ B =A+ B. 

4. 7. PROPOSITION. For aU A such that A,! are defined: 

f-· FS I A = A A . 
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PROOF. Straightforward from Definition 4.6. D 

4.8. EXAMPLE. Let A= (a1 v e)(blbZ A azb3)c + A1c * azb 1• 

Let A1 = (a 1 v e)(b 1bz A azb3)c and AZ= a 1c * aZbl. So AyAz are closed and 

hence we can take their prefixes and suffixes. By Definition 4.3, we have 

(a1 v e)(b 1bz A azb3) = (by vi,d) 

a 1b 1bz * eazb3 = (by vi,b) 

a 1b 1bz v eazb3 = (by vi,a) 

a 1 v eaz = (by i,a and vi,b) 

a 1 v az 

Al = (by vi,a) 

(a1 V e)(blbZ A azb3)c = (by vi,d) 

(a1b 1b2 * eazb3)c = (by iv,b) 

a 1b 1b2 A eazb3)c = (by vi,a) 

(a1b 1bz A ea2b3)c = (by i,a and vi,b) 

(eb 1 b2 A eb 3)c. 

Thus, r FSl A1 = A1 A1 = (a1 v az) (eb 1bz A eb 3)c by Proposition 4. 7. 

Furthermore, 

Az = (by br, b) 

a 1 c v aZbl = (by vi,a) 

a 1 v a2 = (by i,a) 

a 1 v a 2 • 

AZ= (by iv,b) 

a 1c A aZbl = (by vi,a) 

a 1c A aZbl = (by i,a) 

ec A eb 1• 

Thus, r FS l AZ = A2 AZ = (a1 v az) (ec A eb l) by .Proposition 4. 7. 
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I-' I-' 

u 

u 



Since I 1 - A2 , we have, by Definition 4.6: 

A= A = I 
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Therefore, rFSl A= AA= (a1 v a2)((eb1b2 A eb3)c + (ec A eb 1)) by Proposi

tion 4.7. 

The diagrams in Figure 4.8.l demonstrate graphically what has happened 

in the preceding example. 

4.9. DEFINITION. An expression A E EXPI is equationally characterized if 

there exist:s a finite set of expressions A1 ,A2 , ••• ,An, such that A= A1 and 

)- FS 1 Ai = I 
j ES (N) 

A .. A .. + o(A.) 
l.J ...2:.J.. l. 

( i = I , 2, ••• , n) 

where: 

- o(A.) EIDEN or o(A.) = 0; 
l. l. 

N = {1,2, ••. } and S(N) is a finite subset of N; 

- Vi,j 3k, I :::; k :::; n, such that A .. = A.;· 
l.J -K. 

- V. the A .. are pairwise syntactically different. 
l. l.J 

4. 1 O. THEOREM. Every A E EXP is equationaUy characterized. 

PROOF. Induction on the structure of A. 

Basis: for a E VAR, an identity expression EE IDEN and 0, the equational 

characterization holds trivially. 

Induction step: let A E EXP and BE EXP be equationally characterized. Then 

we have to prove that A* B, A+ B, AB and {A} are equationally characterized. 

By the induction hypothesis, there are finite sets A1,A2, ••• ,An and 

B1,B2 , ••• ,Bm' such that A= A1, B = Bl and 

r FSI A. = I A .. A .. + o (A.) (i = I , 2, ••. , n) (**) 
l. jES(N) l.J ...2:.J.. l. 

r FSI B. = I B.k B.k + o (B.) (i = I , 2, .•. , m) (***) 
l. kES(N) 

. l. l. l. 
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Case 1. A* B. We denote 

n(u,v) = A * B 
U V 

~(u,v) = A AB 
U V 

(u = 0,1,2, ••• ,n; v = 0,1,2, ••• ,m) 

(1 ') 

We write A0 and B0 instead of e. The number of expressions (1) and (1') 

is finite. 

