
MATHEMATISCH CENTRUM 
2e BOERHAAVESTRAAT 49 

AMSTERDAM 

REKENAFOELING 

Leiding: Prof. Dr Ir A. van Wijngaarden 

SOME THEOREMS ON ASYMPTOTIC EXPANSIONS AND 

DOUBLE INTEGRALS 

by 

J, Berghuis. 

MR 11. 

1 9 5 3 • 

tj1tiL1._,,"ft-1HK MATHEMt\TISCH C':1'1TRUi1 

AMSHP-DAi'i 



SOME THEOREMS ON ASYMPTOTIC EXPANSIONS AND 

DOUBLE INTEGRALS 

Introduction. 

MR 11 
by 

J. Berghuis. 

The author has the intention to write his 
thesis on the subject "The calculation of 
asymptotic residus for double integrals". He 
therefore needs a number of theorems such as 
theorems on the expansion of simple integrals, 
theorems on the existence and the transforma
tion of double integrals, theorems on the so
lutions of some equations> etc. These theorems 
are collected in this paper. Numbers in square 
brackets refer to the list of references at 
the end, 
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CHAPTER I 

Some Expansions of Simple Integrals. 

1 • Definitions. 
The expression "the function p(x) can be expanded in ascending 

powers of x for small positive values of x" means, that for small 
positive values of x the function p (x) can be represented by a 
series of the form 

o<) 

p(x)= L 
h=O 

where the exponents bh are mutually different real numbersJ in
creasing indefinitely with h. If x~O the function p(x) tends to 
zero if and only if all exponents bh are positive. 

The expression "the function _p(x) can be expanded in the inter
val (a,a,) in the neighbourhood of the point x = a 11 means3 

A1. if a is finite and if a•> a: for small positive values of x-a, 
the function p(x) can be expanded in· ascending powers of x-a; 

A2. if a is fin 1 +c, 'ind if a•<a: for small positive values of a-x 
the functions f(x) can be expanded in ascending powers of a-x; 

B. if a =oo and if at< a: for small positive values of x-1 the 
function p(x) can be expanded in ascending powers of x-1 ; 

C. if a= -co and if at> a: for small positive values of (-x)-1 

the function p(x) can be expanded in ascending powers of 
(-x)-1; 

D. if a•= a, the expression does not contain an assertion about 
the function p(x)J whatsoever. 

If f (x) does not only depend of x., but also of another parameter 
y and if the relation (1 .1) holds untformly in y, one says that 
for small positive values of x the function p (x) can be expanded 
uniformly in y. 

The expression "the function ;P (x) can be expanded asymptotically 
in ascending powers of x for small positive values of x 11 means, 
that it is possible to find a formal series 

c0 bh 
L Bh X ) 
h=O 

where the coefficients Bh and the exponentsbh are independent of x 
and the exponents bh are mutually different real numbers; increasing 
indefinitely with h., such that for each fixed integer H,>. 0 the 
relatiot;1 
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H-1 b q 
,lO ( x) = L Bh x h + 0 ( x H) 

h=O 

holds, where qH (H= 0,1, .•. ) are suitably chosen real numbersi 
independent of x, increasing indefinitely with H. 

( 1 • 2) 

The expression 11 t·he function Y, (x) can be expanded asymptotical
ly in the interval (a,a 1 ) in the neighbourhood of x. a" means,; 

A1. if a is finite and if a,> a: for small positive values of x-a 
the function p(x) can be expanded asymptotically in• ascending 

powers of x-a; 

A2. if a is finite and if a1 < a: f6r small positive values of a-x 
the function ~(x) can be expanded asymptotically in ascending 
powers of a-x; 

B. if a = oc and if a 1 < a: for small positive values of x""1 the 
function f (x) c'an be expanded asymptotically in ascending 
powers of x- 1 ; 

C. if a= -co and if at> a: for small positive values of (-x} -1 

the function p(x) can be expanded asymptotically in• ascending 
powers of {-x)-1 ; 

D. if a = a1: the expression does not contain an assertion about 
the function p(x), whatsoever. 

If f(x) does not only depend of x, but also of an other para
meter yJ and the relations (1 .2) hold uniformly in Y> one says that 
for small positive values of x the function f {x) can be expanded 
asymptotically uniformly in y. 

2. Some simple properties. 

Theorem 1. Suppose that for small positive values of x the function 
<f (x) can be expanded asymptotically in ascending powers of x 

so that f (x) can be represented asymptotically by the formal 
series 

00 

L 
h=O 

One assumes the exponents bh to increase stcadil~'. Then it is 
always possible to choose the exponent qH used in formula (1 .2) 
equal to bH. 

Proof: Using (1 ,2) with H =Kone finds 

Since qK increases indefinitely with K, one can choose K so large 

that qK~ bH, 
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From 

it follows that 
H-1 b b 

cp ( x ) = L . Bh x h + 0 ( x H) . 
h=O 

An analogous theorem holds if 'f (x) can be expanded in 3.scendins 

powers of x for small positive values of x; this theorem is not 
given here. 

Theorem 2: Be (3 a fixed real number;be, for small positive values of 

u, r (u) a real function that tends to a limit o<. if u tends to zeroy 

that, for small positive values of u) is either continually > o<.. or 
continually .::: c;,(.. • 

For each small positive value of u and for each x of the closed 

interval (1 (u);;'?)) the function p(x,u) is supposed to be expandable 
asymptotically in ascending powers of u uniformly in x. 

It is assumed, further, that it is possible to find a positive 

number a with the following property: if 0(... is finite> then 

ua(l(u):cx.) tends to a finite limit/ O if u-+O; if o<. is infinite, 

then u-a ~(u) tends to a finite limit/ 0 if u--).Q. 

Finally it is assumed that one can find real numbers bh 

(h = 0,1,2, .•• ) with the following property:b 

if c,<., is finite, the function fh(x)(x-<X-) h tends to a finite 

limit/ O, if x tends tocf.,..from the same sidebas ~(u) does. 
if~is infinite, the function ph(x). x - h tends to a finite 

limit t- 0, if x tends_ tool. from the same side as ~(u) does. 

Under these conditions abh + ch increases indefinitely if h in
creases indefinit9ly. 

Proof: For each x of the interval(~ (uL/3) holds uniformly in x: 

!i::J ch , qH 
<f ( X, U) = 2_ U ~h ( X) + 0 ( U ) 

h=O 
and 

where the exponents qH increase indefinitely with Hand qH+1 ~qH. 

Hence for each x of the interval (? (u) ,f->). holds uniformly in x 

CH . qH 
u ftt(x)= o(u ), 

or with x = f (u) 

CH qH 
u ;f'H ( r ( u) ) == 0 ( u ) . 

In the case that .oz.. is finite, one has 
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-b 

)fu)-o( \ H = O(fH(x)) 

and 

So one finds 

C 

= 0( 1/'H(~(u)) u H) 

q 
=O(uH). 

From this one deduces qH~a bH + cH' so that abH + cH increases 
indefinitely with H. 

The proof is analogous in the case that c,<.. is infinite. 

3. Expansion of an integral. 

Theorem 3. Suppose that the integral 

1(u) 
J(u)= J f(x)dx 

~(u) 

exists for small positiv~ values of u. It is assumed that s (u) and 
'7_ (u) are real functions of u such that 17, (u) ~ $'(u), and that these 
functions can be expanded asymptotically in ascending powers of 

u for small posittve values of u, and that f(u) resp. ~ (u) tend 
to the limit o<. resp.fa if u___,,.o, Finally it is assumed that <f(x) 

can be expanded asymptotically in the interval (1(u),ct) in the 
neighbourhood of x = c<, and also that y> (x) can be expanded 
asymptotically in the interval ("7_ (u) ~./.3) in the neighbourhood of 

X =(2>• 
Under these conditions there exists a constant C such that 

J(u)- Clog u can be expanded as.ymptotically for small positive 
values of u, 

Remark: Under these conditions there exists, therefore, a real 
constant )( such that 

J(u)= O(u-X') 

for small positive values of u, 

Proof: In the case that o<. is finite, 
a formal expansion of the form: 

the function f(x} possesses 

oo bh > Bh jx-o<. \ 
h=O 

( 3. 1 ) 

where \x-c<\= x-0( if t(u).}.o<. , and 
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\x-cxj=•x'.-x if 1(u)~oe. 

