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1. Introduction.

In practical analysis 1t often happens that a problem leads to
a difference equation which cannot be solved in an analytical way.

There are various methods to handle these equation numerically,
the relaxation method being a well-known one of them. '

Since, however, iterative methods are in some cases very dis-
couraging to the computer because of their slow convergence, in this
report a methoq is offered where the solution is obtained by a direct
computation. The equatlion treated will be a linear second order dif-
ference equafion in two variables with some types of boundary condi-
tions. As this'problem frequently is originated by a differential
equation, an example in this field is given.




2, The problem.

A function fl K of two discrete variables 1 and k will be deflned
on the domain 1 = O(1)M+1. k = O(1)N+1, which can be represented by
a rectangle of lattice points:

1 =012-= - - - - = M~+1
K = ;

0 X X X = = = = = = = X

1 XXX = = = = = = = X

2 XXX =~ = = .= = = = X
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N+1 XXX = = = = - = = X

The function must satisfy a given linear second order difference
rquation: )

1:11{) fi1,k-1 * bé:;c) £y k-1 F Cirll) Py, k-1 T (f{j:::g‘)
* a§(,)1){ e T bjg.(,)l)i e ® Cg?y)c Bivie ™ | (2,7)
* aﬁf{) L1041 F bgj;{. Lkt * °§+11:) Ty, T 95,0 = 0-

In general, the nine coefficients a£f& , b§f& s c§f& (3 = -1,0,+1)

nd the inhomogeneous term di,k may depend on the variables i1 and k.
The boundary values f k where i=0, or M+1 or k=0 or N+1, are

rescribed., The function values in the interior of the domain have

0 be determined. Betweenlthese MN unknowns the MN equations (2,1)

old, so the solution is unique, unless the system is dependent or

alse. We shall assume such algebraical difficulties not to be present,




Description of the method.

Conslder the N function values fiak R (k=1..;N),as the elements
3
a vector T, , (1=0(1)M+1):

fi’ 1

|
it

*

yte: square matrices will be indicated by capitals; vectors (column

itrices) by barred lower case letters.

The equations (2,1) for a fixed i and k=1(1)N then can be written

1 an adeguate matrix notation

A.lii_1 + Bifi + CiTi+1 4+ di = 0. (1 =1(1)M) (3,1)

f one defineg the matrix Ai by

(0) (1)
ai,1 a.l,1 0 0
(-1) (0) (+1)
a4y 2 84,2 ai,2
A, = ,
l .
0
(-1) (0) (+1)
8 N-1  Zi,N-1  B1,N-1
(-1) (0)
0 0 al’N ai,N
b P

the matrices Bi and Gi analogously to Ai’ and the vector Hivby
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al-Dg + D ‘})f + el Ve +d

(
1,1 "1-1,0 - i, i,0 1,1 "1i+1,0 i1
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dy N1

(+1) (+1) (+1)
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Now suppose that for some 1 the vector Ti—1 can be expressed
linearly into ?i according to
where the matrix Pi and the véctor Ei are known gquantities. For
i=1, indeed, this supposition is right; inserting P1=O and §1= ?b
into (3,2) one gets an ldentity and Tb is a known vector. Then sub-
stitute (3,2) into (3,1). One {inds

A,P.T. + Aiqi + Bifi + Cif. +d, =0

i"ivi i+1 i
or
- — "1 o - ‘1 - -
Ty = -(By + AyPy)70 €Ty ~(By + ARy) 7 (Agqy + Tp)e
Writing
_ -1
Pigq = - (By + A4P4)7 Oy
, : (3,3)
Typq = = (By + AgP)T0 (AgTy + dy)

one sees that one obtains an expression like (3,2) in which 1 has
been replaced by i+1. Because of the induction principle the matri-
ces Py and the vectors ai can be found for each 1, froem 1=1 up to

i = M+1 step by step. But in

T =P

M= Pueriper T G

TM+1 is not any longer an unknown vector. It is clear that with
(3,2) each vector Ti from 1 = M down to 1 = 1 now can be determined,
with which the solution of (2,1) has been found.

Resuming and writing the preceding formulse in a sultable form
we have the following procedure: "
/

1) Find P, (1 = 1(1)M+1) using

il

p.= 0
1 ¥
Poyp = - R4 0y
Ry = By + AP,
2) Find g; (1 = 1(1)M+1) using
W7 o 1
Qg = 7 B8y
5; = Ayay + Yy

3) Find T, (1 = M(1)1) using

T.=P.T, +7q
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I, Speclal case: Polsson's Egquation.