For n(u,v) we have the following: 

I- FSl n(u,v) = ( L A. A . + cS(A ))*( l Bk Bk+ cS(B )) • 
je:S(N) UJ ~ u ke:S(N) V ~ V 

Using the distributive laws (axioms Al2,13 of FS, which are derivable 

in FSl) and Ax. 2,3, we obtain: 

I- FSI n(u,v) = L l (A. A . * Bvk Bvk) + l (A. A . * cS(B )) 
je:S(N) ke:S(N) UJ ~ je:S(N) UJ ~ V 

+ l (cS(A) *Bk Bk)+ (cS(A) * cS(Bv)). 
ke:S(N) u v __;!_ u 

Then, by Definition 4.6 of prefix and suffix: 

I- FSl n(u,v) = l A. (A.* Bk) 
je:S(N)&ke:S(N) UJ ~ ~ 

+ l l (X-:- V B k)(A . A B k) + l (A. V cS (B ) )(A . A £) 
je:S(N) ke:S(N) UJ V ~ ~ je:S(N) UJ V UJ 

+ l (cS(A) v Bvk)(e A Bvk) + (cS(A) v cS(B ))(e A e) 
ke:S(N) u u v 

where all expressions (A.* Bk) are as in (1), and (A.AB k), (A. A e), 
UJ V ~ ~ UJ 

(e A Bvk)' (e A e) are Min (1'). 
For ~(u,v), by assumption, we have: 

I- FSl ~(u,v) = ( Y. A . A . + cS (A ) ) A ( l Bvk Bvk + cS (B ) ) • 
je:S(N) UJ ~ u ke:S(N) V 



Using the distributive laws ((A+ B) A C = (A A C) + (B A C) and 

A A (B+C) =(AA B) +(AA C), axioms Ax 2,3 and Definition 4.6 of prefix 

and suffix, we obtain: 
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r FS 1 ~ ( u 'v) = l l (A. I B k) (A • /\ B k) + l <~I o(B ) )(A . /\ e:) 
jES(N) kES(N) UJ V ~ ...:!_ jES(N) UJ V ~ 

+ l ( o (A ) I B k)( e: A B k) + ( o (A ) A o (B ) 
kES(N) u V _.;!_ u V 

where all expressions (A.AB k), (A." e:), (e: AB k) and (o(A )Ao(B )) 
~ _;!_ ~ _;!_ U V 

are as in (1'). Since n(l,1) =A* B, we conclude that A* Bis equationally 

characterized. 

Case 2. A+ B. We denote 

(2) 

(u = 0,1,2, ..• ,n; v = 0,1,2, .•• ,m). 

We write (A0 + B) instead of B and (A + B0) instead of A. The 
V V U U 

number of expressions (2) is finite. By the induction hypothesis, we have: 

r Fs 1 ~ cu, v > = c I -;:-: A . + o CA > > + c I B k B k + o CB > > • 
jES(N) UJ ~ u kES(N) V _.;!_ V 

Using Ax 1,2,3,10 and Definition 4.6 of prefix and suffix, we obtain: 

A. A'.+ 
UJ ~ 

l A. A.+ l Bk Bk+ o(u,v) 
jES(N) UJ ~ kES(N) V _.:!_ 

where all expressions A'.= A.+ Bk for some j and k, are as in (2), 
~ ~ V 

A. and Bk are also as in (2). Since ~(1,1) =A+ B, we conclude that A+ B 
UJ V 

is equationally characterized. 

Case 3. AB. We denote 

n(u,v1, ••• ,v) =AB+ B r u v1 
+ ••• + B 

V r 
(u = 0,1, ••• ,n, r ~ O, 1 ~ v. ~ m, i = 1,2, ••• ,r). 

]. 

(3) 
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We write A0B + Bv1 + .~. + Bvr instead of Bv1 + ••• + Bvr• The number 

of expressions (3) is finite. By the induction hypothesis, we have: 

I- FS 1 n ( u, v 1 , ••• , vr) = l "I:-: A . + o (A ) ) B 
jES(N) UJ ...J!l u 

+ l ½ B k + o (B ) + ••• + l B k Bv k + o (Bv ) • 
kES(N) vl l vl kES(N) vr r r 

Using Ax 9 and Ax 2, the following is derivable: 

I- FS 1 n ( u, v 1 , ••• , v r) = I ""f:-: A . B + I B B + • • • + 
jES(N) UJ UJ kES(N) Vlk Vlk 

I Bv k Bv k + o(A )B + o(B ) + ••• + o(B ) kES(N) r r u v 1 V 
r 

where all A. A.€ t =0- T and ""f:-: A. t IDEN, and for all p = 1,2, ••• ,r, 
UJ _E:J. __ UJ _E:J. . 

