MATHEMATISCH CENTRUM 2° BOERHAAVESTRAAT 49 A M S T E R D A M

REKENAFDELING

A PUNCHED-CARD SET-UP FOR LINEAR PROGRAMMING

by

M.L. Potters

MR 22

1956

AMSTENDAMOCH CENTRUM

A PUNCHED-CARD SET-UP FOR LINEAR PROGRAMMING

MR 22

1. Introduction

In this paper a procedure is described for "linear programming" with the help of punched-card equipment. The Simplex Method we use is supposed to be well-known; for the sake of completeness a short outline of this method is given. For theoretical considerations and special cases we refer to the existing literature on this subject $a_{.0}$ ⁽¹⁾ ⁽²⁾, ⁽³⁾. The procedure has been designed for an equipment of the following composition:

IBM Key Punch type 016 IBM Sorter type 080 IBM Reproducer type 513 provided with at least one class-selector IBM Tabulator type 405 IBM Calculating Punchtype 602 A provided with deviding device, all 8 storages, all 8 counters, all 17 pilot-selectors, all 12 ccselectors Probably it can also be used for type 604 and other machines of this kind.

2. The problem

Although a more general treatment is possible, we put the problem in the following form:

The linear function Z₀ of the p variables λ_i

$$Z_{0} = \sum_{j=1}^{p} c_{j} \lambda_{j}$$
 (2.1)

is to be made extremal (e g maximal) under the conditions

$$\lambda j \ge 0$$
 (j = 1...p) (2.2)

$$\sum_{j=1}^{m} \alpha_{ij} \lambda_j \leq 0 \quad (i = 1 \dots m)$$
(2.3)

The constants b_i in the right-hand member of (2.3) are required to be non-negative

$$b_i \ge 0$$
 (i = 1...m) (2.4)

For the c_j and a_{ij} there are no restrictions. The m inequalities (2.3) are replaced by equalities if one defines m extra variables by

$$\lambda_{p+i} = b_i - \sum_{j=1}^{p} a_{ij} \lambda_j \quad (i = 1, ..., m) \quad (2.5)$$

From (2.3) we have the conditions

$$\lambda_{p+i} \ge 0 \qquad (i=1,\ldots,m) \qquad (2.6)$$

Furthermore we define

$$p+i=0$$
 (i=1.....n) (2.7)

The problem now has assumed the following form: Maximize the linear function $Z_{\rm O}$ of n variables $\lambda_{\rm I}$

$$Z_0 = \sum_{l=1}^n c_l \lambda_c \qquad (l=1....n) \qquad (2.8)$$

where n = p + m, under the conditions

$$\lambda_{l} \ge 0 \qquad (l=1....n) \qquad (2.9)$$

(2.10)

of the Simplex Method
$$\sum_{j=1}^{p} a_{ij} \lambda_j + \lambda_{p+i} = b_i \quad (i = 1, ..., m)$$

We consider systems of m linear equations with n unknowns of the following type

$$\lambda_{s_{i}} + \sum_{j=1}^{P} \alpha_{ij} \lambda_{t_{j}} = b_{i} \quad (i = 1, ..., m)$$
 (3.1)
 $b_{i} > 0 \quad (i = 1, ..., m)$ (3.2)

where

3. Outline

and
$$n = p + m$$
.
Only those solutions are admitted, for which holds
 $\lambda_l \ge 0$ $(l = 1, ..., n)$ (3.3)

The n variables appearing in (3.1) can be divided into two classes:

(a) the m variables $\lambda_{s,i}$ (i = 1...m) called "basic" variables (b) the p variables λ_{t_j} (j = 1...p) called "non-basic" variables.

In each of the m equations (3.1) only one of the basic variables appears; each of those variables appears in only one equation. We define the "basic solution" of (3.1) as follows:

$$\lambda_{s_i} = b_i \qquad (i = 1...., m)$$

$$\lambda_{t_j} = 0 \qquad (j = 1...., p)$$
This solution indeed satisfies (3.3).
$$(3.4)$$

The value of Z_{\cap} connected with the basic solution is

$$Z_{0} = \sum_{i=1}^{m} c_{s_{i}} b_{i}$$
 (3.5)

The equations (2.10) are a system such as (3.1) Here we have $s_i = p + i$, $t_j = j$; The basic solution $\lambda_{p+i} = b_i$, $\lambda_j = 0$ is the so-called "trivial solution" because $Z_0 = 0$. Now we consider transformations of (3,1) with the following

properties:

