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Introduction.

The author has the intention to write his
thesis on the subject "The calculation of
asymptotic residus for double integrals". He
therefore needs a number of theorems such as
theorems on the expansion of simple integrals,
theorems on the existence and the transforma-
tion of double integrals, theorems on the so-
lutions of some equations, etc. These theorems
are collected in this paper. Numbers in square
brackets refer to the list of references at
the end.

The author wishes to express his very deep
gratitude to his promoter in future Prof.J.G.
van der Corput for his continuous help in
planning and proving each theorem and to Miss
C. Langereis for the preparation of the

manuscript.




CHAPTER I

Some Expansions of Simple Integrals.

1. Definitions.

The expression "the function p(x) can be expanded in  ascending
powers of x for small positive values of x" means, that for small
positive values of x the function }>(x) can be represented by a
series of the form

) bh .
P(x)= - By, X | (1.1)

where the exponents bh are mutually different real numbers, in-
creasing Indefinitely with h. If x-— 0 the function ;O(X) tends to
zero 1f and only if all exponents bh are positive.

The expression '"the function y%x) can be expanded in the inter-
val (a,a') in the neighbourhood of the point x = a "means,

A1, if a 1s finite and if a' » a: for small positive values of x-a,
"the function }D(X) can be expanded in ascending powers of x-a;

A2. 1f a 1s finfte~ and if at<a: for small positive values of a-x
the functions y%x) can be expanded in ascending powers of a-x;

1

B. if a =c0 and if a!' < a: for small positive values of x~ ' the
1

function (x) can be expanded in  ascending powers of X '3

C. 1f a = - and if at » a: for small positive values of (--x)"1
the function }D(X) can be expanded in ascending powers of
(-x)" '3

D. 1if a' = a, the expression does not contain an assertion about
the function ;ﬁ(x)g whatsoever.

- If ;ﬁ(x) does not only depend of x, but also of another parameter
y and if the relation (1.1) holds uniformly in y, one says that
for small positive values of x the function ¢ (x) can be expanded
uniformly in y.
The expression "the function }D(X) can be expanded asymptotically
in ascending powers of x for small positive values of x" means,

that it is possible to find a formal series

S B, x O,

h=0 :
where the coefficients Bh and the exponenmsbh are independent of x
and the exponents bh are mutually different real numbers, increasing
indefinitely with h, such that for each fixed integer H> O the

relation




P> By x "+ o(x ) (1.2)

holds, where Ay (H= 0,1,...) are suitably chosen real numbers,
independent of x, increasing indefinitely with H.

The expression "the fdnction }D(x) can be expanded asymptotical-
ly in the interval (a,a') in the neighbourhood of x = a% means,

Al. 1f a is finite and if at » a: for small positive values of x-a
the function }P(x) can be expanded asymptotically in' ascending

powers of x-a;

A2, if a is finite and if at < a: for small positive values of a-x
the function @ (x) can be expanded asymptotically in  ascending
powers of a-x;

4

B. 1if a =<2 and if at¢ a: for small positive values of x”! the
function @(x) can be expanded asymptotically in  ascending

o=
powers of x ;

C. if a = -o0 and if at' > a: for small positive values of (--x)"1
the function @ (x) can be expanded asymptotically in  ascending

powers of (—x)'1;

D. 1if a = at: the expression‘does not contain an assertion about
the function {(x), whatsoever,

Ir }0(x) does not only depend of x, but alsc of an other para-
meter y, and the relations (1.2) hold uniformly in y, one says that
for small positive values of x the function }O(X) can be expahded
asymptotically uniformly in y.

2. Some simple properties.

Theorem 1., Suppose that for small positive values of x the function
p(x) can be expanded asymptotically in ascending powers of x

so that 79(x) can be represented asymptotically by the formal

series

o0 bh
> Bh X s
h=0
One assumes the exponents bh to increase steadily. Then 1t is

always possible to choose the exponent Ay used in formula (1.2)
equal to bHQ
Proof: Using (1.2) with H = K one finds

- b :
f(x)= %;é By, x.h + O(qu)°

Since Ay increases indefinitely with K, one can choose K so large

that A > bH '




From b, . b, .
b iy (Hg h<K)

it follows that
H-1 bh b

H
p(x)=Z.th + 0(x 7).
h=0
An analogous theorem holds if P(x) can be expanded in  ascending
powers of x for small positive values of x; this theorem 1s not

given here.

Theorem 2: Be/G a fixed real number;be, for small positive values of
U, ? (u) a real function that tends to a 1limit o if u tends to zero,
that, for small positive values of u, is either continually > &« or
continually < e¢

For each small positive value of u and for each x of the closed
interval (% (u)%%) the function }O(X,u) is supposed to be expandable
asymptotically in ascending powers of u uniformly in x.

It is assumed, further, that it is possible to find a positive
number a with the following property: 1f o¢ is finite, then
ua($(u)-ct) tends to a finite 1limit # 0 if u—0; if « is infinite,
then u™® €(u) tends to a finite limit # 0 if u—0. ‘

Finally it 1is assumed that one can find real numbers bh
(h = 0,1,2,...) with the following property:,

if o¢ is finite, the function ¥, (x)(x-o¢) B tends to a finite
limit # 0, if x tends to ot from the same side, as % (u) does.

if ot is infinite, the function £, (x). x ° tends to a finite
1imit # 0, if x tends to ol from the same side as g(u) does.

Under these conditions abh + Cy increases indefinitely if h in-
creases indefinitely.

Proof: For each x of the interval(f%(u)vs) holds uniformly in x:

- .
%(x,u)= %:%, uch b (x) + O(uqH)

and
e

hv Ph(x) + O(uqH'l"l ) ,

H
so(x,u)r.%_;_g u

where the exponents Ay increase indefinitely with H and qH+1>.qH¢
Hence for each x of the interval (? (u),A) holds uniformly in x

¢ : a

H H
u PH(X)= o(u ™),
or with x ==§(u)

2T A5 ()= o(u ™).

In the case that ¢\ is finite, one has




and

So one finds

<
]

H "H O(‘ ?(u>-94ubH uCH)

c

= 00 Py(8()) u ™)

9y

0(u

) .
From this one deduces < a bH + Cys SO that abH + Cy increases
indefinitely with H.
The proof is analogous in the case that o< is iInfinite.

3. Expansion of an integral.

Theorem 3. Suppose that the integral

(u)
J(u)= f }O(X)dx
g (u)

exists for small positive values of u. It is assumed that ‘¢ (u) and
» (u) are real functions of u such that % (u)» ¢&(u), and that these
functions can be expanded asymptotically in ascending powers of
u for small positive values of u, and that g(u) resp. 72(u) tend
to the 1limit o resp./ if u—>0. Finally it is assumed that Y(x)
can be expanded asymptotically in the interval (?(u),d) in the
neighbourhood of x = &, and also that ¥ (x) can be expanded
asymptotically in the interval (Q(u)%@) in the neighbourhood of
X =pA.

Under these conditions there exists a constant C such that
J(u)- C log u‘can be expanded asymptotically for small positive
values of u, '

Remark: Under these conditions there exists, therefore, a real
constant ¥ such that

J(u)= O(u'):)
for small positive values of u.