Bv k Bv k € t _. T and Bv k Bv kt IDEN. If o(A) EIDEN, then replace the 
P __:,p_: P _P_ u 

last occurrence of B by its representation(***) for B1• Then, using axioms 

Ax 1,2,3,7,10 and Definition 4.6 of prefix and suffix, we obtain: 

I 
jES(N) 

A. A'.·+ l l 
UJ _E:J. qES(N) jES(N) 

o(u,v, ••• ,v) r 

B • B'. + 
qJ ...!Ll. 

where all expressions A'. and B'. are as in (3). Since n(l,1) - AB, we con-
UJ _..91. 

elude that AB is equationally characterized. 

Case 4. {A}. We denote ~(O) = {A}, 

~(u1 , ••• ,u) = (A r u1 
+ ••• + A ){A} 

u 
r 

(r ~ 0, 1 ~ u. ~ n, i = 1,2, ••• ,r). 
l. 

(4) 

The number of expressions (4) is finite. By the induction hypothesis, 

we have: 

I- FSl ~(O) 



Using Ax 19, we obtain either: 

I- FS 1 ~ ( O) = { d 
or: 

where all expressions A1 j A1 j € T • T and A1 j A1 j /. IDEN. 

r,n the first case, by Ax 10, we obtain: 

I- FSl ~(O) = e: 

and, therefore, {A} is equationally characterized. 

Using in the second case Ax 18, then Ax 19 (to restore the original 

form of A) and Ax 9, we derive: 

Then, using Ax 2,3,7,10 and Definition 4.6 of prefix and suffix, we 

obtain: 

where all expression A11 • are as in (4). 
_J 

For ~(u1, ••• ,ur), by the induction hypothesis, we have: 

I 
jES(N) 

Using Ax 2,3,7,9, we obtain: 

+ ••• + 

+ ••• + 

+ ••• + 5(A )){A} 
u r 

25 

(5) 
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where for all j E S(N) and p = 

Au j Au j / IDEN. 
p _p_ 

1,2, ••• ,r, A . A . Et - T and 
u J u J 

p _p_ 

Now consider the last sunnnand (o (Au1) ••• + o (Aur) ){A}. If all o (Aup), 

p = I , 2, ••• , r :• are r/J, this sunnnand vanishes. If one of o (Au ) - E, we replace 
p 

{A} in this summand by its representation (5). Then, using Ax 1,10 and 

Definition 4.6 of prefix and suffix, we obtain: 

where all expressions A!. are as in (4). Therefore, {A} is equationally 
~ 

characterized .. D 

4.11. EXAMPLE .. Let A= {a1b 1b2 * a 2b3}c. 

Suppose A1 =A.Then: 

A1 = {a1b 1b2 ''" a 2b3}c = (by Proposition 4.2) 

c + (a1b 1b2 * a 2b3){a1b1b 2 * a 2b3}c = (by Definition 4.3) 

cA2 + (a1 v a 2)A3 

A2 = e 

A3 = (eb 1b2 A eb3){a1b 1b 2 * a 2b3}c = (by Definition 4.3) 

(b 1 I b 3)A4 

A4 = (eb 2 A e){a1b 1b 2 * a 2b3}c = (by Definition 4.3) 

(b 2 I e)A5 
A5 = (e A eHa1b1b2 * a 2b3}c = (by Definition 4.3) 

(e A e)A6 
A6 = e{a1b 1b2 * a 2b3}c = (by Proposition 4.2) 

c + (a1b 1b2 * a 2b3){a1b 1b2 * a 2b3}c = (by Definition 4.3) 

cA2 + (a 1 v a 2)A3 

5. EQUIVALENCE OFFS EXPRESSIONS 

In this section we shall show that if A E EXP, B E EXP and FA = B, 

then there are sets of expressions A1 ,A2, •.• ,An, B1 ,B2, ... ,Bn' such that 

A = A1 and B ·- Bl and 
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I- FSl A. = . I A .. A .. + o (A.) (i = 1 , 2, ••• , n) 1 JES(N) 1J 21. 1 

f- FS 1 B. = I B .. B .. + o (B.) (i = 1 , 2, ••• , n) 1 jES(N) 1J ~ 1 

where Vi,j A •• - B .. 
' 

o(A.) - o (B.) and A .. = A r' B .. - B for some 
1J 1J 1 1 ~ ~ r 

r, 1 ~ r ~ n. 