When the difference equation (2,1)-1s analogous to the equation
of Poisson in differential calculus the formulae at the end of section
% are simplified as follows.

The coefficlents are constant with respect to the variables i

and k, viz.,

(1) _ (1) _ J(=1) - L (+1) _
B’ TP,k T,k T, =O J
(0) _ .(0) _
4,k T %1,k T &
( ) ( where 2X + 25 = 1
. ")] - +1) - 72 -
Pix’ =Pl = -
(0) _
by =1

Taking the inhomogeneous term gi K = O one gets the 'potential
2
equation',
The matrices A,, Bi and Cy become :

A{ =0y = -1 (I = unit matrix of order N)
1 - 0 - - - 0
—"?' 1 "'[A 3
B N I |
1 =B=1 -
o - - - ~A 1
L ' ! |
and the vector Ei
'fgfi,o + d1,1
d; 2
i
: Ay N-1
"R Ne Ty
Further
g%i1=aR%_=aﬁa «KP,)
5y T “fﬁ%i + ai~ _ T
Qigq = RE (@~ T3) = Pyyy (@ - g[)
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5, Special case: One Dimensional Problem.

In the c¢-se of a linear recurring sequence of the second order,
with given initial and final terms one can apply the method of -
section 3, taking N=1. Now the '"matrices"are sgalars., The difference
equation (2,1) becomes) :

a.f

1519 + bifi + e, f, +d, =0

17141 i

The matrix sequence Pi and the vector sequence Hi turn to number
sequences Dy and a4 satisfyving

e

P = e
i+1 b.l+a.lpi

@ - 8395+
i+ Bi+aipi

with P, = 0, a, = fo.
Using fi-1= pifi+ q; one finds all terms from fM to f1.
Note, that p; can be developed in a continued fraction.

“Ci_q

-C
Dy 478y 4 i-2

-C .
Py etli0 1-3

pi::




6. The Boundary Conditions.

So far as boundary conditions for the functiop fi,k the function
values were glven on the four sides of the rectangle. However, it is
rossible to apply other types of boundary conditlons without changing
the procedure essentilally.

We shall investigate to which variations willl lead prescribing
first differences instead of function values.

The following notation is adopted:

difference in i-direction: ‘Si+i K = fi+1 K - fi I
273 3 E

¢ C C
_ 1 (£
O,k =2 Cyp ) YO 11 ) o
N . _ o s . [ - - ‘
difference in k-direction: Li,k+% fi,k+1 fi,k
< i [
S, =% (84 g TG ped) -
(1) On the upper side the mean first vertical difference E‘i | may
' K]
be given,
Then
_ _s<
fi,0 = 1,0 - 2¢4 4

This can be substituted in (2,1). The effect is a slight variation
in the first row of the-matrices Ai’ Bi’ C1 and of the vectors Ei
in section 3:

L (0) (+1) 4 o(-1)
231 ai 1’ T2y 0
(-1) (0) (+1)
ai 2 C 8,2 41,2
A = .
/ .
‘ (0)
; 1IN
Bi and Ci analogous,
The first element of Ei becomes
a1 e (=) _ool=1) < .
2a3 1) €yq,q 7 2050 €y m2eily Taaq,q F Ay,

&

For the rest one Fan use the procedure of section 3.
Of course if one fixes the difference on the lower side, a similar
modification appears in the last rows of the matrices.

. BIBLIOTHEE)R MATHEMATISCH CENTRUM
. SAMITERDAM :

e i




) -

(ii) Prescription of differences on the left hand boundary of the:

rectangle will ehange the’initial terms of the sequences Pi and Ei.
Suppose the mean first horizontal differences ‘Si,k (k=1(1)N) are

slven. Now we define the veotor<§i as follows: '

51;1

i

-~ :
(Si = :
]

o 1,N |

then it holds —
IO = i‘2 - 28)1 F)

which substituted in (3,1) ylelds for i=1

—
e

A1(f2 - 20,) +B,T,+ T T, +d, =0,
or —
T, = -B] (A, + C, )T+ B (24 S, -1 )
1 1 1 1/727 B9 171 1
. . a-
Starting with P, = -B, (A1ﬁg1)
- -1 N
Gy = By (2R0.-0,)

we can perform agaln the same calculationg.
When, however, the difference vector E;l is given, then

2

and 1t 1s clear, that P1 = I, 51 = —5 are the correct initial

terms.