L' b ·,y; ( x) = h Bh \ x-o<. I h' 

where the dash denotes that the summation is extended only over 

those values of the index h, for which bh < -1. 

A number Bis defined as follows: 
if in the expansions (3.1) a term occurs with exponent bh = -1, 

then Bis equal to the corresponding coefficient Bh; if such a term 
does not occur, then Bis equal to zero. 

Finally the function r(x) is defined by 

y?(x)=1'-'(x) + B !x-o<.i-1 + r(x), 

so that for small positive values of jx-~J the function r(x) can be 
expanded asymptotically. · 

In the case that ex:. is infinite:, the function p(x) has a formal 
expansion of the form 

oa -b 
L_ Bh \x\ h, (3.2) 
h=O 

where \xi = x if o<=oo, and Ix/= -x if c<= - co . 

Be 

where the dash denotes, that the summation is extended only over 
those values of the index h, for which bh < 1. 

A number Bis defined as follows: 
lf in the expansion (3.2) a term occurs with exponent bh = 1, 

then Bis equal to the corresponding coefficient Bh; if such a term 
does not occur, then Bis equal to zero. 

Finally the function r(x) is defined by 

tp( x) = "f ( x) + B \ x \ - 1 +r ( x) , 

so that for small positive value~ of lx\-1 the function r(x) can be 
expanded asymptotically in ascending powers of \x\- 1 . 

If c<. is finite and if $(u) is not identically equal to ex., then 
there exists an uniquely determined positive number~ such that for 
small positive values of u the function u-a(,:x.-r(u)) can be expan
ded asymptotically in ascending powers of u ,. In this expansion all 
exponents are ~ 0, and the first term is equal to a constant -/= 0. 

If c<. is infinite and if_~ (u) is not identically equal to cx., then 
there exists an uniquely determined positive number~ such that for 
-small positive values of u the function ua Z (u) can be expanded 
asymptotically in ascending powers of u. In this expansion all ex
ponents are ~O, and the first term is equal to a constant~ O. 
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. In the proof the following cases are distin6uished: 
I: It ls possible to determine a finite fixed number A, such that 
for sufficiently small values 

val (~(u) ,1(u)). In that case 
A 

J(u)= / 
r(u) 

of u the number A lies in the inter
one can split up J(u) as follows: 

1{(u) 

y;i(x) dx + j f (x)dx. 
A 

The demonstration is quite the same for both integrals and is 
given only for the first one. Three subcases are distinguished. 
Ia. Be o< =A.Since 

ex A 

f f (x)dx = j p(x)dx 
f(u) f(u). 

in the expansion of f(x) 
exponents~ -1, so that 

exists, there do not occur 
powers of o( -x, terms with 

H-1 
p(x)= L 

h=O 

bh bH 
Bh (<X-X) + 0( (o(-X) ) , 

where each exponent bh > -1 . Consequently 
0( 

J H-1 B b +1 
f(x)dx = - L b ~1 ~-r(u)) h 

f (u) h=O h , 

in ascending 

From the fact that the function u-a(~-f(u)) in which the constant 
~ is positive, can be expanded asymptotically in ascending powers 
of u, for small positive values of u, the same property follows 
for the integral in question. 
Ib. Be - oo < o<. < A. One has 

A 

/ f(x)dx 
.f (u) 

A 

=/ y,,(x )dx 

f(u) 
A 

+ B log(A-~)+ / r(x)dx 

' (X r(u) 
- B log({(u)-c()- j r(x)dx, 

O<. 

The first three tt:::rms of the right hand side are independent of 
u; in the same way as above one sees that after addition of 
aBlog u, the remaining.terms can be expanded asymptotically for small 
positive values of u. 
Ic. Be°'= - 00 • Without loss of generality one may suppose A to be 
negative, for if A is not negative, one can consider the integral 

A J y? (x)dx, 
Al 
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·where At denotes a finite negative number, as a constant indepen

dent of u. 
Again one has 
A A 

j fD(x )dx=. / ,y;(x )dx 

f(u) r (u) 

A f(u) 
+ j r(x)dx... ;· r(x)dx 

-c,Q -oo 

~I Bh -b +1 
= - L.._'5':"+'f A h - Blog jA! 

h ~(u) 

+ B log \~(u)j - J r(x)dx. 
-c:-o 

A 

+ J 
-= 

If it is proved that for small positive values of u the integral 
f(u) l r(x)dx can be expanded asymptotically in ascending powers of u, 
then it is proved that· the right hand side can be written as the 
sum of -a Blog u and a function that can be expanded asymptotically 
for small positive values of u. 

The function r(x) can be written in the form 
H-1 -bh -bh 

r(x) = D Bh \x I + 0 (\xi ) , 

where the summation is extended over those values of h for which 
bh > 1, a.nd where bH increases indefinitely with H. So 

ff(u) ~-: -b +1 -b +1 
r(x)dx =- Bh(l(u)) h + o({1(u)} · H ), 

-c0 h 

and by this the desired result is obtained, since ua 1(u) can be 

expanded asymptotically for small positive values of u in ascendin6 

powers of u, where the first term is a constant. 

II. It is not possible to determine a finite fixed number A such 
that for sufficiently small positive values of u the number A lies 

in the interval ({(u) ,~ (u)). Hence ex= /3 
Moreover, one knows: 

if~ is finite then either o< ~ r(u)~ '( (u) or o< ~ J(u) )1 7)(u) i'FJlds 
c:mc~ turt her 

if o<= -co then o< ~ ~(u) ~ '"rl (u) holds and finally 
· if rx= co then o(.~ ~ (u)~ 1°/_ (u) holds. 
The proof can be given in the same way as above. 

4. A generalisation. 
One can give a generalisation of the theorem mentioned in the 

preceding section: 
Theorem 4. Suppose that for every small positive value of u the 
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1(u) 
J(u)= j p(x,u)dx 

f(u) 

exists. Suppose further that ! (u) and 72 (u) are real functions for 
positive values of u that· can be expanded asymptotically in 
ascending powers of u for small positive values of u. Their respec
tive limits are indicated by o<. and /3. For every x of the closed 

; 

interval (s(u),~(u)) and for small positive values of u the function 
t(x,u) is supposed to be expanded asymptotically uniformly in x 

by means of 

t(x,u)rv L. 
h=O 

One assumes that the coefficients rh(x) are integrable in the 
closed interval (r(u),~(u)) for small positive values of u and that 
the exponents ch increase indefinitely with h. 

Finally it is supposed that the functions f h (x) can be expanded 
asymptotically in the interval (f(u),o<.) in the neighbourhood of 
x = ex and also in the interval (11_ (u);.' J}) in the neighbourhood of 

X = /3 • 
Assertion: i: If t (u) and 7 {u) are finite for small positive 
values of u, then one can write J(u) in the form 

where J 1 (u) and -J2 (u) can be expanded asymptotically for small 
positive values of u. 

ii: The assertion above also holds in the case that 17_ (u)= oo for 
small positive values of u, for every fixed integer H? o holds 

H-1 
,° (x,u)= L 

h=O 

where (QH(x) denotes a suitably chosen positive function of x that 
is integrable in the· closed interval (~ ( u) ,c0 ) • 

iii: The assertion i, also holds in the case that r (u) == - c0 for 
small positive values of u, if for every fixed integer H ~ 0 holds 

H-1 ch CH ~ 
f(x,u)= L u 7"h(x)+ O(u '±'H(x)), 

. h=O 

where PH(x) denotes a suitably chosen positive function of x that 
is integrable in the closed interval (-oo., ,z(u)). 

iv. An analogous result holds if at the same time f(u)=-cO 
and 1 ( u) = co . 
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Proof: The four assertions are proved as follows: 
i: Uniformly in x holds 

Inserting this expansion into the integralrepresentation of 

J(u), one gets 1z (u) 7t1 (u) 

J ( u) = t: u ch J f h ( x) dx + / 0 ( u qH) dx 

h=O r(u) f(u) 
~(u) 

For every h ~ O the integrals / fh(x)dx satisfy the conditions 

~ (u) 
of theorem 3 and, therefore, they can be expanded asymptotically 
for small positive values of u with tbe exception of a logarithmi
cal term. The remainder term can be written as 

o { 111 ( u )- r ( u > 1 u qH}. 

