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l. Introduction. It is well known that the computation of a function 
f(z) of a real or complex variable z presents often difficulties when z is 
neither small nor large. For small values of z one often has at hand suitable 
expansions into ascending powers of z, whereas asymptotic expansions 
form an appropriate means to compute the function for large values of z. 
Even in the most favourable case, viz. that f(z) is an entire function so 
that the ascending series is convergent everywhere, this ascending series 
is practically of little use unless z is relatively small. On the other hand, 
the asymptotic series is nearly always divergent. It represents a class of 
functions rather than a particular one, and even in the most favourable 
case, viz. that a suitable estimate of the remainderterm is available, it can 
only be used for large values of the argument. The larger the required 
accuracy is the more difficult it is to bridge the gap between small and 
large z. Often one has to look for other means for moderately large values 
of z. Even if these are available, one pays in losing the uniformity of 
computation, an argument that weighs heavily especially in automatic 
computing. 

This paper is concerned with a very general transformation of formal, 
i.e. not necessarily convergent series containing a complex variable z. 
To such a formal series one can attribute a class of functions of z, and it is 
shown that when certain conditions are fulfilled the transform considered, 
in general again a formal series, is a convergent series, the sum of which 
is in a certain region of the complex z-plane, e.g. a halfplane, a well defined 
function in that class. 

The transform is a series, each term of which is the product of a coefficient 
ck and a function sk(z). The coefficients ck do not depend on z but only 
on the particular formal series under consideration. The functions sk(z), 
called associates of a standardfunction s{z) do depend on z but not on the 
particular formal series under consideration. The definition of the coeffi
cients ck is wholly constructive. In order to compute a finite number of 
them one has only to perform a finite number of elementary arithmetical 
operations. The associates of the standardfunction that take the place of 
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zk in an ascending series or z-k in a descending series have to be computed 
once and for all for various values of z. 

Ther!:} is an infinite variety of standardfunctions possible and the 
character and power of a transformation depends on the choice. For 
instance, one particular choice yields the well-known transformation of 
Euler. Another very interesting and much more powerful special trans
formation is investigated in more detail. Only very recently the author 
discovered that this particular case has been dealt with already by 
J. SER 1), but as far as he can conceive, only in a formal way. This parti
cular transformation and in general all the transformations under con
sideration are here shown to be fully legitimate analytical tools. That 
they form a practical tool, moreover, in the computation of special 
functions is shown by some worked out examples. These examples are 
restricted since so far a standardfunction and its associates have only been 
tabulated for real values of z by the Computation Department of the 
Mathematical Centre at Amsterdam. As soon as more material is available 
for imaginary and complex values of z, much more interesting functions 
can be investigated. 

The author is indebted to Professor J. G. VAN DER CoRPUT for various 
suggestions. 

2. The standard/unction and its associates. Let two functions S(t) and 
e(z, t) be chosen of which nothing more is required than that the following 
three conditions are satisfied. 

i) S(t) is analytic for t > 0, and S<k> (0) # 0 for all k > 0. 
ii) There exists a region D of the complex z-plane in which holds for 

all k > o 
00 00 

J tk e (z, t) dt < oo, J tk S<k> (t) e (z, t) < oo. 
0 0 

iii) There exists a subregion D* of D in which holds for all k > 0 

00 00 

I tk I e (z, t)I dt < oo, I t7' s<k) (t) e (z, t) < 00. 
0 0 

If one writes for the sake of abbreviation 

sk (t) = ( kt tk s(k) (t) , 

whence S0(t) = S(t), 
then a "standardfunction" s(z) = s0(z) and its "associates" sk(z) are 
defined in D by 

00 

sk(z) = J Sk(t) e(z, t)dt, k > 0. 
0 

One may attribute to s(z) in D a formal series S that is obtained by 

1 ) J. SER, Bull. Sci. Math., 2e Ser., 60, 199-202 (1936), 61, 74-81 (1937), 62, 
171-182 (1938). 
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expanding S(t) into a series of ascending powers of t and then inter
changing the order of integration and summation, thus 

00 S<kl(Q)OO 
s (z) 00S = k~ -kl [ tk e (z, t) dt. 

Apparently, the terms of this series exist, but it is not at all required that 
the series S should converge. 

3. The transformation. Let be given a function f(z) that in the region 
D is defined by the convergent integralrepresentation 

00 

f(z)=f F(t)e(z,t)dt, 
0 

in which, moreover, the function F(t) satisfies the condition 

F(t) is analytic for t ~ 0. 

Again, a formal series F may be attributed to f(z) in D that is obtained 
by expanding F(t) into a series of ascending powers oft and then inter
changing the order of integration and summation, thus 

oo p<kl(O) oo 
f (z) 00 F = Jo °kl [ t" e (z, t) dt. 

Again, although the terms of this series exist, it is not required that the 
series F should converge. On the contrary; the most interesting situation 
arises if F is a divergent series so that it is not possible to sum it in the 
ordinary sense. _ 

Now a transformation Tis applied to the series F that is based on the 
comparison of the two series F and S. To that end one first introduces 
the ratio rk between the terms of the two series, thus 

F<kl(0) 
rk = S<k>(O) ' k ~ 0. 

Since S<k>(O) =I=- 0, this ratio rk exists for all k ~ 0. Next the leading dif
ferences of the sequence rk, provided with alternating signs, are intro
duced, thus 

ck= ( -)" L'.1" ro = ht ( -)h G) rh. 

With these notations the transform T F of F is defined as follows 

This transform is, therefore, also a series which may or may not converge. 
Whatever be the case, it should be realised that the functions 81c(z) do not 
depend on the particular function f(z) considered, whereas the calculation 
of a finite number of the coefficients c" that do not depend on z involves 
only a finite number of elementary arithmetical operations. 

The main object of this paper is, however, to show that under certain 
circumstances the transform T F converges and that its sum is /(z). 



525 

4. Suffecient conditions for convergence of T F. A sufficient set of 
conditions for the convergence of T F is given by the following theorem, 
the proof of which reveals at the same time the background of the trans
formation. 

