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POTLNTIAL FLOW AROUND A BODY OF REVOLUTION,

1. The computation of the potential flow around a body of revolution
is of some importance in practical hydro- and aerodynamics. A num-
ber of bodies are actually practically rotationsglly symmetrioc, e.g.
airships, shells, torpedos, pitot-tubes, and so on. Other bodies are
not, but as a first approximetion they mey often be treated as such
as several authors have done. e.g, bulls of ships, In many cases, es-
pecially in those of elongated bodies, one can get a satlsfacto;y
picture of the actual -~ nonpotentisl -~ flow around the body by firet
. computing the potential flow and then solving the boudary layer’equa—
" tions using the volocity distribution of the potential flow, and if
necessary repeating the process after correction of the shape of the
body on the basis of the displacement-thickness of the boundary layer,
Therefore, several authors have treated the computation of_the Ve=
locity distribution in the case of potential flow. Of special impor-
tonce is the method of von Kérmén, Our purpose in this communication
is to give a refinement to his method, and at the same time to pro-
cure a set of tables that may lighten the burden of computation coni-
sidersbly, :

2, One way to compute the field of the potential flow is to solve the

boundary value problem belonging to the partial differential equa-
tion that governs the flow, for instance, by means of relaxation methods
Whereas result might be achiéved in the case that the main velocity is
parallel with the axis of revolution, this method becomes distinotly
unattractive in the case that the flow comes in under a certain angle
with the axis, ,

Another method is to ingert in the field of the main stream a set
of singularities (sources and sinks, and doublets) that distort the -
main flow in such a way that it surrounds an isolated part of the space
of the same shape as that of the body of revolution that we consider.
If the shepe of the body is rather smooth, we can restrict ocursclves
to singularities along the axis (end, of course, only within the body).

As 1t is obvious that by superposition of two types of flow, i.e,
in which the vclocity at infinity is either psrallel or perpendicular
to the axis, we can obtain e ficld in which the velocity at infinity
mekes esn arbitrary angle with the axis, it sufficcs to consider the
two fields sepcrately. Von XKérmén has shown that a distribution of
sources and sinks in the first case and of doublets with their'axes
in the direction of the pcrpendicular flow in the second case indeed

"give rise to flow around a body of revolution. The problem is only .
to specify the distribution of the intensity of the sources or doublets
so a8 to get the body with the desired shape. ~

3. "Iet us first consider the casc of zero angle of incidence. The coor=-
- dinates are x and r in the directions of the axis and radially res-

pectively. Besideés, we use polar coordisntes ¢, , Let the origin be
. at some place x, of the axis, then they are defined by
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p° = (x--xo)2 +r° and tand = r/(x-xo) : (3,1)

The velocity be W, with components u_ and w,, A% infinity holds
v, =V and uE = 0, where V is the velocit¥ of th¥ undisturbed mein
s¥ream, Thest velocities can be derived from a streamfunction by

ncans of the formulae

N This streamfunction consists of two parts, i,e, that belonging to
vhe main stream and that to the system of sources. The first part is
ayparently %2 Vr®, For an isolated source of intensity Q at (x., 0) is
the strecamfunction : °

- (1 £ 0089 ) = =% %o g

4% 4x {1 ¥ \f{(x—xo)Q + ;2}

(3.2)
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Now let us consider a section of the field mede by a plane through the
axis. The axis is a line along which ¥ = 0, and so is the contourline
of the body. 4lso holds that at the contour the velocity is tangential
- to the contour. So, if a point of the contour is given as (xc,rc) then
we can define the unknown intensity f(xo) of the sources by requiring
thet at each point (xc’,rc) holds ¥ = 0 or uI/ux = drc/dxc.

From the first observation we follow that

4.2 A (! =
Sl =L jf(xo) {1 +

e
({(x,-x)% + v
If the length of the body ig finite then the total strength of the
sources venishes, so S f(x )} dx, = 0. So the integralequation simpli=-
fies into Y .

2 _ ‘e 2 22 p
2T Vr, = Sof(xo)(xo-xo) {(xc-xo) + ro} dx, s \3.4)
(+]
Integration by parts gives if we define g(xo) = 30 f£(x)dx, sothat
a.pparently‘g(o) = g(l) =

s 2;% dXO (353)

A ) -3
ZﬂVrg = rg & g(xo){f(:«:g--xo)2 + rg} dx, ~ (3.5)
For all p01nts except nosc and tail is Ty # 0, so that
MR
2TV = Sg(x ) {(xcuxo)z + rg} dx,, . (3.6)

If both Ty and dl:n:c/dxc are very small one can derive an approximate
solution by remarking that the integrand is then very large in the vi-
cinity of X, = Xy, 8O- that this vieinity practically accounts for the

complete value of the integral., If therefore dg(x)/dx is small, we can

replace in the integrand g(x) by s(x, ) so that

27V = alx,) [{(x, - 2% + 2] -2y (3.7
or { -z X -;!

