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A MATRIX METHOD FOR THE SOLUTION 

OF A LINEAR SECOND ORDER DIFFERENCE EQUATION 

IN TWO VARIABLES 

1. Introduction. 

MR 19 

by 

M.L. Potters 

In practical analysis it often happens that a problem leads to 
a difference equation which cannot be solved in an analytical way. 

There are various methods to handle these equation numerically, 

the relaxation method being a well-known one of them. 

Since> however, iterative methods are in some cases very dis­
couraging to ½he computer because of their slow convergence, in this 

report a metho~ is offered where the solution is obtained by a direct 
computation. The equation treated will be a linear second order dif­
ference equation in two variables with some types of boundary condi­
tions. As this problem frequently is originated by a differential 

equationJ an example in this field is given. 

I 
I 
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2. The problem. 

A function fi>k of two discrete variables _i and k will be defined­
on the domain i = 0(1)M+1. k = 0(1)N+1J which can be represented by 
a rectangle of lattice points: 

k = 
0 

1 

2 

N+1 

i = 0 1 2 - - - - - - - M+1 

X X X - - - - - - - X 

X X X - - - X 

X X X - - - - - X 

i I I 

I ! I 

X X X - - - - - - - X 

The function must satisfy a given linear second order difference 
~quation: 

(-1) (-1) (-1) 
8 i>k fi-1,k-1 + bi,k fi,k-1 + ci,k fi+1,k-1 + 

(o) (o) (o) 
+ a. k f. 1 k + bl. l· f i k + c' k f. +1 k + l, l- , , , C , l, l , 

( i=1 ••• M 
k=1 ••. N) 

( 2, 1 ) 

In general, the nine coefficients a(j) , b~j) , c~j) (j = -1,0,+1) i,k i,k 1,k 
nd the inhomogeneous term d. k 

l, 
may depend on the variables i and k. 

The boundary values f. k where i=0, or M+1 or k=0 or N+1, are 
' i, 

rescribed. The function values in the interior of the domain have 
o be determined, Between these MN unknowns the MN equations {2,1) 

I 

old, so the solution is unique, unless the system is qependent or 

alse. We shall assume s'uch algebraical difficulties not to be present. 

r 



Description of the method. 

Consider the N function values f. k, (k=1 •• ~N) .as the elements 
J.., 

a vector fi, ( i=O ( 1 ) M+1 ) : 

1'. = 
J. 

)te: square matrices will be indicated by capitals; vectors (column 

itrices) by barred lower case letters. 

The equations (2,1) for a fixed i and k=1(1)N then can be written 

.1 an adequate matrix notation 

(i==1(1)M) ( 3, 1 ) 

f one defines the matrix Ai by 

a(o) 
i, 1 

a( 1 ) 
i,1 0 0 

( -1 ) a( o) ( +1) 
8 i,2 i,2 ai,2 

A. = , 
J. 

0 

( -1 ) a(o) ( +1) 
ai,N-1 a i,N-1 i,N-1 

0 0 ( -1) a ( o) a. N J., i,N 

the matrices Bi and o1 an'alogously to Ai, and the vector di by 

a(- 1 )f ( -1 ) ( -1 ) 
i,1 i-1,0 + bi,1 fi,O + ci,1 fi+1,0 + di,1 

,.., 



Now suppose that for some i the vector 'f 1_1 can be expressed 

linear~y into f i according to 

. 
l\_1 = p i'f i + qi (3,2) 

where the matrix Pi and the vector qi are known quantities. For 
i=1, indeed, th1s supposition is right; inserting P

1
=0 and q1= r0 

into (3>2) one gets an identity and ?0 is a known vector. Then sub­
stitute (3,2) into (3,1). One finds 

or 

(3,3) 

one sees that on~ obtijins an expression like (3,2) in which i has 
been replaced by 1+1. Because of the induction principle the matri­

ces Pi and the vectors qi can be found for. each i, rrom 1=1 up to 
i = M+1 step by step. But in 

rM+1 is not any longer an unknown vector. It is clear that with 
(3,2) each vector r1 from i = M down to i = 1 now can be determinedJ 
with which the solution of (2,1) has been found. 

Resuming and writing the preceding formulae in a suitable form 
we have the following procedure: 

J 

1 ) Find Pi ( i = 1 ( 1 ) M+1 ) using 

P1 = 0 
-1 

p i+1 = - Ri Ci 

Ri =Bi+ AiPi 

2) Find q1 (i = 1(1)M+1) using 

0,1='fo 
' -1-

qi+1 = - Ri 8 1 
Si = Aiqi + a_·i 

3) Find r 1 (1 = M(1)1) using 

1' 

~,; 
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l~. Special case: Poisson 1s Equation. 