Theorem I. If using the notations and the conditions of sections 
2 and 3, the series 

is uniformly convergent for each positive t0 in the neighbourhood of the 
interval O ~ t ~ t0, then for all z in D for which 

00 

f U (t) I e (z, t) I dt < = 
0 

the transform T F of F is convergent, and its sum is f(z). 

Proof. The conditions are sufficient to insure that 

00 00 00 00 

T F = .L ck sk (z) = .L cd Sdt) e (z, t) dt = f V (t) e (z, t) dt, 
k-0 ~ 0 0 

where the series 

is uniformly convergent for each positive t0 over the interval O ~ t ~ t0• 

Since each term ck Sk(t) is analytic for t ;?: 0, also V(t) is analyticlfor t ;?: 0. 
Hence it_ follows for m ;?: 0 

81cm) (t) = ( ~t J0 (:) (~t!k) S!k+m-n) (t), 

whence 
} o , if 0 ~ m < k, 

Si,m) (O) = ( (-)k (;) s<m) (0), if 0 ~ k ~ m. 

Hence, 

v(m) (0) = s<ml (0) i ( - )k (m) Ck 
k-0 k 
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Since both V(t) and F(t) are analytic for t ;;?: 0, they are identical for 
t ;;?: 0. If therefore, z lies in D, then 

00 

TF = f F(t) e(z, t)dt = f(z), 
0 

what proves the theorem. 
A weaker theorem, the conditions of which, however, lend themselves 

better to verification, is the following one. 

Theorem 2. If using the notations and conditions of sections 2 
and 3, the following three conditions are satisfied 

i) S(t) is not only analytic for t ;;?: 0 but also throughout the halfplane 
Ret > O; 

ii) One can choose two fixed nonnegative numbers A and p, such that in 
the neighbourhood of t = 0 and throughout the halfplane Re t > 0 
holds 1S(t) I ~ A(l + It l)P; 

iii) One can choose two fixed nonnegative numbers Band q, such that 
for all k ;;?: 0 holds I ck I ~ B (1 + k)q; 

then for all z in D* the transform T F of F is convergent, and its sum 
is f(z). 

Proof. From conditions i and ii it follows that there exists a positive 
number a, such that S(w) is analytic, and satisfies IS(w)I ~ A(l + lwl)P if 
lwl ~ 2o and also if Rew> 0. The circle 0 with centre t + s (t;;?: 0, Isl~ a) 
and with radius (t2 + a2) 1 lies completely in this region, and the origin 
w = 0 lies either on 0 or inside 0. Hence, the maximum value of lwl on 0 is 
at most equal to the diameter of 0, whence on 0, lwl ~ 2(t2 + a2)•. From 
this it follows 

IS(k) (t + s) I = , ~ J 8 (w) (w-t-s)-k-l dw I ~ k! A {l + 2 (t2 + a2)•}P 
2ni 0 

(t2 + a2)-k/2 

whence 

Moreover, it is no restriction to suppose q to be an integer. Then 

whence according to condition iii 
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Introducing the series U(t) from Theorem 1, one has for 0 < t < t 
00 

U(t + s) = I jckSk(t + s) I 
k-0 

< q! AB {l + 2 (t2 + cl2)½}P kiO ( -Y (-i-1) {t (t2 + cl2)-•}k 

= q! AB {l + 2 (t2 + cl2)•}P {1-t (t2 + cl2)- •}-q-l 

= q! AB {l + 2 (t2 + cl2)1}P (t2 + cl2)<q+u/2 {(t2 + cl2)•-t}-<q+il 

= q! AB {l + 2 (t2 + cl2)"}P (t2 + cl2)(q+l)/2 cl-2(q+l) { (t2 + cl2)l + w+l 

< q! AB (2cl-2)q+l {l + 2 (t2 + cl2) 1}P (t2 + cl2)q+l 

< q! AB (2cl- 2)q+l {l + 2 (t5 + cl2)'}P (t5 + cl2)q+l, 

so that the series U(t) is uniformly convergent for each positive t0 in the 
neighbourhood of the interval 0 < t < t0• 

Moreover, 
00 

J {l + 2 (t2 + cl2)½}P (t2 + cl2)q+l I e (z, t) I dt 
0 

< (1 + 2 v2 cl)P J (t2 + cl2)q+l I e(z, t) I dt + J'(l + 2 J/2t)P (t2 + cl2)q+l 
0 6 

I e (z, t) I dt. 

If z lies in D* (and therefore in D), the above integrals exist even when 
the intervals of integration viz. (0, cl) resp. (cl, oo) are replaced by the 
interval (0, oo). For this z holds therefore 

00 

f U (t + s) I e (z, t) I dt < oo, 
0 

so that all conditions of Theorem 1 are satisfied. This proves Theorem 2. 

5. On a special class of functions. In the following sections a special 
class of functions will be shown to be of fundamental importance for the 
subject under consideration. It is defined as follows. 

Definition 1. A function G(t) of the complex variable t is said to 
be a T-function if it satisfies the following two conditions: 

i) G(t) is analytic in the halfplane Re t > - ½; 
ii) one can choose two fixed nonnegative numbers A and p such that 

throughout the halfplane Re t > - ½ one has 

( I t 1)-v ( II+tl )v 
IG(t)l<A 1- l+t =A II+tl-ltl . 

These T-functions form a closed family with respect to addition, multi
plication, differentiation and integration, as is shown by the following 
theorems. 

Theorem 3. If G1(t) and G2(t) are both T-functions then also their 
sum G1(t) + G2(t) and their product G1(t) G2(t) are both T-functions. 
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Proof. One knows that in the halfplane Re t >- ½ 

1°1 (t) 1 ~ A1 c1~t~1t1r, 
Hence, 

1 Gl (t) + G2 (t) 1 ~ 1 G1 (t) 1 + 1 G2 (t) 1 ~ A ( 11 ~t~1t, r, 
where A = A 1 + A2 and p is the greatest of the two numbers Pi and p2• 

Similarly, 

IG1(t) G2(t) I= IG1 (t) I IG2(t) I ~ A ( 11~t~1t1Y'' 
where A = A1A 2 and p = Pi + P2· 

Moreover, G1(t) + G2(t) and G1(t) Git) are both analytic in the halfplane 
Re t > - ½, whence they are both T-functions. 