It is always possible to determine a real number f such that 
u-J'h(u)- r(u)j tends to a finite limit-/: 0, if u tends to zero. 
The remainderterm is:, therefore, of the same order as u qH-oJ and 

q}C ~ i.nc I\.:~ ase s ind-:.! i' in i t-2 ly with H. 

So J(u) can be written in this case in the form 

J 1 (u) log u + J2 (u), 

where J 1 (u) and J 2 (u) can be expanded asymptotically for small 
positive values of u. 

ii. If o<< oo, one can split up J(u) as follows: 
A c-o 

J(u)=I(u)+K(u), I(u)= j y>(x,u}dx, K(u)= / p(x,u)dx, 
~(u) A 

where A denotes a finite real number independent of u such that 
for sufficiently small positive values of u r(u)< A. The assertion 
for I(u) has been proved already under i. The assertion for K(u) 
holds in virtue of: 

0-0 (Y.) 

r= ch f C j <D H(x)dx) K{u)= u fh(x)dx + o(u H 
h=O A A 

H-1 00 
ch 1 

C 

=L u ~h(x)dx + o(u H). 
h=O 

Therefore, the assertion holds also for J(u) itself. 
ii, b. If o( = CY.> the assertion follows from 

o,O 

H-1 C J C 
J(u)-- ~ uh ( h L- 'Ph x)dx + O(u 

h=O 1(u) 
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In the ca&~siii and iv the proof can be given in a way analogous 

to the one used for the second case. 

5. A more ~omplicated integral. 
Finally there will be given an expansion of a more complicated 

integral. This expansion is needed for the calculation of asymptotic 
residu_c; along critical lines. 

Theorem 5: Let J(u) be an integral of the form 

'2 ( u) 

J (u) = f X (x~o<) f (x )dx, 
f (u) 

that exists for small positive values of u. Again t(u) and 7(u) 
are real functions for positive values of u, that can be expanded 
asymptotically for small positive values of u. Their respective 
limits are called o<. and j3:,;; where o< is a finite real number. For 
sufficiently S!flall po~itive values of u holds 7?. (u)? r (u) > o< • 

Put t\(u)= u { ~(u)-o<.}-1 and r(u)= u { f(u)-c:< 1-1 • Both functions 
of u are, therefore, positive and for sufficiently small positive 
values of u holds A(u)~ L(u). The respective limits of A(u) and 
Z-(u) for u~o are indicated byo and J . These limits are ~ 0 oro?. 

Assertion: It is possible to write J(u) as follows 

where J 1 (u) and JII(u) can be expanded asymptotically for small 
positive values of u, if the following conditions are satisfied: 

i. The function f(x) can be expanded asymptotically in the 
interval ·(c<, ~(u)) in the neighbourhood of x = o<. and in the interval 
(!3 ~(u)) in the neighbourhood of x = /3 . 

ii. The function X(v) can be expanded asymptotically for small 
positive values of v. Moreover, it can be expanded asymptotically 
in the interval ((,A(u)) in the neighbourhood of O and in the inter
val {~,T(u)) in the neighbourhood of~ . 

iii. If ex=/'.:>;; then the integral 
r(u) J I X(v)I dv 

A(u) 

exists for small positive values of u and there exists a positive 
number 0< 1, independent of u, with the property that u-e (12(u)-o<.) 
is finite for small positive values of u. 



iv. 

- 12 -

If o<. < ,<3, then the integrals 
I 

T(u) 
and j } X ( v ) \ d v 

A(u) 

exists for small positive values of u. 

Remark: One gets an analogous result if the condition ">c (u)~ f (u)> o( 

for small positive values of u is replaced by o< > t(u) ~ 7/_ (u) for 
small positive values of u; in that case one has to replace x-°' by 

o<.- x. 

Proof: I. Be first considered the case o< =/~: Suppose that for small 
positive values of x -o( the function p(x) can be represented 
asymptotically by 

H-1 
y(x)= 2= 

h=O 

Then one finds for J(u): 

li=1 I 

J(u)= L Bh Ih(u)+ O(IH(u)); 
h=O 

where ->z (u) b 
Ih(u)= j X (X~()(.) (x-o<) h dx, 

f(u) 
which integral can be written by means of the substitution 

( ) -1 . t v = u. x-°'- in he form 

With the aid of theorem 3 this in~egral can be expanded asymptotical
ly for small positive values of u, with the exception of a logarithmi
cal term. 

Further 

that is equal to 

bH+1 
u 

-b -2 
V H d 

One can distinguish now the two cases: 

v. ( 5. 1 ) 

Ia. Be f)O. For sufficiently small positive values of u the in
equality 1\(u) > f holds, so that in virtue of r(u)~ ;\(u) holds: 

"1)\X(v) I v-bH-
2 

dv = 0 7:J) \X (v)(dv. 
A~U) A\U) 
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From the remark, added to theorem 3 and applied with 
,P(x)= \ X (x) \ , it follows that there exists a real constant 'f:. 

such that the last integral is of the order u- ):;' . The integral in 
bH+1 - X' (5.1) is also of the same order as u , where the exponent 

bH+ ·1-~ increases indefinitely with H, so that this integral tends 
asymptotically to zero for H-:} oo. The case Ia ( Q<. = /3, a> 0) is, 
therefore, dealt with completely . 
.!E_. Be o= O. According to condition 3 the expression 

1-e 
u-e (7(u)- o<.)= ~(u) 

is bounded for small positive values of u. So in the interval 
t\(u)~v ~ Z-(u) holds 

, ... e 1-e 
1- -1 < u 

U V --;:q-uy 

and, therefore, this is 
is at most of the order 

GbH+2 G -1 
u 

also b~unded, so that the integral in ( 5. 1 ) 

Applying again the remark of theorem 3, one finds that the last 
integral is of the order u-~, so that (5.1) is at .most of the 

QbH+20-1- 1-: order u , where the exponent 9 bH + 2 El - 1 - J'. increases 
indefinitely with H. This is the proof in the case o<.. = /3, o = 0, so 
that the case I., where o<. = .-0, is dealt with completely. 

II. Suppose o<, </o. One can choose in the open interval (o<,_;3) a finite 
real number A independent of uj for sufficiently small positive 

values of u holds "{ (u) < A< 1 (u). 
Under IIa the theorem is proved with r(u) replaced by A and 

under IIb with~ (u) replaced by A. Addition of the two derived 
results gives the desired theorem. 

IIa. In the interval A~x~1(u) the quantity x~o< is a small posi
tive number, if u represents a small positive number, so that for 
small positive values of u the function X (~) can be expanded x-o<. 
asymptotically uniformly in x in ascending powers of u: 

\ u . 
H-1 u ah aH 

/ ( "x-"o() = L Ah + o( u ) . a aH h=O (x-o<.) h (x-o<) 

Using theorem 4, applied with 
' 

y>(x,u)= X (X~Q() <f(x) 

the integral taken from A to 7 (u) can be written in the form 
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where I 1 (u} and r 1 i(u) can be expanded asymptotically for small 
positive-·values of u. 

IIb. Finally one deals with the integral 
A 

I(u)= r X (X~OI) r (x)dx, 
r(u) 

where A denotes a finite number larger than·°". 
For small positive values of v holds 

H-1 
~ (v)= L 

h=O 

a a 
Ah v h + O(v H) 

and for small positive values of x-o<. holds 

H-1 bh bH 
y>(x)= L Bh(x-c<) + 0( (x-o<) ) , 

h=O 

where ah and bh increase indefinitely with h. Now, put 

and 
(5.2) 

(5.3) 

where'I:1 andL2 are extended only over those values of the index 
h~ for which the corresponding exponents ah and bh are negative. The 
funct.ion r 

O 
(x) tends to a finite 1 imi t as x tends to o< , so that 

one can choose A such that Y,(x) is bounded in the closed interval 
( o<.., A). It is clear that the functions X

O 
(v) and Y,

0
(x) can be 

expanded asymptotically for small positive values of v and x-o< ~ 

where the exponents occurring in these expansions are~ O. 
One puts A 

( ~ uah .J IJ)(x) -ah I u)= L_.1 Ah 
1 

(x-oe) dx 

~(u) (5.4) 
> bh+1 '"C(u) V -bh-2 

+ 2 Bh U j /\ 
0 

( v) v d v + I 0 ( u) . 
1\ (u) 

According to theorem 3 the integrals occurring in the right hand 
side of (5.4) can be expanded asymptotically with the exception of 
a logarithmical term for small positive values of u. 

