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POTENTIAL FLO~T AROUND A. BODY OF REVOLUTION. ----------------------
1. The com.pute.tion of the potential flow around a body of' revolution 

is of some importance in practical hydro- and aerodynamics. A num
ber of' bodies are actu~lly practically rotationally symmet!ic, e.g. 
airships, shells, torpedos, pitot-tubes, and so on. Other bodies are 
not, but as a first approximation they may often be treated as such 
as several authors have done. e.g. hulls of ships. In many cases, es
pecially in those of elongated bodies, one can ~et a satisfactory 
picture of the actual - nonpotential - flow around the body by first 
computing the potential flow and then solving the boudary layer equa
tions using the velocity distribution of the potential flow, and if 
necessary repeating the process after correction of the shape of the 
body o.n the basis of the displacement-thickness of the boundary layer. 

Therefore, several authors have treated the computation of the ve
locity distribution in the case of po·tential flow. Of special impor
tanc~ is the method of von Karman. Our purpose in this communication 
is to give a refinement to his method, and at the same time to pro
cure a set of tables that may lighten the burden of conrputation con-
siderably. · 
2. One way to compute the field o! the potential flow is to solve the 

boundary value problem belonging to the partial differential equa
tion that governs the flow, for instance, by means of relax9:tion methods 
Whereas result might be achievGd in the case that the main velocity is 
parallel with the axis of revolution, this method becomes distinctly 
unattractive in the case that the flow comes in under a certain angle 
with the axis. 

Another method is to insert in the field of the main stream a set 
of singularities (sources and sinks, and doublets) that distort the 
main flow in such a way that. it .surround.s an isolated part of the space 
of the same shape as that of the .body of revolution that we consider. 
If the shape of the body is rather smooth, we can restrict ourselves 
to singularities along the axis (8.nd, of course, only within the body). 

As it is obvious that by superposition of two types of flow, i.e. 
in which the volocity at infinity is either parallel or perpendicular 
to the axis, Yl8 can obte,in a fiE.:ld in which the velocity at infinity 
makes s,n arbitrary angle with the axis, it ~ufficvs to consider the 
two fields seper8,tely. Von Kfrman has shown that a distribution of 
sourc8s and sinks in the first case and of doublets with their 1ax0s 
in the direction of the pGrpendicular flow in the second. case indeed 

· give rise to flmr around a body of revolution. The problem is only . 
to specify the distribution of the intensity of the sources or doublets 
so as to get the body with the desired shape. 
3. · ~us first consider the case of zero angle of incidence. The coor

. ~inatos ar~-~ and~ in the directions of tho axis and radially res-
pectively. Besides, we use polar coordiantes ~ , .S • Let the origin be 
at some place x

0 
of the axis, then they are defined by 

2 2 2 f = (x-x
0

) + r and tan ~ = r/ (x-x
0

) ( 3, 1) 

The velocity be u, with components u and u. At infinity holds 
t: .. = V and U.... = o, ;1here V is tbe velocitJ of thi undisturbed main 
sf.ream. These velocities can be derived from a streamfunction by 
1x,ans of the formulae 

J.~ Th~s streamfunction consists of two parts, i.e. that belonging to 
.,,_,e; main stream and that to the system of sources. The first part is 
R~Jarently YzVr2

~ For an isolated source of intensity Q at (x Q) is 
-:;he,, strcc,mfunction o' 

Q /') { x-x ! - 7tr ( 1 4 cos ~ ) = ... ~ 1 + o 
-4, 4ir {Hx-xc) 2 + r2'.} 
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Now let us consider a section of the field made by a plane through the 
axis. The axis i$ a line along uhich ~ = o, and so is the, contourline 
of the body. Also bolds that at the contour the velocity is tangential 
to the contour. So, if a point of the contour is given as (x

0
,r0 ) then 

we can define the unknown intensity f(x
0

} of the sources by requiri.J;lg 
t:1e.t at each point (x0,r

0
} holds '±' = 0 or u/ux = dr/dx

0
• 

From the first observation we follow that 

~1 2 1 ,t } · xc -xo l 
2,..,Vr0 ~41r j f(x0 ) l 1 + .Ji _ 2 -~l dx0 (3,3) 