Since a constant and t are both T-functions it follows by repeated 
application of theorem 3 that each polynomial in t is a T-function. 

Theorem 4. If G(t) is a T-function having a zero at t0 of order ;;::: k 
then (t - t0)-k G(t) is a T-function. 

Proof. If Re to~ - ½, then (t- t0)-k is itself a T-function, whence 
the proof follows from theorem 3. If Re t0 > - ½ then G(t) is analytic, 
in t0, and due to its zero of order ;;::: k, (t - t0 )-k G(t) is analytic, whence 
bounded, within a circle of sufficiently small radius {J and centre t0• Outside 
and on that circle l(t- t0 )-kl ~ {J-k, and (t - t0)-k is analytic. Hence, 
(t- t0)-k G(t) is analytic in the halfplane Re t > -½, and it satisfies con
ditions of the type mentioned in definition I, sub ii, both inside and 
outside the circle, which may be combined into one condition valid in the 
complete halfplane. 

Theorem 5. If G(t) is a T-function then its derivative G'(t) is a 
T-function. 

Pro.of. Consider the circle O in the complex .-plane, having its centre 
at t (Re t > - ½), and with radius e, where 

_ II+ti-lti -~ II+tl2-ltl2 _ 2Ret+l 1 1 
(!- 4 -4 JI+tl+iti -4(1I+ti+ltl) ~2(Ret+2), 

so that O lies entirely within the halfplane Re. > -½ in which G(.) is 
analytic. Hence, G' (t) = (2:n:i)- 1 f O G(.) (• - t)-2 d •. 

On O is l•-ti = e, l•I ~ ltl + e, 11 +•I;;::: II+ tl-e, whence on 0 

JG(.)I ~ A (1 -I l~.,rp ~ A (1 - 111!;=--erp = A Citt~l~;2erP 
~ A (11+J1~1t~

1
-2eY = 2

P A (,11
!;~itir. 

Hence, 

IG
' I 2P+2A( JI+tl )p+I +3 ( II+ti )p+I 
(t) ~ II+tl ll+ti-lti ~ zv A II+tl-itl ' 

and since G'(t) is, of course, analytic in the halfplane Re t > -½, it is a 
T-function. 
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Theorem 6. If G(t) is a T-function, then the integral f! G(r)d-r, 
where a, t and the path of integration ly entirely within the halfplane 
Re t > - ½, is a T-function. 

Proof. One may choose as path of integration the straight line L1 

joining a and the origin -,; = 0 and the straight line L2 joining the origin 
and t. The integral over L1 is a constant, independent of t, thus a T
function. The length of L2 is ltl, and the maximum value of 1-r(l + -,:)-11 

along L2 is lt(l + t)-1 1. Hence, 

I {G(r) d-rl < A ltl(111~;~ltlr < A (11 + ti-ltl) (i1l~ii~ltiy+1 

( 
JI+tl )p+l 

< A JI+tl-lti ' 

and, of course, it is analytic, whence a T-function. The complete integral 
is the sum of two T-functions, and consequently a T-function. 

By repeated application of the theorems 5 and 6 it follows that all 
derivatives and all repeated integrals of a T-function are T-functions. 

6. The order of magnitude of the coeffecients ck. The conditions of 
theorem 2 clearly are of two different types. The first and second condition 
are restrictions on S(t) only. Since S(t) is, according to section 2, a function 
that one may choose at his own convenience out of a very general class 
of functions, it only means that the choice of S(t) is somewhat more limited, 
still leaving considerable freedom however. On the other hand, the third 
<londition requires something about the order of magnitude of the coeffi
,cients ck for large values of k. The coefficients ck are, apart from the signs, 
-the leading differences of the sequence of the coefficients rk that depend 
again on both the given function F(t) and the chosen function S(t). Of 
course, one can compute arbitrarily many coefficients ck, but it is by no 
means obvious how to give in general an estimate of lckl for large values 
of k. If, however, one has sufficient information about the generating 
function of the sequence rk, then the following two theorems yield the 
required information about the differences ck. 

Theorem 7. Let the two functions G(t) and H(t) of the complex 
variable t be connected by the two equivalent relations 

G(t) = (1 + t)-1 H{t(l + t)-1}, 

H(t) = (1- t)-1 G{t(l - t)-1}. 

If one of both functions is analytic int= 0 then so is the other. If in that 
case they are represented in the neighbourhood of t = 0 by the series 

00 

H(t) =!ck tk, 
k-0 

then 
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Proof. First of all, if one puts for a moment u = t(l + t)-1 then 
t = u(l - u)-1 and (1 + t)-1 = 1- u, whence from G(t) = (1 + t)-1 

H{t(l + t)-1} it follows that H(u) = (1 - u)-1 G{u(l-u)-1} so that the given 
relations between G(t) and H(t) are indeed equivalent. Since (1 + t)-1 and 
(1 - t)-1 are analytic in the neighbourhood of t = 0, if one of both 
functions is analytic in t = 0 then so is the other, and the following 
derivation is seen to be legitimate. 

H (t) = kio (-)k rk tk (l-t)-k-1 = Jo (-)k r-,, it (-)i (-~:--I) tk+i 

= i (-)krk 1 (k+f) tk+i = f th i (-)k (h) rk 
k=O i=O k h=O k=O k 

In many simple cases this theorem yields an easy means to give a 
closed expression for ck, from which not only its behaviour for large values 
of k is known, but that also renders good service for the computation. In 
other less simple cases it provides often at least suitable recurrence 
relations between successive ck's. Anyhow, the behaviour of C1r for large 
values of k as far as it is of importance for the subject under consideration, 
follows from the following theorem. 