When the difference equation (2, 1) -is analogous to the equa·tion 

of Poisson in differential calculus the formulae at the end of section 

3 are simplified as follows. 

The qoefficients are constant with respect to the variables i 
and k, viz. 

a~-k1) = a~+k1) = ci(-1) 
l, l, ,k 

a (O) _ c(O) __ ~-' 
i,k - i,k ,- ""' 

= C ( +1 ) = 0 
i,k 

where 

Taking the inhomogeneous term 9-i,k = O one gets the "potential 
equation 11

• 

The matrices A1 , B1 and Ci become: 

_J 

Ai = Ci = - o( I (I= unit matrix of order N) 

Bi = B = 

and the vect6r ct 1 

Further 

Ri 
,.p i+1 

Si 

qi+1 

1 

-:3 
0 

0 

-0 
1 

_fl, 
1-· 

I 

0 

-p 
1 '-0 

' 

' I 
I 

' 

d i,N-1 

0 

- (-~ f i , N + 1 + di , N 
_j 
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5, Special case: One Dimensional Problem. 

In the r.i' -:=:e of a linear recurring sequenc,e of the Flecond order, 

with given initial and final terms one can apply the method of 

section 3, taking N=1 • Now the "matr1ces0 ax-e soalars. 'I'hv difference 
equation (2~1) becomes) 

The matrix sequence Pi and the vector sequence qi turn to number 
sequences pi and q1 , satisfying 

-Ci 
Pi+1 = bi+aipi 

with p
1 

= o, q
1 

= f
0

• 

Using fi_ 1= p1f 1 + qi one finds all terms from fM to r
1

• 

Note, that pi can be developed in a continued fraction. 

-ci-1 
Pi·=------

bi-1+ai-1----c~i_-_2 __ 
b + -c. 3 

i-2 ai-2---1--..:;_-

I 

I 

I 
/ 
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6. The Boundary Conditions. 

So far as boundary conditions for the functio~ fi,k the function 

vnlues were given on the four sides of the re.ctangle. However, it is 

possible to apply other types of boundary conditions without changin6 

the procedure essentially. 
We shall investigate to which variations will lead prescribing 

first differences instead of function values. 

The following notation is adopted: 

difference in i-direction: 

difference ink-direction: 

(i) On the upper side the mean first ver~ical difference~ i, 1 may 
be given. 

Then 

This can be substituted in (2,1). The effect is a slight variation 

in the first row of the,matrices Ai' Bi, Ci and of the vectors di 
in sect ion 3 : 

a(o) 
i, 1 

( -1 ) a. 2 l, 

Bi and Ci analogous. 

I 

The first element of ct1 becomes 

0 

a(+1) 
i,2 

2 ( -1) C (-1) C" (-1) 
- ai;1 ci-1,1 - 2bi,1 '-1,1 - 2ci~1 ?: + - i+1, 1 

For the rest one can use the procedure of section 3. 
r 

d. 1 l, 

Of course if one fixes the difference on the lower side, a similar 

modification appears in the last rows of the matrices. 

1$lBLIOTHEEK l"hTHE!'iATISCH CENT!~l:IM 
- AM~TERDAM __ _ 

·:· ,'; ... 



-u-

(ii) Prescription of differences on the lef~ hand boundary of the· 
rectangle will ~hange the ,initial terms of the sequences P1 and q1 • 

Suppose the mean'first hori~_smtal differences Si,k (k=1('t)N) are 

c:;iven. Now we define the vector<) i as follows: 

then it holds 
7 

r O = f2 - 2c)1 , 

which substituted in (3,1) yields for i=1 

-­r 

A
1

(r2 - 2'o 1 ) + B1r 1+ c1'f2 + ct 1 = 0, 

or 
f -1 

(A1 + C1 )f 2+ B~1 (2A
1
5

1 - 01). 1 = -B1 

Starting with p2 = -B~1 (A1 +C1) 

q2 = Bt (2A1S1 -d1) , 

we can perform again the same calculations. 
When, however, the difference vector 61 is given, then 

J 2 

f 0 

and it is clear, that P1 = 
terms. 

are the correct initial 

(iii) Finally, the differences on the right hand side may be given, 

e.g. the mean differences ~ M, k (k=1 ( 1 )N). 
Having determined the PiJand qi in the ordinary way, one has the re­

lations 

i' M = PM+1 "fM+1 + qM+1 

1'M-1 = PM fM + qM 
Of course, -\ 

fM+1 - fM-1 = 2aM 

r 
and from these three equations we find 

TM= (I - PMPM+1)-
1

(PM+1qM + 2PM+1~M + qM+1) 

which is the initial term of the sequence f i (i=M(1 )1). 