Furthermore, we shall show how to construct such sets of expressions. 

Next it will be shown that if A and Bare equationally characterized by the 

sets of equations(*) and(**), respectively, then f-FSl A= B. 

A straightforward consequence of these two facts will be a completeness 

result for expressions of EXP: 

F A = B ~ f- FS I A = B • 

Together with the earlier obtained soundness of FSl, this yields the 

following main result: 

F A = B <==> f- FS I A = B, 

where A E EXP and B E EXP. 

5. 1. LEMMA. If F A = Band 

f- FS 1 A = I A. A. + o(A) 
jES(N) J _J_ 

I- FS I B = I Bk Bk+ o(B) 
kES(N) 

then for any j E S(N) there exists k E S(N) (and vice versa) such that 

(i) Aj = Bk , (ii) F Aj = Bk and (iii) o(A) = o(B). 

PROOF. 

(i) Assume that for some j E S(N) there does not exist k E S(M) such that 

Aj =Bk.We shall show that in this case ~A= B, i.e. there .exists an 

interpretation cj> IM, , , such that cj> IM, , (A) ,f: cj> IM' , (B) . To prove this 
,P ,P ,P 

we introduce an auxiliary interpretation cj>lM, , as follows. 
,P 

Let cj>lM be an interpretation of FSI for some Mand p. Let M' =Mu X 
,P 

where X = {a' I a E VAR} u {e'}. 
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Before defining p', we introduce some notations: 

we use the notation aM, to denote that aM' E M' 00
, i.e. aM, contains both 

elements from Mand X and yields a E ~ after erasing all elements of X; 

furhtennore, we use the (ambiguous) notation ax to denote that ax t X00 and 

is obtained from aM' ~y erasing all elements of M and supplementing all empty 

places (if there are any) in the constructions of the kind< , > by the new 

element e'. 

Now p' is defined as follows: 

for all a E VAR and y EM°" we have 

The point of the interpretation ¢IM, 1 is that any resulting element 
,P 

yM, contains the trace Yx of the expression which has been executed to ob-

tain this result. 

Example. Let A= (a* b)c, a EM°" for some M, and ¢1M,p(a)(a) = S1; 

¢IM,p(b)(a) = s2 (and hence ¢1M,p(a * b)(a) = <S 1,s2>), ¢IM,p(c)(<SI,S 2> = y, 

where s1 ,s2,y E M°". Then M' =Mu {a' ,b' ,c'} u {e'}. Therefore, 

¢IM',p' (a)(a.) = s1a'; ¢JM,,p 1 (b)(a) = S2b'; ¢JM,,p 1 (a * b)(a) = <S 1a 1 ,S 2b 1 >; 

¢1M,,p(c)(<S 1a 1 ,S 2b 1 >) = y<a',b'>c'. Here SX = < a',b'> E X00
, where X = 

{a' ,b' ,c'} u {e'}, and is obtained from SM' = <Sia 1 ,S 2b 1 > E M100 after erasing 

all elements of M. Obviously the element Yx = <a' ,b'>c' corresponds in a 

unique way to the expression (a* b)c, which has been executed to obtain the 

resulting element yM,. End of example. 

Thus, if Aj t Bk, then the traces of Aj and Bk' occurring in 

SM' E ¢IM, ,¢'(A'_j)(aM,) and YM, E ¢lM,,¢ 1 (Bk)(aM,) are syntactically different. 

Therefore, YM:' t SM,. Since the interpretation ¢1 preserves this difference 

in all subsequent transformations of the elements of M' 00 , rj)JM' ,(A. A.)(aM,) 'f 
,P J J 

¢IM,,p 1 (Bk Bk)(aM 1 ). Further, if for some Aj there does not exist k, -

such .that -- Aj = Bk, then ¢ ]M' ,P 1 (A) (aM,) 'f ¢ JM' ,P 1 (B) (aM,), and, hence, 

A 'f B. But that contradicts the asstnnption. 