Theorem 8. A necessary and sufficient condition in order that one 
can choose two fixed nonnegative numbers Band q such that ck= (-)kL1kr0 

satisfies for all k ~ 0 the equation 

I ck I :<( B (1 + k)q, 

is that there is a T-function G(t) that has in the neighbourhood oft= O 
the expansion 

Proof. First it will be shown that the condition is necessary. Using 
the notations of theorem 7 it follows from Jckj :<( B(l + k)q that for ltl < 1 
the series H(t) = Lk=O ck tk is convergent. Hence H(t) is analytic for ltl < 1 
and consequently the function G(t) = (1 + t)-1 H{t(l + t)-1} is analytic 
for values oft such that (1 + t)-1 is analytic and lt(l + t)-1 1 < 1, i.e. in the 
halfplane Re t >-½. Moreover this function G(t) = Lk=o (-)k rk tk in the 
neighbourhood of t = 0 according to theorem 7. Now in the halfplane 
Re t > - ½, where 11 + ti ~ ½, 

IG(t)I = 11 + tj-1 IH {t(l + t)-1}1 ~ 2B f (1 + k)q ,_It lk 
k=O +t 

~ 2Bkt (1 + k) (2 + k) ... (q + k) I 1~l = 2Bq!ki (ktq) I 1~tr 
= 2Bq! f (-)k(-q-1) ,_t lk = 2Bql (1- l-t__l)-(q+ll 

k=O k I+t I+t 
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and choosing A = 2Bq! and p = l + q it follows jG(t)j :::;; A(l-jt/1 + tj)-P, 
whence it is seen that G(t) is a T-function. 

In order to prove that the condition is sufficient one starts with the 
T-function G(t) that has in the neighbourhood of t = 0 the expansion 

whence 
k-1 oo 

(1 + w G (t) = L ch th (1 + t)k-h-l + ck tk (1 + t)- 1 + L ch th(l + w-h-l. 
h=O h=k+l 

In the first sum the highest power of t after developing the polynomial 
(1 + t)k-h-1, where h :::;; k - I, is tk-I. In the second sum the lowest power 
oft after expansion of the rational function (1 + t)k-h-I, where h ;?: k + I, 
in ascending powers oft, is F+l. Hence only the separate term contributes 
to a term containing tk, and it follows that ck is the coefficient of tk in the 
expansion of (1 + t)k G(t) in ascending powers of t. 

Hence, if C is any simple closed contour in the complex t-plane around 
the origin t = 0 and lying entirely within the halfplane Re t > - ½, where 
G(t) is analytic since it is a T-function, then 

ck= -
2
1 . f (1 + t)k t-k-i G(t) dt. 
ni a 

Now for C the circle is chosen on which 

l I+t I -t- = cosh 2 s1,, 

where sk is a positive number depending on k which will be specified later 
on. The equation of C in coordinates is 

(Re t - sinh-2 2sk)2 + (Im t)2 = (cosh 2sk sinh-2 2s1c)2• 

The point on C nearest to the origin t = 0 has, therefore, the coordinates 

Re t = sinh-2 2s1c(l - cosh 2s1c) = - ½ cosh-2 s1" Im t = 0, 

whence on C 
jtj-1 :::;; 2 cosh2 s1c. 

Moreover, the radius of O is cosh 2s1c sinh-2 2s1c, whence 

jckl :::;; coshk 2sk • 2 cosh2 s1, A(I - cosh-1 2s1c)-v cosh 2s1, sinh-2 2sk = 
= 2-<i+vl A cosh1 +1c 2s1c coshv 2sk sinh-2(1 +vls1c. 

Now from the Moivre's theorem 

cosh nx = coshn X + rn) coshn-2 sinh2 X + m coshn-4 sinh4 X + ... , 

it follows coshn x :::;; cosh nx. Hence, if one chooses 2sk = (1 + k)-1 then 

cosh1+1c 2s = cosh1 +k -
1
- ~ cosh l 

k I+k---=::: ' 
coshP 2s1c = coshv I:k:::;; coshv 1, 

sinh-2(1+v> s = sinh-2(1+vJ --1- < 22u+vJ (1 + k)2<l+vl 
k 2(I+k) ' 
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whence 
lckl,,;:; (2 cosh l)i+v A (1 + k)2(I+vl. 

Choosing B = (2 cosh l)l+P A and q = 2(1 + p), one has therefore 
l~I :,;:; B(l + k)q, what completes the proof. 

7. The generating function G(t). In the last section it has become 
obvious how important it is to know the analytic character of the generating 
function G(t) that in the neighbourhood of t = 0 is given by the series 

G ( ) ~ ( )k k ~ ( )k F(k) (0) le 
t = k~O - rk t = k&o - S(k) (0) t . 

If S(t) once has been chosen the transformation from F(t) to G(t) is of a 
rather obscure character that renders it difficult to derive in general the 
properties of G(t) from those of F(t). However, there is a class of functions 
S(t) for which just enough information about G(t) can be drawn from the 
properties of F(t) as is necessary for the subject under consideration. 
Rather then to describe this class in general only some examples will be 
given. 

The simplest example is provided by S(t) = (1 + t)-1 • Then S(kl(0) = 
= (-)k kl, whence G(t) = F(t). Again, taking S(t) = (1 + t)- 2 = - (d/dt) 
(1 + t)-1, one has S(kl (0) = ( -)k (k + l)!, whence 

oo I t 
G (t) = L -- F<k) (0) tk = t-1 f F ('i-) d-r. 

k-o (k+I)! o 

More generally, if S(t) = (-d/dtr (1 + t)-1 , where n ;;,: 0, then sa,> (0) = 
= (-)k (k + n)!, whence 

-Conversely, if one takes with non-vanishing a0, S(t) = a0 - log (1 + t) = 
= a0 - f6(1 + -r)-1 d-r, then S(0) = a0, and fork > 0, S(kl(0) = (-)k(k-1)!, 
whence 

More generally again, if one takes with non-vanishing a0, lli, ... , a,._1, 

t t'n T2 

S (t) = ao -alt + • · • + ( - )n-l an-1 tn-l + ( - r f d-r,. f d-r,._1 • · • f (1 + -r1)-1 d-ri, 
0 0 0 

then for 0 :,;:; k ,,;:; n - 1, S(kl(0) = (-)k k! ak, and for k ;;,: n, S(kl(0) = (-)k 
(k - n)!, whence 

G (t) = F(O) + F: (0) t +... F<n-:) (0) tn-1 + I _I_f F<k) (0) t 
a0 I.cii (n-1).an-1 k-n(k-n). 
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In other cases, a little manipulation may yield similar results. For instance, 
if one takes 

00 

S(t) = 1- I (-)kk-2 tk, one has S(O) = 1, and fork~ 1, 
k=I 

S<k>(O) =(-)kk-1 (k-l)!, whence 

G (t) = F (0) + Jl ~:~)1\~) tJc = F (0) + kil ~ (k--=l)! + (k~2)! ~ F<k) (0) tk = 

= F (0) + t F' (t) + t2 F" (t). 