I
0

(u) represents the integral 
A 

Io(u)= j ~o(x~o<) fo(x)dx . 
r(u) 

(5.5) 
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The function { 
0

(v) tends to a finite limit, as v~o~ that is 
denoted by X

0
(0). Now the asymptotic expansions of t

0
(v) and 

f
0

(x) are written in the form: 

and 
H-1 

~ (x)== 1= 
h==O 

the exponents eh are larger than zero, 

eh and fh increase indefinitely with h. 
One puts 

(5.6) 

(5.7) 

the exponents f hi O and 

where L.
3 

is extended only over those values of h for which the 

corresponding exponent f h ~ e 1 • 

In this case 1\ (u) takes the simple form A~°" • 

According to the fourth condition 

T(u) J /X(v)/ dv 

)-(u) 

exists, so that in virtue of relation (5,2) also 

ryi \X
0

(v)\ctv 
t\(u) 

exists. 

By means of the remark added to theorem 3, there appears to 
exist a number "f. ~Osuch that 

r(u) 
f (X

0
(v)jdv = O(u-~) (5.8) 

;\(u) 

From the fact that Cf
0

(x) is bounded in the closed interval (o<.,A), 

it f o 11 ows A t ( u) 

f IXo<x~.J )"0 (x) I dx ~ O(u / \ X0 (v)/ v-
2 

dv). (5,9) 
~(u) A(u) 

Since X
0

(v) tends to a finite limit as v tends to zero, it is 

possible to determine a positive number v
0 

such that X
O 

(v) is 
bounded in the interval O<v<v

0
• For values of u for which T(u).:fv 0 , 

the right hand side of (5.9) is at most of the order 
VO 

I -2 u 
u v dv ~ MUJ = A - o<.; 

1\(u) 
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For values of u having t(u) > v
0

, the right hand side of (5.9) is 
at most of the order 

,(u) 
V 

u /0 
r\(u) 

dv,;A-o<+u / \t0 {v)ldv. 
11(u) 

From (5 .8) and ~ ~ O one finds in all cases 
A 

j \{o(x~ol) to(x) dx = O(u-)() . 
{(u) 

The method, by which the 
following one. One writes 

L fh+1 
I

0
(u)= 3 Fh u 

integral I
0

(u) is handled, is the 

t'(u) -f -2 f X
O 

( v) v h dv + R
0 

( u) p ( 5. 10) 

where 
t\(u) 

A 

Ro(u)= f Xo(x~o<) 1/'o(x)dx. 
r(u) 

The integrals occurring in (5.10) can be expanded asymptotically 
with the exception of a logarithmical term for small positi::e values 
of u. Now, put A 

R
0

(u)= 1
0

(0) j Y,
0

(x)dx + ue 1 r1 (u)~ 

$(u) 
where the integral can be expanded again asymptotically for small 
positive values of u in virtue of theorem 3. 

So one writes r1 (u) in the form: 

where 

r1 (u)= J K1 (x~) f1 (x)dx 
'f( u) 

~1(v)={{o(v)-{o(v)} v-e1 and f1(x)=)Vo(x).(x..C(.)-e1 . 

One deals with the integral r1{u) in the same way as with I
0

(u). 
This is possible since the following properties hold: 

i: For small positive values of v the function X1 (v) can be 
· expanded asymptotically in ascending. pow0rs of v, just as Xo (v):. 
and { 1 (v) tends to a finite limit as v approaches zero; that limit 
is denoted by %1 (0). 

ii: For small positive values of x-~ the function y1 (x) can be 
expanded asymptotical.lv in ascending powers of x- o<:. just as f 

O 
(x), 

ar:1d f 1 ( x) is bounded in an inte rva 1 ( o(__, A) • 
· iii. One has e 1 > 0 ; 
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iv. One has 
A 

j \ ~'1 (x~o() Y'1 (x) l dx = O(u-~) 
s(u) 

(5.11) 

It will be shown that in this formula the same exponent X occurs as 
in formula (5.8). Since y>1(x) is bounded in the interval, the left 
hand side is at most of the order 

If g = o, the right hand side of this equality is at most of the 
order 1 .,s:inc:~ X ~tends to a firii te 1 imi t as v approaches zero. Th2re

-'f:. fore, the last mentioned integral is at most of the order u and 
(5.11) is proved in this case. 

If 6 > O, it is possible to choose a positive number B smaller 
than S . Just as is done in the case S = O one proves that the con
tribution of the integral 

B 

\LI X1(v)I -2 v dv 

is at most of the order u- 'f; • 

In the interval B < v, 1: (u) holds 

iJ1 (v) i(
0
(v)-~

1

0
(0) 

= 

so that the contribution of the interval B~ v~ r(u) is at most of 
the order 

according to (5.8). So (5.11) is proved for all cases. 
In the preceding pages the integral I (u) has been written as 

the sum of ue 1 r1(u) and a function that
0

can be expanded in the 
desired way. It has been shown that r

0
(u) and r1 (u) are both of the 

order tu-X, and that r1 (u) satisfies the same conditions as I
0

(u) 
does. 

Using the process of induction and introducing 

X2 ( v) = ( X 1 ( v) - X 1 ( v) ) /~ 1_ -e 2; 
e -e 

one finds that r 1 (u) is equal to the sum of u 2 1 r2 (u) and a 
function that can be expanded in the desired way. So I (u) is equal 

e o 
to the sum of u 2 r2 (u) and a function that can be expanded in the 
desired way. Proceeding in this way one finds that for every natural 
number h, I (u) is equal to a term ueh Ih(u) augmented by a function 

0 . 
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that can be expanded in the desired way. H~re the integrals 
I

0
(u),I1 (u), ..• ,Ih(u) are at most of the order u-~ where Xis the 

same number for all integrals.so that 

eh eh- X) 
u Ih(u)= O(u • 

Since eh increases indefinitely with h, the proof is given in the 
case IIb and the proof of theorem 5 has been completed. 
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CHAPTER II 

Theorems conce;rning equations. 

1. Introduction. 
In this chapter several theorems are given concerning the solu~ 

tions of certain equations; especially the behaviour of the solu
tions for special values of the occurring parameter is considered. 

2. About the uniqueness of the solutions. 

Theorem 6. Be ol a positive number. Suppose that in the interval 
y

0
- oZ :s; Y::!:: y

0 
+o<., the real i1mct1:nf(y) is continuously differentiable 

with f1(y)~·o and thut r(y
1

)= x . 
\. 0 

It is possible to choose a positive number fa so small,that there 
is one and only one continuous function y(x) that satisfies in the 
interval x

0
~ x~ x

0 
+/3, the relations y

0
-o<-$y(x)~ y

0
+oCand 

f(y(x))= x. 

Proof: Be m the minimum value taken by ~t(y)fon the closed interval 
Y

0 
- o<..~y ~ y

0 
+o<.; one chooses j3>0.such that mo(>/3. 

Be f a number such that XO< r ~ XO + /3· The values of the func
tion f(y)- x arecompared at the points (r, y

0
+o<) and (~, y

0
-o<) 

by making use of the mean-value theorem: 

f(yO-o()-f= XO -f-o<'.ft{y- g1o<), 

where~ and ~ 1 denote suitably chosen positive numbers less than 
one. 

There holds, however, 

f- x
0
~/3 < m o<.~(o<.r, (y+So<. ){ 

and 

~- x
0
~j3 < mo<-.~{o< ft(y- S1o<.)j. 