0 ll(xc xo) + rc5 

If the length of the body is finite then the total strength of the 
sources vanishes, so !:f(x

0
) dx

0 
.= O. So the integralequation simpli

fies into 11 
2 r,c. · { 2 2 }-V2. 21TVr
0 

= J f(x
0
)(x

0
-x

0
) (x

0
-x

0
) + r

0 
dx

0 
(3 .. 4) 

o (~o 
Integration by parts gives if we define g(x

0
) = J

0 
f(x)dx, sothat 

apparently g(O) = g(l) = O, 
2 2 ~e 2 2 -~ 

2 'ltVre = re .} g(x0 ) lt(x
0
-x

0
) + r

0
} dx

0 
0 

(3 .. 5) 

For all points except nose and tail is r
0 

p O, so that 
r'- S 2 2 -Vs.. . 

21[' V = l g(x0 ) l (xe-x0 ) + re} dx0 
. 0 

If both r
0 

and d~c/dx
0 

are very small one can derive an approximate 
Aolution by remarking that the integrand is then very large in the vi
cinity of x

0 
= xe' so-that this vicinity practically accounts for the 

complete value of the integr?,.l. If therefore dg(x)/dx is small, we can 
rupl~ce in the integrand g(x) by g(x

0
) so that 

2 TI" V = g(xc) )!{(xc - xo) 2 + r2} ... 3/2dxo . 

X -1 

+ ✓\x~ + r~\\ (3 .. 8) 

For points not situated in the neighbourhood of nose or tail, the two 
terms TTithin the braces are practically equal to unity, so that roughly 
holds g(x

0
)- '.It Vr~ (3 .. 9) 

We see, by the way, that dg(x)/dx is indeed small, because of the 
assumption made for r

0 
and dr

0
/dx

0
• This approximate solution is rather 

,::;:rude. In the case of a blunt body it fails completely and even in the 
case of a very slender body it shows some essent~o1 defects. If, for 
instance, ,we consider a very, say infinitely long body vt:....1.1-\ a nose 
that is conical over some length then wo find from (3.8) that bl~0 ~ 
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equz.ls some constant times r c, so that the source-strength varies 
linearly '7ith r

0 
and therefore with x

0
• This is, however, impossible 

because it w-0uld give rise to a velocit~ that is infinite at x0 = 0 so 
that the nose could not be there. 

4. A practical method of solving the integralequation as given by von 
Karman is to replace the fl;lnction f(x) by a discontinuous one. ha

ving a constant value over intervals of length~- This means that we con
sider a set of a independent sotµ'ces of str~ngth Qi' each distributed 
uniformly over the length~' and situated side by side along the axis. 
If one takes B points on the contour, e.g. with the same absissae as 
those of the centers of the sources• one ce.n compute the value of the 
streamfunction in these points expressed linearly in the unknowrsQ1 and 
the main streamfunction, and by requiring this stree.mfunction to·vanish 
we find B equations which we can solve for Qi. These equations, moreover, 
are of a type that can be easily solved by iteration, so that we have 
a very efficient way of getting an approximate solution to our problem. 
To increase the accuracy we can only increase a, of course, at the cost 
of much more computational labour. Ji'or doubling !! means first quadrupling 
the number of coefficients in the equations that have to be computed and 
roughly eight times as much work to solve the equations. 

The refinement that v,_e suggest now consists in :placing a_gain separate 
sources Qi at a distance! but not of constant strength over a width 
~ but with an intensity tha.t is Qi/a in the center and drops linearly 
towards both sides to become zero at a distance± a from the center. 
Therefore the total width of these sources is 2a'and they overlap one 
another. The superposition of these sources now gives automatically a 
continuous curve made up by straight lines, instead of a disco-nti.nuoui;s 
curve., If there is a continuous solution to the integralequation then 
our solution is most likely an order more accurate tha:n·von- Karma.n's •. 
If there is a discontinuous solution to the equation then the·· chance 
that the discontinuities of this solution and the artificial disconti
nuities of van Karme,n' s solution coincide· is negligible as we have no 
indication where they should be. If, at last, the:re is no solution at 
all, our version is not worse than anything else. Apart from the com
putation of the coefficients of the equations there is not any difference 
between von Karms..n Is original method e..nd our version of it. 