Proof: In the case that « is finite, the function ¥(x) possesses

a formal expansion of the form:

0% bh ‘
S B, x| S 3
h=0

where lX—m%z X=cx 1f %(u);c& , and
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‘x—ul:x -x 1f §(u)go.
Be —
b
| 2 h
yu(x)= o Bh\x—dl ;
where the dash denotes that the summation 1s extended only over
those values of the index h, for which bh< -1,
A number B 1s defined as follows:
if in the expansions (3,1) a term occurs with exponent bh = 1,
then B is equal to the corresponding coefficient Bh; if such a term
does not ocecur, then B is equal to zero.
Finally the function r(x) is defined by

P(x)=(x) + B [x-a|” + r(x),
8o that for small positive values of lx-m} the function r(x) can be
expanded asymptotically. '
In the case that « is infinite, the function }D(X) has a formal
expansion of the form

co —bh
2 Byl %, (3.2)
h=0

where |x| = x ifot=c0, and |xl= -x ifxX= -0

Be

)= O B il T,

h

where the dash denotes, that the summation is extended only over
thoge values of the index h, for which bh<(1.
A number B is defined as follows:
lf‘in the expansion (3.2) a term occurs with exponent bh = b,
then B is equal to the corresponding coefficient Bh; if such a term
does not occur, then B is equal to zero.
_ Finally the function r(x) is defined by

p(x)=w(x)+ Blx| ™
so that for small positive values of lxl"1 the function r(x) can be
expanded asymptotically in ascending powers of |x|~
If & is finite and if ?(u) 1s not identically equal to o¢, then
there exists an uniquely determined positive number a such that for
G- ?(u)) can be expan-

+r(x),

small positive values of u the function u~
ded asymptotically in ascending powers of u. In this expansion all
exponents are »0, and the first term is equal to a constant # O.

If « is infinite and if ?(u) is not identically equal to &, then
there exists an uniquely determined positlve number a such that for
small positive values of u the function u? %(u) can be expanded
asymptotically in ascending powers of u. In this expansion all ex-
ponents are >0, and the first term is equal to a constant # 0.
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In the proof the following cases are distinguished:
I: It 1s possible to determine a finlte fixed number A, such that
for sufficiently small values of u the number A lies in the inter-
val (?(u)sq(u)). In that case one can split up J(u) as follows:

A 7(u)
J(u)= jf @(x) dx + J/ p(x)ax.
£(u) A

The demonstration is quite the same for both integrals and 1is
given only for the first one. Three subcases are distinguished.
Ia, Be &« = A, Since

P A
'/f lp(x)dx = J[ %%x)dx
Z () gu)’

exists, there do not occur in the expansion of %Kx) in ascending
powers of « -x, terms with exponents £ -1, so that

H-1 by by
;o(x)=%i___'(; By (-x) =+ 0({x-x) 7),
where each exponent bh> -1, Consequently
3 H-1 B, b, 1 b+
J ptoax = -3 h beesw)) T ol(eepu)) B ).
$(w) h=0 “h :

From the fact that the function u"a(x—g(u)) in which the constant
a 1s positive, can be expanded asymptotically in ascending powers
of u, for small positive values of u, the same property follows
for the integral in question.
- Ib. Be -oo<x < A, One has

T A | A A 2(u)
J/- p(x)dx = J/. w(x)dx + B J/ Qx—x)"1dx+~/rr(x)dx— r(x)dx
?(u) ?(u) §(u) d X
. B C b+ | 2
=) EEET (A—m)‘h+ + B log(A-x)+ /[ r(x)dx
, B - by +1 e §lw)
-3 wr ()@ " - B log($(u)-w)- / r(x)dx,

¥
The first three terms of the right hand side are independent of
u; in the same way as above one sees that after addition of
aBlog u, the remaining terms can be expanded asymptotically for small
positive values of u.

Ic. Be X= -9o0, Without loss of generality one may suppose A to be
negative, for i1f A is not negative, one can consider the integral
p(x)dx,

A
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‘where At denotes a finite negative number, as a constant indepen-

dent of u.
Again one has

A A A A 2{u)
J[ P(x)dx= ‘/” 3p(x)dx + B J/ lx}“1 dx +\/[ r(x)dx- J/ r(x)dx
Z(u) $(a) ou) oo Lo

| B b +1 A B, b, +]
='”§::J§£}T A B ; B log |A] + ZCOP(X)dX+§:::q§%-(€(u)) h

)
r(x)dx.

%(
+ B log \g(u)f~

( If it is proved that for small positive values of u the integral
$lu)

J![ r(x)dx can be expanded asymptotically in ascending powers of u,
tﬁzn 1t is proved that- the right hand side can be written as the

sum of -a B log u and a function that can be expanded asymptotically
for small positive values of u.

The function r(x) can be written in the form

r(x)= 5B B, Il P4 o(ld Py,

where the summation is extended over those values of h for which
bh;>1, and where b, increases indefinitely with H. So

H

) H- ~b, +1 ~by 1
P(x)ax = 5 B (¥()) +o({gw} ),
h 4
-0
and by this the desired result 1s obtained, since ua ?(u) can be
expanded asymptotlically for small positive values of u 1in ascending

powers of u, where the first term is a constant.

II. It is not possible to determine a finite fixed number A such
that for sufficiently small positive values of u the number A lies
in the interval (?(u)ﬁq(u)). Hence X =/,

Moreover, one Knows:

if ¢ 18 finite then elther « < g(u)g ” (u) or x > ?(u) » {u) nolds

gnc iurther

if = -00 then o > $(u) > 7 (u) holds and finally

if =00 then =< ¢ (u)< 7 (u) holds,

The proof can be gilven in the same way as above,

4, A generalisation.
One can glve a generalisation of the theorem mentioned in the

preceding section:
Theorem 4. Suppose that for every small positive value of u the
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integral 7(u)

J(u)= J/ p(x,u)dx

¢(u)

exists. Suppose further that ¢(u) and % (u) are real functions for
positive values of u that can be expanded asymptotically in
ascending powers of u for small positive values of u. Their respec-~
tive limits are indicated by & and /4 . For every x of the closed
interval (g(u),?(u)) and for small positive values of u the function
%(x,u) is supposed to be expanded asymptotically uniformly in x
by means of

p(xsu)hzz:: uch Py (x) .
h=0

One assumes that the coefficients $Dh(x) are integrable in the
closed interval (?(u),Q(u)) for small positive values of u and that
the exponents Ch increase indefinitely with h.

Finally it is supposed that the functions }0h(x) can be expanded
asymptotically in the interval (g(u),d) in the neighbourhood of
x = « and also in the interval (7 (u). fj) in the neighbourhood of
X =24,
Assertion: i: If ¥(u) and % {u) are finite for small positive
values of u, then one can write J(u) in the form

Ji(u) log u + Jy(u),

where J1(u) and'J2(u) can be expanded asymptotically for small
positive values of u, '

ii: The assertion above also holds in the case that ?z(u)=cw for
small positive values of u, for every fixed integer H > 0 holds

H-1 c c
p(x,u)= %_b u g (x) + 0(u i @}ﬁx)),

where é@H(x) denotes a suitably chosen positive function of x that
is integrable in the closed interval (g(u),oo).

ili: The assertion i, also holds in the case that ‘?(u)= - oo for
small positive values of u, if for every fixed integer H > 0 holds

H-1 Ch Cq
;ﬂ(x,u)-:%‘__:o u ® e (x)+ o(u B L(x)),
where éﬁﬁxx) denotes a sultably chosen positive function of x that
is integrable in the closed interval (=00, 7 (u)).
i1v. An analogous result holds if at the same time %(u)z—co
and % (u)=00 . o
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Proof: The four assertions are proved as follows:
i: Uniformly in x holds

H-1 c a
h H
P(X,U)=Z fh(x)—% o(u ).
h=0
Inserting this expansion into the integralrepresentation of
J(u), one gets v(u) : 7 {u)
E—iH‘ °n Uy
J(u)= u P (x)ax + O(u "M)dx
h=0
- 3(w) o(u)
7 (u)
For every h > 0 the integrals J/. P, (x)ax satisfy the conditions
$ (u)

of theorem 3 and, therefore, they can be expanded asymptotically
for small positive values of u with the exceptlon of a logarithmi-
cal term. The remainder term can be written as

o {2e- g ],

It 1s always possible to determine a real number j such that

a]@(u u)} tends to a finite limit # 0, if u tends to zero.
The remalnderterm is, therefore, of the same order as u H- , and
Q- ﬁ increases indeiinitely with H.