Now, in all these and similar cases, G(t) is expressed as the sum of a poly
nomial in t and derivatives and repeated integrals of F(t), the last ones 
being divided by as many factors t as integrations from 0 onwards have 
been performed. From the theorems of section 5, it then follows precisely 
that in all these cases G(t) is a T-function if F(t) is a T-function, so that in 
order to settle the problem of the convergence one has only to consider 
the function F(t) and can forget about G(t). 

In order to show the results so far obtained, a special but important 
theorem follows. It should be remembered, however, from what has been 
said just now, that with minor modifications the theorem not only holds 
for the special function S(t) mentioned but for all functions S(t) of the 
class treated above. 

Theorem 9. If using the notations of section 2 and 3, and with 
Re cX > 0, one has 

i) S(t) = (1 + <Xt)-1 , 

ii) F(t/<X) is a T-function; 
then for all z in D* the transform T F of Fis convergent, and its sum is /(z). 

Proof. The only singular point of S(t) is t = -<X-1 , and since RecX > 0, 
S(t) is analytic if Re t > 0 and in the neighbourhood oft= 0. Since more
over IS(t)I is bounded if Re t > 0, S(t) satisfies the first and second con
dition of Theorem 2. Next, S<k>(O) = (-)k k! <Xk, whence 

G(t) = i (-)k F<kl(O) tk = I F<kl(O) (X-k tk = F (t). 
k=0 S<k) (0) k=0 kl °' 

Hence G(t) is a T-function, whence in virtue of theorem 8 it follows that 
also the third condition of theorem 2 is satisfied, whence theorem 2 
provides the required result. 
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8. A special choice of e(z, t). So far, hardly any limitations have been 
put onto the function e(z, t). Actually, in the theorems in the preceding 
sections, it only appears in that z should lie in the region Dor D*. Now a 
special choice is made for e(z, t}, viz. 

(8.1) e (z, t) = ze-•1• 

This special case of the transformation is so important that it will be kept 
to in the following sections. Apparently the theory is from now on 
more closely related to that of the Laplace transform. First of all for all z 
in the halfplane Re z > 0, and for all k ~ 0 

co co 
z f fk e-•t dt < oo , izl f tk le-•11 dt < oo, 

0 0 

whence in many cases, viz. if S<kl(t) and F(t) behave properly, the regions 
D and D* are simply the halfplane Re z > 0. 

Next, the formal series F for f(z) = z fo" F(t) e-•t dt is now 
co 

(8.2) f (z) ,.._, F = L F(k> (0) z-k, 
k-0 

and from the theory of the Laplace transform one knows that under 
rather liberal conditions on f(z) this series is an asymptotic series in the 
proper sense. Hence in many cases the transform under consideration 
can be used to sum asymptotic series to a special function out of the 
whole class of functions that have that asymptotic expansion, viz. to 
the one that is representable as a Laplace-integral of a certain type. 

The particular form of e(z, t) makes it possible to derive many properties 
from the standardfunction s(z) and its associates s,.,(z). If it is supposed that 
for all z in D also lim S(kl(t) th e-•t = 0 for all k ~ 0, then it follows by 

t->-oo 

repeated partial integration of. 

sk (z) = (-)k z j S<kl (t) tk e-•t dt 
k! o 

that 
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Introducing the Laguerre polynomial Lk(x), defined by 

(8.3) 

one can write, therefore 
I oo 

(8.4) sk(z) = k! z -~ S(t) Lk(zt) e-•tdt. 

On the other hand if for a certain value of k, K say, holds 

(8.5) 

then 

00 

s<k>(z) = (-)k f S(t) (zt-k) tk-I e-•tdt, 
0 

00 

s<K+u (z) = (-)K f S (t) (-zt2 +Kt+ t) tK-I e-zt dt = 
0 

00 

= (-)K+1 f S(t) (zt-K-1) tK e-•tdt, 
0 

whence (8.5) also holds for k = K + 1. Since it holds for k = 0, it holds 
for all k ~ 0. Now consider for k > 0 the fol1owing sum 

f (k-l) ..!:.. s<h> (z) z" =JS (t) { f ( --)h (k-I) ..!:.. (zt-h) zh th-I) e-•t dt 
h=l h-1 h! 0 h=l h-I h! 

=zJS(t) { ± (-)h(k-1)..!:..(zt)h+ ± (-)h-l(k-l)_I_(zt)h-I}e-•tdt 
0 h=l h-1 h! h=l h-1 (h-1)! 

= z rs (t) { ,,l ( -)h (:=!) ;! (zt)h + :i: ( --)h (k-;.1) ;! ( zt)h} e- zt dt 

= z rs (t) { Jo ( -)h (:) L (zt)1'} e-zt dt = ;! z Is (t) Lk (zt) e-zt dt. 

Comparing this with (8.4) one finds 

(8.6) 
) 

s0 (z) = s (z), 

Q _ ~ (k -1) 1 (h) h 
cdz) - h~l h-I h! 8 (z) Z , k> o. 

The very first application of the transformation under consideration will 
be the computation of the standardfunctfon itself. Indeed let be 

F (t) = s { (1 - w) t }, lwl < 1. 