(x) = 2'11Vr2{ ; * ° (3.8)
&% e i ?,uxc)z + rgﬁ v’{xg + I‘Ei e

FPor points not situated in the neighbourhood of nose or tail, the two
terme within the braces are practically equal t0 unity, so that roughly
f holds glx, } - erz (3.9)

We see, by the way, that dg(x)/dx is indeed small, because of the

" assumption made for T, and drc/dxc. This approximate solution is rather
crude. In the case of a blunt body it fails completely and even in the
cage of a véry slender body it shows some essenbtiel defects. If, for
instance, w7¢ consider a very, say infinitely long body Watn g noge

that is conical over some length then we find from (3.8) that ery
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equels some constant times ri, so that the source—étrength varies
linearly with r, and therefore with Xge This is, however, impossible
because it would give rise to a velocity that is infinite at x, = 0 so°

that the nose could not be there.

4, A practiczl method of solving the integralequation as given by von
Karmén is to replace the ;unction £(x) by a discontinmuous one, ha-
ving & constant value over intervals of length &. This means that we con-

gider a set of n independent sources of strength Qi, each distributed
uniformly over the length a, and situated side by side along the axis,
If one takes n points on the contour, e.g. with the same absissae as
those of the centers of the sources, one can compube the value of the
streamfunction in these points expressed linearly in the unknownsQi and
the main streamfunction, and by requiring this stresmfunction to vanish
we find n equations which we can solve for Qi. These equations, moreover,
are of a type that can be easily solved by iteration, so that we have
a very efficient way of getting an approximate solution to our problem,
To increase the asccuracy we can only increase n, of course, at the cost
of much more computational lsbour, For doubling n means first quadrupling
the number of coefficients in the equations that have to be computed and
roughly eight times as much work to solve the equations,

The refinement that we suggest now consists in placing again separate
sources Q; al a distance g but not of constant strength over a width
2 but with an intensity that is Q;/a in the center and drops linearly
towsrdis both sides to become zero at a distance % a from the center,
Therefore the total width of these sources is 2a‘and they overlap one
another, The superposition of these sources now gives automatically a
continuous curve made up by straight lines, instead of a discontinuous
curve, If there is a continuous solution to the integralequation then
our solution is most likely an order more accurate than vor Kérmén's.
If there is a discontinuous solution to the equation then the-chance
that the discontinuities of this solution and the artificial disconti-
nuities of von Kérmén's solution coincide is negligible as we have no
indication where they should be. If, at last, thereis no solution at
all, our version is not worse then anything else. Apart from the com-
putation of the coefficients of the equations there is not any difference
between von Kérmin's original method and our version of it.

5. The computation of the streamfunction of our "triangular® sources
runs as follows, With the notations of fig. 1 the source~strength
ie distributed according to the law:

&
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n'equafions

2 1 cikE i = (""“"') . (6.2)
This is the set of n equations which we can solve for Z4.

Of course we are not bound to use exaotly n points on the contour
above the sources. Indeed it is good policy in many cases %o leave some
points of this group out of consideration and te replace the missing
" conditions by other ones,

For instance, one might require the nose and the tail .to be at the
right spot., This cannot be done by means of the streamfunction as this
function autometically vanishes on points of the axis. The condition is,

however that the velocity in the axial direction vanishes, so

n Q.
i
+ DU S TR =0 (6 3)
3;1 2ﬁ’a2 xin . . , !

or dimensionless
n ,
££1 Uyin 23 =1 ' (6.4)

On the other hand, if the body extends at one side practically into
infinity, that means that it passes into a cylinder, we know the total
source~strength that must exist so that this cylinder has the right
radius Teo'» This gives the relation

n

. Qs :
1 P 1 : H p
or dimensionless '
n . «
Ty 2 » (6.6)
2 iz = (F

It is advisable to use thése two relations, that is either (6.4) for
both nose and tail or (6.4) for the nose and (6.6) for the parallel body.
Otherwise one may get curious results. For instance, one might try to
represent a sphere and find oneself left with a lemon-shaped.body. I
the body passes into a long cylinder one should use (6,6) and restrict
onesgelf to a system of sources in that part of the body where the radiusg
 still varies appreciably, If one tries to raise the accuracy by putting
scurces a way up into the eylindrical body one may find for this tail-
end of the source-distribution values of z; of nearly constant amplitude
vut with alternating sign, what does not raise the accuracy but does
ralse the burden of computation. .
Further one should not put the first source too near t0 the nose,
By lack of better we advise to leave ome source out and 10 puv +heg first
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‘source—center at a distance 2a from the nose. Apart from. that, 1f we
_ ¥assume a source to be at a distance a from the nose and apply (6.4)

" then the unknown automatically vanlshes, 80 we might as well leave 1t
out dlrectly. The seme holds of course for the tail.