(a) the transformed system is of the same type as (3.1)

$$\lambda_{s'_{i}} + \sum_{j=1}^{p} \alpha'_{ij} \lambda_{t'_{j}} = b'_{i} \quad (i=1....m)$$
 (3.6)

$$b_i' \ge 0 \qquad (i=1,\dots,m) \qquad (3.7)$$

where

(b) one basic variable, $say \lambda_{s_{p}}$, has turned into a non-basic variable; one non-basic variable, $say \lambda_{t_{k}}$, has turned into a basic variable. The value of Z_{0} , connected with the basic solution of (3.6) is

$$Z_{0}^{i} = \sum_{i=1}^{m} c_{s_{i}} b_{i}^{\prime}$$
(3.8)

It can be proved that the maximum of Z_0 is reached for the basic solution of a system which has derived from (3,1) by a finite number of transformations.

In the Simplex-Method the maximum of Z_0 is found by succesive transformations, starting as a rule from the trivial solution. The choice of the variables λ_{s_r} and λ_{t_k} which will change their roles as basic and non-basic variables is determined by the conditions:

$$Z_0' \ge Z_0 \tag{3.9}$$

$$b_i' \ge 0 \quad (i = 1...m) \tag{3.10}$$

This can be worked out in an simplecalculating scheme.

4. The calculating scheme.

According to section 3 the following scheme is set up.
The state of the problem is fully characterized by a matrix

$$(x_{ij})$$
 of $(m + 2)$ rows and $(p + 1)$ columns as shown in fig. 1.
The rows are numbered $i = 1 \dots m$, Z, S.
The columns are numbered $j = 1$ p.P. This matrix contains as
 (a) For $i = 1 \dots m$; $j = 1 \dots p$:
 $x_{ij} = a_{ij}$, the coefficients of the non-basic variables in
the equations (3.1)
To each row i is joined the number s_i of the basic variable,
called mrow variable number".
To each row i is joined the number t_j of the non-basic
variable, called medium variable number".
(b) For $i = 1 \dots m$; $j = B$:
 $x_{ij} = b_i$, the constants of the righthand member of (3.1)
(c) For $i = Z$; $j = 1 \dots p$:
 $x_{ij} = Z_j$ defined by $Z_j = \sum_{i=1}^{m} c_{s1} a_{ij} - c_{tj}$ (4.1)
For the system (2.10) we have $Z_j = - c_j$
(d) For $i = Z$; $j = B$:
 $x_{ij} = Z_0$ defined by (3.5). For (2.10) $Z_0 = 0$.
(e) $i = S$; $j = 1 \dots p$:
 $x_{ij} = S_j$ defined by $S_j = -\sum_{i=1}^{m} a_{ij} - Z_j$ (4.2)
(f) For $i = S$; $j = B$:
 $x_{ij} = S_0$ defined by $S_0 = -\sum_{i=1}^{m} b_1 - Z_0$ (4.3)

-3-

-4-The elements in the row S are defined in such a way that $\sum_{i=0}^{m,Z,S} x_{ij} = 0$ (j = 1....p,B) (4.4)This row is added to the matrix for checking purposes. Now the row number r and the column number k have to be fixed. The column k is the column in which the most negative value of Z_{i} appears. When there is no negative Z_{i} , the optimal solution is reached. The row # is the row in which the smallest positive quotient $\frac{b_1}{-}$ is found. aik In cases where these conditions do not lead uniquely to a decision ("degeneracy") extra conditions can be found in the literature. The transformation of (3.1) is determined by the indication of r and k. It leads to a new matrix $(x_{i,i})$. In fig. 2 the elements of (x_{ij}) are shown expressed in those of (x_{ij}) ; they are calculated by six different operations: (a) For i = 1..., m, Z, but $i \neq r$; j = 1..., p, B, but $j \neq k$: $x_{ij}' = x_{ij} - \frac{x_{rj}x_{ik}}{x_{rk}}$ (b) For i = r; j = 1....p, B but $j \neq k$: $x_{ij}' = \frac{x_{ij}}{x_{ik}}$ (c) For i = 1..., m, Z but $i \neq r; j = k$: $x_{ij}' = \frac{x_{ij}}{x_{r}}$ (d) For i = r; j = k: $x_{ij}' = \frac{1}{x_{ii}}$ (e) For i = S; j = 1...p, B but $j_{x \neq k}$: $x_{ij}' = x_{ij} - \frac{x_{rj}}{x_{rk}}(1 + x_{ik})$ (f) For i = S; j = k: $x_{ij}' = -1 - \frac{1}{x_{ri}} (1 + x_{ij})$ The new row variables are: For $i \neq r$: $s_i' = s_i$ For i = r: $s_i'(=s_r') = t_k$ The new column variables are For $j \neq k$: $t_j' = t_j$ For j = k: $t_j'(= t_k') = s_r$