5 .. The computation of the streamfunction of our "triangular" sources 
runs as f·ollows. With the notations of fig. 1 the source-strength 

Je cistributed according to the law: 

-



n'equations 

n. . rk 2 
.z Ci~ zi = (a) 
J.=1 .. ., 

(6.2) 

Thie is the set of n equations which w~ can solve for z1• 
Of course we are not bound to use exactly n points on the contour 

above the sources. Indeed it is good policy in many cases to leave some 
points of this group out of consideration and te replace the missing 
conditions by other ones. 

For instance, one might require the nose s.nd the tail .to be at the 
right spot. This cannot be done by means of the streamfunction .as this 
function autome.tically vanishes on p·oints of the axis. The condition is, 
however that the velocity in the axial direction vanishes, so 

n Q .• 
V + y · __..L2 u . = 0 .(6.3) 

:t=1 27f a xin 

or dimensionless 

n 
r_ u i·n z. = 1 

i=1 X J. 
(6.4} 

On the other hand, if the body extends at one side practically into 
infinity, that means that it passes into a cylinder, we know the total 
~ource-strength that must exist 60 that this cylinder has the right 
radius r 00 ·• This gives the relation 

n 
1 2 i:.· Qi 
2 Vr - i=1 ~ = 6. (6.5) 

or dimensionless 
n L. r00 2 

2 i 1 z. = (-) = 1 a 

It is advisable to use these two relations, that is either (6.4) for -
both nooo and tail or (6.4) for the· nose and (6.6) for the parallel body. 
Otherwise one may get curious results. For instance, one might try to 
represent a sphere .and find oneself left with a lemon-shaped body. If 
the body passes into a long cylinder one should use (6,6) and restrict 
oneself to a system of sources in that part of the body where the radius 
still varies appreciably. If one tries to raise the accuracy by putting 
scurces a way up into the cylindrical body one may find for this tail
e,x'l of the source-distribution values of z1 of nearly constant a.m::>litude 
l:,,~t with alternating sign, what does not raise the accuracy but does 
T,''t i.ee the burden of compute.tion. 

Furthe~ one should not put the first source too nsa~ to the nose. 
By lack of better we advise to leave one souroe out and to put ~he first 

\ 



source-center at a distance 2a from the nose. Apart from .. that, if we 
~ss~e a sou.roe to be at a distance a from the nose and apply (6.4) : .. 
then the unltnown automatically vanishes, so we might as ~ell leave it 
out directiy. The same holds of course for the tail. 
when we have found the quantities z1 , the components of the velocity 
can be determined from 

(6.7) 

(6.8) 

From this v,e ca.n get the resultin~ velocity and the pre·ssure distribu
tion. 

7. Next we give a quick survey of the corr~sponding problems in per-
pendicular flow. At infinity the velocity be \1 ip .the direction of 

the z-axis that is per:9endicular to the x-axis." Yfe assume a set of 
doublets with their axes also in the z-direction to.be present at the 
axis of the body. ife extend the polar coordinates also with a third 
one, i.e. f· that determines the meridional sections·passing through 
the axis. The plane o/ = 0 contains the x~ and z-axes. In these coor
dinates the potential i of the doublet is (cf. von Ka.rm.an) 

M sin~ cos 'P g> • - - -~-- (7.l) 4,r ~2 -

where Mis the moment of the doublet. From this the·componente of the 
velocity may be computed from the relations 

(7.2) 

The analysis of von Karmin shows that such a system of doublets dis
torts the main stream in such a way that it surrounds a body of· revo• 
lution. It is, therefore, sufficient for the determination of the, in
tensities of the doublets along the axis to consider only the pl~ne 
f= 0 and to reQuire there that the flow follows the contour. 