From these inequalities it is seen that f(y
0

+o<)-~ and f
0

(y-o<)-t 
have opposite signs and since fr(y)~ 0 throughout the interval 
Y

0 
-o<~y~y

0
+o<., it follows that in the mentioned interval there 

exists one and only one value of y such that f(y)-~= 0. So for 
every x in the interval x

0
-:S x ~ x

0 
+ /3 one can find one and only one 

value of y satisfying f(y)= x, 

For an analogous theorem see [1 J. 
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3, About the expansibility of the solutions. 

Theor.em 71 If the exponents o<..
0 

f O, 0(..1 , e •• , °'H are real; the 

•equation 
O<'. 0 

p + 
H 

L ( 7 .1) 
h=1 

has one and only one solution P = P (t\1 , •.• , 1\H) which is analytical 
in the neighbourhood of the origin 1\ = J\2 = •.. == r\4 = 0 and takes 
the value 1 at the origin. That means that this solution can be 

expanded for sufficiently small values of \r\1! , .. •; (1\4 \ in an 
absolutely convergent powerseries with respect to t\ 1, r\ 2 , ••• , 1\H. 
Proof: In the equation (7.1) is substituted P = 1+x, so that this , 

equation takes the form 

F(x, A1) .•• , r\H)= 0 

and the derivative~ =cx0 -/:Oat x = r\= .... = AH= o. 
One has to prove that under the said conditions the equation 

F(x~A
1
, •• ,AH)= 0 has one and only one solution that is analytic in 

the neighbourhood of the point x = 1\ = • , , = AH= O and thal; vanishes 
at that point. This is a special case of the following theorem.(See 
[2]): 

If the functions 

Fj(w1, ·••Jwk; z1 , ... ,z 1 ), j=1, •.• ,k 

are analytic functions of (k+l) variables in the neighbourhood of 
the origin, if Fj(O;O)=O and if 

c)(F1, .. .,Fk) 
a(w

1
, .•. ,wk) -/: 0 for (W)=(z)=(O), 

then the equations 

Fj(w1,. .. ,wk' z1 , •• .,zk)= 0 j = 1, ... ,k 

have an unique solution 

wj = wj(z 1 , •• -.iz 1 ) 

vanishing for {z)=(O) and analytic in the neighbourhood of the 
origin. 

4. A generalization. 

Theorem 8. The equation 
ex H 

P o + L 
h=1 

where o<.h)CX:
0

>0 for h = 1, ..• .,H and H denotes a fixed natural 
number, has for small positive values of u one and only one continuous 
solution p(u) that terd.s to zero as u tends to zero; this solution can 
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be expanded for small positive values of x in an absolutely conver
gent series of ascending powers of u; the exponents occurring in 
this expansion are all positive; but not necessarily integers. 
Remark: For positive val~es of u and for real values of o<. the 
quantity u o< is supposed to be positive. 
Proof: One puts o<. = o< 

0 

/3h =o<.h -d.J so ,;,3h) 0 forh~1 and 
¼<. u 

so that the given equation is transformed into f(p)=x, where 

H /'Zih 1 /o<. 
f(p)=p(1 + L ch P ) • 

h=1 

If the positive number p
0 

is chosen small enough the function f(p) 
is continuously differentiable in the interval 0~ p~ p

0 
with 

f, ( p) ;f o. Indeed, _ 1 + .:L 
1 /e,,:. + .:L p of.. 

f I (p)= p ()(. 
where 

is approximately equal to one, so ;f O. 
According to theorem 6 the equation f(p)= x and also the given 

equation for x ~ O have in the neighbourhood of the origin one and 
only one continuous solution p = p(x) that tends to zero as x tends 
to zero. In order to show that this solution can be expanded for 
small positive values of u, one appliec~ theorem 7 to the equation 
equivalent with the originally given equation: 

where 

Olo Ji-. \ yo<.h 
y + L__ ch /\h = 1 , 

h=1 
1 

- o<.o 
y = p u 

Since CX:h>~>O for_h?1 the quantity Ah tends to zero as u 
tends to zero. The conditions of theorem 7 are satisfied, so that 
the equation has a. solution y = y(A1, ... )\H) that can be expanded 
in an absolutely convergent power series with respect to A1 , •. ,AH 
in the neighbourhood of the origin A1= t\ 2= •.• =AH= 0, and that is 
equal to one at the origin. 

In this manner one obtains an absolutely convergent expansion in 
ascending powers of u for the solution p(u) uniquely determined 
following the arguments mentioned above, So the proof is given. 
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5. Final theorem, 

Theorem 9: Suppose that for small positive values of p the function 
f(p) is positive and can be expanded asymptotically in ascending 
powers of p. Suppose furt.her that f(p) tends to zero asp tends to 
zero, and that the derivative f1(p) exists for small positive 
values of p; moreoverJ fr(p) be continuous and satisfy the relation 

( 9. 1 ) 

where )°denotes a suitably chosen real number. 
Assertion: The equation f(p)= u has for small positive values of u 
one and only one continuous solution p = p(u) that tends to zero 
as u tends to zero. This solution p(u) can be expanded asymptotical
ly for small positive values of u. 
Proof: In a manner similar to those of the preceding theorem, it 
follows from theorem 6 that the equation 

f(p)= u 

has one and only one continuous solution p(u) that tends to zero 
with u. 

Be 

the asymptotic expansion of f(p) for small positive values of p, 
so that the exponents o<.h increase indefinitely with h. 

Without loss of generality one may assume that the exponents 
increase with h. Then the coefficient c

0 
is positive. 

According to theorem 8 the equation 

where k is a natural number, has one and only one continuous 
solution pk(u), that tends to zero with u; this solution can be 
expanded for small positive values of u in an absolutely convergent 
series of ascending powers of u. This series starts with the term 
bu 1,:3; where band /3 are positive numbers. For small positive valu~s 

I 

of u the quantity pk(u) is a small positive number so that f(pk(u)) 
exists. One writes 

f(pk(u) )-f(p(u) )=f(pk(u) )-u = fk(pk(u) )+o{ (pk(u) (k} -u 

= o{(pk(u)tk}= o(ut,s«k),. 

since pk ( u) is of the order u1"3 • 
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Because of th~ fact that fi(p) exists and is continuous for 
small positive values of p, it is possible to write down th2 iden-
tity: P,,. (u) 

f(pk(u))-f(p(u))= J fi(v)dv. (9.2) 
p(u) 

Since p(u) and P, .. (u) are both positive and are of the• order u/3, -~ 
the variable of int2gration vis of the same order in the interval 
(p(u),pk(u)), so that the integral is of the order u-,15.P(pk(u)-p(u)), 
according to (9.1). From (9,2) one deduces 

so that 

u-fa_p pk(u)-p(u) = o(utfu'lc), 

fa /X.-k+/3 f 
p(u)= pk(u)+ O(u ). 

But o<k increases indefinitely with k. The function pk(u) has been 
expanded in an absolutely convergent serie.s of ascending powers of 
u that represents at the same time the asymptotic expansion of 
pk(u). In this way the solution p(u) has been expanded asymptotical
ly in ascending powers of u for small positive values of u. 

6. A generalisation. 

Theorem 10. The equation 

«o ~J:L 
p + L._ 

h=1 

where .. ~ > o<.h > 0 for h = 1, ... , H and where H denotes a fixed natural 
number, has for large positive values of u one and only one continucus 
solution p(u) that tends to infinity with u; this solution can be 
expanded for large positive values of u in an absolutely convergent 
series of descending powers of u. 

The proof is given in a manner similar to that of theorem 8. 
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CHAPTER III 

Th~or0ms concerning double integrals. 

1. Introduction. 
In this chapter the definition is given for double inte~rals in 

the improper sense·. Some theorems are given on the existence of 
double integrals in improper sense and also some theorems on the 
possibility of using transformation, 

The theorems 11 and 13 are proved in H. von Mangoldt, Einflihrung 
in die Hohere Mathematik, 19481 and, therefore, they are given here 
without proof. 

2. General theorems. 

Theorem 1 ·i. If the function f(x 2 y) is continuous on the closed 
bounded set B, then f(x,y) is integrable on B. For the proof see(3]. 