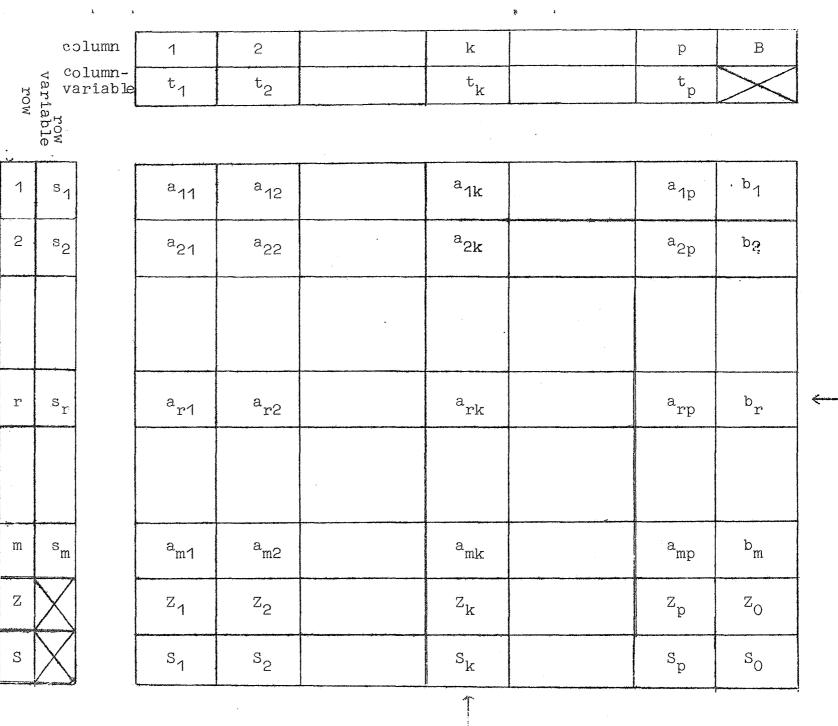


fig. 1

10000000

Ş.

5

			ų			I	1	11
	column	1	2		k		ρ	В
	column variable	t ₁	t ₂		S _r		t _p	
30	row- variable						a. Persona and the second sec	•
1	s ₁	an- anank	$a_{12} - \frac{a_{r2}a_{1k}}{a_{rk}}$		ank ^a rk		a _{1p} - <u>arpank</u> ark	$b_1 - \frac{a_1k}{a_{rk}} b_r$
2	⁵ 2	$a_{21} - \frac{a_{r1}a_{2k}}{a_{rk}}$	a ₂₂ - a _{r2} a _{rk}		- azk ark		$\alpha_{2p} - \frac{\alpha_{2p} \alpha_{2k}}{\alpha_{rk}}$	$b_2 - \frac{\alpha_{2k}}{\alpha_{rk}} b_r$
r	t _k	CL _{M4} CL _{M4}	are ark		1 a _{rk}		<u>ark</u>	b _r ark
				· ·				
m	Sm	a _{m1} - <u>a_{r1}a_{mk}</u> a _{rk}	$a_{m2} = \frac{a_{r2}a_{mk}}{a_{rk}}$		- ank ark		a _{mp} a _{rp} a _{mk} a _{rk}	$bm - \frac{a_{mk}}{a_{rk}}b_{r}$
Z		$Z_1 - \frac{a_{r1}}{a_{rk}} Z_k$	$Z_2 - \frac{a_{r2}}{a_{rk}} Z_k$		$-\frac{Z_k}{a_{rk}}$		Zp- arp Zk	$Z_0 = \frac{b_r}{a_{rk}} Z_k$
S	\square	$S_{1} - \frac{a_{r1}}{a_{rk}}(1+S_{k})$	$S_2 - \frac{a_{r2}}{a_{rk}} (1 + S_k)$		$-1 - \frac{1 + S_k}{a_{rk}}$		$S_{p} = \frac{a_{rp}}{a_{rk}} (1 + S_{k})$	$S_o = \frac{b_f}{a_{rk}} (+S_k)$

X 1

.....