Y.fe in•t;roduce again "Triangular:1 doublets, the intensity m of which 
again varies as 

m = ! <1- I {J ) 
<'! = 0 

for l~I ~ a 

for )~I> a 
'::1:e same process as before gives us 

62 . ...L.. 
x s:in.9 (7.4) 
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; iF~om this we derive the components of the velocity 

u = - ·M cos(£ (!) d\2 cos2 M cos'P u'xi·k 
,.x 4 'fl a 3 r .. x = 4 'IT' a.3 (7. 5) 

M COB <f (!) .f2 COS t 
· 3 r x tan° 4'if a ,;.;, 

- M cps 1'. u'ri·k 
- 411 a3 

(7.6) 

u = <p 
1 _ M sin _. u, . 

sin~ - 4 'il a3 cpik 

the requirement that the flow follows the contour can be expressed as 

W+ 
n 
'1: Mi 
i=1 , ~~ a3 u~ik 

n 
!: 
i::::1 

M. 

4-rr
1

~3 u' xik 

or if we put z! = 
1 

(7.8) 

(7.9) 

Therefore, we get again a set of n linear equations in the,unknovrils Zl• 
, "Nhen 'vYe have determined the z{, we find the velocity at an arbitrary 

point of \he surface from 
n 

ux = -W cos, f=1 u~ik zi (7.10) 

n 
u~ = w cos <f (1 - ~ ·u~ik z!) (7.11) 

1=1 J. 

n 

Ur = -W sin <p (1 +I:. u❖:i:k zl) (7al2) 
i=1 

8. The actual calculation of the quantities cik' uxik' and so on is 
not always easy in certain parts of the field, i.e. when the func

tion which we ha.ve to form the second difference is very large, whereas 
the difference that we want to know may be small. It is, however possi
ble to convert these expressions in many ways in second differences of 
other functions that are more manageable. 

In practice we have only to do vlith values of xi and of xk that are 
multiples of~, say ia and ka. All the quantities now only depend on the 
ratio rkia and k-i. We have constructed a set of tables for them, 

.canging f~r rkia from O to 2 and fo:r k-i from O to 9. In these tables 
,jne can read clirectly the quantities that one needs. 
Yt'ir negative values of k-i the following relations hold: 

'·'ik " = 2 - corresponding value for positive (k-i) 

= 
= 

" 
fl ff 

ft 

tr 

fl If 

fl 



t ' ., ' ., . . ::,;~.. .; .· ' ' , ' ' . ' ·, '. . ·,-, •,' ' ;·, . ."-;'' 
sfotmc.tipns mentioned a~oveA So is., , for instan:oj, .. the express.ion 
:"$.n. t"ia:(J.'1,rzj/2 cumb~rs,oltlle . fo.T ,s~ll, r'J;a; ~d la?'g~< ~~i ,as the~ ·~· 1s 
l •. l:lu:t :U vie ~se the ldentity , 

U~a in ~tm.2 ~/2:.: i 2 ln cos ~/(1+eos~) - ln S.1 ... 1/(lt-1')21 
X ... x l . J 

v,~. get 8'.~ a~ess1crn.·£w. :tt without t.hes.e troubles, but t:hat doe.s not 
,. f ., . . ::: . . 
,f19.b{w9rk for -k-i = o· 9r t-. 
4, •.. : . ; 

l•·' :1An9thex- identity ~a 

', 1~ -sin§ := ~i tan SI?• . < a .•. 2Y 

£r_C1lm which we learn that tbe second· difference that appears in the for ... 
· · mu.1~ for '1:rik is the same as that appears in the formula for u~±i• 

, , . . . 
The ,,ark of von Karman .that is often mentioned in -~bk ,0Ql1llll1Ulieati.Qn 
is: 

th. v. Karma.p, Bereo.tlnung der Druckvertei;lu~ an Luf'tschiffkqrpe:rn. 
· ·.,A."Qhandlungen aus·dem Aerodynamischen Institut' an de:r Technischen Hoc~::.. 

~ohule Aachen, Heft 6, 1927. 


