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Asymptotic expansiau;conneched with truncated series

of exponential and Bessel type.

1. Introduction.

A conjecture of Ramanujan (1) was the starting-point of some
papers: Watson(e) and Szegb(B) treated the function y(n), defined

by
e’ n , n°

n-1 n
_ n. n
Tttty et tve) ay o (1.1)

and they found the asymptotic expansion for y (n):

y(n)m%+-1—3%——5+ oo e ‘ (1.2)

A similar result, connected with e'n, was discovered by Altken
and proved by Copson; that, connected with dos n and sin n is given
also.

Theorems of the same kind are given by Furch(6), Mirakyan(T) and
Llouville(B)

The intention of this report is: To give in the first place an
expansion for the function O (n,w) defined by

()2 | (nw)? (o)1

nw _ .- nﬁ v ; L , . . (ﬁW)
e R v e AR GSL (iD(nw),

(1.3)

where w is a complex number. From this expansion, all results,
mentioned above, can be derived.
To give in the second place, an expansion forqyk(n,x) defined

b N & ‘ n

h S h n
X _ X X
ZZ% hT(h+k) %is hi{h+k)! * nl{n+k)! q>k(n’x): (1.4%)
where k> 0 and x is a negative number. One may be acquainted with
the fact, that the functions in the left-hand side of (1.4) are
closely connected with Bessel-functions. Finally an application of
this last expansion is given. ‘

2. An integral representation.

The first objeect is to flnd an integral representation for(@(n,w)
defined by:

1 4 00 gnW}esn__+ (nW)k-1 (nw) ¢)(n,w)= e (2.1)

3T 2! {n=-1)1! ni
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n
It is easlly seen that 2_1’: (n‘”) iﬁ“,’) fe"u (1+ z=)" du.

Suppose w real:

o0 -nW e
_ L U, uan oo
J‘ (1 + nw) du = Jﬁ e B ) du -+ jf e (1) dus=
o o ~nwW
{
nw
= - nw J{ ™ (1 )" du + n;
2 (nw)
!
n k n+1
) S S R I
5 I
°
n-1 ;. \K \n
(hw nw b NW
2;§' (’kg + nz q) (n,w)= e
y
#7(n,w)= 1+ nw . ‘[ ™I (1 - )P du. (2.2)

This integral representation holds by means of analytic continua-

tion for all complex w.

3. Transformation of u.

Next the complex variable
t = -wu - 1n (1-u) ‘ (3.1)

is substituted in (2.2), yielding:

|

: -nt du .
O (n,w)= 1 + nw Cf T at. (3.2)
where C denotes an integration path in the ‘t—plane given by (3.1)

when u varies from O to 1 along the real axis.
To get an asymptotic expansion for éi(n,w) one has to expand

the integral I = J -ut %E dt . v (3.3)

This can be done by replacing C by the real positlve axis and by
using a lemma of Watson(9); Let F(t) be analytic when [t] L a+§,
2> 0,8> 0 save for a branch-point at the origin and let

o0 m/r"'1
F(t)=)m a t when |t]<a, r>0;
7

also let ]F(t)]<:Kebr, K, b positive numbers independent of t when
t positive and t;aa.
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Then the asymptotic expansion
oo

Je*‘)t F(t)dtm?l a [ (g}-)v'm/r

o

is valid in the sense of Poinaare when IVl 1s sufficiently large and
larg \?[\< 1‘7/:2 -A, arbitrary > 0.

But to replace C by the positive real axis one has to lnvestigate
the singularities of %%, Writing w = reiLP s one has:

g’f&' = =W+ ‘1-1-u (3.4)

The critisal points are u = 1 and ug =1 - % , resp. t =00 and
ts = 1 -w + 1ln w,where log W be defined real for positive w; by
cutting the w-plane along the negative axis, so that -1 {arg w{w,
log w 1s made single valued.