(ii) Assume that Aj = Bk for some j and k and Aj 'f Bk. Then for some inter

pretation ¢1M,p and a E ~ there exists some Ssuchthat SE ¢1M,p(Aj)(a) 

and Si ¢1M,p(Bk)(a) or vice versa. Let us take the first case. Then, we 

have also that SM, E ¢JM,,p 1 (Aj)(a.M 1 ) and SM, I. ¢lM,,p 1 (Bk)(aM 1 ), and, hence, 



there exists some S'M' such that S'M' E $1M,,p,(Aj ~)(yM,) and 

S'M' i $IM, ,p'(Bk Bk)(yM,) for some yM' E M' 00
• 
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Now; from A. t B°:'" (i ~ k), it follows, by clause (i) of this Lemma, that 
J 1 

S'M' i $IM,,$ 1 (Bi Bi) for all i ~ k. Hence S'M' i $1M',p'(B)(yM,) and, 

therefore, A~ B, which contradicts the asswnption. 

(iii)Similar to the proof of (i). 0 

5. 2. LEMMA. If A E EXP, B E EXP and FA = B then for A and B there are sets 

of e:x:pressions A1,A2 , ••• ,An, B1 ,B2 , ••• ,Bri, suah that A= A1, B -

(*)and(**) (as in the introduction of Section 5) hoZd. 

B., and 
! 

PROOF. We will give a simultaneous construction of sets of equations as in 

(*)and(**) for A and B respectively. 

Since, by Theorem 4.9, A and Bare equationally characterized, there 

exist sets of expressions A= {A1,A2, ••. ,Ar} and B = {B1,B2, ••• ,Bm}, such 

that A = Al' B - Bl and: 

r- FSl A. = I A .. A .• + o(A.) 
1 jES(N) 1J ~ 1 

r- FSl B. = I Bik Bik + o (13.) 
1 kES(N) 1 

According to Lennna 5. 1 , we have: 

r- FSI Al = I A1j A1j + o(A1) 
jES(N) 

r- FSI BI = L Btk Btk + 0 <B1 > 
kES(N) 

(i = 1,2, ••• ,r) 

( i = 1 , 2, ••• ,m) • 

where for any j there exists k (and vice versa) such that A1. - Blk' 
~ J 

F A1 j = B1 k , o (A1) = o (B1), and moreover A1 j = AP E A for some p, 1 ~ p ~ r, 

Blk = B4 EB for some q, 1 ~ q 

Further, for any new pair 

we have again by Lemma 5.1: 

of expressions A and B , since FA = 
p q p 

r- FSl AP = A. A.+ o(A) 
PJ _.EJ. p 

B , q 
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I- FS l B = L B k B k + o (B ) 
q kES(N) q ~ q 

where for any j there exists k (and vice versa) such that '"i:-: - Bqk' 
~ PJ 

FA . = B k' o (A ) = o (B ) , and moreover A . E A, B k E B 
__n,_g_ p q ...n ~ 

We can continue this procedure for all new pairs until no new pairs 

appear. Since the number of all possible different pairs is finite(= nxm) 

this process is finite. Hence the result follows. D 

5.3. LEMMA. Let A E EXP and BE EXP. Suppose the foUowing holds: 

i- FSl A. = I P .. A. + o(A.) (i = 1 , 2, ••• , n) 
]_ 

jES(N) l.J J ]_ 

I- FS 1 B. = 1 P .. B. + o (B.) (i = 1 , 2, ••• , n) 
]_ 

jES(N) l.J J ]_ 

where none. of the expressions P .. possesses £EIDEN, and o(A. = o(B.). Then 
l.J l. ]_ 

( i = 1 , 2, ••• , n) • 

PROOF. Induction inn. 

Basis: for n = 1 the proof immediately follows from the soundness of FSl. 

Induction step: assume that the assertion holds for i = n-1. For i = n we 

have: 

I- FSl A = I p .A.[+ p A ] + o(A) (1) n· jES(N)&j;'n nJ J nn n n 

I- FS 1 B = l p .B.[+ p A] + o(B) (2) n jES(N)&j;'n nJ J nn n n 

where the part of the expression inside [ J may be absent. 

Now we solve these equations for A and B and replace in the remaining n n 
equations for A. and B. (i = 1,2, ••• ,n-1) all occurrences of A and B by 

. i i · n n 
their solutions. We obtain sets of n-1 equations, which satisfy the condi-

tions of the Lemma, i.e. none of the expressions P .. possesses£ EIDEN. 
l.J 

Thus, by the induction hypothesis: 

(i = 1,2, ••• ,n-1). 