So J(u) can be written in this case in the form

J () log u + Jy(u),

where J1(u) and Jg(u) can be expanded asymptotically for small
positive values of u,
i1, If X< oo, one can split up J{u) as follows:
A
I (w)=I(u)+K(u), I(u)= ~/' f%x,u)dx, K(u)= J/.lp(x,u)dx,
&(u) A
where A denotes a finite real number independent of u such that
.for sufficiently small positive wvalues of u g(u < A. The assertion
for I(u) has been proved already under i, The assertion for K(u)
holds in virtue of:

- c =
K{u)= g;; u B Z~ Wh(x)dx + 0f J/ @Eﬁxﬁdx)
-5 l ¥, (x)ax + o(u Hy,

Therefore, the assertlion holds also for J(u) itself.
1i,b. If A =0 the assertion follows from
H-1

J(u)= > uch a/* P (x)ax + O(uch J[ q;H(x)dx).
u

n=0 e(u)
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In the casesiii and iv the proof can be given in a way analogous
to the one used for the second case,

5. A more complicated integral.
Finally there will be given an expansion of a more ccmplicated
integral. This expansion is needed for the calculation of asymptotic

residus along critical lines.

Theorem 5: Let J(u) be an integral of the form

n(u)
sw= [ A plxax,
{0

that exists for small positive values of u. Again g(u) and 7(u)
are real functions for positive values of u, that can be expanded
asymptotically for small positive values of u. Their respective
limits are called « and /35 where « is a finite real number. For
sufficiently small positive values of u holds 72(u) @ (u)> .

Put A(u)= u { 7(u)—m} Vand T(u)=u { £(u)-2¢y 7. Both functions
of u are, therefore, positive and for sufficiently small positive
values of u holds A(u)< T(u). The respective limits of A(u) and

T (u) for u—>0 are indicated by ¥ and . These limits are > 0 oroP,

Assertion: It is possible to write J(u) as follows
J(u)= JI(u) log u + JII(u),

where JI(u) and JII(u),can be expanded asymptotically for small
positive values of u, if the following conditions are satisfied:

1. The function ¥ (x) can be expanded asymptotically in the
interval {e¢,€(u)) in the neighbourhood of x =& and in the interval
Vﬁ u)) in the neighbourhood of x =/3 .

1i The function jX(v can be expanded asymptotically for small
positive values of v. Moreover, it can be expanded asymptotically
in the interval ({,A(u)) in the neighbourhood of g and in the inter-
val (8 T(u)) in the neighbourhood of .

iii, Ifx=/5, then the integral

T(u)
X(v)

Alu)
exlists for small positive values of u and there exists a positive

number @< 1, independent of u, with the property that u® 67(u)—o<)
1s finite for small positive values of u.
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iv, If o<</6, then the integrals

7 (u) T(u)
J[ lf(x)jdx and J[ ‘X(v)\dv
() Alu)

exists for small positive values of u.

Remark: One gets an analogous result if the condition % (u)> %(u)>¢
for small positive values of u is replaced by « >§’(u)> 72(u) for
small positive values of u; in that case one has to replace x-x by

0(‘ Xo

Proof: I, Be first considered the case X =4: Suppose that for small
positive values of x - the function )O(X) can be represented

asymptotically by
1 b b

()= 3= By(x-at) ™+ 0((x-e) ).
7 ho B ,
Then one finds for J(u):
H- t
J(u)= c— Bh Ib(u)+ O(IH(u))E
whe re 7 {u) | b
e R

#(u)
which integral can be written by means of the substitution
vV o= u.,(x--oc)"1 in the form

b+ T(u) -b, -2

u (v) v B gy,
il

With the aild of theorem 3 this integral can be expanded asymptotical-

ly for small positive values of u, with the exception of a logarithmi-

cal term,
Further

, ( | b
IH(U)= ?/P) z><(§%;) (x~o) # dx,
y(u) |
th;t is equal to . )'
ubH+1 {f i)<(v) v“bH_2 dv. (5.1)
Alu)

One can distinguish now the two cases:

Ia. Be »>0. For sufficlently small positive values of u the in-
equality A(u) > % holds, so that in virtue of T (u)» A(u) holds:

(
P g Y ()
Alu)

v B av =0 f av.
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From the remark, added to theorem % and applied with
%%x)==\ X(x)\ , 1t follows that there exists irreal constant X
such that the last integral is of th% QP??? u~ " . The integral in
(5.1) is also of the same order as u B+ , where the exponent
bH+1—¥§increases indefinitely with H, so that this integral tends
asymptotically to zero for H—>o0o, The case Ia (x =/, > 0) is,
therefore, dealt with completely.
Ib, Be = 0, According to condition 3 the expression
1.9

w® (y(u)- )= Sy

is bounded for small positive values of u, So in the interval

Au)gv € T(u) holds
, 1"6 "1 < u
VS XY

and, therefore, this is also bounded, so that the integral in (5.1)
is at most of the order

uGbH+2®-1 T(ft) }X(V) .
A(u)

Applying again the remark of theorem 3, one finds that the last
integral is of the order w8 s, 8o that (5.1) is at most of the
order @bH+29"1'k , where the exponent G'bH + 28 -‘1 - KX increases
indefinitely with H. This 1s the proof in the case d.=/3,a’= 0, so
that the case I, where « =3, is dealt with completely.

IT. Suppose <. One can choose in the open interval (dyé) a finite
real humber A independent of u; for sufficiently small positive
~values of u holds ¥ (u)< A< ¥ (u).

Under IIa the theorem is proved with ?(u) replaced by A and
under IIb with,7z(u) replaced by A. Addition of the two derived
results gives the desired theorem.

IIa. In the interval A< x<7(u) the quantity -}-{% is a small posi-
tive number, if u represents a small positive number, so that for
small positive values of u the function ){(igg)_can be expanded

asymptotically uniformly in x in ascending powers of u:

’ a
H-1 a H
U oy u “h u
s 35 a, 2By o).
h= (X'—OL) (X'0<) H

Using theorem 4, applied with

plxu)= Y (55 )

the integral taken from A to 7(u) can be written in the form
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I,(u).log u + Iii(u)’

where I,(u) and I,,(u) can be expanded asymptotically for small
positive -values of u.