The t-plane is divided by the positive real axilis and C in two

parts. Now the condition will ()
be derived that the point ts ///”’ﬂ,,,«fdvﬂw_
does not lie between C and D

. - : . -t G
positive axis, i,e, in G

t = -wu -ln(1-u) t,=1-w+1ln w

Im t=- ur singy Im T =-r 8in@+©

Re t=~ ur cosyp -ln(1-u) Re ty = 1-r cos@+ln r .

If there 1is a point ts, inside G, it must be possible to find
such u, that Im t = Im ts, thus

u =1 =~ R
| T sinQ

Since Ougl, must r>>» 'é"iLerTTp .

It is thus proved that for r<(sf; there' cannot be a singularity
inside G. In that case C may be replaced by the positive real axis.
If @ =1, one has Im ¢t = 0 and Im ts =T, In that case C is real

and ts is a complex point.

It r2 's"\iefi—\"p there exists u = 1 - = ﬁintp , 0€ud,

- =1 - P h -
Re ’cs Re t =1 Eg@+ in S1n 2 0 for - PpLAT,
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As ITm t is a monotone function of u, it 1s proved that for
4 .
;>>Eﬁfﬁb one singularity lies inside G.

4, Determination of the character of the singularity.

One has from (3.4)

du £1'u)(1—us> 1 1 (4.2)
at = u-u ) T W )
| s wE (u-ug)
Now %% has to be expanded in a power series of t-tsé
= w(1 e In{1-u)w = 48 -1 - 1n 1R o
t-ty = w(i-u)-1 - In(1-u)w = E 1= 1n o =

8
= - ‘w(u~—us)— lnE—w(u.auS)]r.-w(u-‘-us)-k Z;lg 11{— (w[u—us"_] )k =

-ZIL (wTusug] )" (4.3)

The t-transformation has therefore a branchpoint at t = tgi
For the convergence of (4.3) in u = 0 must Ju | < |1 usL or
Re uy = Re(1 = %)= 1 - % cos¢:<f§», which gives the condition
r2 cosy,; that is a inner region of a cirele with radius one and

with origin in point 1.

alg

5. Power-series expansions for

Flrst the case r<§%ﬁp .

du 1=-u

One has: a‘fﬁm .

By means of (3,1) and reversing of series one finds:

du _ 1 _ _1 o, a%ew t2 148wibwt t2
dt = T-w (1-W)3 11 (1-W)5 27 (‘1~W); 3T

o 1#22ws8uleele’ £t 1452wizesuleihindiioont £

(1-’-w)9 T (1~w)11 BT ee (5.2)

Now the case r;>5$§ﬁ$ ; P2 cosy.




-5 -

In replacing C by the positive real axls one has to make a 1loOp
around the branchpoint ts.

- (4.2):
du _ 1 2
at w§(u—us)

| Cee K k
W(~u)
From (4.3) t-t, = E ~—-E-~— one~has :

]

w x -2 0w, W : L by L
T TG (t+5)72 + 3 + = (t=tg)% + 135 (b=tg)+ ...

and

- E U PRS- SN S -
3t = WV_,tt)?- ﬁ+6wv§(tts)2+13w(tts)+...—-

=

e (b-55) % (5.3)

s
L8

where (t-t )% is defined as e Vtits as long as one does not pass
the branchp01nt ané as + Vt t as one has passed the branchpoint,
6. Asymptotic expansion of <b(n w). '

As the conditions of the Watson—lemma are satisfled, one finds,
using (5.2) for the asymptotic expan31on.af<b (n,w)i

1 W 1 §1+2w;w 1 (1+8w+6w2)w 1
n,w - y = + - " +
q)( )Nquw f1-w}3 T (1-w) n? (‘l-w)7 n>

L {1re2wsst®selnd)w 1 (1+52_w+328w2+444:w3+120W4)w Do
(1-w)? n* (1-W)11 n-
S (6.1)
@ ; R (=
which holds for r<m s Ifw=re ™, ~t<p LT
Now the case r> s:me s r<{2 cos.
One then makes use of expansion (5.3):
~te °°cc
S - '
(;;(n,w)mwn f ch e nt(t—ts)% (-)¥ atan z;cke 206t )t
5 =
© -t (6.2)
oo (=)
-nt (k+— ! -nt
=142 e Z 2k+1 ) +e ° n“%z;(-)kj e ~Vythiy
—nig (6.3)