\$

,

6

5. The punchod-card lay out

For each step in the procedure we have a deck of (m+2)(p+1) cards, one for each row i and column j. On these cards the new matrix elements x_{ij} ' are calculated and the new row and column-variable numbers are ounched.

To this end the cards contain the following fields:

-7-

field no.	information punched	symbol	operation no.
(1)	indicative data about the problem	ind.	B1
(2)	new step number	step	B1
(3)	11-punch, for i=S	X _S	B1
(4)	row-number	ĺĺ	B1
(5)	11-punch, for i=r	X	B5
(6)	column number	j	B1
(7)	11-punch, for j=k	Xk	B2
(8)	new row variable number	s' i	C
(9)	new column variable number	t ' j	C
(10)	new matrix element	X !	C
(11)	old matrix element	x _{1.1}	B1
(12)	old matrix element in the same row, and co- lumn k, for $j \neq k$	x _{ik}	B4
(13)	old row variablenr.	s _i	B1
(14)	old column variable number	tj	B1
(15)	old column variable number in column k, for j≠k	t _k	B4

Remarks:

(a) to fields (4) and (6). The row numbers Z and S and the column number B are punched alphabetically in the last position of these fields. In the last position but one is punched - for sorting purposes in field (4): 11-punch for i = Z 12-punch for i = S. in field (6) 11-punch for j = B. The cards are taken from the sorter
in the order 0,1,2,3,4,5,6,7,8,9,11,
12.
(b) to fields (8) and (13) For i = Z or S these fields contain
zeros.
(c) to fields (9) and (14) For j = B these fields contain zeros.
(d) to fields (12) and (15) These fields are left blank for j = k.
(e) to fields (10)(11)(12) Negative numbers are indicated by an
11-punch in the last position.

6. Flow of the operations

Suppose we have reached the stage that a deck of cards has completely been punched. The cards then come from the multiplier sorted with respect to column number. Now the following set of operations is to be performed: A1 In the tabulator some data are listed and tabulated according

to the subjoined scheme:

symbol	ind.	step	ĩ	ຶ່ງ	x _{ij}	x _{ij} '	s _i '	Xr	t ' j'	Xk
list first card of co- lumn	(1)	(2)	(4)	(6)	(11)	(10)	(8)	(5)	(9)	(7)
list each card		-	(4)		(11)	(10)	(8)	(5)		-
total		-	-	-	(11)	(10)	-	-		

Remarks:

- (a) The numbers i and j are printed by alphabetic type-bars to get the row numbers Z and S and the columnnumber B.
- (b) The data X_r and X_k are printed as an asterisk next to the changed row, resp. column variable numbers.
- (c) Negative matrix elements $\mathbf{x}_{i,j}$ and $\mathbf{x}_{i,j}$ ' are provided with a CR-mark.
- (d) The fields (10) and (11) are tabulated; a total is given over each column (with columnnumber and column variable number as indications; this supplies a check for the new column variable number). The totals should be zero, apart from rounding-off errors.

A2 The row r and column k are indicated according to section 4. The number k is found by inspection of the printed matrix; whereas r requires a few simple calculations on a desk-machine.

B1 In behalf of the next step a new deck of cards is made. The following fields are reproduced (with comparing) or gang-

-8-

-9-

punched:

old åe ck	new deck
(1)	(1)
	(2) gang-punched
(3)	(3)
(4)	(4)
(6)	(6)
(10)	(10)
(8)	(13)
(9)	(14)

After this operation the old deck is not used any longer. B2 The column k is seperated from the deck. In field (7) of it

an X_k is gang-punched.

- B3 The column k is added to the deck as leading column. Then the cards are sorted to row number.
- B4 In an off-set gang-punch operation with X_k-cards as mastercards the following fields are punched:

master card	detail cards
(11)	(12)
(14)	(15)

- B5 The row r is separated from the deck.
 - In field (5) of it an X_r is gang-punched.

B6 The row r is added to the deck as leading row. Then the cards are sorted to column number.