Hence, by (1) and (2), I- FSl An = Bn. 0 

5.4. MAIN THEOREM. Let A E EXP, BE EXP. Then: 

(i) 

(ii) 

F A = B ~ 1-. FS I A = B 

FA = B is decidable. 

PROOF. (i) Innnediate from Lemma 5.2, Lennna 5.3 and Theorem 3.4.5. 

(ii) Evident, since the proof of Lemma 5.2 provides also an algorithm for 

deciding the equivalence of two expressions. 0 

We conclude the paper with an example to demonstrate how semantical 

equivalence of two expressions can be decided. 

5.5. EXAMPLE. Let A= ({p+c}d*k)n and B = ({{p}+{c}}d* k)n. Check if A 

and Bare equivalent or not. 
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A= A1 = (by Proposition 4.2) 

(d * k)n + 

B - B1 = (by Proposition 4.2 and Ax I) 

(d * k)n + 

(p{p+c}d * k)n + 

(c:{p+c}d * k)n 

= (by Definition 4.3) 

(d v k)(E A E)n + 

(p v k)({p+c}d A E)n 

(c V k)({p+c}d A E)n 

= (d v k)A2 + 

(p v k)A3 + 

(c v k)A4 

= ( E: A E) En 

=(EA E)A5 

- ({p+c})d A E)n 

= (by Proposition 4.2) 

(d A E)n + 

(p{p+c}d A E)n + 

(c{p+c}d A E)n 

= (by Definition 4.3) 

(d A E)En + 

(p I E)({p+c}d A E)n + 

(c I E)({p +}d A E)n 

(p{p}{ {p} + {d} }d * k)n + 

(c{cH {p} + {c} }d * k)n 

= (by Definition 4.3) 

(d V k)(E A E)n + 

(p v k)({pH{p}+{c}}d A E)n + 

(c v k)( {c}{ {p} + {c}}d A k)n 

= (d v k)B 2 + 

(p v k)B3 + 

(c v k)B4 

=(EA E)En 

=(EA E)B5 

- ({pH {p} + {c} }d A E)n 

= (by Proposition 4.2 and Ax I) 

(d A E)n + 

(p{p}{ {p} + {c}}d A E)n + 

(c{c}{ {p} + {c} }d A E)n 

= (by Definition 4.3) 

(d A E)e:n + 

(p I E)({p}{{p} + {c}}d A e:)n + 

(c I E) ( {c}{ {p} + {c} }d A E)n 
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Since the pairs of expressions En and En, ({p+c}d A E)n and 

({p}{{p} + {c}}d A E)n, ({p+c}d A E)n and ({c}{{p} + {c}}d A E)n, are syntac

tically equivalent to the earlier obtained pairs AS and BS, A3 and B3, A4 
and B4 , we have: 

= (d A £)AS+ 

(p I £)A3 + 

(c £)A4 

- ( {p+c}d A E)n 

= (by Proposition 4.2) 

(d A E)n + 

(p{p+c}d A E)n + 

(c{p+c}d A E)n 

= (by Definition 4.3) 

(d A £)En + 

(p I E)({p+c}d A E)n + 

(c I E)({p+c}d A E)n 

= (d A £)BS + 

(p I £)B3 + 

(c I £)B4 

- ( {c}{ {p} + {c} }d A k)n 

= (by Proposition 4.2 and Axl) 

(d A E)n + 

(p{p}{ {p} + {c} }d A E)n + 

(c{c}{ {p} + {c} }d A E)n 

(by Definition 4.3) 

(d A £)En + 

(p I E)({p}{{p} +{c}}d A E)n + 

(c I £) ( {c}{ {c} + {c} }d A E)n. 

Again, since all pairs of suffixes are sy~tactically equivalent to the 

earlier obtained pairs of expressions, we have: 

A4 = (d A £)AS + B4 = (d A £)BS+ 

(p I E)A3 + (p I £)B3 + 

(c I £)A4 (c I £)B4 

AS - En= (by Definition 4.3) BS - En= (by Definition 4.3) 

nt = nA6 n£ = nB6 

A6 - £ B6 - £ 

Thus f- FSI A= B, and hence FA = B. 
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