where ts =1 - w <+ 1n w,
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As the expansion (6.1) becomes bad when w 1s nearly equal 1, one
“can better use (5.3). One then has

o P .
! a -
C@ (n,w)eol + nZ]Z_g ]ck e 0t (‘c-—ts)/ldt =
i -1 [ :
(&)

ca t o -\'Its
-n c
1 + e s Z _(.lﬁf.gl_'. -e ° E J —-g-c- eV vhay, (6.4)
“1 n™ -1 n "2
o

For w = 1 =~ %H an expansion of this kind was obtained by Furch (6).

7. Some specilal cases,.

Taking w = -1 in (6.1) one has:

1 1 - 13 _____)"'7 (7.1‘;

11
Ny,=-1)ox + + - - - « o
C{) (=107 + g7 3on° 12802  512nt  2048n°

which corresponds with Copson's result (4), except for the coeffil-

client of n~ ' given there as - g%% .

: n-1 k¢, y2k Dy y2n |
One has: cos nw ill«éﬁgl"—~ + £:l5égﬂlm— Req)(En,iw)

it
ol

n-1 ( )k(nwvﬁk+1 Ng.. on-k1
-) (nw) (=) {nw)
CrFTT f T ERET T Re(%’(zn’iw)

and sin nw =
0

and for Re(?(2n,iw) one finds;

2 2 2 2, 4
Re (En,iw o 1 + w (3"'W ) l“W (7”3OW +11w ) 1 +
qb ) 14w° 2(1+w2)3 n 4(1+w2)5 o
L w2(15-2t5uP 451 w8l ®) 1 T,
8({1+w=) 1 n’
_ w2(21-1422w2+8634w4-1221§W6+4304W8—274w1O) SR (7.2
16(1+w‘)9 n
Teking w = 1 one has:
Re (en,1 PO T TR R &, + _;29 .. 7.%"
(;J ozt e 320 12800  51en” ' ( '

which corresponds with the result given in (5) except that the
coefficient of n~' given there is - 5—51% i ‘
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Finally the case W = 1; one has £, = O.

Using (6.2) one has, after inserting the coefficients Cp acéording
to (5.3), : |

% PR Y T XY
DotV ot e Lo VE oo ot g VFo

(7.4)

Watson (2) and Szego’(B) gave an expansion for y defined by

n-1 k n
n n n
—é—- e T = E %7 + ¥y ‘ﬁT .
0
. n-1 _k | n
. . n n . n
C'ompaz;lng. thril,s with e =2'_1§ w (? (1) 57 one has
' ! 0
y =¢(n,1)- 22
2n
Stirlingts expansion'giveé:
n ,
nile \/Ttn 1 - “{
(3% " 1 + + v e o ° -
Thus: y ‘
y«\:%-+ T35 n~t oL, (7.5)
and these are the first two terms Watson gave .
8. The approximation cornnected with J, (x).

‘As in the preceding sections one can try to give an analogue
expansion for J,(x) and I, (x). It appears, however, that it is
easler to treat the function

h
<.
x) = . 8.1
Iéo,k( ) , g;o Ez(H‘ k)1 | (8.1)
It is shown already in (10) that
%o,k(—x)= Jk(E \/-;)/( V‘;{*)k; \ (8.2)
and
I (%) =-Ik(2\F2)/(\F£)k, (8.2)
where x> 0.

Putting again

' h
Iy, x(x)= éo BT(RTR)T L (8.3)




~ 8 -

one defines qik(n,—x) by the equation

n
X
(%)= T (%)= (-1 @ (n,-x) FrEEETT (8.4)
and one can derive the following representation(1o)
‘ VX n
Kk+n | ‘ £? ~k-n
P (ny=x)= 2" (kan) 1 . dt,Jk+n+1(t). 1~ % t . (8.5)

o

Substituting now into (5) the well-known integral-representation
for the Besselfunction of the first kind (11)
!