C. The multiplier calculates x_{ij} ' in field (10) according to the formulae in section 4. The six different cases mentioned in that section are indicated in the cards by:

NOX _r ,	NOX _s ,	NOX		NOX,	NOX _s ,	X
	X _s ,		•		X _s ,	
X _r ,	NOX _s ,	NOXk		X _r ,		

The multiplier also performs the "administrative" operation of punching the fields (8) and (9). This is easier than doing it on the reproducer because of the larger selection possibilities. The deck must be fed into the multiplier in thé given order, i.e. sorted to column number with X_r -cards as leading cards in each column.

Initial operations

In the first deck of cards the fields (3), (4), (6), (11), (13)and (14) are key-punched. The fields (1) and (2) can be gangpunched. As a rule the first deck contains the trivial solution, for which we have $s_i = p + i$, $t_j = j$; $Z_j = -g$; $Z_0 = 0$. After this punching the cards are sorted with respect to row number and column number. Then the normal operations are performed starting with A1, but B1 will be skipped the first time. In special cases one can start with a solution other then the trivial one. This requires an artifice proposed by Wijvekate and described in 3). Particularly if a solution is known (not necessary basic) which lies near to the optimal solution one can save much work by applying this process.

7. Scaling and precision

From a point of view of precision it is preferable to scale the problem in such way that all matrix elements are of the order of unity.

Firstly, when no extremely high numbers occur, the optimal number of decimals can be used in the calculations.

Secondly, the error inherent to the procedure will be smaller. Indeed it is known from experience that digits may be lost in the course of the calculations.

Of course it is difficult to predict whether this condition will be fulfilled during the whole procedure even when the original matrix satisfies it.

When it happens that after a number of steps the matrix becomes too bad one can scale the matrix once again (by introducing new variables). One can also start the problem anew and apply the process mentioned at the end of the preceding section.

For larger problems which require many steps, double-length calculations are recommended but then a multiplier with higher capacity than the 602 A is necessary e.g. the 604.

-11-

8 References and acknowledgements

 G.B. Dantzig, Maximilization of a linear function of variables subject to linear inequalities, Chapter XXI in "Activity Analysis of production and allocations", John Wiley and Sons (1951)
 A. Charnes, W.W. Cooper and A. Henderson, "An introduction to linear programming", John Wiley and Sons, (1953)
 J. Kriens, Cursus "Operations Research", Hoofdstuk II, Lineaire programmeringstheorie, Report S 166 (C9), Mathematical Centre, Amsterdam. (1955)

We wish to express our thanks to Mr. J. Kriens for his ample explanation about the Simplex Method. Further we are indebted to Miss Ammie Berends who performed a test-case on our IBM punched-card **set and to Miss Julie** Schalij for the preparation of the manuscript.

-12-

Appendix

A Panel for the IBM calculating punch type 602 A.

Of course there are several ways to realize the operation C of section 6 on the wiring panel. On the board described below the machine performs for each card the operation

$$X = A + \frac{B}{C} \times D$$

with a special choice of the quantities A, B, C and D in each of the six possible cases. This operation requires only one division and a few transfers.

The numbers we are dealing with are supposed to be scaled in such a way that they have at most 3 digits before and 4 digits behind the decimal point: xxx,xxxx.