IIb. Finally one deals with the integral
A
u
I(u):/ X(m) }O(X)dx,
giu)

where A denotes a finite number larger than « ,
For small positive values of v holds
H~1 a a

X(v): > Ay v B yo(v By
h=0
and for small positive values of x-& holds
H-1 bh bH
Plx)= 3 Bylx-«) ® + 0((x-x) ¥,
h=0
where ah and bh increase indefinitely with h. Now, put
a
h
()= Xo(v) +25 ay v (5.2)
and o
h -4
plx)= g (x)+ 2y By (x-) O, (5.3)

wherejz:1 andEZ:g are extended only over those values of the index
h, for which the corresponding exponents ay and bh are negative. The
function yg(x) tends to a finite limit as x tends to « , so that
one can choose A such that }ﬁ(x) is bounded in the closed interval
(<, A). It is clear that the functions Xo(v) and Y (x) can be
expanded asymptotically for small positive values of v and x~-«,
where the exponents occurring in these expansions are 2 O,

One puts : a A -5
I(u)= 2::% LR f q/— ?(x) (x=X) b oax
g(u) (5.4)
5 by +1 cla) -b, -2
+ 5 By u J[ ,Xo(v)v dv + I_(u).
AMu)

According to theorem 3 the integrals occurring in the right hand
side of (5.4) can be expanded asymptotically with the exception of
a logarithmical term for small positive values of u.,

I_(u) represents the integral
A

I, (w=/ K () plxax . (5.5)
?(u)
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The function [ (v) tends to a finite limit, as v—s0, that is
denoted by XO(O). Now the asymptotic expansions of Xo(v) and
?b(x) are written in the form:

\ : H-1 e
(O(v)= Xo(o)ﬁ-%ggg Ep Vv By O(veH) -~ (5.6)
and B |
H-1 fh fH
£ 0x)= 3 Fylx-x) ®+ 0((x-e) B); (5.7)

h=0

the exponents e, are larger than zero, the exponents fhz.O and
en and fh increase indefinitely with h.
One puts r

B ()= Yox)+ 205 Fy(x-a)

E

wherefZZB is extended only over those values of h for which the
corresponding exponent fh:S e, .

In this case A(u) takes the simple form K%R.°

According to the fourth condition -

T?” | X)

dv
Alu)
exists, so that in virtue of relation (5.2) also
T(u) |
Xo(v) dv
Alu)

exlsts.
By means of the remark added to theorem 3, there appears to

exlst a number X » O such that
T(u)

dv = o(u™ ™ (5.8)

A
()
| N) |
From the fact that %%(x) is bounded in the closed interval (&X,A),
it follows A 7(u)

R Bt | ax =0t [ A )
o(u) Alu)

Since Xo(v) tends to a finite limit as v tends to zero, it is

possible to determine a positive number v, such that ,Xo(v) is
bounded in the interval 0<vgv,. For values of u for which f(u)gvo,

the right hand side of (5.9) is at most of the order
v
0
- u _ .
u / v dV$ m—‘A"()(g
Alu)

vT2 dv). (5.9)
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For values of u having T {(u) > Vs the right hand side of (5.9) is
at most of the order

vy T(u) | 7(u)
u jﬁ v 2dv+u J/‘ X (v){dv g A= et 40 j[ 1X0§v) dav .
A(u) vy Au)
From (5.8) and X » O one finds in all cases
A
[ W62 gy |ax = o™ )
¢(u)
The method, by which the integral I_ (u) is handled, 1s the
following one. One writes T(u) '
£,41 -f,-2
Io(a)=2—5 F, u JER ) av + R (), (5.10)
A(u)
where
[ A potom
glu)

The integrals occurring in (5.10) can be expanded asymptotically
with the exception of a logarithmical term for small positive values
of u. Now, put A

Ro(u)= %5(0) J[ @#b(x)dx + u
g{w)
where the integral can be expanded again asymptotically for small
positive values of u in virtue of theorem 3.
30 one writes 11(u) in the form:

A /
- [ AR A
HOV

where X1(V)=“{X5(V)- /]VO(V)}V-.e1 and yH(x)=fV%(x).(qu)-e1 .

One deals with the ihtegral I (u) in the same way as withFIO(u)n
ThlS is possible since the follow1ng properties hold:

1: For small positive values of v the function X (v can be
"expanded asymptotlcally in ascending'powurs of v, Just as ,XO(V
and .( (v) tends to a finite limit as v approaches zero; that limit
is denoted by ,X

1i: For small positive values of x-« the function yQ(x) can be
expanded asymptoticallv in ascending powers of x- ¢¢, just as }DO(X),
and ¥, (x) 1s bounded in an interval (o(,A).

1ii, One has e1>-0;

€1
11(u),
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iv. One has
A

J[ \X}(i%&)yH(x)
(w)
It will be shown that in this formula the same exponent KN occurs as
in formula (5.8). Since fﬂq(x) is bounded in the interval, the left
hand side is at most of the order

ax = O(u“x) (5.11)

A T(w) ,
J[ \X1(§%§ dx = u J[ \'YW(V) v © dv .
§(u) Alw)

If g = 0, the right hand side of this equality is at most of the
order 1,§nce$<6btends to a finite limit as v approaches zero).q There-
fore, the last mentioned integral is at most of the order u " and
{5.11) 1s proved in this case.

If 6> 0, it 1is possible to choose a positive number B smaller
than S . Just as is done in the case S = 0 one proves that the con-

tribution of the integral
B

u ?/ | £,
Alu)
X

is at most of the order u™ " .
In the interval B<v< T (u) holds

Xy A v)-4(0) ,
o = V2+e1O =0 q&o(v)\+ :%)’

V"2 dv

s0 that the contribution of the interval B< ve T(u) is at most of

the order r(u) o . <
dv + j[ 3%-: O(u™™ )+ 0(1)= o(u™ "),

J

B B

according to (5.8). So (5.11) 1s proved for all cases.

In the prgceding pages the integral Io(u) has been written as
the sun of u ' I,(u) and a function that can be expanded in the
desired way. It has been shown that IO(Q) and I1(u) are both of the
ord@rgu")q, and that 11(u) satisfies the same conditions as I (u)
does. .

Using the process of induction and introducing
e, -e
Xo(vd= (X ()= X () v 13,
one finds that I,(u) is equal to the sum of u82 "1 Io(u) and a
function that can be expanded in the desired way. So Io(u) is equal
to the sum of u 2 Ig(u) and a function that can be expanded in the
desired way. Proceeding in this way one finds that for every natural

e
number h, Io(u) is equal to a term u h Ih(u) augmented by a function
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that can be'expanded in the desired way. Here the integrals
Io(u),I,(u),...,I, (u) are at most of the order u")i where X 1s the
same number for all integrals.so that

enm Xy,

ueh I, (u)= 0(u

Since en increases indefinitely with h, the proof is given in the
case IIb and the proof of theorem 5 has been completed.
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CHAPTER II

Theorems concerning equations,

1. Introduction.

In this chapter several theorems are given concerning the solu-
tions of certain equations; especially the behaviour of the solu-
t%ons for special values of the occurring parameter is considered.

2. About the unigueness of the solutions.

Theorem 6, Be o a positive number, Suppose that in the interval
Yo~ X €Ty, +o, the real metinf (y) is continuously differentiable
with £1(y)# 0 and that i(y,)= x_.

It is possible to choose a positive number/% 80 small,that There
is one and only one continuous function y(x) that satisfies in the
interval X & XE X +/ﬁ, the relations yo-c&sy(X)g yo+o(and'
fly(x))= x. : :

Proof: Be m the minimum value taken by‘?!(y)gon the closed interval

Yo -~ XLy £ Yo te¢3 one chooses /3’>O.such that mo<>/5., -
Be ? a number such that x <% < X, + /3. The values of the func-

tion £(y)- x arecompared at the points (?, y,toX) and (?, Yom &)

by making use of the mean-value theorem:

¢
fh%+d)-?= &3-?+df'@+dd),

P(yg-)-§ = xg - §-t T1{y- 8,00),

where 8 and 81 denote suitably chosen positive numbers less than
one,
There holds, however,

?— xOSgﬁ < m.m§&afr(y+5¢)[

and
- xgp < mo'xs(d £1(y- 51<><)}°

From these inequalities it is seen that f(yo+cX)—g and fo(y-d)-g
have opposite signs and since f'(y)# 0 throughout the interval
Vo XLy LY teX; 1t follows that in the mentioned interval there
exists one and only one value of y such that f(y)—%==(h So for
every x in the interval XO$~X<§XO +/3 one can find one and only one
value of y satisfying f{y)= x.