~k~-n, k+n+1 1 ’
2 t 2\ k+n+s
J t 1~ .cos t 8.6
k+n+1( )= (k+n+d :V““ dy-(1-57) ¥ ( )

it results after application of the transformation

=2v>? Vo

u
that ' . ;
LPk(n,-x)*—-' (k'{'n,)! f f dt.t. eos( ) [_ :) [ ] 4:

2 (k) VT x
(8.7)

In order to derive the desired asymptotic ?ormulae one has to

expand first
t2 n t2
(1 - ) = exp[jn log(1 - EEQV =

exp(— n QZ; __J%T——ﬁ)z
h=1 h.,4".x

i

2 h 6 8 2 8
t™n tn tn tn
ex - v 1 hat - + - o e ® e 8-8)
p{ 'x} [ 32x°  192x°  2048x'  1024x" (

The expansion for the logarithme converges uniformly in the region
1£].<2VX, so the expansion mentioned in the last member of (8.8)

i

will converge uniformly in the same set.
By introducing

V=k +n + %‘,

exp{-é ug\)}[_ kun\) . 'u6\'l + w2 _ wy 1
‘ x C3ox°  192x”  2048xT  102hx’
(8.9)

one sees easil$

1 u° _
-1z | =
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the series in the right-hand side converges'againyin‘a region

lul <2 Vx.

For convenience let be. introduced now
. t2 n u2 v
£{t,u)=[1 - = 1T - 1% (8.107

Of course f(t,u) is also dependent of n,¥ and x. It is shown
already that f£(t,u) can be expanded in a series

oo
2. .2 :
‘ t n4u 1 .h at
f(t,u)= exp {.. __%3{,1._\2.} ,[ :Z;; fl,h tTu ] (8.11
' h=0 N

fl,h being sultable coefficients and the geries converges in a
neighbourhood |u|< 2 VX, |t]<2Vx.
From this 1t can be proved that
2K

VX'
P, (n,-x)= (letn) | du dt.t,cosl-EL). £(t,u)=
oVrrx (ktn+) 1 J 2Vx
h+1=M

2V % (k4n+s)! _rl;g

{kn)} ZZL £ at. g1t uhcos(JaéJ.
2Vx
o o

exp{ —~%§E~25»A—Rn k(—x M) (8.125

where Rﬁ,lé'X’M) stands for

CO
2 =
(k4n) 1 z 141 tu 5040573 |
: at.e 1 P eos( -) exXp{ = =~k
2V x(k+nt+:)! h> 0 1,h e P T
1>0 _ E
h+1>M © (8,13

Let be put the following condition

VE _ -
n‘:.l;j;lll -{1—-1">O. (’Jv‘-,;
It may be possible that this condition is no%t necessary, put it

1s a sufficient condition. One can put now the upper limits of the

double integral equal to infinity. The error, made by dcing so, 1is

asymptotically of such an order, that it can be neglected. For

cO oD

2,..2
du ‘/ﬂdt tl 1wl cos ( =) .exp E—%E— +
Lrn
O O 2rh,.eo
' 2,2
+ at. du.t1+1.uh.cos(§%%). exp{ z tu } = 0(e™).

| r°n

arn
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So one has finally

. h+1=M o £
| 2V “4~’k~l—n+§—)! h=0 ’ 2Vx
1=0 o ©
2 ., .2
tenausy \
.exp{; ——wqﬁzn—} + Rn,k('X’M)
(8.15)
g. Some calculaticns.
Now one needs the'follOWing integrals:
oo .
2a (2. u) | \
Gop= | du.u™".cos 2.Y.exp (- 75;), - (9.1
o\Vx
and o B
| 2 ¥ e
-pt 2a+
Hogiq= /dt.e ptT g2atl ;» Wwhere p = (1%-{- + 13_1\7) (9.2}
0

These integrals may be calculated from the expressions found in

(12).