Yhen we have found the quantities s the components of the veloclty
can he determined from ‘

ux

on
V(1 +j§1 Uogye 25) . v (6.7)

1
11'

it

n .
VZ, Prix % (6.8)

From this we can get the resultlng ve1001ty and the pressure distribu~
tion,
7. Next we give a quick survey of the corresponding problems in per—
pendicular flow, At infinity the velocity be W in.the direction of
the z-axis that is pervendicular to the x-axis, We assume a set of
doublets with their axes also in the z-direction to.be present at the
axis of the body. We extend the polar coordinates algo with a third
one, i.e. q>-that determines the meridional sections passing through
the axis, The plane ? 0 contains the x~ and z-axes, In these coor-
dinates the potential & of the doublet is (ef. von Karmén)

P o=~ M gin  cos Y 4 (7.1
4T ¢

where M is the moment of the doublet, Prom this the components of the

velocity may be computed from the relations

0& ai
L - ucra% -g—%’- (7.2)

The snalysis of von Kdrmdn shows that such a system of doublets dis-
torts the main stream in such a way that it surrounds a body of revo=
lution, It is, therefore, sufficient for the determination of the in=
tengities of the doublets along the axis to consider only the plgne
¢ =0 and to require there that the flow follows the contour,

e introduce again "Triangular® doublets, the intensity m of which
egain varies as |

gﬁ-‘-i—’ ) for [g| < a

m

i

(7.3)
vo=0 for || > a
The same process as before gives us
L. Mcos® 2. A (7.4)

= 4T a% X sin9
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“this we derive the components of the velocity

———-(f-°°s ) 52 cosd = Mcosd °°§Cp CAN (7.5)
4Fa 4T &

) »uyrlu M coefﬁ (a) ;2 cos D - M cos at

fer s ; (7.6)
A a X tan® M‘ a rik _
© M sin? say c2 1 M ein . A ‘

w = g oy e < = u' : 707

0% dred P x FES T T3 pik (7.7
the requirement that the flow follows the contour can be expressed as
T+ g =3 Upx  4r »
il 41{ a - k ' (7 8)

n M. = dx *

3. a' . k
i=1 4ﬂ'a3 xik a ,
U fea=1 (o)
or if we put 2! = Do T% Bxik™ Yrik$ % = 7.9
i 4T Wa3 1= k )

Therefore, we get again o set of n linear equations in the unknowhs zi.
When we have determined the zi, we find the velocity at an arbitrary
voint of the surface from ’ f

k'

n . . \
X :

u, = =W cosg £1, ulsy 24 v | (7.10)

w, =Wecos¢ (1- z iy 21) ' ’ (7.11)

u =W esin ¢ (1 + §: u?lk zi) (7s12)

'

8. The actual calculation of the quantities Cipr Vyiy? and so on is
not always easy in certain parts of the field, i.e. when the func-
tion which we have to form the second difference is very large, whereas
the difference that we want to know may be small, It is, however pdssi-
ble to convert these expressions in many ways in second differences of
other functions that are more msnageable,
In practice we have only to do with values of x5 and of Xy that are
multiples of a, say ia and ka. All the quantibies now only depend on the
ratio r /a and k-i, We have constructed a set of tables for them,
canging fer rk/a from O to 2 and far k-i from 0 to 9. In these tables
one can resd directly the quantities that one needs.
For negative values of k-i the following relations hold:

Y1k . = 2 - corresponding value for positive (k-3%)
i u'. - ] : w " " ]
xik? “xik

1 ki T =
*rik? Ypik’ ik

‘ L i) 114 n 1



But lf we uee the 1dentity : L
3% in +tan 29/2 = 82 In cos /(14008 9) - 1n 31-1/(1{-1)2} (8.1)

get an ex;ressian for it without these troubles, buﬁ that does not
work for k-i = O or 1, >

her identlty is o : , ) : «
dr = 52 an9/2 T LC (e 2y

x Bins

'%

om which we learn that the second difference that appears in the for—*
«mula'for Wiy 18 the same as that appears in the formula for uqik’

9. The work of von Kérmén that is often mentioned in this eomunicat:wn
. ies : ; . P ; ;

" Th, v. Kérman, Berechnung der Druckverteilung an Luttechiffkdrpefn

' "’,A.bhandlungen aug- dem Aerodynamische,n Institut an der Techn;sche.n Hoch-
'schule Aachen, Heft 6, 1927,