Then for real w, and Re z > 0, one has 

f (z) = Z f S {(1--w) t} e-•tdt = I~w y s (t) e-l~w dt = 8 (1~w), 
and by analytic continuation it holds also for complex values of w. Also, 
if z(l - w)-1 lies outside the region D* = D, viz. the halfplane Re z > 0 
in which s(z) is defined originally, then the formula yields the analytic 
continuation of s(z). 

Now, F<k>(0) = (1 - w)k s<k>(O), whence rk = (1 - w)k and 

ck= (-)k LJk ro = wk. 



536 

Hence, if S(t) satisfies the conditions of theorem 2, and if !wJ ~ 1, w -=j::. 1, 
then lckl ~ 1 for all k ~ 0 so that also the third condition is fulfilled, 
one has · 

(8.7) lwl ~ l,w:;t:l,Rez> 0. 

Moreover iflim s(z) = s(=) exists thens(=) = lim .Lf-o w"'s7c(z), and since 
~00 ~1 

.Lf-o sk(z) is convergent, indeed even If-o (1 + k)q sk(z) is. convergent, it 
follows from Abel's theorem that in that case 

00 

(8.8) s(=) = L sk(z). 
k-0 

The formulae (8.7) and (8.8) are of great importance for the computation 
of the standardfunction. As soon as sk(z), k ~ 0 is known for a particular 
value of z then formula (8. 7) yields an easy means to compute s(z) in a 
considerable domain. Moreover formula (8.8) yields a simple and efficient 
check on the sequence sk(z) itself. At last formula (8. 7) reveals the true 
character of the associates sk(z) if e(z, t) = ze-•t. They are simply the 
coefficients in the expansion in ascending powers of w of the function 
s{z(l - w)-1}. From this remark also (8.6) may be derived. 

9. Special transformations. A complete transformation is defined by 
giving the two functions S(t) and e(z, t). A familiar result is obtained by 
choosing 

(9.1) 

One has 

and 

S(t) = e-t , e (z, t) = ze-•1. 

One sees that this transformation is nothing else than the general Euler 
transformation. Often one applies this transformation directly to the 
complete terms of the series, here F<kl(0)z-k rather than to the coefficients 
F<"''(0) only. This means that effectively one takes z = 1. Then sk(l) = 2-k-1 , 

what yields the ordinary Euler transformation. 
A much more powerful transformation is defined by 

(9.2) 

One has 

(9.3) 

S (t) = (1 + t)-1 , e (z, t) = ze-•1. 

s<k) (0) = <-? k! 

The corresponding standardfunction is then 
00 

(9.4) s (z) = z J (1 + t)-1 e-•1 dt = -ze" Ei (-z). 
0 
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and its associates are 
00 ' 

(9.5) sk (z) = z f (1 + t)-k-I tk e-zt dt, k ~ 0. 
0 

In the following sections examples are given of the application of this 
particular transformation. Here and there numerical examples are given 
for real values of z. The required values of the functions sk(z) have been 
taken from the tables computed by the Computation Department of the 
Mathematical Centre. These tables together with a more detailed analysis 
of the properties of the functions sk(z) will form the subject of a separate 
paper. Here only a few remarks will be made that do not require much 
analysis and reveal some salient features. 

From (9.5) it follows directly that for positive real values of z, the 
associates sk(z) decrease steadily to zero when k increases indefinitely. 
Moreover s(oo) = 1, so that according to (8.8) one has 

(9.6) 

Hence, for z > 0 all siz) are numerically less than unity. 
With fixed z > 0 the convergence with respect to k is rather poor. On 

the other hand, if z increases, the initial convergence with respect to k 
becomes better and better, so that the transform TF is never inferior to 
the asymptotic series F. 

10. Computation of the error integral. The first example will be the 
computation of the error integral 

2 • 
(10.1) <P (z) = v- f e- 1

' dt. 
:rr, 0 

First of all, this function must be brought into a suitable form. To this 
end, one writes 

whence 

(10.2) 

where 

(10.3) 

e-z2 

<P (z) = 1 - -v- f (z2), 
z n 

00 

f(z) =zf(l +t)- 1 e-•1 dt. 
0 

Now, f(z) has the appropriate form, but not yet the most advantageous 
one. Indeed, F(t) = G(t) = (1 + t)-•, what is a T-function, but its only 
singularity is in t = -1. If instead one uses 

00 

10.4) f(z) = 2z f (1 + 2t)-• e-<2 •>1 dt, 
0 
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one has F(t) = G(t) = (1 + 2t)-t, which is also a T-function, but now its 
singularity occurs int=-½- The advantage is that in the transformation 
the standardfunction and its associates will have an argm~ent twice as 
large as it would be in the original form, so that one can expect a much 
better convergence. Actually, in this particular case the advantage is even 
much more striking since it will appear that now one half of the coefficients 
vanish. These coefficients follow directly from the generating function 
H(t), as follows 

H (t) = - 1
- G (-t-) = - 1

- (1 +~)-it= (l-t2)-• = ! 2-2k (
2k) t2k. 

1-t 1-t 1-t 1-t k=O k 

Hence, one has 

Finally one obtains therefore the following expansion, valid if Jarg zj <n/4, 

(10.5) 

It should be realised that (10.5) is effectively the result of applying the 
transformation under consideration to the divergent asymptotic series F, 

(10.6) q> (z) ,.._, 1 - e-~ I ( -)k kl 2-2k (2k) z-2k. 

z Vnk=O k 

For z = 1, say, one has from (10.6) 
1 

W (1) ~ 1 - -v- (1 - 0.5 + 0.75 -1.875 + 6.5625 ... ), 
e n 

whence it is obvious that not much information concerning the numerical 
value of W(l) is obtained. On the other hand, (10.5) yields for z = 1 

W(l} = 1 - lOV-~2 
(722657233776 + 29300318218 + 4404491987 + 

e n 
+ 1028700386 + 304550364 + 105029931 
+ 40365755 + 16836107 + 7489956 + 3511607 
+ 1720017 + 874359 + 458964 + 247765 + 137106 
+ 77564 + 44759 + 26297 + 15705 + 9520 + 5851 
+ 3642 + 2294 + 1461 + 940 + 611 + ... ) 

= 0.84270 07932. 