· Theorem 12, If the function f(x,y) is continuous on the closed 
bounded set B, if M represents the maximum value of \f(x,y)\ on B 
and if, finally, I represents the area of the closed bounded set 
B, then holds 

\ ff f(x1y)dx dy\ ~ MI. 
B 

Proof: According to the mean value theorem (confer [4]) holds 

rt )} f(x,y)dx dy = ~Al , 

B 

where µ. indicates a suitably chosen number lying between the upper 
' 

and lower limits of f(x,y) on B (the boundaries inclosed). 
From this the proposed inequality follows immediately. 

3. First transformation theorem, 

Theorem 13. Let B 1 be a bounded measurable set of the (u,v) plane, 
On a set B1 containing Bt and his boundary as interior points, are 
given the functions x = f(u,v) and y =Y/(u,v). These functions are 
continuously differentiable with respect to u and v in the interior 

I 
of B1 , while the Jacobian 

J(u,v)= Y-7u(u,v) ;f'u(u,v) 

1v(u,v) 1f-'v(u,v) 

is supposed to be either always positive or always negative in the 
I 

interior of B . 
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The image of Br in the (x,y) plane is indicated by B; it is 
supposed that two different interior points of B 1 correspond to 
different points of B. So the set B has also an area A and this is 
equal to 

A= V J(u;v) du dv. 

If on Bis given a function f(x,y), integrable on B, then also 
the function f(f(u,v),y,(u,v)) \ J(u,v)\ is integrable on B 1 and 

there holds {( 
Jj f(x,y)dx dy = ff f(f(u,v),y(u,v))/ J(u.,v) / du dv. 
B Bl 

For the proof see [ 5] . 

4. Some definitions. 
In thiss~ction the following two definitions are given: 

Definition I. Let f(x,y) be continuous in a certain region G of the 
(x, y) plane; then according to theorem 1 ·1 the integral 

ff f (x, y)dx .dy 
D 

exists for every closed bounded subset D of G. Be R the boundary of 
G. Now, consider infinitely many of such subsets D1,D2 , ••• of G 
such that the distance of each boundary point of Dm to R tends to 
zero as n increases indefinitely. If for every choice of such sub
sets D1 ,D2 , ... _the integral 

J/ f(x,y)dx dy 

n 

tends to a finite limit as n tends to infinity, one says that the 
function f(x,y) is integrable (in improper sense) on G and one puts • ff f(x,y)dx dy = I. 

Definition II. One says that a plane pointset has an e::.ternal measure 
less than or equal to f- if that point set can be covered by a 
finite number of squares having a total area smaller than or equal 

tor· 

5. On the area in the neighbourhood of a continuous arc. 

Lemma 1. Be Ra plane continuous arc with a finite length L. The 
points lying in the plane of the continuous arc Rand having a 
distance ~ t to that arc, form for every positive value of t~ 1 a 
set of the e::ternal measure ~ 4 (1+1) t·. 
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Proof: Suppose that the arc R lies in the (x,y) plane, Let this 
plane be covered by fitting squares that have sides with a length 
t and that are parallel to the coordinate axes. It is sufficient 
to prove that at most 4(1+L.t- 1 ) such fitting squares have a point 
in common with the arc R, for in that case the number of squares is 
less than or equal to 4t-1 (1+L), so that the total area of these 
squares is at most equal to 4t(1+L). In proving this one may suppose 
that there occur at least five of th~ mentioned squares. In con
sidering 5 different squares it is always possible to find among 
them two squares having a distance larger than or equal tot. An 
arc of R that needs 5 squares to be covered, contains, therefore, 
at least two points having a distance larger than t, so that the 
length of the arc is also larger than t. An arc of R with length 
less than or equal tot, can be covered, therefore, by four or less 
of the mentioned squares. Since the arc R has a total length L, R 
can be divided into less than 1+1.t-1 parts, each having a length 
~ t; so that the whole arc can be covered by less than 4(1+L.t-1 ) 

of the fitting squares. 

6. On the existence of an integral. 

Theorem 14-: Be f(x,y) continuous in the bounded region G, with the 
property that 

\ f(x,y) \ ~ ca-1+$, 

where C and S denote fixed positive numbers and a indicates the 
distance of the point (x,y) to the boundary of G. (It is clear that 
~ depends on x and y). 

Suppose that the boundary of G can be divided in a finite number 
of continuous arcs each satisfying the following condition: the arc 
has either a finite length or f(x,y)= Oat each point (~,y) of Gin 
the neighbourhood of that arc. Under these conditions the double 
integral 

II 
G 

exists. 

Proof: First step. The (x,y) plane is covered first by fitting 
directed squares Vm with sides equal to 2-m, where m denotes a 

natural number. Be Qm the set formed by those squares Vm that belong 
entirely to the interior of G and that have a distance to the 
boundary R of G that is larger than 2-m. The set Qm is closed and 
bounded and the function f(x,y) is continuous at each point of Qm, 
so that the integral f 

I ( m) = }/ f ( x, y) dx dy 
Qm 



exists according to theorem 11. 
First it will be shown that this integral tends to a finite limit 

I as m increases to infinity. Therefore one remarks that I(m+1)-I(m) 
can be written as the integral with integrand f(x,y) extended over 
all squares Vm+1} that contribute to I(m+1), whereas the squares Vm 
containing Vm+1 do not contribut0 to I(m). These squares Vm' there
fore, have either at least one point in common with the boundary 
or with thee ;terior of G or they contain at least one point that 
has a distance to R less than or equal to 2-m. Each point of the 
considered squares Vm and therefore each point of the corresponding 
squares Vm+1 has a distance to R being at most equal to 2-m augmented 
by the diagonal of those squares V, so that this distance is at 

• 1 m 
most equal to 2-m(1+22 ). According to the preceding lemma, applied 

1 
with t = 2-m(1+22 ), for every arc with a finite length L the total 
area of the squares Vm+1 coming into consideration is at most equal 
to 

Since the number of continuous arcs of finite length is finite and 
· f(x,y)= 0 in the neighbourhood of all other arcs, the total area of 

the squares Vm+1 coming into consideration is at most equal to 
c1 2-m+2 , where c

1 
denotes a suitably chosen positive constant. 

According to the definition, each of the' mentioned squares Vm+1 
has a distance to R larger than 2-m- 1 and so holds in those squares: 

\ f ( x' Y) \ < C ( 2-m-1 ) -1+ S • 

From this it fallows: 
l I(m+1 )-I(m)[ < cc

1 
23-S .2-m~ , 

c,() 

so that the series L I (m+1 )-I (m) 
m=1 

converges (eve~ absolutely) and, therefore) I(m) tends to a finite 
limit as m increases to infinity. 
Remark: In the preceding lines f(x,y) may be replaced by its absolute 
value, since this value is also continuous. Thus, on2 finds also that 

// jf(x,y)\ dx dy 
~ 

tends to a finite limit if m increases to infinity, 
Second step: One shows further that 

ff f (x,y) dx dy 
E 

tends to the above introduced limit I if E runs through a series of 
bounded closed subset:. of G with the property that the distance of 



. 
each boundary point of E to R tends to zero. 

It is ~ufficient to prove that for every positive 6 nnd every 
closed bounded subset E of G, of which each boundary point has a 
sufficiently small distance to R, the inequality 

l // f ( x; y) dx · dy - I) < E (14.1) 
E 

holds. 
According to the first step of the proof and the remark added to 

that step the following properties hold for each sufficiently large 
natural 

ii, 

number m: 

\ ff f ( x, y) dx d y - I l 
~ 

\ /J \ f ( x, y) \ dx 

QM 

dy - ff \ f ( x, y) \ dx dy \ < c./2, 

Qm 

( 111 . 2) 

for every integer M;:, m. (The last inequality is the result of the 
application of the criterion of Cauchy to the result of the remark 
added to the first step). Let m be a natural number with these two 
properties. The proof is given, if one can prove (1~.1) for each 
closed bounded subset E of G, the boundary points of which have a 
distance to R less than 2-m. In that case Qm is a subset of E, while 
it is possible to find a natural number M ~ m such that Eis a 
subset of QM and then holds: 

\ J/ f(x,y)dx dy - /J f(x,y)dx 
E ~ 

so that (14.1) follows from (14.2). 