L
2

(iii) Finally, the differences on the right hand side may be given,

ag. the mean differences SM K (k=1(1)N).
) 3

Having determined the Pi/and Ei in the ordinary way, one has the re-~
lations S/

Ty = Pyaq T+ Qg

Of course., —
=

@ I - f = C(‘l‘)

r
and from these three equations we find

.

¢

+ 2P, . .0

. -1 -
Ty = (I - PyPpyyq) (P ua10m G )

M M M+1 M+1%M

which is the initial term of the sequence fy (1=M(1)1).




Less complicated is the case with given T ., = T - Ty
2

Then we have . o= (I - P

-1 3 —
M we1) (Prpg ‘SM% * ay)-

It may be useful to draw attention to the fact that the matrices
Fy (i=1(1)M+1) do neither depend on the boundary conditions of the
function fi p por on the inhomogeneous term 4, K? but only on the
3 -1 3

1

coefficients agJ) 5 ng) 5 cgJ) (j=-1,0,+1) of the difference equation
. i,k i,k .1,k

{311)' .
Solving a problem over the same domain, with the same difference
equation but with changed boundary values (of the same type of course)
can be done therefore without tedious inverting of the matrices R .
Only the vectors Ei’ Ei, Ei and Ti have to be determined anew.

In the example of section 8 an application is made.

7. The numerical work,

In this section we shall consider the computatlonal work, necessary
for the solution of the boundary value problem. Only multiplications
with non-zero numbers will be taken into consideration.

The following operatiors must be performed (¢f the end of Section 3).
(1) The matrix x matrix multiplications AiPi and quci. Both Ai and Ci
have only 3N-2 non-zero elements; so each of these matrix multipli-
-cations requires (3N-2)N multiplications.

(11) The matrixxvectormultiplications A,d,, R]'S; and P,T,. The first
one requlres BN-2, the latter two each NG multiplications.

(i1i) The inversionof R; . The number of multiplicatlons depends some -
what on the used method. A method of Fox 1) and a method of Crout 2)
both recuire N3 multiplications for the inversionof a matrix having

no special symmetry properties.

As each of these operations is done for M values of 1, we find a
total of about MNE(Nf8) multiplications.

Of course, one will choose the i1 and k directions in such a way
that NLM,

In the case of Poisson's equation with given boundary values there
is & little reduction. In (i) the matrix x matrix multiplications dis-
appear as Ai and Ci are scalar multiples of the unit matrix; only N2
multiplications are reguired. In (1i) we keep 2N2.

Forethe inversion of (i1ii) we can use the notion of a "chain -
matrix", introduced by Burgerhout 3). Matrices of this kind are de-
termined by the elements of their first column. Since it can be shown
that in this case all matrices to be inverted are chain matrices, the
inversion reduces to solving N equations with N unknowns. Applying
Gauss' method this requires %NQ(N+9) mult;plications 4), so that the

whole procedure costs %MNQ(N+33) multiplications.
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3. An example,

A solution of the potential equation

H2r
Of(x,y) = -

X

2

iy

~

(8,1)

(:/ ’:_'_/

<

is wanted in the region 0Lx L, 0Ly,

f(x,y) being given on the boundaries x=0, y=0, x=1, y=1. For
convenience we shall turn the problem and take a known function,
satisfying (8,1), compute its boundary values and then forget the

function and try to refind it by our matrix method,

We>choose
f(x,y) = O.2§g(xjy) + 1} , (8,2)
where
22 2
z(x,y) = Re e? = &% "V cos 2xy.
(z = x + 1y).
sn that 0<f(x,y) <1.
As lattice we take: O N 1
sii¥o 4 o 3 4 s
’ } - -
|
3
Ll' - - .
5 |- I
6
7 ! p—
g b —
9 T [
1 410 b ;
The function values computed from (8,2) are on this lattice:
v~ k=0 1 2 3 Y 5
x\ ¥ = 0 2 ! b 6 .8 1.0
) 0 iuooooooo 39215789 37042876 ,33953527 ,30545848 27357589
o %40201003 .39393386  ,37159104 .33992408 ,.30515783 .2728%398
> .2 40816215 .39930034 37511841 .34106723 .30419029 .27053354
» .3 41883486 L 4o8T4220  .38113391 .34288889 .30235031 26644352
ook 43470217 42261913 ,38984708 34524200 ,29926471 ,26015512
> .5 456380508 44181733 40156025 34787276 .29L43L4201  ,25104415
y .0 |.LB666588 46753130 41667567 .35036115 28669142 23821370
T LT 526467324 .50144692 43570097 .35202512  .27499907 .22041290
3 .8 57929618 .5459239Lk 45024928 ,35176828 ,25734%04 .19592564
) .9 [.64958160 .60426%68 48802291 34783800 .23%091837 ,162L4226%
) 1.0 |.7T4365637 .68110635 .52276568 .3374L091 .19162949 11677063