By extrapolating the remainder of the series as a geometric series one gets 
W(l) = 0.84270 07929 52 whereas actually W(l) = 0.84270 07929 50. 

11. Computation of the generalised exponential integral. The next 
example concerns the generalised exponential integral 

• 1-e-u 
(11.1) E (a, z) = f -- d;, u = (a2 + ~2) 1• 

0 u 

This function is extensively tabulated for real values of a and z in "Tables 
of the Generalized Exponential-Integral functions", by the Staff of the 
Computation Laboratory, Harvard University, 1949. 
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These tables were computed by means of numerical integration. It will 
be shown that a very manageable expansion can be obtained by means of 
the transformation under consideration. To that end, one observes that 
the Besselfunction of the second kind 

( 11.2) 
oo e-u 

K 0 (a) = f - d~, 
0 u 

whence it; follows easily that 

( 11.3) 
z 00 e-U 

E (a, z) = arsinh - -K0 (a) + f - d~. 
a • u 

Introducing for a moment C = (a2 + z2)', ex = afC, fl= zg = (1 - ex2)•, 

one has 

Hence 
z e-C 

E(a, z) = arsinh a -K0 (a) + T /(C), 

where 

This is of the required form, but F(t) = {(t + 1)2 - ex2}-• is not; a T
function if Re ex >½,since its singular points are t = -1 ± ex. The following 
transformation appears to be suitable. 

00 

f (C) = {J-1 • {J2C f (1 + 2t + {3 2 t2)-• e-<f3'C>t dt. 
0 

Now F(t) = (1 + 2t + {J2t2 )-• has singular points at 

so that, at least for real a and z, F(t) is a T-function. Now, 

whence 

C2k+I = 0, 

The complete expansion becomes, at least for z > 0, a > 0, 

(11.4) 
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As an example, take a = 4, z = 3, Va2 + z2 = 5. Then 

E ( 4,3) = log 2 - K0 (4) + ! e- 5 J
0 
2-2k (2kk) 0.64k s2k(l.8) 

= 0.69314718056 - 0.01115967609 + 0.00224598233 X IO-lo 

(7046849141 + 202048531 + 20886204 + 3311564 + 660390 
+ 152591 + 39136 + 10860 + 3206 + 995 + 322 + 108 
+ 37 + 13 + 5 + 2) = 0.68362 12237. 

The Harvard-tables mentioned above give E(4, 3) = 0.683621 in 
accordance with the more accurate result just derived. 

12. Computation of the Besselfuction K 0(z). An example in which 
some more analytic manipulation is needed is provided by the Bessel
function of the second kind K 0(z), that is known to be representable as 
follows 

(12.1) 

in which expression 10(z) is the other Besselfunction of the second kind. 
The representation is of the required type, but e-t'/4 10(t2/4) is not a 
T-function, what is directly seen from its behaviour for purely imaginary 
values oft. However, a wellknown artifice from the theory of the Laplace 
transformation yields 

oo, 00 

J/ ! Vze" Ko (z) = Z I ~ vkf e-(,'/4
t)-(,'/l

6l lo G:) dij e-zt dt 

00 00 

= z f ~ vl;; J e-u-ut/4 10 (ut/4) u-t du~ e-•t dt. 
0 0 

Now F(t) = n-½ Jg<> e-u-ut/4 10 (ut/4) u-• du. Since e-• 10 (z) r--., (2nz)-½ i 
jarg zi < n, it follows easily that F(t) is analytic and uniformly bounded 
in the sector jarg ti ::( n - s < n, and also in the neighbourhood oft = 0. 
Moreover in the neighbourhood of t = 0 one has according to a theorem 
of Hardy 

F (t) = _!_ Joo ( I ( -)k-\- (2k) (.!_)k uk-½} e-u du Vn k~O k. k 8 
0 

= ~ I(-)" (k-,½)! (2k) (.!_)k = I (-)k (2k)2 (/-)k' 
V:n:k-0 k. k 8 k-0 k 32 

which series is seen to converge if !ti < 2. Hence F(t) is a T-function, but, 
of course, one can do better again by shifting its singularity to t = - ½, 
using 

(12.2) 

where 

(12.3) = 2-ak (2k)2 r1c k • 
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A table of the first 16 coefficients ck runs as follows 

C2 = 0.5625 C3 = 0.40625 
C4 = 0.44628 90625 C5 = 0.35595 70312 
c6 = 0.38580 32227 c7 = 0.32290 64941 
Cg = 0.34684 96799 c9 = 0.29885 97155 
C10 = 0.31892 36075 Cu = 0.28025 25535 
C12 = 0.29706 00774 C13 = 0.26524 61753 
C14 = 0.28048 81721 C15 = 0.25277 81178 

As an example the value of Ko( 4) that was needed in the example of section 
11 will be calculated. 

00 

K0(4) = (n/8)½ e-4 I ck sk (16) 
k-0 

= 0.01147 762458 X 10-11 (94412965774 + 2510209076 
+ 274212880 + 26601865 

= 0.01115 967609. 

+ 4865234 + 755499 + 179937 
+ 36478 + 10288 + 2492 + 792 + 218 
+ 76 + 23 + 9 + 3 + 1 ... ) 

13. Computation of an integral of Goodwin and Staton. The last 
example of this type concerns the computation of the following function 

00 

(13.1) I e- 0 'da 
f(z) =Z z+a. 

0 

This function is-of particular interest for the subject of summing asymptotic 
series. Indeed, GOODWIN and STATON 1 ) who tabulated this integral for 
real values of z, showed that for moderately large values f(z) can be 
computed by repeated application of the Euler transformation. Later on, 
van der Corput proved that this method is legitimate in this case. 

However, it will be shown that again the much greater power of the 
transformation under consideration yields in one go a convergent series 
for f(z). 