For an analogous theorem see [j].
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3, About the expansibility of the solutions.

Theorem 7: If the exponents o # 0, ¢, ..., 0y are real, the
*‘equation o H X

PO+ > /\hPh=1 ' (7.1)

h=1 ;

has one and only one solution P = P(A1,,..,AH) which is analytilcal
in the neighbourhood of the origin A1 = Ag = .. = A4 = 0 and takes
the value 1 at the origin. That means that this solution can be
expanded for sufficiently small values of ‘A1‘9°°"(A4§ in an
absolutely convergent powerseries with respect to 1° A2,.,., A}F

Proof: In the equation (7.1) is substituted P = 14x, 80 that this
equation takes the form

F(X, )\190'03 {\H)= O

. OF _ R
and the derivative = —G%O £Z0 at x = Ny=ooe= Ay= 0,

One has to prove that under the sald conditions the equation
F(X\A,.,,AH)= 0 has one and only one solution that is analytic in
the neighbourhood of the point x = A1 S .., =1\H= 0 and that vanishes
at that point. This is a special case of the following theorem.(See
[2]):

If the functions

FJ(W.,]ge.o;Wk; Z,]guoagzl)’ j=130005k

are analytic functions of (k+1) variables in the neighbourhood of
the origin, if Fj(O;O)zo and if

OAF s uFy)
’3(w1,..°,wk)

then the equations '

#£ 0 for (w)=(z)=(0)

FJ(W,I,;..,WK, 21,..°3Zk)=0 . j=13eﬁlﬁk

have an unique solution

Wy o= wj(z1,...,zl)

vanishing for (z)=(0) and analytic in the neighbourhood of the
origin.

4,.A generalization,

Theorem 8. The equation

P © + Z Ch P = W,
h=1
where o, > >0 for h =1,...,H and H denotes a fixed natural
number, has for small positive values of u one and only one continuous
solution p{u) that tends to zero as u tends to zero; this solution can
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be expanded for small positive values of x in an absolutely conver-
gent series of ascending powers of u; the exponents occurring in
this expansion are all positive, but not necessarily integers.
Remark: For positive values of u and for real values of & the
quantity u® is supposed to be positive.

Proof: One puts 0<=‘xo

/3h =_O<"h -, 50 //5h> 0 forh> 1 and
\/é¢
u = X,
so that the given equation is transformed into f£(p)=x, where
1
H A Jx
“n
£(p)=p(1 + 1%:—? e, ).

If the positive number Po is chosen small enough the function f(p)
is contlnuously differentiable in the interval Osfpg:po with
fi{p)# 0. Indeed, 1A‘ 1 14 é‘ H . /Gh

ei(p)=p  tx F DINNECNE A B

h=1
% A
P=1+ Chplhs
h=1

where

is approximately equal to one, so #£ O,

According to theorem 6 the equation f(p)= x and also the given
equation for x> 0 have in the neighbourhood of the origin one and
only one continuous solution p = p(x) that tends to zero as x tends
to zero. In order to show that this solution can be expanded for
small positive values of u, one applies theorem 7 to the equation
equivalent with the originally given equation:

o H o<
Yy © + Z: Ch /\h ¥ B = 13
h=1
where : 1 ' -1
vy =pu and Ay =u » (hx1).

Since CKh>«%6>-O for;h; 1 the quantity ‘Ah tends to zero as u

. tends to zero. The conditlons of theorem 7 are satisfied, so that
the equation has a solution y = y(Aqg...,AH) that can be expanded
in an absolutely convergent power series with respect to A1’°“’AH
in the neighbourhood of the origin A1='\2=,,.=AH= 0, and that is
equal to one at the origin.

In this manner one obtains an absolutely convergent expansion in

ascending powers of u for the solution p(u) uniquely determined

following the arguments mentioned above. So the proof is given.
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5. Final theorem.

Theorem 9: Suppose that for small positive values of p the function
f{p) 1s positive and can be expanded asymptotically in ascending
powers of p. Suppose further that f(p) tends to zero as p tends to
zero, and that the derivative f'(b) exists for small positive
values of p; moreover, f!'(p) be continuous and satisfy the relation

\er @) 7t = ol(e)) (9.1)

where‘f’denotes a sultably chosen real number,

Assertion: The equation f(p): u has for small positive values of u
one and only one continuous solution p = p(u) that tends to zero

as u tends to zero. This solution p(u) can be expanded asymptotical-
ly for small positive values of u.

Proof: In & manner similar to those of the preceding theorem, it
follows from theorem 6 that the squation

f(p)=u
has one and only one continuous solution p(u) that tends to zero

with u.

Be e *
h
f(p%v%;%. ¢y, P

the asymptotic expansion of f(p) for small positive values of p,
so that the exponents OCh increase indefinitely with h.

Without loss of generality one may assume that the exponents
inerease wlth h. Then the coefficient Cq is positive.

According to theorem 8 the equation

£ .(p)= %;% c, P o= U,

where k 1s a natural number, has one and only one continuous
solution pk(u), that tends to zero with u; this solution can be
expanded for small positive values of u in an absolutely convergent
series of ascending powers of u. This series starts with the term
buﬂi where b andfﬁ are positive numbers. For small positive values
of u the quantity.pk(u) is a small positive number so that f(pk(u))
exlsts. One writes

. ‘ Odk
£(pye()) -2 ()= (o)) = £, (o, (w))40{ () ¥ -
= of (5, () ] = o(uf),

since pk(u) is of the order u/5




- 2% -

Because of the fact that £t(p) exists and 1s continuous for
small positive values of p, it is possible to write down the iden-
tity: Py (u)

£l (w)-f(p(u))= /[ ri(v)av, (9.2)
p(u)
Since p(u) and pp(u) are both positive and are of the order u/g,
the variable of integration v is of the same order in the interval
(p(u),pk(u))g so that the integral is of the order u“ﬁvipk(u)—p(u)),
according to (9.1). From (9.2) one deduces

uv@? pk(u)*p(u) - O(uﬂdk),

so that /30C1h@P

But &, increases indefinitely with k. The function p,(u) has been
expanded in an absolutely convergent series of ascending powers of
u that represents at the same time the asymptotic expansion of
pk(u). In this way the solutilon p(u) has been expanded asymptotical-
ly in ascending powers of u for small positive values of u.

6. A generalisation.

Theorem 10. The equation

where w%) cﬁh:so for h = 1,,..,H and where H denotes a fixed natural
number, has for large positive values of u one and only one contlnuws
solution p(u) that tends to infinity with u; this solution can be
expanded for largé positive values of u in an absolutely convergent
series of descending powers of u.

The proof is given in a manner similar to that of theorem 8.
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CHAPTER IIT

Theorems concerning double integrals,

1. Introduction.,

In this chapter the definition is given for double integrals in
the improper sense., Some theorems are given on the existence of
double integrals in improper sense and also some theorems on the
possibility of using transformation.

The theorems 11 and 13 are proved in H. von Mangoldt, Einfiuhrung
in die Hohere Mathematik, 1948y'and, therefore, they are given here
without proof,

2. General theorems.

Theorem 14, If the function f(x,y) is continuous on the closed
bounded set B, then f(x,y) is integrable on B. For the proof see[?},

' Theorem 12, If the function f(x,y) is continuous on the closed
bounded set B, if M represents the maximum value of \f(x,y)\ on B
and 1f, finally, I represents the area of the closed bounded set

B, then holds
\ lf x,y)dx dy < MI.