Now the deriyatives in the lattice points can be developed in

terms of differences:

o°f 1 o h 1 Iy L

S T2t Ol T TEOLK T
X

(i\’gf) = 1 \ (C" - 1 CIV + z’ ’

Sy2 bk Ty 20 ik T2tk

\ y )

In these formulae W denotes the interval in x-direction

w 1% 1 1 " -y 1"
Y
5i K " the differences in x-diregflon
: ! 1 "o 1" it #
ik Y

Substituting this In the equation and neglecting fourth and higher
order differences one gets the second order difference equation

1 " n 1 <on _ i= 1(1)9
—z it 7 &l =0 j
W, W k= 1(1)%
WX2W~2 .
or, with a normalising factor '“’“Tfijf‘
2(wS+w’)
Xy
il oy i=1(1)9
_ J . C n - g . ¢ v k= )
l;\. 2
2 (w, e ) 2(w, " ) ’ k= 1(1)%

Cu — -
sinee  §Y = Ty g0 7 Byt Ti

Lt = -
i = 4 ke 72 e Ty ke o

this leads to a set of eguations, similar to (2,1) with coefficients
(cf section k)

(1) & o(-1) /7 (+1) _ _(+1) _
ik T %,k T3,k “Ci,x =9
: 2
(0) (0) y
a. = = e - = -O(
i,k i,k 2 2
2(wX we )
( ( -
-1) +1) X
b = Db = - —=-f3
i,k i,k 2
ﬂ( ) 2(wX s )
0
Py =1
dl,k = 0

As in our lattice w,

y = 2w, we have & = 0.4;ﬁ>= 0.1.
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In this way bne obtains the solution:

0 1 2 4
.40000000  .39215789 .37042876 .5395?527 .30545848 .2735?589
.140201003 .39402210 .37162205 .33982111 .3050?539 .27283398
40816215 39956188 .37517811 34090069 .30396125 ,27053354
41883486 40901752 38110758 34268579 30200916 .266Mk350

| JA3h70217 .a229§38o .3899§502 .3448%211 .298%%434 26015512
45680508 44226518 40160600 34735464 29372237 25104415
.48666588 .46808638 .41678503 .3496;242 .2859?189 .23821370
52646324 50210802 43571188 35128217 .27h0S082 22041290
.57929618 .5&66%989 .45922212 .3509?482 .2563%138 . 19592564
64958160 6048571 4BBOOKTH 34715001 23010251 16242263
. 74365637 .6815%635 .522}%568 .33741091 .1916%949 .11677063

The residuals r, ,= left hand member of (2;1) in the interior

points are written éﬁgén the function (in units of the gth decimal).
As one sees, the stabllity of the prbcedure in this case is very
satisfactory, the residuals being nearly zero in as many diglts as
wére carried in the computation.

However, comparison with the '"original" function shows a devi-
ation of several units in the fourth decimal., This is due to ne-
glecting of the fourth and higher differences.

According to a method of Fox 5) 1t is possible to improve the
solution by taking the fourth and higher differences into account
in the following way. ,

Instead of (8,3) we try to solve an equation that is a better

approximation of the differential equation (8,1) namely

2 2
w w
J S X £ L +d, =0 (8,4)
- 2 2 i,k P 2 “i,k i,k ~ »
2(w, “+w %) 2w i ) ‘
in which o .
. W . IV (VI
i 1 - 1 .
= 7 v ( b 'Lt - 6 ) +
ik 2 (w 2 a) T2 i,k 90 Y1,k
+ X y ,
+ . 7 7 2 2 @




-1 %=

If we could consider di,k as a known inhomogeneous term we would
find us in the case of section 6 and éould compute a new solution
only by multiplicatiéns matrix x vector.

Unfortunately, d, consists of the differences of the wanted

function fi,kﬁ Howev;;? when we take the differences of the function
computed above the ervor is not large and the new approximated
function will be better than without any difference correction.
This procedure can be repeated until we find a constant function
fi,k' '
We stress the point that these iterations are considerably
simpler than the first solution since all matrices concerned are

the same in all iterations.
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