To this end one transforms as follows: 

oo e-(z+a)a oo oo 
f (z) = z f eza da --- = z f eza da f e-<z+a)T d. 

o z+a o a 

00 00 

= z f da f e-z(i--a) e-TG d •. 
O a 

Now, putting -,; = u + t, a= u- t, one gets 
00 00 

(13.2) / (z) = 2z f {et' f e-"' du} e- 12•>t dt. 
0 t 

Hence, 
00 00 00 

(13.3) F (t) = et' f e-u• du = e12 f e-<v+t>' dv = f e-v•- 2vt dv. 
I O 0 

1) The Quart . .T. of Mech. and App. Math., I, 319-326 (1948). 
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Apparently F(t) 1s an entire function, and if Re t > -½, say, then 
00 00 IF (t) I :o( J e-v•-2vRet dv :o( J e-v'+v dv 
0 0 

whence jF(t)I is bounded and, so, F(t) is a T-function. Hence the trans~ 
formation will yield a convergent series, and it only remains to calculate 
the coefficients ck. 

One way is, of course, over the coefficients rk, to be derived from the 
coefficients of the formal - here asymptotic - series F. From (13.3) it 
follows immediately 

F<k) (0) = (-)k 2k r e-v• vk dv = (-)k 2k-l (k-;l)t' 
whence 

( 13.4) 

from which ck can be found by differencing. 
The other way is over the function H(t). From (13.3) one has 

( t )2 00 

H(t) 1 1-t J -u'd = -e e u. 
1-t t/1-t 

By differentiation one gets 

H'(t) = (1 - t)-1 H(t) + 2t(l - t)-3 H(t) - (1 - t)-3, 

whence 
(1 - t)3 H'(t) - (1 + t2 ) H(t) = -1. 

By continued differentiation one finds for k > 0 

H<k+ll(0)-(3k + l)H<kl(0) + 3k(k-l) H<k-ll(0)-k(k-1)2H<k-Zl(0) = 0 

whence for ck= H'kl(0) (k!)-1 the following recurrence relation results 

(k + l)ck+ 1 = (3k + 1) ck-(3k-3) ck-i + (k-1) ck-z, k > 0. 

From this together with Co = ½ v; and C1 = -1 + ½ Vn the coefficients can 
readily be found, and using these c1c's one has if Re z > 0 

(13.5) 

The approximate numerical values of the first 38 coefficients are 

0.88622 69254 52758 
C2 = -0.22754 61490 94484 
C4 = -0.01996 47257 7098 
Cs 0.04070 39023 8194 
C8 0.01498 45267 928 
Cm = -0.00490 04683 537 
C12 = -0.00693 17795 23 
C14 = -0.00254 47971 34 
c16 = 0.00067 56887 9 
C1s = 0.00140 45806 3 
C20 = 0.00083 64017 
C22 = 0.00013 96351 

C1 = -0.11377 30745 47242 
C3 = -0.12175 89648 55635 
C0 0.03073 01602 7890 
C7 0.03037 11588 8834 
C9 0.00241 62388 708 
Cu = -0.00748 11115 764 
C13 = -0.00488 49470 95 
C15 = -0.00060 17652 10 
C17 = 0.00129 50722 4 
C19 = 0.00119 42084 1 
C21 = 0. 00045 89360 
C23 = -0.00008 66515 



C24 = -0.00021 6039 
C2s = -0.00025 1109 
C2s = -0.00014 122 
c 30 = -0.00002 626 
C32 = 0.00003 63 
C34 = 0.00004 75 
C3s = 0.00003 1 
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C25 = -0.00026 3210 
C27 = -0.00020 3623 
C29 = -0.00007 896 
C31 = 0.00001 241 
C33 = 0.00004 70 
C35 = 0.00004 10 
C37 = 0.00001 9 

As an example one may choose z = 1. Then one has from the first 36 terms 

/(1) = 10-12 (640438298446 - 19110656897 - 13334349155 -
- 3013982956 - 234491932 + 185509958 + 133990784 
+ 57085563 + 16689529 + 1644416 - 2091463 - 2047407 
- 1240354 - 581379 - 204535 - 33113 + 25771 + 34623 
+ 26594 + 16165 + 8165 + 3257 + 726 - 332 - 615 
- 560 - 401 - 246 - 130 - 55 - 14 + 5 + 12 + 12 
+ 9 + 6 ... ) = 0.6051336525. 

Of course, in practice, for such a low value of z an ascending expansion is 
just still preferable. The example, therefore, mainly serves to show that 
one can get by the method under consideration highly accurate results 
for small z in a fully legitimate way. Of course, and this remark holds in 
general, the advantage of the underlying asymptotic series, viz. the fast 
initial convergence for large values of z is fully preserved. Indeed, if one 
takes z = 10, the first 14 terms yield 

/(10) = 10-12 (845789197239 ~ 4754475334- 771220009 - 46838510 
- 1090815 + 281166 + 70887 + 11166 + 1267 + 51 
- 27 - 11- 3 - 1 ... ) = 0.84021 59370 66, 

a result correct in all twelve decimals. Actually z = 10 is already high 
enough in order that one can get the same accuracy by means of the 
asymptotic series directly. Indeed from (13.4) it follows that this asymptotic 
series has the form 

(13.6) f (z) ,..._, Jo (-)k 2k-1 (k;l)! (k!)-1 z-k, 

Taking z = 10, one has from the first 17 terms of the series 

t(10) ~ 10-12 a-v;; (1000000000000 + 5000000000 + 15000000 + 
+ 1875000 + 65625 + 2953 + 162 + 11 + 1) 
-½(100000000000 + 1000000000 + 20000000 + 
+ 600000 + 24000 + 1200 + 72 + 5)} = 
= 0.84021 59370 66. 

Although somewhat more terms are needed (13.6) has for those values 
of z for which it is applicable the advantage that one does not need to 
know tabulated functions like the sk(z). But, of course the standard
function and its associates once being tabulated, (13.5) has the advantage 
of allowing a uniform and simple computational procedure for small, 
moderately large and large values of the argument without losing the 
advantage of fast convergence for large values of the argument. 