The description consists of

(a) operations chart

(b) Table of selectors

(c) Scheme of channels

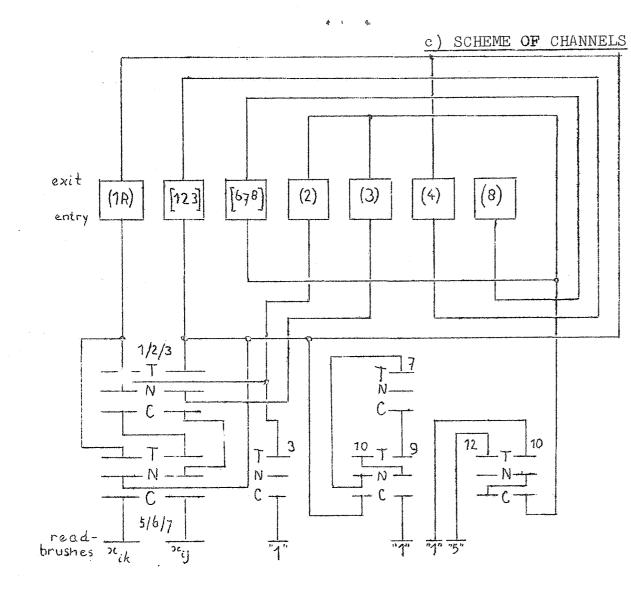
(d) Control impulses

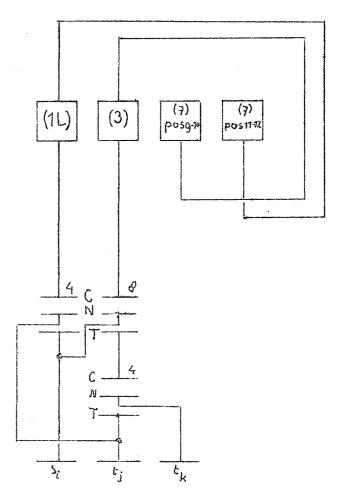
a) OPERATIONS CHART

÷

	am	St	orage	Cou	inter		Storage		Punch S	Storage
	Pragram	(1L)	(1R)	[12.3]	[456]	(2)	(3)	(4)	(7)	(8)
		tj	1 ^{sc} ik	1		x _{ij}	t _k 0			
$DC_r, NOX_k - cards$	R						for the for the fact that the fact is the fact of the			
the second s				x _{ik}		·····	$ \mathbf{x}_{i} $			
NOX, NOXk-cards	R									
$x_r, x_k - cards$	R	Si		1		1	tj 0			<u> </u>
			<i>\///////</i>	ا ^ر ام			s; 0			•
NOX, Xk - cards	R									
۵۰۰ - ۱۹۹۹ -				± 1	only Kk: -1					
	P1									
	D			h	P					
only Xs - cards {	P2									
	P3				(
	<u>'</u>						ļ			
	P4			1/2 divisor						
	P5					<+				
					\\/////////////////////////////					
	P ₆								****	njeroviter ti sjone
	P ₇				<u>+</u> 5					n a tha an
	Pe	├							<u> </u>	
		·]			

ġ.


e


-13-

- Karlanda - Andrewson - Marine Marine - Andrewson - Andre			
Pilot- selector	Co- selector	Pick-up	Drop-out
1 2 3	5/6/7/8 1/2/3/4	CBr.X _r CBr.X _k CBr.X _s	RDO RDO RDO
5 6		RBr.X _r RBr.X _k	RDO RDO
*10 11/12 13 14		only X _r :RBr.sign(R) RBr.,[123] only X _r :RBr., (2) RBr., (3)	RDO only X _r :RDO
15/16 17		NB [123] NB [678]	RDO RDO
	9 10 11 12	Repl. P1cpl. P6cpl. P7cpl.	

b) TABLE OF SELECTORS

CBr. = Control Brushes RBr. = Read Brushes

êo

.a

ו ק

•		-16- d) control impulses	
adapang kapan di kapang kap	Control- reading	PUPSel 1,2 and 3	
	R-cpl R	PUCoSe19 RI + [123]	
	:	RI (3) FUPSel 5,6, 11/12 and 14 RDOPSel 1,2,3,5,6,11/12, 14,15/16 and 17	
		RI(1) and (2) FUPSel 10 and 13 RDOPSel 10 and 13	$\left.\right\}$ only for X_r - cards
	:	Skip to P4	only for NOX _s - cards
to.	P1-cpl	PUCoSel 10	
&	P1	RI <u>+</u> [123] NB [123]→PUPSel 15/16 RI - [678]	sign: PSol 11/12 only for X _k - cards
	P2	RR [123] RI (4)	R.
	P3 .	RO (4) RI <u>+</u> [123]	sign: PSel 15/16
	P4	RO (1R) RI + [123] X5, tenths	
	P5	Div. RO (1R) RO (2)	
		RI - [123] RI $\mp [678]$	Sign: PSel 5, 10, 11/2 13, 15/16
₹. 	P6-cpl	PUCoSel 11	
*	Рб	RO (3) RI <u>+</u> [678] NB [678]→PUFSel 17	sign: PSel 14
	P7-cpl	PUCôScl12	
	P7	RI <u>+</u> [678]	sign: PSel 17
	Р8	RR[123] RR[678] RO(1L) RO (3) RI and pch (7) and (8)	
		Read.	,

CONTENTS

1.	Introduction	age	1
2.	The problem	11	1
3.	Outline of the simplex method	11	2
4.	The calculating scheme	H	3
5.	The punched-card lay-out	н	7
6.	Flow of the operations	ħ	ŝ
7.	Remarks on scaling and precision	Ū.	1:
8.	References and acknowledgements	tt.	٦-j
App	pendix: A panel for IBM type 602 A	11	12