Proof: According to the mean value theorem (confer [4]) holds

f/ x,y)dx dy = I,

where/ﬂlindicates a sultably chosen number lying between the upper
and lower limits of f(x,y) on B (the boundaries inclosed).
From this the proposed inequality follows immediately.

3, First transformation theorem.

Theorem 13, Let B' be a bounded measurable set of the (u,v) plane.
On a set B{ containing B' and his boundary as interior points, are
given the functions x =¥ (u,v) and y =}U(u,v). These functions are
continuously differentiable with respect to u and v in the interior
of B{, while the Jacobian

J(u,v)=1| @ (u,v) W (u,v)
Polu,v) W (u,v)

is supposed to be elther always positive or always negative in the

interior of B'.
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The image of B' in the (x,y) plane is indicated by B; it is

supposed that two different interior points of B! correspond to
different points of B, So the set B has also an area A and this is

equal to
A =~é/ J(u,v) du dv.
1

If on B is given a function f(x,y), integrable on B, then also
the function f(y%u,v),}b(u,v))\ J(u,v)\ 1s integrable on B!' and

there holds
‘[f f{x,y)dx dy =/6/ fgb(u,v),yV(u,v)” J(u,v)| du dv.
B , B!

For the proof see [5]

4, Some definitions.
In this szction the following two definitions are given:

Definition I. Let f(x,y) be continuous in a certain region G of the
(x,y) plane; then according to theorem 11 the integral

Lf ,y dx dy

exists for every closed bounded subset D of G. Be R the boundary of
G. Now, consider infinitely many of such subsets D1,D2,,.° of G
such that the distance of each boundary point of D to R tends to
zero as n increases indefinitely. If for every ch01ce of such sub-
sets D D «.. the integral

13
/I/ f(x,y)dx dy

tends to a finite Limit as n tends to infinity, one says that the
functlon f( is integrable (in improper sense) on G and one puts

jzf x,y)dx dy = I.

Definition II. One says that a plane poihtset has an e:xternal measure
less than or equal tO/A if that point set can be covered by a
finite number of squares having a total area smaller than or equal

tolﬁA,

5. On the area in the neighbourhood of a continuous arc.

Lemma 1. Be R a plane continuous arc with a finite length L. The
points lying in the plane of the continuous arc R and having a
distance ¢ © to that arc, form for every positive value of t<1 a

set of the external measure < 4(L+1)t.
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Proof: Suppose that the arc R lies in the (x,y) plane, Let this
plane be covered by fitting squares that have sides with a length

t and that are parallel to the coordinate axes., It is sufficient

to prove that at most 4(1+L.t"1) such fitting squares have a point
in common with the arc R, for in that case the number of squares is
less than or equal to 4t’1(1+L)y so that the total area of these
squares is at most equal to 4t(1+L). In proving this one may suppose
that there occur at least five of the mentioned squares. In con-
sidering 5 different squares it is always possible to find among
them two squares having a distance larger than or equal to t. An
arc of R that needs 5 sguares to be covered, contains, therefore,
at least two points having a distance larger than t, so that the
length of the arc is also larger than t. An arc of R with length
less than or equal to t, can be covered, therefore, by four or less
of the mentioned squares. Since the arc R has a total length L, R
can be divided into less than 1+L‘,t"1 parts,; each having a iength
< t, so that the whole arc can be covered by less than 4(1+L.t"1)
of the fitting squares.,

6. On the existence of an integral,

Theorem 14: Be f(x,y) continuous in the bounded region G, with the
property that
| £(x,7)) < ¢

a-1+§ s
where C and 5 denote fixed positive numbers and a indicates the
distance of the point (x,y) to the boundary of G. (It is clear that
& depends on x and y).

Suppose that the boundary of G can be divided in a finite number
of continuous arcs each satisfying the following condition: the arc
has either a finite length or f(x,y)= 0 at each point (x,y) of G in
the neighbourhood of that arc, Under these conditions the double

integral .
Zy‘f(x,y)dx dy
G

exists.

Proof: First step. The (x,y) plane is covered first by fitting
directed squares Vm with sides equal to 2—m, where m denotes a
natural number, Be Qm the set formed by those squares Vm that belong
entirely to the interior of G and that have a distance to the
boundary R of G that is larger than 2™ The set Qm is closed and
bounded and the function f(x,y) is continuous at each point of«me
so that the integral

I(m)= £7~ f{x,y)dx dy

m
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exlsts according to theorem 11.

First it will be shown that this integral tends to a finite limit
I as m increases to infinity. Therefore one remarks that I(m+1)-I(m)
can be written as the integral with integrand f(x,y) extended over

meqe ©that contribute to I(m+1), whereas the squares Vo,

containing Vm+1 do not contribute to I(m). These squares Vm’ there -
fore, have either at least one point in common with the boundary
or with the e:iterior of G or they contain at least one point that
has a distance to R less than or equal to E'm. Each polnt of the
congidered squares Vm and therefore each point of the corresponding
squares Vm+1 has a distance to R being at most equal to o~ avgmented
by the dlagonal of th?se squaresavm, so that this distance 1is at
most equal to 2-m(1+2§). According to the preceding lemma, applied
with t = 2~m(1+2%>’ for every arc with a finite length L the total
area of the squares Vm+1 coming into consideration is at most equal

to

all squares V

-m+2
(

1
2 1422) (L+1).

Since the number of continuous arcs of finite length is finite and

"f£(x,y)= 0 in ths neighbourhood of all other arcs, the total area of

the squares V +1 coming into consideration is at most equal to

C 2 m+23 where C1 denotes a suitably chosen positive constant.
According to the definition, each of the mentioned squares Vm+1

has a distance to R larger than 2“'m"1 and so holds in those squares:

\f(xjy){ < c(efm‘T)'1+S :

From this it follows:
, 3-8 ,-mb
| T(m+1)-I(m)| < cc, 2 .2 ,

o0
so that the series > I(m+1)-I(m)

m==1
converges (even absolutely) and, . therefore, I(m) tends to a finite
limit as m increases to infinity,
Remark: In the preceding lines f(x,y) may be replaced by its absolute

value, since this value is also continuous. Thus, one finds also that

JO[ (x,y)| ax day

tends to a finite limit if m increases to infinity.
Second step: One shows further that

éf f(x,y) dx dy

tends to the above introduced limit I if E runs through a series of
bounded closed subsets of G with the property that the distance of
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each boundary point of E %o R tends to zero.

It is sufficient to prove that for every positive & and every
closed bounded subset E of G, of which each boundary point has a
sufficiently small distance to R, the inequality ‘

| [[ety)ax ay - 1)< (14.1)
E

holds.,

According to the first step of the proof and the remark added to
that step the following properties hold for each sufficlently large
natural number m:

i, \17. f{x,y) dx dy - It < &2 (14.2)

ii, ‘// (%, \dx dy - f/ dx dy&( /2,

for every integer M>m. (The last inequality is the result of the
application of the criterion of Cauchy to the result of the remark
added to the first step). Let m be a natural number with these two
properties. The proof is given, if one can prove (1%4.1) for each
closed bounded subset E of G, the boundary points of which have a
distance to R less than E'm, In that case Qm is a subset of E, while
it is possible to find a natural number M » m such that E 1s a
subset of Q and then holds: |

&f/ Xdedy~// Xydxdy=l// xydxdy\
//\ x,y)dx dyls

&2,

so that (14.1) follows from (14.2).