7, Second transformation theorem. 

Theorem 15. Suppose the conditions of theorem 1 _4 are satisfied. Be 
given in the region D of the (u,v) plane two continuously differen
tiable function~ 

x ='f(u,v) and y =y(u,v),· 

such that the Jacobian 

J(u,v)= ~u(u,v) 

Pv(u,v) 

is always positive or always negative·on D; the image of Din the 
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{x,y) plane is denoted by G. The transformation is supposed to be 
one to one correspondant. Finally one assumes that if the 
distance of the point (x,y) of G to the boundary RI of G tends to 
zero; also the distance of the corresponding point (u,v) of D to the 
boundary R of D tends to zero. Under these conditions the integrals 

ff f(x.,y)dx dy and ff f (f(u,v) .. Y/(u,v)) \ J(u, v) jctu dv 
)6 D 

exist in improper sense and are equal. 
I 

Proof: Consider infinitely many regions En belonging with their 
I 

boundary to Dt such that the distance of every boundary point of En 
to the boundary of Dr tends to zero as n increases to infinity. 

Applying theorem 11~ one finds 

ff f(x,y)dx dy 

En 

tends to a finite limit as n increases to infinity. 
From this it follows that f(x,y) is integrable on D1 and that I 

is equal to the integral of that function f(x,y) extended ov2r D 1• 

According to the transformation theorem 13 holds 

fl f{x,y)dx dy ~ // f(f(u,v),y(u,v))\J(u,v)\du dv, (15,1) 

En En 
I 

where En denotes the region corresponding with En. Each boundary 
'. I 

point of En has the property that its distance to R1 tends to zero 
as n increases to infinity. From this it follows that the distance 
of the corresponding point (u,v) to the boundary R of D tends also 
to zero. Since the integral in (15.1) tends to a finite limit I, if 
n increases to infinity; the function f(f(u,v),Y,(u.,v))\J(u,v)\ is 
integrable on D, and I is equal to the integral of this function 
extendedoverthis region D. So the proof is complete. 

7. On the existence of an integral, II. 

Theorem 1G. Be the function f(x,y) continuous on G, with the excep
tion of a finite number of points z1, ... ,zr, with the property that 

\ l -1+60 -2+61 -2+~ 
f(x,y) i c(a

0 
+ a1 + •.• + ar r ), 

where c, S
0
,b1, ... ,Sr denote fixed positive numbers, a

0 
denotes the 

distance of the point (x,y) to the boundary R of G and a1,a2 , .•. ,ar 
denote the distances of the point (x,y) to the respective points 
z1 , ... ,zr. (It is clear that a

0
, ••• ,ar depend on x and y). 

Suppose that the boundary R of G can be divided into a finite number 
of continuous arcs, each satisfying the following condition: the arc 
has either a finite length or f(x,y)= 0 at each point (x,y) of Gin 
the neighbourhood of that arc. 
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Then the integral 

// f (x,y)dx dy 

exists in improper sense. 
Proof: First step: Be the (x,y) plane covered by fitting directed 
squares V with sides equal to 2-m, where m denotes a natural number. m -
Be Qm the set formed by those squares V that belong entirely to 

m -m 
the int2rior of G. These squares have a distance larger than 2 to 
the boundary R of G and they have a distance larger than 

2 - ' to each of the points z
1

, .•• , zr. The set ~ is bounded and 
closed and the function ·f(x,y) is continuous on ~,so that the 
integral 

I (m)= ff f (x, y)dx dy 

Qm 

exists according to theorem 12. 
First it is shown that this integral tends to a finite limit I 

as m increases to infinity. Therefore, one remarks that I(m+1)-I(m) 
can be written as the integral with integrand f(x,y) extended over 

those squares Vm+1 , that contribute to I(m+1) whereas the squares Vm 
containing Vm+1 do not contribute to.I(m). These squares Vm' there
fore5have either at least one point in common with the boundary or 
with the interior of G or they contain at least one point that has 
a distance~ 2-m to the •boundary R or that has a distance 

m -~ 
~ 2 to a least one of the points z

1
; ..• ,zr. 

Each point .or the considered squares Vm and also each point of 
the corresponding squares Vm+

1 
has a distance to the boundary R 

being at most equal to 2-m augmented by the diagonal of that square 
l 

Vm (so that this distance is at most equal to 2-m(1+22 )) or that 
_ m l 

point has a distance ~ 2 ~ ( 1 +22 ) to at least one of the points 

z 1 ' • • , Zr• 
One applies lemma 1 to each contJ.nuous arc of the boundary R with 

l 
finite length choosing t = 2-m(1+22 ). Then one finds that the points 

1 

that have to the boundary Ra distance 2-m(1+22 ), form a set of 
which ttte e;~ternal measure is at most of the order 2-m. It is clear 

m 

that the points having a distance 2- 2 (1+2½) to at least one of 
the points z 1 , ••• ,zr, form a set with external measure also of the 
order .2-m · 

Since ench of the mentioned squares Vm+1 have according to their 
definition a distance larger than 2-m- 1 to Rand a distance larger 

m+1 · 

than 2 - ~ to eacr of the points z1 , ..• ,zr, the function f (x,y) is 
at most of the ord~r 
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at each point of such a square, so that I(m+1)-I(m) is at most of 
the order 2-(m+1 )J. Therefore the series 

,e<) 

L. I(m+1 )-I{m) 
m=1 

converges {even absolutely) and I(m) tends to a finite limit as m 
approaches infinity. 
Remark: In the preceding lines f(x,y) may be replaced by its absolute 
value, since this value is continuous too. Hence, one finds that 
also ff jf(x,y) \ dx dy 

~ 
tends to a finite limit if m increases to infinity. 
Second step: One shows further that 

ff f (x, y)dx dy 
E 

tends to the above introduced limit I if E runs through a series of 
bounded closed subsets of G with the property that the distance of 
each boundary point of E to R or to at least one of the points 
z 1 , •.• ;zr tends to zero. 

It is sufficient to prove that for every positive£ and every 
closed boµnded subset E of G, of which each boundary point has a 
sufficiently small distance to R or to at least one of the points 

the inequality 

I I/ f (x, y)dx dy - (16.1) 

holds. According to the first step of the proof and the remark 
added to that step the following properties hold for each sufficient
ly large natural number m: 

i, j ff f (x,y)dx dy - rj < 

~ 

ii, 11/ \ f ( x, y) J dx dy -

QM 

(16.2) 

for every integer M>m. (The last inequality is the result of the 
application of the criterion of Cauchy to the result of the remark 
added to the first step). Be ma natural number with these two 
properties, The proof is given if one can prove (16.1) for each 
closed bounded subset E of G the boundary points of which have a 
distance to R smaller than 2-m or have a distance to at least one 

-!!l 
of the points z1 i ••• , zr smaller than 2 z • In that case Qm is a 



- 32 -

subset of E, while it is possible to find a natural number M~m 
such that Eis a subset of QM' and then holds: 

d+I // 
\ 

\ fl Jj 
I 

f(x,y)dx dy - f(x,y)dx f(x,y)dx dy/ ~-
E Q'111 E-Q m 

fl \f (x,y) \dx dy ~ ~ 
-QM-Q 1 m 

so that (16.1) follows from (1~.2). 

8. Third transformation theorem. 

Theorem 17. Suppose that the co:ud1+-i0ns of theorem 16 are satisfied. 
Let be de.f.ined in a certain region D of the (u,v) plane the functions 

y ==11-"(u,v). 
( 

These functions are continuousJy o if .f:: r::.. :1 ti :.:i b 1 ,:::, in D such that 
their Jacobian 

J(u,v)== I fu(u,v) 'fu(u,v) 

'fv(u,v) '1.fv(u,v) 

is either always positive or always negative on D; these conditions 
do not need to be a~~1qfled on the boundary R of D. 