Less complicated 

fhen we have 

is the ca .. se with given_ TM+J- = f"M+1 - rM 
_2 

f"M = (I - PM+1 )-
1 

(PM+1 SM-t½ + qM). 

It may be useful to draw attention to the fact that the matrices 

:' i ( i=1 ( 1 )M+1) do neither depend on the boundary condi tioris of the 
function f i k nor on the inhomogeneous term d. k' but only on the 

, (j) (j) (j) 1., 
~oefficients ai,k , bi;k , ci,k (j=-1,0,+1) of the difference .equation 

'(3,1). 

Solving a problem over the same domain, with the same difference 
equation but with changed boundary values (of the same type of course) 

can be done therefore without tedious inverting of the matrices R .• 
l. 

Only the vectors ct 1 , Si; qi and fi have to be determined anew. 
In the example of section 8 an application is made. 

7 ,' The numerical work. 

In this section we shall consider the computational work, necessary 
for- the solution of the boundary value problem. Only multiplications 

with non-zero numbers will be taken into consideration. 
'rhe following operatior:s ruu~t be performed (cf the end of Section 3). 

(i) The matrix x matrix multiplicatiorn A1P. and R~ 1c1 . Both A. and c. 
l. l. 1. 1. 

have on1y 3N-2 non-zero elements; so each of these matrix multipli-

·citions requires (3N-2)N multiplications. 
(ii) The matrixxvGci:ormultiplications A

1
q 1 , R~ 1s. and P.f .• The first 

l. 1. 1.1. 

one requires 3N-2; the latter two each N2 multiplicatio~s. 
(iii) The inver',ionof Ri. rrhe number of multiplications depends some­

what on the used method. A method of Fox 1} and a method of Crout 2) 
both require N3 multiplications for the "j_;1ver3ionof a matri?<, having 

no special symmetry properties. 

As each of these operations is done for M values of i, we find a 

total of about MN2 (N-½:8) multiplications. 

Of course, one will choose the i and k directions in such a way 
that N~M. 

In the case of Poisson 1 s equation with given boundary values there 
is Et little reduction. In (i) the matrix x matrix multiplications dis­

appear as Ai and Ci are scalar multiples of the unit matrix; only N2 

multiplic8tions are required. In (ii) we keep 2N2 • 

For•the inversion of (iii) we can use the notion of a 11 chain -
matrix 11, introduced by Burgerhout 3). Matrices of this kind are de­
termined by the elements of their first column. Since it can be shown 
that in this case all matrices to be inverted are chain matrices, the 
inversion reduces to solving N equations with N unknowns. Applying 

Gauss 1 method this requires ~N2 (N+9) multiplications 4), so that the 

costs (N+33) multiplications. 
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8. An example. 

A solution of ·the potential equation 

·-2 ,2 
I' f ( ) ·- U f + ~j ~ = 0 u x,y = ~ , 

<JX c'Y 
( 8, 1 ) 

is wanted in the region O ~x <1, O ~Y <1 .., 

f(x_y) being given on the boundaries x=O, y=O, x=1, y=1. For 
convenience we shall turn the problem and take a known function, 
s~tisfying (8,1), compute its boundary values and then forget the 
function and try to refind it by our matrix method. 

We choose 

(8,2) 

where 
2 2 2 

g(x.,y) = Re e 2 = ex -y cos 2xy_ 

(z = X + iy). 

so that O < f ( x ., y ) -< 1 . 

As lattice we take: O 1 

6 , I 
7 ~-----.' ----- -· ---- ----·-· 
8 L... I c------+------------

9 r· l i . :------------- · 
'l ·, '10 L---~---~--

The function values computed from (8,2) are on this lattice: 

, k = 0 

x\ y = O 

) 0 :. 40000000 
. 1 l· 40201003 
.2 1,40816215 
. 3 I· 41883486 
.l~ ,43470217 
.5 ,45680508 

i • 6 . 48666588 
' . 7 . 52646324 

.8 ,57929618 

.9 .64958160 
1.0 ,74365637 

.. 

1 
.2 I 

.39215789 

.39393386 

.39936034 

.40874220 

.42261913 

.44181733 

.46753130 
,50144694 
,5459239 
.60½26368 
.68110635 

2 
.4 

.37042876 

.37159104 
,37511841 
.38113391 
.38984708 
.40156025 
.41667561 
.43570097 
.45924928 
.48802291 
,52276568 

3 4 5 
.6 .8 1 . 0 

.33953527 .30545848 .27357589 

.33992408 .30515783 .27283398 

.34106723 .30419029 ,27053354 

.34288889 . 30235031 .26644352 
,34524200 .29926471 .26015512 
.34787276 .29434201 ,25104415 
.35036115 .286691 1+2 .23821370 
.35202512 .27499907 .22041290 
,35176828 ,25734304 .19592564 
.34783800 .23091837 .16242263 
.33744091 .19162949 .11677063 
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Now the derivatives in the lattice points can be developed in 

terms of differences: 

·'-2f 
(½). 1 = 
(\X J., i{ 

:,2f 
(½)1 1-c = 
c)y , 

In these formulae 

' 

~ 1 \ :· 1t 1 < IV 
w 2 ·1 o i, k T°2" (l i,k + .... 