7. Second transformation theorem.

Theorem 15. Suppose the conditions of theorem 14 are satisfied. Be
given in the region D of the (u,v) plane two continuously differen-
'tiable functions

X =;D(u,v) and y =77l/(u,v),'

such that the Jacoblan

J(u,v)= Pu(u,v) }Du(u,v)
Pv(usv) y&v(usv)

is always positive or always negative-on D; the image of D in the

~
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(x,y) plane is denoted by G. The transformation is supposed to be
one to one correspondant. Finally one assumes that 1f the
distance of the point (x,y) of G to the boundary Rt of G tends to
zero, also the distance of the corresponding point (u,v) of D to the
boundary R of D tends to zero. Under these conditions the integrals

Jgff(x,y)dx dy and /gh f(f%u;vl%/(u,v)) {J(u,v) du dv

exist in improper sense and are equal,

Proof: Consider infinitely many regions E belonging with their
boundary to Dt such that the distance of every boundary point of h
to the boundary of D! tends to zero as n increases to infinity.

Applying theorem 14 one finds

[[ tlx.y)ax ay
t
El’l

tends to a finite limit as n increases to infinity.
From this it follows that f(x,y) is integrable on D! and that I
is equal to the integral of that function f(x,y) extended over Dt,
According to the transformation theorem 13 holds

j@{ f(x,y)dx dy = j&f fQF(ugV),}u(u,v))\J(u,v)\du dv, (15.15

where E denotes the region correspondlng with E . Bach boundary
point of E has the property that its distance to Rt tends to zero
as n 1ncreases to infinity. From this it follows that the distance
of the corresponding point (u,v) to the boundary R of D tends also
to zero. Since the integral in (15.1) tends to a finite limit I, if
n increases to infinity, the function f(yKu,v),VKu,v))\J(u,v)\ is
integrable on D, and I is equal to the integral of this function
extendedowr this region D. So the proof is complete,

7. On the existence of an integrai, II.

Theorem 15. Be the function f(x,y) continuous on G, with the excep-
tion of a finite number of points ZyseeesZo, with the property that

~1 4 244 048
lf(x,y)lg C(a, ° 4 8, Ve a, T,

where (C, 5;381,,,.,Sr denote fixed positive numbers, N denotes the
distance of the point (x,y) to the boundary R of G and 8438550058,
denote the distances of the point (x,y) to the respective points
Zys.e (It is clear that 8,548, depend on x and V).

Suppose that the boundary R of G can be divided into a finite number
of continuous arcs, each satisfying the following condition: the arc
has either a finite length or f(x,y)= 0 at each point (x,y) of G in
the neighbourhood of. that arc,
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Then the integral

jgff(x,y)dx dy

exlsts In improper sense.

Proof: First step: Be the (x,y) plane covered by fitting directed
squares V with sides equal to E’m, where m denotes a natural number.
Be Q the SLt formed by those squares V that belong entirely to

the int rior of G. These squares have a distance larger than 27 ™ to
the boundary R of G and they have a distance larger than

2 to each of the points Zys e «sZpe The set Qm is bounded and
closed and the function f(x,y) is continuous on Qy, 580 that the

integral
f/ x,y)dx dy

exlists according to theorem 12. -

Flrst it 1is shown that this integral tends to a finite limit I
as m increases to infinity. Therefore, one remarks that I(m+1)-I(m)
can be written as the integral with integrand f(x,y) extended over
mete that contribute to I(m+1) whereas the squares Vg
containing Vm+1 do not contribute to,I(m). These squares Vm’ there-
fore,have either at least one point in common with the boundary or
with the interior of G or they contain at least one point that has

those squares V

a distance £ 2™ to the -boundary R or that has a distance
t .

<» 2 :

<2 to a least one of the points ZyseessZpe

Each point of the considered squares V and also each point of
the corresponding squares V — has a dlqtance to the boundary R
being at most equal to 2 = augmented by the dlagonal of that square
Vi (so that this distance 1s at most equal to 2~ (1+22)) or that
point has a distance < 2" 'T(1+22) to at least one of the points
ZyseeesZy,.

One applies lemma 1 to each cont:nuous arc of the boundary R with
finite length choosing t = 2~ (1+22). Then one flnds that the points
that have to the boundary R a distance 2~ (|+22), form a set of

which tHe e:ternal measure is at most of the order E'm. It is clear
m

- N _
that the points having a distance 2 2(1+22) to at least one of

the points z »Z0ps form a set with external measure also of the

13..-

order 271
Since each of the mentioned squares Vm+1 have ac:cordlmfJ to their
definition a distance larger than 2 -m-1 fo R and a distance 1arger
_mt]
than 2 K to each of the points ZgseoesZpns the function f(x,y) is

at most of the ordqr
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(2-(m+’1 ) )—1+8

at each point of such a square, so that I{m+1)-I(m) is at most of

the order 2'(m+1)3n Therefore the series
QO

> I(m+1)-I(m)

m=1

converges (even absolutely) and I{m) tends to a finite limit as m
approaches infinity.

Remark: In the preceding lines f(x,y) may be replaced by its absolute
value, since this value 1s continuous too. Hence, one finds that

17~!f(x,y)l dx dy
U

tends to a finite limit if m increases to infinity.

also

Second step: One shows further that

/ [yf(x,y)dx dy
E

tends to the above introduced limit I if E runs through a series of
bounded closed subsets of G with the property that the distance of .
each boundary poilnt of E to R or to at least one of the points
ZaseeesBy tends to zero.

It is sufficient to prove that for every positive & and every
closed bounded subset E of G, of which each boundary point has a
sufficiently small distance to R or to at least one of the points
Z1"°"Zr the 1lnequality

f(x,y)dx dy -~ Ijc¢ & (16.1)
E .

holds. According to the first step of the proof and the remark
added to that step the following properties hold for each sufficient-
ly large natural number m:

i, ég{ f(x,y)dx dy - I’ < E:/2; (16.2)

dx dyl< Y5

i1, j&f}f(x,y)}dx dy - fy‘if(iﬁy)
Qy | Qy

for every integer M >m. (The last inequality is the result of the
application of the criterion of Cauchy to the result of the remark
added to the first step). Be m a natural number with these two
properties, The proof is given if one can prove (16.1) for each
closed bounded subset E of G the boundary points of which have a
distance to R smaller than 2™ or have %1distance to at least one

e

of the points zwg.e.,zr smaller than 2 2 . In that case Qm is a
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subset of E, while it is possible to find a natural number M » m
such that E is a subset of QM’ and then holds:

‘47 £(x,y)dx dy - /9/ (x,y)dx dy[ 1 ij X,y )ax dyi
dé7~ %szy

o

dx dy &

so that (15.1) follows from (10.2).

8, Third transformation theorem.

Theorem 17. Suppose that the conditions of theorem 16 are satisfied,
Let be defined in a certain region D of the (u,v) plane the functions

X =}D(u,v) sy =¥(u,v).

These functions are continuously diffzriatisabkle in D such that
their Jacobian

J(u,v)= | ¥ (u,v) syu(ugv)
o, (v, (wv)

is either always positive or always negative on D; these condltions
do not need to be saivisfied on the boundary R of D.