Be G the image of Din the (x,y) plane. It is assumed that 
betwe0n the potnt'! of G and D is an one to one correspondance. Then 
the i.ntegra 1 s g f (x,y)d_x ct,, and // f(y?(u,v), f (u,v)~J(u,v) (du dv 

D 

exist in improper sense and are equal, 

Proof: Consider infinitely many regions E~ belonging with their 
boundary to G and cont:.:iining none of the points z1 ,z

2
, •• ,zr, such 

that the distance of each boundary point of E
1 

to the boundary R' n 
or to at least one of the points z1,z2 , •.• ,zr tends to zero as n 
increases to infinity. 

According to theorem 16 th2 integral 

ff f(x,y)dx dy 
I -r 

-'-'n 

tends to a finite limit I. Therefore f(x,y) is integrable on G, and 
I is the integral of that function on G. 

According to the first transformation-theorem: 
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f(x,y)dx dy = JI f(r(u,v). ~(uiv))lJ(u,v) f du 

En 

where En denotes the reg~on of the (u,v) plane correspondin& with 
E~. Each boundary point of E~ has the property that its distance 
to R 1 or to at least one of the points z1 , ... ,zr tends to zero as 
n increases infinitely. 

From this it follows that the distance of the corresponding 
point (u,v) to the boundary R of Dor to at least one of the points 
zt,, .. ,z;tends also to zero; here z;, etc. denote the image of z1 
in the (u,v) plane. Since the integrals in (17.1) tend to a finite 
limit I, if n increases to infinity, the function 
f(f(u,vL y.;(u,v)) \ J(u,v)[ is integrable on D, and I is equal to 
the integral of this function extended over the region D. 



CHAPTER IV 

Several theorems. 

1. Introduction. 
In this chapter three theorems are collected, The first theorem 

deals with the length of a certain curve. A l~mma used in its proof 
is given first. The two other theorems deal with the analytic 
continuation of the Beta-function. 

2. A lemma. 

Lemma 2. If in the interval O < x < x
0 

co 
y = L. (18.1) 

h=O 

where the exponents <X h increase to infinity with h, then in this 
interval the function y is differentiable with respect to x and one 
has 

dy 
dx = (18,2) 

Proof: Without loss of generality one may suppose that each exponent 
o<h is larger than one, since in the other case one needs only to 

treat separately a finite number of terms. 
Be x1 an arbitrary point between x and x

0
• Since the series (1o.1) 

converges for x = x1 , all terms of that series are bounded at x = x1 , 

so o{ h\ 
\ ch x1 < C, 

where C denotes a fixed positive number. 
From this it follows that the series mentioned in (18.2) converges 

for' each x between O and Xi' and even uniformly in the interval 
0 ~ x~ x2 if x2 lies between O and x1 . 

The sumy.,(x) of that series is therefore a continuous function 
of x and the series can be integrated term by term, so that one 
finds X co <X-h l y(t)dt L = ch X = y 

t=O 0 

at each x of tre interval O ~ x ~ x2. 
Since the iptegrand '}V( t) is continuous, the left hand side is 

differentiable\with respect to x, so that one gets 
I 
I 

~ = ¥-'(x)= =- ch o<h t h-1 
h==O 

\ 
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This result holds for all x between O and x2 , where x2 may represent 

an arbitrarily chosen number between O an~ x
0 

so that the relation 

holds at each x between O and x
0

• 

3. The length of. a certain curve. 

Theorem 18: If in the interval O < x < x
0 

holds 

c-o o<'.h 
<b(x}:::: L ch x , 
r h::::O 

where each exponent oc..h is larger than or equal to zero and oC h 

increases indefinitely with hand the coefficient::. ch denote real 

numbers, then the curve defined by the equation y = f'(x:) has a 

finite length in the interval O < x~ x
0

• 

Proof: Choose a number x_
1 
between O ~nd x

0
• According to the preceding 

lemma 
00 

w• (x)= L 
1 h=O 

c<h ... 1 
ch c< h x 

and x
0 

and therefore the integrals 

+( L C i'--. x h ) 2 dx 
oO 0(.. •1 2} l 

h=O n t£ 

exist. If o<... denotes the smallest positive exponent occurring in the 

expansion of <f(x), then for small positive values of x the integrand 

is at most of the order (1+ £<-•1 ), where o<. -1> -1. 
The integrals in (18.3} tend therefore to. a finite limit as x1 

tends to zero and this limit is the length of zbe ~urve according 

to its definition. 

4. Analytic continuation of the Beta-function. 

Theorem 19. Let the function r(w,oe_,~) be defined by the relation 

wol 
r(w,ct,;3)= 0 - PN(w)j 

( 1 +w )' 

where o<. and/,3 may be real or complex numbers but such that Re/3 > 0, 

Reex-) -1, and that Re ... ~ - Re ol- is not an integer~ 1; furthermore i 
I 

PN(w) is the truncated binomial expansion of w?': f:, , i.e. 
N (1+w) 

( ) o<--/3 z- (-/!,) -k . . '2. . PN w = w L.__ k w , if Re :J < Re ,,1 +1 , 
k=O ' 

where N is the integer ~ O such that Rev<.. < Re 11, +N < Re_.,z_ +1 
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Under these conditions r(w 1 o<.,/'.J} is integrable in the intGrval 
t 

and ;= r(w,o<,f3)dw=B(o<+ 1,/3-o<-1), where B(p,q)= r;.;?.{:.~f) 
0 

Proof: For Re 
1

13 > Re o< +1 it is well known that 
00 

<X) 

J WO( 

/ r(w,o<.-;l3)dw = dw = B (?< +1 ,/3~0(- 1 ) • 
( 1 +w);3 

0 0 

The function on the right hand side satisfies the recurrence rela

tion 

B(p,q)= p~q B(p,q+1). 

By partial integration one gets 

Here 

H N 1 j wol-(3 {(1+w-1 )-ft - L_ (-f) w-k dw 
O k=O 

wo<.-;'i:.+1 [ -1 fJ N -i~ -k1 lH 
= -f.H-o<.+ 1 ( 1 +w ), - L ( k) w i + 

I k=O ..0 

H 

+ /3 f /~ -0:-1 
l 0 

-k w 

is for large positive values of w at most of the order w-N- 1 and 
therefore of smaller· order than wRef-Reol-l ; the function under 

consideration is for small positive values of w at most of the 
order w-N and therefore of smaller order than wR~~-Re~-1 • Conse

quently the first term in the right hand side of the identity 
obtained above tends to zero as H---;c,0_ Therefore 

c<> 

f r(w.,oi..,J3)dw = / 3 
1 · I 0 -o<.-

0 . 

= f r(w/x~113+1 )dw, 
0 

assuming that the integral on the right hand side exists. That is 

true in the case that Re /3 > Re o(, so that according to ( 1 9 .1) the 

integral of r(w,c<,/:i) from O to oo exists also if Re1-s > Reo(. 

Applying (19,1) with ~-1 instead of with 1 one finds that 
00 I 

j r (w ,o( ,/' )dw 
0 

exists if Re/~ > Rec,<:. -1 . Continuing in this way one gets the result 
that the mentioned integral exists for each choice ofo(and/3, 

i 

provided, of course, that Ref - Rec( is not an integer$ 1 . 
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Since this integral satisfies the same recurrence relation as 

B(c<.+1 l~-d.- 1) and since it is equal to B(o<'.+1,/~-cx:-1) for Re/3 > Reo:+1 

one has for Re /3 > O:, Re ol > -1 and Re/~ - Re c< is not an integer 

~ 1 the result c,e 

/ r(w:,cx,;'J)dw = B(o<+1,(3-v<-1). 
0 

In an analogous way the following proposition is proved: 

Theorem 20: Be r(w,i:x,/3.) the function defined by 

o<.. 
r(w)= w ~ - QN(w), 

( 1 +w) 

where Re/:>> 0~ Re (p,-o<- 1) > o and where Rec<... 
we choose 

where N denotes the integer ~ O defined by 

- 2 < Re o<. + N < -1 , 

if Re o<. > -1 • 

is not an integer< O: 

Then the function r(w,~J~) is integrable from zero to infinity 
! 

and ca 

/ r(w ,a,J3)dw = B(<X+1 ;/3-CC- 1). 
0 / I 
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