So one finds o
X“l

T "
GO “\/ N s
x° > .2 4
G4=GOV.-¢(12\) - 12 5N + t7),
G = Gy-T5 (12093 - 180 29 2 + 30 tH - Oy,
dg = GOe‘E{-@; (16803 * = 3360 t203 + 840 tM2 - 56 9 + £8)

(302qu - 75600 2 *+25200t") 2-2520£% 2490t £ 193,

G10= G Q1o
and

H = 8!

2a-+1 2pa+1
One also needs an asymptotic expression for T&%%E%%T s Which may
be found in Norlund (13)
, Z” (-1)5(5%) pls+)

| Z+ﬁ)i = AR > v s (z>0). (9.3)

z1\z oo (21%) (z+%) ... (z+547) 9.3
From this one derives

z1\ z 1 1 + 5 . (9.4

- s -
7*’2‘7—& Clat2) " 128(z43)° 1024 (z4d)”
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Combining the results mentioned in the formulae (8.8), (8.9),
(8.15), (9.1), (9.2) and (9.4) one finds after some more integrate

calculations the series:

o1 . ..n _ 63°pP-63p+]
Pxln =)V mp - 8y T 53 T

; ”1‘ n 20\?3p3—-30\72p2ﬁ1037p-1
LTy R v RS
1289 64V xp 64N

n(3\7 2.9y p+3) .3 n° 210\3”’1@4 420fp3+210\?2p2 42p 43
256 x°¥ 'p Srextooy 512V 7 p
(9.5)

The special case x =~n2 gives the theorem: The function %n’k(x)
can be written for negatlve X in the form

0

n
=) X x 2
Lo, ()= £~ BI{RFR)T © BT(n¥K)] P (n,=m")

where ¢7k(—n2) possesses the asymptotic expanslon:

1 kb, K51

2
P(n,n)eo 5 - 55 +8n2 F oo

10. The approximation connected with I, (x).

The way glven by section 8 can also be used to obtain the
integral-expression for(pk n +x), x)-O

@k(nax)“ 2(1{—(}-?:))1\/**_' jdu/dt .t.cosh( tu> (1 4x (:}z)‘l:')r

But now the trouble begins, especially in the case x = n2 one

20 20
has

)k‘H'b i
2 (k+n+% ) IVIT n

s

dt.t. cosh(2~) (1-—§)n (1~—§

7 2
(Pk(n,n )=
s o (10.2)
t2 \n W©  ktn+l
and one sees that replacing (1 - E—g) and (1 - Z—E) 2 by the
n

n
expansions (8.8) and (8.9) yields a false result. Replacing the
upper limits of the integrals by infinity is not possible.

It must be possible, however, to write

b 0?) - T e e - Pr(nn?)
2 L,x(07) - I o W%)= iyt - Prlinn’)s
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with oo
~-h
ka(n,n2)= ZLA a, n .

h=0
The coefficients a, are functions of k, and for k = 0 or 1 the
values of a, are numeritally found resp. = % and - 2,

)

11. An &dpplication.

The expansion (9.5) can be used to estimate the number of real
zeros of the function In’k(xj. As already mentioned in R 173, these
Zeros are all negative,

It holds now for sufficiently large values of n and x

5xn

In,k ("X)= ];y\,,k("X)-l- (-1 )nwk(n,~X) m N

'S0, if x is @ zero of In;k(x); one has

(1 oy mx). gy = To-)= T 2VEV/(VFE

or, by using only the first terms of the asymptotic representation
for J, (2VX) and of the expansion (9.5) one has

n+1

— [0 R .
K
nNMmM{&wwawm} o\t x 2t
Introduding a number r by x = -r h2, one gets in a manner similar

to thatuséé in R 173 an expansion for r. So it appears that rrojg is

that value of r above which there are no zeros of In k(x) poSsi%le.
. 3
To determine the number of zeros lying in the interval
-r n2<:x<10, one can,use Schafheitlints result (14>; the number of
zeros 1s equal to —H~g + 0(n).
TCe
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