Be G the image of D in the (x,y) plane. It 1is assumed that
between the point+of G and D is an one to one correspondance. Then

the integrals
é[f(xﬁy)dx dv and ‘K/ f{y(u,v),}D(u,v)iJ(u,v){du av
D

exlst in improper sense and are equal.
Proof: Consider infinitely many regions E} belonging with their
boundary to G and containing none of the p01nts ZysBps e sl such
that the distance of each boundary point of E to the boundary R?
or to at least one of the points Z1sZpsenesly tends to zero as n
increases to infinity.

According to theorem 10 the integral

f]‘f(x,y)dx dy

tends to a finite 1limit I. Therefore f(x,y) is integrable on G, and
I is the integral of that function on G.
According to the first transformation-theorem:
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]O( f(x,y)dx dy = /9[ f(f(u,v)g9V(ujv)AJ(u3v)jdu dv,
“n En (17.1)

where En denotes the reglon of the (u,v) plane corresponding with
EA. Each boundary point of Eé has the property that 1ts distance

fto Rt or to at least one of the points z .52 tends to zero as

1309 T

n increases infinitely.

From this it follows that the distance of the corresponding
point (u,v) to the boundary R of D or to at least one of the points
zfﬁ...,z:'tends also to zero; here ZT, etc, denote the image of zT
in the (u,v) plane. Since the integrals in (17.1) tend to a finite
limit I, if n increases to infinity, the function
f(y(u,v),}u(u,v))lJ(u,v){ is integrable on D, and I is equal to
the Integral of this function extended over the reglon D.
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CHAPTER IV

Several theorems.

1. Introduction.

In this chapter three theorems are collected. The first theorem
deals with the length of a certain curve. A lemma used in its proof
1s given first. The two other theorems deal with the analytic
continuation of the Beta-function.

2. A lemna,
Lemma 2, If in the interval O<:x~<xo
€9 A
y= > chxh, (18.1)
h=0
where the exponents <Xh increase to infinity with h, then in this
interval the function y is differentiable with respect to x and one

has
&0 oL, =1

Proof: Without loss of generality one may suppose that each exponent
c%h is larger than one, since in the other case one needs only to
treat separately a finite number of terms.
Be x, an arbltrary point between x and Xy Since the series (13.1)
converges for x = Xq5 all terms of that series are bounded at x = X4

S0 I SR
len x; "< s | ! %“jﬁ

where C denotes a fixed positive number.

From thls it follows that the series mentioned in (18.2) converges
for each % between O and X and even uniformly in the 1nterva1
Og X< Xp if X5 lies between 0 and Xq

The sum(x) of that series is therefore a continuous function
of x and the series can be 1ntegrated term by term, so that one
finds X o o

jfgy(t)dt = > cL X =y

=0

at each x of the interval O<ix<:x2
Since the integrand %(t) is continuous, the left hand 31de is
differentiable |with respect to x, so that one gets

1

as _ 20 Xy~
ax = Hx)= 2 epey x

\&




This result holds for all x between 0 and Xn s whére Xo MY represent
an arbitrarily chosen number between O and X, so that the relation
holds at each x between 0 and Xqe

3. The length of a certain curve,

Theorem 18: If in the interval 0Oc¢ x<:x§ holds

. <o o
P(x): %gé op X b

where each exponent oih is larger than or equal to zero and O‘h
increases indefinitely with h and the coefficient:ch denote real
numbers, then the curve defined by the equation y =‘ny) has a
finite length in the interval O<xg X

Proof; Choose a number waetween 0 and x According to the preceding

o°
lemma :
o0 K=t
h
1(x)= 2 c, X, X
7 h=o o B
exists at each point x between X4 and xo and therefore the integrals
X X,
Q 1 . .,1 1
/ {“’(}D'(X))E}E dx = / {1 +(§:C 2" . )2}2 dx (15.5)
X.,l . x1

exist. If<X-denotes the smallest positive exponent occurring in the
expansion of y> ) then for small positive values of x the integrand
is at most of the order (1+ ¥*"'), where ot -1> -1.

The integrals in (18.3) tend therefore to a finite limit as X4
tends to zero and this limit is the length of &he curve according
to its definition. |

4, Analytic continuation of the Beta-function.

Theorem 1g. Let the function r(w,¢,B) be defined by the relation

r( Py (
o< ——. -
W, /6) o Y N w),

where « and /3 may be real or complex numbers but such that Re/3 >0,

Rectd -1, and that Refﬁ- Reo~ is not an integer < 1; furthermore,
PN(w) is the truncated binomial expansion of

; il.e.

(14w)?
Py(w)= w > Z (‘/3) w¥, ir Re’ ¢ Reof +1,

where N is The integer » O such that Rex ¢ Re A +N< Rex +1

and PN(W)= 0 1f Re/z» Rood +1.
{
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Under these conditions r(w,x,5) is integrable in the interval
OS WS oo, and | -
, _ _ L (p)(a)
Jf r{w,o,B)dw=B(<+ 1¥8-u—1), where B(p,q)= R
0

Proof: For Rez@‘\Reo<+1 it is well known that
co .

o ox
[ r(weman = /—ﬂm—w=3wﬂ¢¢-n,
(1~l~w)/5
0 0
The functlon on the right hand side satisfies the recurrence rela-
tion

+
B(p,q)= Eaﬂ B(p,q+1).

By partial integration one gets

Here N
(e )P 5 (B W

is for large positive values of w at most of the order w N1 ana

therefore of smaller order than whe/ -Reet-1 5 the function under
congideration is for small positive values of w at most of the
order W"N and therefore of smaller order than wRQﬁ'Re“"1. Conse~
quently the first term in the right hand side of the ildentity

obtained above tends to zero as Hf~+¢> Therefore

(o) [ col

/3’ )
J[ r(w,%,A)dw = T /F r(w,%,5+1)dw, (19.1)
A ‘

assuming that the integral on the right hand side exists. That is

true in the case that Re/3 > Reet, so that according to (19.1) the

integral of r(w,«,A) from O to coexists also if Res > Rec .
Applying Ql?,W) With;6—1 instead of with 3 one finds that

jﬂ r(w,%,8)dw

O .
exists 1if Rqﬁ > Reet -1, Continuing in this way one gets the result
that the mentioned integral exists for each choice ofc{and 3,
provided, of course, that Re/%- RexX 1s not an integer « 1:
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Since this integral satisfies the same recurrence relation as
B(x+1,8-d- 1) and since 1t is equal to B(«+1,8-x-1) for RefA > Rex+]
one has for Re/6:>0, Re o > -1 and Re - Re« 1s not an integer

&£ 1 the result _J

\/‘r(w,ﬁéa)dw = BG%+1#@—d—1).

0
In an analogous way the following proposition is proved:
Theorem 20: Be r(w,®,3) the function defined by

fr
W

P(W)= m - QN(W)y

where Re A > 0, Rega—m- 1)> 0 and where Re % is not an integer<0:

we choose
Qu (W)= % ("f’) WK | 4f Re < -1,

where N denotes the integer 2 0 defined by
~2<Re X+ N < -1,

and Qu(w)=0 if Rex > -1,

Then the function r(w,«%ﬁ) is integrable from zero to infinity
o<

/ r(W,o,A)AW = B+ A-a= 1)
0 /

and




- 38 -

REFERENCES :

1. H. VON MANGOLDT, Einfuhrung in die Hohere Mathematik, II,
Leipzig, 1912, p. 298-301.

2. S, BOCHNER and W.T. MARTIN, Several Complex Variables, Prince-
ton, 1948, p. 39, Theorem Q.

3. H, VON MANGOLDT, Einfihrung in die Hohere Mathematik, III,
Zurich, 1948, p.331, Theorem 93,

4, ibid., p. 339, Theorem 96,

5. 1ibid., p. 347, Theorem 100.