X .. 

1 \ II 1 c.IV ~ t;: + 
~ ' r • l - T"2" ci,k ... 

I 
. J., .{ 

y 

wx denotes the interval in x-direction 

WY 
( 

c: i,k 
,':i,lc 

ft 

Ii 

11 

fl fl rt y ti 

the differences in x-direction 
II If II y If 

Substituting this in the equation and neglecting fourth and higher 

order differences one gets the second order difference equation 

1 ~ 11 + 1 <;:. fl _ 0 i= 1 ( 1 ) 9 
~r•k ~ 1.... i,k -w ..... i, w k= 1 ( 1 ) 4 

X y 

w x2wy2 
or, with a normalising factor -

2(w~+w;) 

w 2 w 2 
i= 1 ( 1 ) 9 y .·\ 11 X t ti 0 (8;3) 

2 (wx c+wy c) i ;k 
2 (wx 2+wy'~) i,k = I..., 

k= 1 ( 1 ) 4 

Since s II = i,k 

t;; II f 2f f 
c....1,1:: = i,lc-1 - i,k + i,k+1 ' 

this leads to a set of equations, similar to (2,1) with coefficients 

(cf section 4) 

( -1 ) ( -1 ) _/ a ( +1 ) - ( +1) = 0 a. k = c. k - i,k - C, k i, i, i, 

a(O) c(O) 
w 2 

= = y = -0( i,k i,k 2(w 2+w 2 ) 
X y 

b ( -1 ) - b(+1) 
w 2 

X: -p i,k - i,k = 
2 (wxc+w/3.) 

= 
,. 

b(O) = 1 i,k 

d. k = 0 i, 

As in our lattice wy = 2wx we have ex:= o.4;(~ = 0.1. 
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5 

6 

7 

8 

9 

0 
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In this way one obtains the solution: 

0 1 2 3 4 5 
.40000000 .39215789 .37042876 .33953527 .30545848 .27357589 

·• 40201003 .39405210 .37163205 .33984111 .30503539 .27283398 
2 2 2 1 

• 1+0816215 .39956188 .37517811 .34090069 .30396125 .27053354 
-1 0 1 -1 

.4 ✓1883486 .40901752 .38119758 .34262579 .30200916 .26644352 
0 0 0 -1 

.43470217 .42297380 .38990502 .34486211 .29879434 .26015512 
0 0 0 -1 

.45680508 .44226518 .40160600 .34735464 .29372237 .25164415 
0 0 1 0 

.48666588 .46808638 .41670503 .34969242 .28591189 .23821370 
-1 0 0 0 

. 52646321~ .50210802 .43571188 .35122217 .27408082 .22041290 
0 0 0 0 

_57929618 .54663989 .45924212 ,35091482 .25638138 .19592564 
0 0 0 0 

.64958160 .60485714 .48800474 .34715901 .23016251 .16242263 
-1 -1 1 0 

.74365637 .68110635 .52276568 .33744091 .19162949 . 11677063 

The residuals r. k= left hand member of (2}1) in the interior 

points are written ~~de:r; the function (in units of the 8th decimal). 

As one sees, the stability of the procedure in this case is very 

satisfactory; the residuals being nearly zero in as many di6 its as 
I 

were carried in the computation. 

However ... comparison with the "original II function shows a devi­

ation of several units in the fourth decimal. This is due tone­

glecting of the fourth and higher differences. 

According to a method of Fox 5) it iS. possible to improve the 

solution by taking the fourth and higher differences into account 

in the following way. 

Instead of (8,3) we try to solve an equation that is a better 

approximation of the,differential equation (8,1) namely 

2 w y 

I 

2 

Sil wx 
• 1 - ----,.2-,----,-,~-
J., K 2(w +w ) 

X y 
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If we could consider di,k as a kD:2..~n inhomogeneous term we would 

find us in the case of section 6 and could compute a new solution 
• only by multiplications matrix x vector. 

Unfortunately, d. k consists of the diffetences of the wanted 
J.) 

function f. k. However, when we take the differences of the function 
J.' . 

computed above the error is not large and the new approximated 
function will be better than without any difference correction. 

This procedure can be repeated until we find a constant function 

fi,k. 
We stress the point that these iterations are consider·ably 

simpler than the first solution since all matrices concerned· are 
the same in all iterations. 
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